[go: up one dir, main page]

WO2005099074A1 - 誘導性負荷電流制御回路及び電源装置 - Google Patents

誘導性負荷電流制御回路及び電源装置 Download PDF

Info

Publication number
WO2005099074A1
WO2005099074A1 PCT/JP2005/005413 JP2005005413W WO2005099074A1 WO 2005099074 A1 WO2005099074 A1 WO 2005099074A1 JP 2005005413 W JP2005005413 W JP 2005005413W WO 2005099074 A1 WO2005099074 A1 WO 2005099074A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
switch element
voltage
inductive load
control circuit
Prior art date
Application number
PCT/JP2005/005413
Other languages
English (en)
French (fr)
Inventor
Takashi Ryu
Hiroki Akashi
Takuya Ishii
Hiroshi Saito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006512013A priority Critical patent/JP4541358B2/ja
Priority to US11/547,487 priority patent/US7592792B2/en
Publication of WO2005099074A1 publication Critical patent/WO2005099074A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to an inductive load current control circuit and a power supply device.
  • An inductive load current control circuit used for a switching power supply or a motor control inverter etc. alternately conducts two switch elements connected in series between an input voltage and a ground potential, and the conduction time thereof Controls the current (inductor current) flowing to the inductor (inductive load) connected to the connection point of the two switch elements.
  • a technique for accurately detecting and controlling the current flowing to the inductive load is required.
  • a step-down DC-DC converter that outputs a voltage lower than an input voltage will be described.
  • a step-down DC-DC converter what is generally referred to as synchronous rectification is connected by alternately turning on and off first and second switch elements connected in series between the input voltage and the ground potential. The potential is alternately conducted to the input voltage and the ground potential.
  • a DC voltage is output to the output terminal by averaging this voltage with a low pass filter that also becomes an inductor and a capacitor.
  • An error voltage obtained by amplifying the difference voltage between the output voltage and the reference voltage is converted to a pulse width modulated signal by PWM conversion, and the ratio (duty cycle) of time for alternately turning on and off the first and second switch elements is controlled. Therefore, the output voltage is controlled to the target value.
  • a method is taken to monitor and control the current flowing through the inductor and switch the on / off state when the current reaches a predetermined value.
  • the other is a second switch provided on the ground potential side of the first and second switch elements connected in series between the input voltage and the ground potential. In this method, the current flowing through the tuchi element is monitored to control the minimum value of the triangular current flowing through the inductor.
  • a conventional step-down DC-DC converter according to a method of controlling the minimum value of the triangular wave current flowing in the inductor disclosed in Japanese Patent Laid-Open No. 2001-136737 will be described with reference to FIG.
  • FIG. 5 is a circuit diagram showing a configuration of a typical conventional step-down DC-DC converter (power supply device).
  • the input terminal 117 is connected to one end of an external power supply 104 that outputs a DC voltage.
  • the other end of the external power supply 104 is connected to the ground terminal 118 connected to the ground potential.
  • the step-down DC-DC converter (power supply device) of the conventional example of FIG. 5 inputs a DC voltage output from the external power supply 104 from the input terminal 117 and the ground terminal 118.
  • the first switch element (switch element on the high potential side) 119 and the second switch element (switch element on the low potential side) 120 are connected in series between the input terminal 117 and the ground terminal 118. Ru.
  • the source of the first switch element (switch element on the high potential side) 119 which is a P-channel FET is connected to the input terminal 117.
  • the source of the second switch element (switch element on the low potential side) 120 which is an N-channel FET is connected to the ground terminal 118.
  • One end of the inductor 123 is connected to each drain of the high potential side switch element 119 and the low potential side switch element 120, and a connection point 122 of the inverting input terminal of the current detection amplifier 501.
  • the other end of the inductor 123 is connected to one end of the filter 'capacitor 124 and the output terminal 125.
  • An external load (not shown) is connected between the output terminal 125 of the step-down DC-DC converter and the ground terminal 118.
  • the two input terminals of the current detection amplifier 501 are respectively connected to both ends of the low potential side switch element 120, and output a voltage proportional to the voltage drop.
  • the reference voltage generation unit 101 outputs a reference voltage V.
  • the non-inverted input terminal of the error amplifier 102 is connected to the reference voltage generator 101 and The voltage V is input, the inverting input terminal is connected to the output terminal 125, and the output voltage Vout is input EF
  • the error voltage is output to the error voltage input terminal 126.
  • the noninverting input terminal of comparator 502 is connected to the output terminal of error amplifier 102 via error voltage input terminal 126, and the inverting input terminal of comparator 502 is connected to the output terminal of current detection amplifier 501. .
  • the comparator 502 compares the voltage proportional to the drop voltage of the low potential side switch element 120 output from the current detection amplifier 501 with the error voltage output from the error amplifier 102, and drops the low potential side switch element 120. Outputs High when the voltage falls below the error voltage, otherwise outputs Low.
  • the oscillator 115 outputs a clock of the operating frequency of the step-down DC-DC converter of FIG. 5.
  • the switch element control circuit 116 is a set Z reset type flip flop of rising edge trigger.
  • the set terminal of the switch element control circuit 116 is connected to the comparator 502 to input the output voltage of the comparator 502.
  • the reset terminal of the switch element control circuit 116 is connected to the oscillator 115 to input the clock output from the oscillator 115.
  • the switch element control circuit 116 also has an RS flip-flop force and is reset when the clock input to the reset terminal is switched from low to high. In the reset state, the switch element control circuit 116 turns off the first switch element 119 and turns on the second switch element 120.
  • the switch element control circuit 116 is set when the output voltage of the comparator 502 input to the set terminal is switched from low to high. In the set state, the switch element control circuit 116 turns on the first switch element 119 and turns off the second switch element 120.
  • current detection amplifier 501 In FIG. 5, current detection amplifier 501, comparator 502, oscillator 115, switch element control circuit 116, input terminal 117, ground terminal 118, first switch element 119, second switch element 120, and inductor 123.
  • the output terminal 125 and the error voltage input terminal 126 constitute a conventional inductive load current control circuit.
  • a step-down DC-DC converter using the conventional inductive load current control circuit configured as described above The operation of the converter will be described.
  • An external load (not shown) is connected between the output terminal 125 of the step-down DC-DC converter and the ground terminal 118.
  • the switch element control circuit 116 is set to the set state at the time of start-up, brings the first switch element 119 on the high potential side into conduction, and puts the second switch element 120 on the low potential side into the interruption state.
  • a current is supplied from the external power supply 104 to the filter capacitor 124 and the external load via the input terminal 117, the switch element 119 and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123. As this condition continues, inductor current continues to increase with time.
  • the switch element control circuit 116 inputs a clock output from the oscillator 115 at a reset terminal force every predetermined time.
  • the switch element control circuit 116 is reset when the clock force input to the reset terminal is switched from low to high, and the first switch element 119 on the high potential side is cut off, and the second on the low potential side is switched off.
  • the switch element 120 is turned on.
  • the inductor current Due to the energy stored in the inductor 123, the inductor current has a characteristic of flowing continuously while maintaining the previous state.
  • the inductor current is supplied from the ground terminal 118 to the external load connected to the output terminal 125 through the switch element 120 and the inductor 123 on the low potential side.
  • the voltage proportional to the voltage drop of the low potential side switch element 120 output from the current detection amplifier 501 is the error amplifier 102. Higher than the error voltage output by The comparator 502 outputs Low. In this condition, the inductor current decreases with time.
  • the switch element control circuit 116 When the voltage drop of the second switch element 120 on the low potential side becomes less than the error voltage, the output of the comparator 502 switches from low to high. As a result, the switch element control circuit 116 is in the set state again, turns off the second switch element 120 on the low potential side, and turns on the first switch element 119 on the high potential side.
  • a current is supplied from the external power supply 104 to the filter capacitor 124 and the external load via the input terminal 117, the first switch element 119, and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123. The above operation is repeated below.
  • the minimum value of the triangular wave voltage output from the current detection amplifier 501 and the value of the error voltage output from the error amplifier 102, which are the two input signals of the comparator 502 when the circuit is in the balanced operation state, are: Match
  • the conventional step-down DC-DC converter monitors the current flowing through the second switching element 120 on the low potential side, and controls the minimum value of the triangular current flowing through the inductor 123. ing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-136737
  • the conventional step-down DC-DC converter is configured to compare the voltage drop in the second switch element on the low potential side with the error voltage.
  • the voltage drop at the second switch element on the low potential side is represented by the product of its conduction resistance and the inductor current.
  • FETs field effect transistors
  • the drop voltage at the second switch element on the low potential side has a large individual error for a constant inductor current.
  • the input offset voltage of the current detection amplifier 501 is also usually about plus or minus 10 mV.
  • the gain of the current detection amplifier 501 has variations.
  • the input offset voltage is added to the variation of the drop voltage at the low potential side switch element 120, and the output of the current detection amplifier 501 amplified with the variation gain has a larger individual error.
  • the minimum value of the triangular wave voltage output from the current detection amplifier 501 which is the two input signals of the comparator, matches the error voltage. Ru. Therefore, the error voltage matched with the output of the current detection amplifier also has a large individual error, and as a result, the output voltage of the DC-DC converter has a large individual error.
  • a high precision resistor is inserted in series between the low potential side switch element 120 and the ground terminal 118 to If the pressure is amplified, individual errors in the voltage drop can be reduced. However, the error due to the current detection amplifier 501 can not be eliminated, and the voltage drop across the If the power efficiency of the DC-to-DC converter is reduced due to the increase,
  • An object of the present invention is to provide an inductive load current control circuit and a power supply device that accurately detect and control a current (inductor current) flowing to an inductive load without decreasing the power efficiency.
  • the present invention has the following configuration.
  • the inductive load current control circuit is a reference that is a current source having an input terminal for inputting an input voltage, an output terminal for outputting an output voltage, and a current drive capability for outputting a reference current.
  • a connection point between a power supply, a first switch element and a second switch element connected in series between the input terminal and the ground potential, a first switch element, and a second switch element And an inductive load for connecting the other end to the output terminal and outputting the output voltage, and a third one having one end connected to a connection point between the first switch element and the second switch element.
  • the current comparator for judging and outputting the current and the first switch element are made conductive, the second switch element and the third switch element are made non-conductive, and current is supplied from the input voltage to the inductive load.
  • the first load state and the first switch element are made non-conductive, the second switch element and the third switch element are conductive, and the inductive load is stored in the first state.
  • a switch element control circuit for controlling the transition from the first state to the first state.
  • an inductive load current control circuit that controls the current of the inductive load by accurately detecting the current flowing to the inductive load.
  • the inductive load current control circuit accurately detects the minimum value of the triangular wave current flowing in the inductive load to control the current of the inductive load.
  • the reference power source is constituted by a voltage source and a resistor connected in series, and a predetermined current is obtained from one end of the resistor.
  • the reference power source is a reference current source having a current drive capability for outputting a predetermined reference current, wherein the reference current source The output voltage of the inductive load is controlled by controlling the magnitude of the current drive capability of the
  • the present invention by controlling the magnitude of the current drive capability of the reference current source, it is possible to realize an inductive load current control circuit that controls the current flowing to the inductive load to an arbitrary value.
  • the second switch element and the third switch element are formed of a transistor, and a current flowing through the third transistor is the current.
  • the conduction resistance is set to be smaller than the current flowing to the second transistor.
  • an inductive load current control circuit that accurately detects the current flowing to the inductive load without the third switch element affecting the output voltage of the inductive load.
  • the current comparator has one end connected to the reference power supply and the other end connected to the other end of the third switch element.
  • the third switch element is configured to have the same characteristics as the second switch element except that the current driving capability is smaller than that of the second switch element.
  • the current flowing through the third switch element can be made proportional to the current flowing through the second switch element. According to the present invention, by detecting the current flowing through the third switch element, the current flowing through the second switch element can be detected with high accuracy.
  • a power supply device includes a reference voltage generation unit that outputs a reference voltage, the inductive load current control circuit according to any of the above, the reference voltage, and the inductive load. And an error amplifier for comparing the output voltage of the current control circuit and amplifying an error voltage obtained by amplifying the difference voltage, and for reducing the absolute value of the error voltage, the inductive load current The value of the reference current of the control circuit is controlled.
  • the inductive load current control circuit accurately detects the minimum value of triangular current flowing in the inductive load.
  • the inductive load current control circuit which controls the current of the inductive load by accurately detecting the current flowing to the inductive load.
  • the inductive load current control circuit accurately detects the minimum value of the triangular wave current flowing in the inductive load to control the current of the inductive load.
  • FIG. 1 is a diagram showing a configuration of a power supply device according to a first embodiment of the present invention.
  • FIG. 2 is a timing chart showing an operation in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing the configuration of a power supply device according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing a voltage stabilization circuit, a monomultiplier and peripheral circuits thereof according to a third embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a step-down DC-DC converter using a conventional inductive load current control circuit.
  • FIG. 1 is a diagram showing a configuration of a power supply device according to a first embodiment of the present invention.
  • the power supply device of the first embodiment is a step-down DC-DC converter.
  • the inductive load current control circuit is the current comparator 114 and the third switch shown in FIG. 1 in place of the current detection amplifier 501 and the comparator 502 of the conventional example shown in FIG.
  • the current is detected by using the element 121 and the like.
  • reference current source 113 current comparator 114, oscillator 115, switch element control circuit 116, input terminal 117, ground terminal 118, first switch element 119, second switch element 120, the second switch element
  • the three switch elements 121, the inductor 123, the output terminal 125, and the error voltage input terminal 126 constitute the inductive load current control circuit of the first embodiment.
  • the input terminal 117 is connected to one end of an external power supply 104 that outputs a DC voltage V.
  • the other end of the partial power supply 104 is connected to the ground terminal 118 connected to the ground potential.
  • DC voltage V output from external power supply 104 is input to input terminal 117 and ground terminal 118.
  • the first switch element (switch element on the high potential side) 119 and the second switch element (switch element on the low potential side) 120 are connected in series between the input terminal 117 and the ground terminal 118. Ru.
  • the source of the first switch element (switch element on the high potential side) 119 which is a P-channel FET is connected to the input terminal 117.
  • the source of the second switch element (switch element on the low potential side) 120 which is an N-channel FET is connected to the ground terminal 118.
  • the drain of the third switch element 121 which is an N-channel FET is connected to the connection point between the drain of the first switch element 119 and the drain of the second switch element 120.
  • the gate of the third switch element 121 is connected to the gate of the second switch element 120.
  • the gates of the first, second and third switch elements 119, 120 and 121 are connected to the Q bar output terminal (inverted output terminal) of the switch element control circuit 116.
  • the source of the third switch element 121 is connected to the current output terminal 131 of the current comparator 114.
  • the third switch element 121 which is an N-channel FET, has the same characteristics as the second switch element 120 except that the current drivability is smaller than that of the second switch element 120.
  • inductor 123 which is an inductive load is connected to a connection point 122 of the drains of the first switch element 119, the second switch element 120 and the third switch element 121.
  • the other end of inductor 123 is connected to one end of filter capacitor 124 and output terminal 125
  • the power supply device of the first embodiment outputs a predetermined voltage V from an output terminal 125.
  • the reference voltage generation unit 101 outputs a reference voltage V.
  • the force terminal is connected to the reference voltage generator 101 to input the reference voltage V.
  • the inverting input terminal of the amplifier 102 is connected to the output terminal 125 to input the output voltage V.
  • the error amplifier 102 amplifies the difference between the reference voltage V and the output voltage V to generate an error signal.
  • the error voltage input terminal 126 is connected to the output terminal of the error amplifier 102 to input an error voltage.
  • Phase compensation circuit 111 has a resistor and a capacitor connected in series.
  • the resistor is connected to the negative voltage input terminal 126 and the capacitor is connected to the ground potential.
  • the phase compensation circuit 111 receives an error voltage, adjusts the phase, and outputs it.
  • the voltage-current converter (V-I converter) 112 is connected to the phase compensation circuit 111, converts the input error voltage into a current, and outputs it.
  • the reference current source 113 outputs a reference current I.
  • reference current I In the first embodiment, reference current I
  • the reference current source 113 is based on the current value output from the voltage-current converter 112.
  • the minimum value of the triangular inductor current IL (t) is detected. , Controls the inductor current and stabilizes the output voltage V.
  • the current comparator 114 is connected to the current input terminal 132 connected to the reference current source 113, the voltage stabilization circuit 133 and the buffer amplifier 134 connected to the current input terminal 132, and the voltage stabilization circuit 133. Having a current output terminal 131.
  • the current comparator 114 receives the reference current I output from the reference current source 113 as the current input terminal 132.
  • Voltage stabilization circuit 133 of current comparator 114 is connected between the base of transistor 141 and transistor 141 connected between current input terminal 132 and current output terminal 131 and ground potential. It has a voltage source 142.
  • the transistor 141 is a bipolar transistor.
  • the base voltage of the transistor 141 is given by a voltage source 142 which outputs a constant voltage corresponding to the voltage between the base and the emitter (about 0.7 V).
  • the emitter of the transistor 141 is connected to the current output terminal 131 and operates to bring the voltage of the current output terminal 131 close to the ground potential OV.
  • the collector of transistor 141 is connected to current input terminal 132.
  • [Current drivability of third switch element 121]: [Current drivability of second switch element 120] l: a (a> l), the third switch element 121 always has The current of 1Za flowing to the second switch element 120 flows. That is, in the first embodiment, the second switch element 120 and the third switch element 121 have a predetermined conduction resistance ratio, and the current flowing in the third switch element 121 flows to the second switch element 120. Set so as to be less than the current flowing.
  • the third switch element 121 communicates with the second switch element 120. Equal to the reciprocal of the ratio of resistance, a current of ratio flows.
  • the current IS2 (t) is compared with the reference current I by the current comparator 114.
  • the current flowing through the third switch element 121 (current drive capability of the third switch element 121) IS 2 (t) is the reference current output by the reference current source 113 (current drive capability of the reference current source 113)
  • the collector potential of the transistor 141 becomes close to the ground potential (Vc V Z2).
  • the collector voltage Vc becomes an output of the current comparator 114 through the buffer amplifier 134.
  • the buffer amplifier 134 has a threshold of 1 / V and outputs two values of High and Low. No
  • the buffer amplifier 134 compares the current drivability of the third switch element 121 through which current flows from the current output terminal 131 with the current drivability I of the reference current source 113 which inputs current from the current input terminal 132, and compares the magnitude relation. Determine and output. That is, the buffer amplifier 134 is
  • the current comparator 114 If the current flowing through the quasi current source 113, the current comparator 114, and the third switch element 121 is larger than the reference current I, it outputs Low, and if the current is smaller than the reference current I Hig
  • the switch element control circuit 116 is a rising edge trigger set Z reset type flip flop.
  • the output terminal of the buffer amplifier 134 is connected to the set terminal of the switch element control circuit 116.
  • the reset terminal of the switch element control circuit 116 is connected to the oscillator 115.
  • the oscillator 115 outputs a clock of the operating frequency of the step-down DC-DC converter shown in FIG.
  • the switch element control circuit 116 also receives the output voltage of the current comparator 114 as the set terminal force, and inputs the clock output from the reset terminal force oscillator 115.
  • the switch element control circuit 116 is set when the output voltage of the current comparator 114 input to the set terminal is switched from low to high. In the set state, the switch element control circuit 116 turns on the first switch element 119 and turns off the second switch element 120 and the third switch element 121 (first state).
  • the switch element control circuit 116 is reset when the clock input to the reset terminal is switched from low to high. In the reset state, the switch element control circuit 116 turns off the first switch element 119 and turns on the second switch element 120 and the third switch element 121 (second state).
  • the switch element control circuit 116 includes the first switch element 119 and the second switch.
  • the first switching element 120 and the third switching element 121 are alternately conducted to switch between the first state (charging state) and the second state (discharging state).
  • the first state force switching to the second state is performed when a predetermined time elapses, and the second state force switching to the first state is based on the output of the current comparator 114.
  • the switch element control circuit 116 is set to the set state at start-up, and the first switch element 119 on the high potential side is made conductive, and the second switch element 120 and the third switch element 121 on the low potential side are shut off. Do.
  • a current is supplied from the external power supply 104 to the filter 'capacitor 124 and an external load (not shown) through the input terminal 117, the switch element 119 and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123. If this condition is continued, the inductor current will increase with time (first condition: charge condition).
  • the switch element control circuit 116 inputs a clock output from the reset terminal oscillator 115.
  • the switch element control circuit 116 is reset when the clock force input to the reset terminal is switched from low to high, and turns off the first switch element 119 on the high potential side, and the second on the low potential side.
  • Switch element 120 and third switch element 121 are turned on (second state: discharge state).
  • the inductor current has a characteristic of continuously flowing while maintaining the previous state.
  • the inductor current is supplied from the ground terminal 118 to the external load connected to the output terminal 125 through the low potential side switch element 120 and the inductor 123.
  • the current comparator 114 compares the current IS 2 (t) flowing from the current output terminal 131 to the third switch element 121 with the reference current I, and outputs the comparison result. In the second state
  • the output voltage of the current comparator 114 is switched to Low also to High.
  • the switch element control circuit 116 is in the set state (first state) again, turns off the second switch element 120 and the third switch element 121 on the low potential side, and switches the switch on the high potential side.
  • the element 119 is turned on.
  • a current is supplied from the external power supply 104 to the filter 'capacitor 124 and an external load (not shown) through the input terminal 117, the first switch element 119, and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123.
  • the power supply apparatus monitors the current flowing through the third switch element 121 on the low potential side, and controls the minimum value of the triangular current flowing through the inductor 123.
  • FIG. 2 is a timing chart showing a first state and a second state in the first embodiment.
  • FIG. 2 (a) shows the voltage VLX (t) at the connection point 122 of the first and second switch elements.
  • FIG. 2 (b) shows the current IL (t) flowing through the inductor 123.
  • FIG. 2 (c) shows the current IS1 (t) flowing through the second switch element 120. The direction of the current flowing from the ground potential side to the inductor side is positive.
  • FIG. 2 (d) shows the current IS 2 (t) flowing to the third switch element 121. The direction of the current flowing from the current comparator 114 side to the inductor side is positive.
  • the period T ends, and the second switch element 120 on the ground side is turned on.
  • Third switch element 121 is conductive for the same period as second switch element 120, and current IS 2 (t) flows through third switch element 121 according to the ratio of the conduction resistances of each other.
  • the current IS2 (t) decreases with time in proportion to the current IS1 (t).
  • the first switch element 119 is turned on, the second switch element 120 and the second switch element 120 are switched on.
  • the third switch element 121 shifts to the shutoff state.
  • the power supply operates by repeating these two states alternately.
  • the accuracy of current detection in the first embodiment of the present invention will be described.
  • the current flowing through the third switch element 121 which has a predetermined ratio of conduction resistance to the second switch element 120, is directly compared with the reference current I.
  • the ratio of the conduction resistance can be made relatively high in accuracy compared to the absolute value, if the elements arranged in close proximity in a monolithic semiconductor made in the same process.
  • the second switch element 120 and the third switch element 121 of the present embodiment utilize elements disposed in proximity to a monolithic semiconductor fabricated by the same process. As a result, the respective terminal voltages of the second switch element 120 and the third switch element 121 are maintained substantially the same. Therefore, the inductive load current control circuit and the power supply device of the present invention can detect the current with high accuracy.
  • the present invention directly compares the detected current IS2 (t) with the reference current I in the current comparator 114.
  • the current detection amplifier 501 is not required as in the conventional example shown in FIG.
  • the current detection amplifier 501 is used as in the conventional example, variations in input offset voltage and gain cause individual errors in current detection, but the present invention can eliminate this error factor. Therefore, in the first embodiment of the present invention, the current can be detected with high accuracy.
  • the present invention does not use a resistor for current detection, power loss can be reduced and power efficiency can be increased.
  • FIG. 3 is a diagram showing a configuration of a power supply device according to a second embodiment of the present invention.
  • the power supply device of the second embodiment is different from that of the first embodiment of FIG. 1 in that the voltage stable circuit 301 of FIG. 3 is provided instead of the voltage stable circuit 133 of FIG.
  • the other parts of the configuration are the same as those of the first embodiment, so the same reference numerals are given and description thereof is omitted.
  • the voltage stabilization circuit 301 of the second embodiment includes a reference current source 311 connected to the voltage / current converter 112, and a base and a collector connected to the output terminal of the reference current source 311, and the emitter is connected to the ground terminal 118.
  • Transistor 312 and the base and collector of transistor 312 Has its collector connected to the current input terminal 132 and the input terminal of the buffer amplifier 134, and has its emitter connected to the current output terminal 131.
  • Reference current source 311 generates current I in proportion to reference current I output from reference current source 113.
  • the transistors 312 and 313 are bipolar transistors having the same or a predetermined ratio of current drivability and the same characteristics.
  • the transistor 312 supplies a current I to the collector power emitter.
  • the base voltage of transistor 313 is the base voltage of transistor 312
  • Voltage-current converter (V-I converter) 112 controls the current drivability of reference current sources 113 and 311 such that both maintain the same or a predetermined ratio.
  • the operating conditions of the transistors 313 and 312 are set to be the same when the reference current sources 113 and 311 supply the currents of the same or a predetermined ratio to the transistors 313 and 312, respectively. Therefore, the emitter potential of the transistor 313, that is, the potential of the current output terminal 131 always operates to be equal to the ground potential which is the emitter potential of the transistor 312.
  • the collector potential of the resistor 313 is close to the ground potential.
  • the collector potential becomes close to the input voltage V.
  • the buffer amplifier 134 outputs the binary value as the output of the current comparator 114 according to the collector voltage.
  • the power supply device of the second embodiment has the same effect as the power supply device of the first embodiment.
  • bipolar transistors are used for the transistors 312 and 313 in the second embodiment, the same effect can be obtained by replacing them with FETs.
  • FIG. 4 is a diagram showing the configuration of a voltage stabilization circuit, a monomultivibrator and peripheral circuits thereof according to a third embodiment of the present invention.
  • the inductive load according to the third embodiment differs from the current control circuit and the power supply device according to the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. 3 in that the voltage stabilization circuits 133 and 301 shown in FIGS. Figure 4 instead of 115 It is to have a voltage stabilization circuit 401 and a monomultivibrator (MMV) 402 shown.
  • MMV monomultivibrator
  • the collector is connected to the current input terminal 132 and the input terminal of the buffer amplifier 134, and the emitter is connected to the current output terminal 131. It has a single-supply operational amplifier 412 whose output terminal is connected to the base. The non-inverted input terminal of the operational amplifier 412 is grounded, and the inverted input terminal is connected to the current output terminal 131 so that the voltage of the current output terminal 131 becomes equal to the ground potential.
  • the transistor 411 is a bipolar transistor.
  • the base voltage of transistor 411 is provided by the output of operational amplifier 412.
  • the collector potential of the transistor 411 is at the ground potential.
  • Buffer amplifier 134 Buffer amplifier 134
  • a value obtained by multiplying the binary value according to the collector voltage is output as the output of the current comparator 114.
  • the monomultivibrator 402 When the output voltage of the buffer amplifier 134 is switched from low to high, the monomultivibrator 402 is triggered to output low, and outputs high after a predetermined time.
  • the switch element control circuit 116 is an edge trigger set Z reset type flip flop that inputs the output of the current comparator 114 to the set terminal and inputs the output of the monostable 402 to the reset terminal.
  • the switch element control circuit 116 of the third embodiment operates in the same manner as that of the first embodiment or the second embodiment.
  • the current comparator 114 is set to output High at startup. At start-up, the monomultivibrator 402 is triggered and the switch element control circuit 116 is in the set state. Is set to (1st state: charged state).
  • the switch element control circuit 116 causes the first switch element 119 on the high potential side to be in a conducting state, and the second switch element 120 and the third switch element 121 on the low potential side. Put in the shutoff state.
  • a current is supplied from the external power supply 104 to the filter 'capacitor 124 and the external load via the input terminal 117, the switch element 119 and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123.
  • the output voltage of the mono multi vibrator 402 is switched from low to high.
  • the switch element control circuit 116 to which the output voltage of the mono multi vibrator 402 is input to the reset terminal, is reset.
  • the switch element control circuit 116 turns off the first switch element 119 on the high potential side and turns on the second switch element 120 and the third switch element 121 on the low potential side (second state (second state). : Discharged state).
  • the inductor current In the second state, due to the energy stored in the inductor 123 in the first state, the inductor current has a characteristic of continuously flowing while maintaining the previous state.
  • the inductor current is supplied from the ground terminal 118 to the external load via the low potential side switch element 120 and the inductor 123.
  • the second switch element 120 switches to the open state, the current IS 2 (t) flowing through the third switch element 121 is larger than the reference current I.
  • the current comparator 114 compares the current IS 2 (t) flowing from the current output terminal 131 to the third switch element 121 with the reference current I, and outputs the comparison result. In the second state
  • the output voltage of the current comparator 114 switches to low also to high.
  • the monomultivibrator 402 is triggered, and the switch element control circuit 116 is in the set state (first state) again.
  • the switch element control circuit 116 shuts off the second switch element 120 and the third switch element 121 on the low potential side, and turns on the switch element 119 on the high potential side.
  • a current is supplied from the external power supply 104 to the filter capacitor 124 and the external load via the input terminal 117, the first switch element 119, and the inductor 123.
  • the inductor current IL (t) increases with time t and energy is stored in the inductor 123.
  • the minimum value of the triangular current flowing through the current comparator 114 matches the reference current I.
  • the power supply apparatus monitors the current flowing through the third switch element 121 on the low potential side, and controls the minimum value of the triangular current flowing through the inductor 123.
  • reference current source 113 of Embodiment 1 13 it is possible to use a reference power source constituted by a voltage source and a resistor connected in series and obtaining a predetermined current from one end of the resistor. Yes.
  • the reference current source 113 for generating the reference current and the voltage current variation 112 are configured as independent circuits, these two circuits have one voltage current variation.
  • the output current of the voltage-current converter may be implemented as the reference current.
  • the oscillation preventing measures were taken by the phase compensation circuit 111 using the voltage comparator as the error amplifier 102, the oscillation preventing measures are not necessarily good if implemented. is not. Therefore, when no anti-oscillation measures are necessary, the three circuits of error amplifier 102, voltage-current converter 112 and reference current source 113 in the embodiment 13 are replaced with one voltage-current converter. It is also possible to implement the output current of the error amplifier configured as voltage current variation as a reference current.
  • the current comparator 114 outputs a binary-subtracted value.
  • the switch element control circuit 116 may divide the analog voltage output from the current comparator into binary values.
  • the voltage stabilization circuits 133, 301, and 401 are used as the inductive load current control circuit of the embodiment 13, the voltage stabilization circuit may be omitted. However, it is preferable to provide a voltage stabilization circuit, because the use of a voltage stabilization circuit increases the accuracy of current detection.
  • the inductive load current control circuit and the power supply device of the present invention are useful for accurately detecting and controlling the current flowing to the inductive load without power loss.
  • the present invention can be widely used as a circuit for controlling the current of an inductive load, such as a motor control inverter, which is not only a step-down DC-DC converter.
  • the inductive load current control circuit of the present invention can be used as a motor by replacing the inductor 123 with the stator winding of the motor. It can be used as a drive circuit.
  • the present invention is useful for an inductive load current control circuit and a power supply device that control the current of an inductive load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

 誘導性負荷に流れる電流を精度良く検出し制御する誘導性負荷電流制御回路及び電源装置を提供する。  本発明の誘導性負荷電流制御回路は、入力電圧と接地電位との間に直列に接続された第1および第2のスイッチ素子と、第1および第2のスイッチ素子の接続点に接続された誘導性負荷と、第1および第2のスイッチ素子の接続点に一方の端子が接続された第3のスイッチ素子と、第3のスイッチ素子の他方の端子と接続して第3のスイッチ素子の出力電流を基準電流と比較し、大小関係を判定して出力する電流比較器と、電流比較器の出力に基づいて第2のスイッチ素子が導通した状態から第1のスイッチ素子が導通した状態への移行を制御するスイッチ素子制御回路と、を有する。

Description

明 細 書
誘導性負荷電流制御回路及び電源装置
技術分野
[0001] 本発明は、誘導性負荷電流制御回路及び電源装置に関する。
背景技術
[0002] スイッチング電源又はモーター制御用インバータ等に用いられる誘導性負荷電流 制御回路は、入力電圧と接地電位との間に直列に接続された 2個のスィッチ素子を 交互に導通させ、その導通時間を制御することで、 2個のスィッチ素子の接続点に接 続されたインダクタ (誘導性負荷)に流れる電流 (インダクタ電流)を制御する。近年、 誘導性負荷をスィッチ素子で制御する電源装置、例えば DC— DCコンバータなどに おいて、誘導性負荷に流れる電流を正確に検出し制御する技術が求められている。
[0003] 入力電圧よりも低い電圧を出力する降圧 DC— DCコンバータについて説明する。降 圧 DC— DCコンバータにおいて、一般に同期整流型と呼ばれるものは、入力電圧と 接地電位の間に直列に接続された第 1および第 2のスィッチ素子を交互にオンオフさ せることにより、接続点の電位を交互に入力電圧と接地電位に導通させる。この電圧 をインダクタとキャパシタカもなる低域フィルタで平均化することによって、出力端子に 直流電圧を出力する。出力電圧と基準電圧の差電圧を増幅したエラー電圧を PWM 変 でパルス幅変調された信号に変換し、第 1および第 2のスィッチ素子を交互に オンオフさせる時間の比(デューティーサイクル)を制御することによって、出力電圧 が目標値になるように制御して 、る。
[0004] さらに近年の技術では、インダクタに流れる電流を監視して定められた電流に達す るとオンオフの状態を切り替えて制御する方法が取られて 、る。そのインダクタ電流 の監視方法としては、主に 2つの方法が知られている。その 1つは、入力電圧と接地 電位間に直列に接続された第 1および第 2のスィッチ素子のうち、入力電圧側に設け られた第 1のスィッチ素子を流れる電流を監視して、インダクタに流れる三角波状の 電流の最大値を制御する方法である。もう 1つは、入力電圧と接地電位間に直列に 接続された第 1および第 2のスィッチ素子のうち、接地電位側に設けられた第 2のスィ ツチ素子を流れる電流を監視して、インダクタに流れる三角波状の電流の最小値を 制御する方法である。
[0005] 降圧 DC— DCコンバータを低いデューティーサイクルで動作させる場合は、電流の 最大値を制御するよりも最小値を制御する方が高速なスイッチング周波数に対応し やすいことが知られている(例えば、特開 2001— 136737号参照)。
図 5を用いて、特開 2001— 136737号公報に開示された、インダクタに流れる三角 波状の電流の最小値を制御する方法による、従来例の降圧 DC— DCコンバータにつ いて説明する。
[0006] 図 5は、典型的な従来例の降圧 DC— DCコンバータ (電源装置)の構成を示す回路 図である。入力端子 117は、直流電圧を出力する外部電源 104の一端に接続されて いる。外部電源 104の他端は、接地電位に接続された接地端子 118に接続されてい る。図 5の従来例の降圧 DC - DCコンバータ (電源装置)は、入力端子 117及び接地 端子 118から外部電源 104が出力する直流電圧を入力する。
[0007] 第 1のスィッチ素子 (高電位側のスィッチ素子) 119及び第 2のスィッチ素子 (低電 位側のスィッチ素子) 120は、入力端子 117と接地端子 118との間に直列に接続され る。 Pチャンネル型 FETである第 1のスィッチ素子(高電位側のスィッチ素子) 119の ソースは、入力端子 117に接続される。 Nチャンネル型 FETである第 2のスィッチ素 子 (低電位側のスィッチ素子) 120のソースは、接地端子 118に接続される。
[0008] インダクタ 123の一端は、高電位側のスィッチ素子 119及び低電位側のスィッチ素 子 120の各ドレインと、電流検出増幅器 501の反転入力端子の接続点 122とに接続 される。インダクタ 123の他端は、フィルタ 'キャパシタ 124の一端と出力端子 125に 接続される。
[0009] 降圧 DC— DCコンバータの出力端子 125と接地端子 118との間には、図示を省略 した外部負荷が接続される。
電流検出増幅器 501の 2つの入力端子はそれぞれ、低電位側のスィッチ素子 120 の両端に接続され、その降下電圧に比例した電圧を出力する。
[0010] 基準電圧発生部 101は、基準電圧 V を出力する。
EF
エラー増幅器 102の非反転入力端子は、基準電圧発生部 101に接続されて基準 電圧 V を入力し、反転入力端子は出力端子 125に接続されて出力電圧 Voutを入 EF
力する。エラー増幅器 102は、基準電圧 V と出力電圧 Voutとの差電圧を増幅した
EF
エラー電圧をエラー電圧入力端子 126に出力する。
[0011] 比較器 502の非反転入力端子はエラー電圧入力端子 126を介してエラー増幅器 1 02の出力端子に接続され、比較器 502の反転入力端子は電流検出増幅器 501の 出力端子に接続される。比較器 502は、電流検出増幅器 501が出力する低電位側 のスィッチ素子 120の降下電圧に比例した電圧と、エラー増幅器 102が出力するェ ラー電圧とを比較し、低電位側スィッチ素子 120の降下電圧がエラー電圧未満とな つた時に Highを出力し、そうでなければ Lowを出力する。
[0012] 発振器 115は、図 5の降圧 DC— DCコンバータの動作周波数のクロックを出力する スィッチ素子制御回路 116は、立ち上がりエッジトリガーのセット Zリセット型フリップ フロップである。スィッチ素子制御回路 116のセット端子は比較器 502に接続されて 、比較器 502の出力電圧を入力する。スィッチ素子制御回路 116のリセット端子は発 振器 115に接続されて、発振器 115が出力するクロックを入力する。
[0013] スィッチ素子制御回路 116は RSフリップフロップ力もなり、リセット端子に入力され たクロックが Lowから Highに切り換わった時にリセット状態になる。リセット状態にお いて、スィッチ素子制御回路 116は、第 1のスィッチ素子 119を遮断状態にし、第 2の スィッチ素子 120を導通状態にする。
[0014] スィッチ素子制御回路 116は、セット端子に入力される比較器 502の出力電圧が L owから Highに切り換わった時にセット状態になる。セット状態において、スィッチ素 子制御回路 116は、第 1のスィッチ素子 119を導通状態にし、第 2のスィッチ素子 12 0を遮断状態にする。
[0015] 図 5において、電流検出増幅器 501、比較器 502、発振器 115、スィッチ素子制御 回路 116、入力端子 117、接地端子 118、第 1のスィッチ素子 119、第 2のスィッチ素 子 120、インダクタ 123、出力端子 125、エラー電圧入力端子 126は、従来例の誘導 性負荷電流制御回路を構成する。
[0016] 上記のように構成された従来の誘導性負荷電流制御回路を用いた降圧 DC— DCコ ンバータについて、その動作を説明する。降圧 DC— DCコンバータの出力端子 125 と接地端子 118との間に、図示を省略した外部負荷が接続されている。
[0017] スィッチ素子制御回路 116は起動時にセット状態に設定され、高電位側の第 1のス イッチ素子 119を導通状態にし、低電位側の第 2のスィッチ素子 120を遮断状態に する。外部電源 104から入力端子 117、スィッチ素子 119、インダクタ 123を介してフ ィルタ 'キャパシタ 124と外部負荷とに電流が供給される。インダクタ電流 IL (t)は時 間 tと共に増え、インダクタ 123にはエネルギーが蓄えられる。この状態を続けると、ィ ンダクタ電流は時間と共に増え続ける。
[0018] スィッチ素子制御回路 116は、所定の時間毎に、リセット端子力も発振器 115が出 力するクロックを入力する。スィッチ素子制御回路 116は、リセット端子力 入力する クロック力Lowから Highに切り換わった時にリセット状態になり、高電位側の第 1のス イッチ素子 119を遮断状態にし、低電位側の第 2のスィッチ素子 120を導通状態に する。
[0019] インダクタ 123に蓄えられたエネルギーにより、インダクタ電流は前の状態を保持し て連続して流れる特性がある。インダクタ電流は、接地端子 118から低電位側のスィ ツチ素子 120とインダクタ 123を介して、出力端子 125に接続された外部負荷に供給 される。
[0020] 第 2のスィッチ素子 120が遮断状態から導通状態に切り換わった時、電流検出増 幅器 501が出力する低電位側のスィッチ素子 120の降下電圧に比例した電圧は、ェ ラー増幅器 102が出力するエラー電圧より高い。比較器 502は Lowを出力する。こ の状態でインダクタ電流は時間と共に減少する。
[0021] 低電位側の第 2のスィッチ素子 120の降下電圧がエラー電圧未満になると、比較器 502の出力は Lowから Highに切り換わる。それによりスィッチ素子制御回路 116は、 再度セット状態になり、低電位側の第 2のスィッチ素子 120を遮断状態にし、高電位 側の第 1のスィッチ素子 119を導通状態にする。外部電源 104から入力端子 117、 第 1のスィッチ素子 119、インダクタ 123を介してフィルタ ·キャパシタ 124と外部負荷 とに電流が供給される。インダクタ電流 IL (t)は時間 tと共に増え、インダクタ 123には エネルギーが蓄えられる。 [0022] 以下、上記の動作を繰り返す。回路が平衡動作状態となった時、比較器 502の 2つ の入力信号である、電流検出増幅器 501が出力する三角波状の電圧の最小値と、 エラー増幅器 102が出力するエラー電圧の値とは一致する。
このように従来例の降圧 DC— DCコンバータ(電源装置)は、低電位側の第 2のスィ ツチ素子 120に流れる電流を監視して、インダクタ 123に流れる三角波状の電流の 最小値を制御している。
特許文献 1:特開 2001— 136737号公報
発明の開示
発明が解決しょうとする課題
[0023] 従来例の降圧 DC— DCコンバータは、低電位側の第 2のスィッチ素子での降下電 圧をエラー電圧とを比較するように構成されて ヽる。低電位側の第 2のスィッチ素子 での降下電圧は、その導通抵抗とインダクタ電流との積で表される。スィッチ素子に は一般に FET (電界効果トランジスタ)を用いられるが、その導通抵抗は半導体製造 工程のばらつきにより大きな個体誤差を持つ。この場合一定のインダクタ電流に対し て低電位側の第 2のスィッチ素子での降下電圧は大きな個体誤差を持つことになる。
[0024] 電流検出増幅器 501の入力オフセット電圧も、通常プラスマイナス 10mV程度ある 。電流検出増幅器 501の利得には、ばらつきが有る。低電位側のスィッチ素子 120 での降下電圧のばらつきに入力オフセット電圧を加算して、ばらつきのある利得で増 幅した電流検出増幅器 501の出力は、より大きな個体誤差を持つ。
[0025] 上述のように、回路が平衡動作状態となった時、比較器の 2つの入力信号である電 流検出増幅器 501が出力する三角波状の電圧の最小値と、エラー電圧とは一致す る。従って、電流検出増幅器の出力と一致したエラー電圧も大きな個体誤差を持つ ことになり、結果として DC— DCコンバータの出力電圧が大きな個体誤差を持つこと になる。
[0026] 低電位側のスィッチ素子 120での降下電圧を増幅する代わりに、低電位側のスイツ チ素子 120と接地端子 118との間に直列に高精度の抵抗を挿入し、抵抗の降下電 圧を増幅する方法を取れば降下電圧の個体誤差は少なくできる。しかし、電流検出 増幅器 501による誤差を無くすことはできないし、抵抗での降下電圧が電力損失の 増加となる故に、 DC— DCコンバータの電力効率が低下すると 、う大きな欠点がある
[0027] 本発明は、電力効率を低下させることなぐ誘導性負荷に流れる電流 (インダクタ電 流)を精度良く検出し制御する誘導性負荷電流制御回路及び電源装置を提供する ことを目的とする。
課題を解決するための手段
[0028] 上記課題を解決するため、本発明は下記の構成を有する。
本発明の 1つの観点による誘導性負荷電流制御回路は、入力電圧を入力する入 力端子と、出力電圧を出力する出力端子と、基準電流を出力する電流駆動能力を有 する電流源である基準電源と、前記入力端子と接地電位との間に直列に接続された 第 1のスィッチ素子及び第 2のスィッチ素子と、前記第 1のスィッチ素子と前記第 2の スィッチ素子との接続点に一端を接続し、他端を前記出力端子に接続して前記出力 電圧を出力する誘導性負荷と、前記第 1のスィッチ素子と前記第 2のスィッチ素子と の接続点に一端を接続された第 3のスィッチ素子と、前記基準電源の出力端子に一 端を接続し、他端を前記第 3のスィッチ素子の他端に接続し、前記第 3のスィッチ素 子の電流駆動能力と前記基準電流の電流駆動能力とを比較して、その大小関係を 判定して出力する電流比較器と、前記第 1のスィッチ素子を導通させ、前記第 2のス イッチ素子及び前記第 3のスィッチ素子を非導通として、前記入力電圧から前記誘導 性負荷に電流を流す第 1の状態と、前記第 1のスィッチ素子を非導通とし、前記第 2 のスィッチ素子及び前記第 3のスィッチ素子を導通させて、前記第 1の状態において 前記誘導性負荷に蓄えられたエネルギーによって前記第 2のスィッチ素子に前記接 地電位力 前記誘導性負荷に向けて電流が流れる第 2の状態と、を交互に制御し、 前記電流比較器の出力に基づいて前記第 2の状態から前記第 1の状態への移行を 制御するスィッチ素子制御回路と、を有する。
[0029] この発明によれば、第 3のスィッチ素子及び電流比較器を用いることにより、誘導性 負荷に流れる電流を精度良く検出して、誘導性負荷の電流を制御する誘導性負荷 電流制御回路を実現できる。典型的には誘導性負荷電流制御回路は、誘導性負荷 に流れる三角波状の電流の最小値を精度良く検出して、誘導性負荷の電流を制御 する。
[0030] 本発明の他の観点による上記の誘導性負荷電流制御回路において、前記基準電 源は、直列接続された電圧源と抵抗によって構成され、前記抵抗の一端より所定の 電流を得る。
[0031] 本発明の別の観点による上記の誘導性負荷電流制御回路において、前記基準電 源は、所定の基準電流を出力する電流駆動能力を有する基準電流源であって、前 記基準電流源の電流駆動能力の大きさを制御することにより、前記誘導性負荷の出 力電圧を制御する。
[0032] この発明によれば、基準電流源の電流駆動能力の大きさを制御することにより、誘 導性負荷に流れる電流を任意の値に制御する誘導性負荷電流制御回路を実現でき る。
[0033] 本発明の更に別の観点による上記の誘導性負荷電流制御回路において、前記第 2のスィッチ素子及び前記第 3のスィッチ素子はトランジスタによって構成され、前記 第 3のトランジスタに流れる電流が前記第 2のトランジスタに流れる電流よりも小さくな るように導通抵抗を設定する。
[0034] この発明によれば、第 3のスィッチ素子が誘導性負荷の出力電圧に影響を与えるこ となぐ誘導性負荷に流れる電流を精度良く検出する誘導性負荷電流制御回路を実 現できる。
[0035] 本発明の更に別の観点による上記の誘導性負荷電流制御回路において、前記電 流比較器は、一端を前記基準電源に接続され、他端を前記第 3のスィッチ素子の他 端に接続され、制御端子に所定の電圧を入力されることによって、他端に接続された 前記第 3のスィッチ素子の他端との接続点の電位をほぼ接地電位に近づけるように 動作するトランジスタを有し、前記基準電源と前記トランジスタの一端との間の任意の 点の電位、又はその電位を 2値ィ匕した値を、判定結果として出力する。
[0036] 第 3のスィッチ素子を、電流駆動能力が第 2のスィッチ素子より小さいことを除いて、 第 2のスィッチ素子と同一の特性を有するように構成する。第 3のスィッチ素子の他端 の電位をほぼ接地電位に制御することにより、第 3のスィッチ素子に流れる電流が第 2のスィッチ素子に流れる電流と比例関係を有するようにできる。 この発明によれば、第 3のスィッチ素子に流れる電流を検出することにより、第 2のス イッチ素子に流れる電流を精度良く検出出来る。
[0037] 本発明の 1つの観点による電源装置は、基準電圧を出力する基準電圧発生部と、 上記のいずれかに記載の前記誘導性負荷電流制御回路と、前記基準電圧と前記誘 導性負荷電流制御回路の前記出力電圧とを比較して、その差電圧を増幅したエラ 一電圧を出力するエラー増幅器と、を有し、前記エラー電圧の絶対値が小さくなるよ うに、前記誘導性負荷電流制御回路の前記基準電流の値を制御する。
[0038] この発明によれば、誘導性負荷に流れる電流を精度良く検出して、安定した出力 電圧を出力する電源装置を実現できる。典型的には誘導性負荷電流制御回路は、 誘導性負荷に流れる三角波状の電流の最小値を精度良く検出する。
発明の効果
[0039] 本発明によれば、誘導性負荷に流れる電流を精度良く検出して、誘導性負荷の電 流を制御する誘導性負荷電流制御回路を実現できるという有利な効果が得られる。 典型的には誘導性負荷電流制御回路は、誘導性負荷に流れる三角波状の電流の 最小値を精度良く検出して、誘導性負荷の電流を制御する。
本発明によれば、誘導性負荷に流れる電流を精度良く検出して、安定した出力電 圧を出力する電源装置を実現できるという有利な効果が得られる。
図面の簡単な説明
[0040] [図 1]図 1は本発明の実施の形態 1の電源装置の構成を示す図である。
[図 2]図 2は本発明の実施の形態 1における動作を示すタイミング図である。
[図 3]図 3は本発明の実施の形態 2の電源装置の構成を示す図である。
[図 4]図 4は本発明の実施の形態 3の電圧安定ィ匕回路、モノマルチノイブレータ及び その周辺回路を示す図である。
[図 5]図 5は従来例の誘導性負荷電流制御回路を用いた降圧 DC— DCコンバータの 回路図である。
発明を実施するための最良の形態
[0041] 以下、本発明の実施をするための最良の形態を具体的に示した実施の形態につ いて、図面とともに記載する。 [0042] 《実施の形態 1》
図 1及び図 2を用いて、本発明の実施の形態 1の誘導性負荷電流制御回路及び電 源装置について説明する。図 1は、本発明の実施の形態 1の電源装置の構成を示す 図である。実施の形態 1の電源装置は降圧 DC— DCコンバータである。
本発明の実施の形態 1の電源装置(図 1)において、従来例(図 5)に対応する構成 要素には同一番号を付している。本発明の実施の形態 1の誘導性負荷電流制御回 路は、図 5に示す従来例の電流検出増幅器 501及び比較器 502に代えて、図 1に示 す電流比較器 114及び第 3のスィッチ素子 121等を用いて、電流を検出して 、る点 力 従来例と異なる。
[0043] 図 1において、基準電流源 113、電流比較器 114、発振器 115、スィッチ素子制御 回路 116、入力端子 117、接地端子 118、第 1のスィッチ素子 119、第 2のスィッチ素 子 120、第 3のスィッチ素子 121、インダクタ 123、出力端子 125、エラー電圧入力端 子 126は、実施の形態 1の誘導性負荷電流制御回路を構成する。
[0044] 入力端子 117は、直流電圧 V を出力する外部電源 104の一端に接続される。外
IN
部電源 104の他端は、接地電位に接続された接地端子 118に接続される。外部電 源 104から出力される直流電圧 V は、入力端子 117及び接地端子 118に入力され
IN
る。
[0045] 第 1のスィッチ素子 (高電位側のスィッチ素子) 119及び第 2のスィッチ素子 (低電 位側のスィッチ素子) 120は、入力端子 117と接地端子 118との間に直列に接続され る。 Pチャンネル型 FETである第 1のスィッチ素子(高電位側のスィッチ素子) 119の ソースは、入力端子 117に接続される。 Nチャンネル型 FETである第 2のスィッチ素 子 (低電位側のスィッチ素子) 120のソースは、接地端子 118に接続される。
[0046] 第 1のスィッチ素子 119のドレインと第 2のスィッチ素子 120のドレインとの接続点に は、 Nチャンネル型 FETである第 3のスィッチ素子 121のドレインが接続されている。 第 3のスィッチ素子 121のゲートは、第 2のスィッチ素子 120のゲートと接続される。第 1、第 2及び第 3のスィッチ素子 119、 120、 121のゲートは、スィッチ素子制御回路 1 16の Qバー出力端子 (反転出力端子)に接続される。
[0047] 第 3のスィッチ素子 121のソースは、電流比較器 114の電流出力端子 131と接続さ れる。 Nチャンネル型 FETである第 3のスィッチ素子 121は、電流駆動能力が第 2の スィッチ素子 120より小さいことを除いて、第 2のスィッチ素子 120と同一の特性を有 する。
[0048] 誘導性負荷であるインダクタ 123の一端は、第 1のスィッチ素子 119、第 2のスイツ チ素子 120及び第 3のスィッチ素子 121の各ドレインの接続点 122に接続される。ィ ンダクタ 123の他端は、フィルタ ·キャパシタ 124の一端と出力端子 125に接続される
[0049] 降圧 DC— DCコンバータの出力端子 125と接地端子 118との間には、図示を省略 した外部負荷が接続される。実施の形態 1の電源装置は、出力端子 125から所定の 電圧 V を出力する。
OUT
[0050] 基準電圧発生部 101は、基準電圧 V を出力する。エラー増幅器 102の非反転入
EF
力端子は、基準電圧発生部 101に接続されて基準電圧 V を入力する。エラー増幅
REF
器 102の反転入力端子は、出力端子 125に接続されて出力電圧 V を入力する。
OUT
エラー増幅器 102は、基準電圧 V と出力電圧 V との差電圧を増幅してエラー電
REF OUT
圧を出力する。
エラー電圧入力端子 126は、エラー増幅器 102の出力端子に接続されて、エラー 電圧を入力する。
[0051] 位相補償回路 111は、直列に接続された抵抗とコンデンサを有する。抵抗は、エラ 一電圧入力端子 126に接続され、コンデンサは接地電位に接続される。位相補償回 路 111は、エラー電圧を入力し、位相を調整して出力する。
電圧電流変翻 (V-I変翻) 112は、位相補償回路 111に接続され、入力したェ ラー電圧を電流に変換して出力する。
[0052] 基準電流源 113は、基準電流 I を出力する。実施の形態 1において、基準電流 I
REF
は可変である。基準電流源 113は、電圧電流変換器 112が出力する電流値に基
REF
づいて、基準電流 I の電流値を決定する。基準電流 I を、電圧電流変換器 112が
REF EF
出力する電流値 (つまり、エラー増幅器 102が出力して電圧電流変換器 112に入力 されるエラー電圧)に基づいて可変とすることより、三角波状のインダクタ電流 IL (t) の最小値を検出し、インダクタ電流を制御し、出力電圧 V を安定化している。
OUT [0053] 電流比較器 114は、基準電流源 113に接続された電流入力端子 132、電流入力 端子 132に接続された電圧安定ィ匕回路 133とバッファアンプ 134、及び電圧安定ィ匕 回路 133に接続された電流出力端子 131を有する。
電流比較器 114は、基準電流源 113が出力する基準電流 I を電流入力端子 132
EF
力 入力し、電流出力端子 131から第 3のスィッチ素子 121に電流 IS2 (t)を流す。
[0054] 電流比較器 114の電圧安定ィ匕回路 133は、電流入力端子 132と電流出力端子 13 1との間に接続されたトランジスタ 141及びトランジスタ 141のベースと接地電位との 間に接続された電圧源 142を有する。
[0055] トランジスタ 141は、バイポーラトランジスタである。トランジスタ 141のベース電圧は 、ベース 'ェミッタ間電圧 (約 0. 7V)に相当する一定電圧を出力する電圧源 142によ つて与えられる。トランジスタ 141のェミッタは、電流出力端子 131と接続されて、電 流出力端子 131の電圧を接地電位 OVに近づけるように動作する。トランジスタ 141 のコレクタは、電流入力端子 132に接続される。この構成により、第 3のスィッチ素子 121の各端子の設定電位は、ソースが接地された第 2のスィッチ素子 120の各端子 の設定電位とほぼ同一になる。
[0056] [第 3のスィッチ素子 121の電流駆動能力]: [第 2のスィッチ素子 120の電流駆動 能力] = l : a (a> l)とすると、第 3のスィッチ素子 121には、常に第 2のスィッチ素 子 120に流れる電流の lZaの電流が流れる。即ち、実施の形態 1において、第 2の スィッチ素子 120と第 3のスィッチ素子 121は、所定の導通抵抗の比を持ち、第 3のス イッチ素子 121に流れる電流が第 2のスィッチ素子 120に流れる電流よりも少なくなる ように設定する。
[0057] 第 3のスィッチ素子 121と電流比較器 114の電流出力端子 131との接続点が接地 電位に等しくなつたとき、第 3のスィッチ素子 121には第 2のスィッチ素子 120との導 通抵抗の比の逆数に等し 、比の電流が流れる。この電流 IS2 (t)を電流比較器 114 で基準電流 I と比較する。
REF
[0058] 第 3のスィッチ素子 121に流れる電流(第 3のスィッチ素子 121の電流駆動能力) IS 2 (t)が、基準電流源 113が出力する基準電流 (基準電流源 113の電流駆動能力) I よりも大きくなると、トランジスタ 141のコレクタ電位は接地電位に近くなる (Vcく V Z2)。
第 3のスィッチ素子 121の電流駆動能力 IS2 (t)が基準電流源 113の電流駆動能 力 I よりも小さくなると、トランジスタ 141のコレクタ電位は入力電圧 V に近くなる (V
REF IN
c >V
IN Z2)。
このコレクタ電圧 Vcは、バッファアンプ 134を通して、電流比較器 114の出力にな る。
[0059] バッファアンプ 134は、 1/V の閾値を有し、 High又は Lowの 2値を出力する。ノ
IN
ッファアンプ 134は、電流出力端子 131から電流が流れる第 3のスィッチ素子 121の 電流駆動能力と、電流入力端子 132から電流を入力する基準電流源 113の電流駆 動能力 I とを比較し、大小関係を判定して出力する。即ちバッファアンプ 134は、基
REF
準電流源 113、電流比較器 114、第 3のスィッチ素子 121を通して流れる電流が基 準電流 I より大きければ Lowを出力し、その電流が基準電流 I より小さければ Hig
REF REF
hを出力する。
[0060] スィッチ素子制御回路 116は、立ち上がりエッジトリガーのセット Zリセット型フリップ フロップである。スィッチ素子制御回路 116のセット端子には、バッファアンプ 134の 出力端子が接続される。スィッチ素子制御回路 116のリセット端子は、発振器 115に 接続される。発振器 115は、図 1の降圧 DC— DCコンバータの動作周波数のクロック を出力する。スィッチ素子制御回路 116は、セット端子力も電流比較器 114の出力電 圧を入力し、リセット端子力 発振器 115が出力するクロックを入力する。
[0061] スィッチ素子制御回路 116は、セット端子に入力された電流比較器 114の出力電 圧が Lowから Highに切り換わった時にセット状態になる。セット状態において、スイツ チ素子制御回路 116は、第 1のスィッチ素子 119を導通状態にし、第 2のスィッチ素 子 120及び第 3のスィッチ素子 121を遮断状態にする(第 1の状態)。
[0062] スィッチ素子制御回路 116は、リセット端子に入力されたクロックが Lowから Highに 切り換わった時にリセット状態になる。リセット状態において、スィッチ素子制御回路 1 16は、第 1のスィッチ素子 119を遮断状態にし、第 2のスィッチ素子 120及び第 3の スィッチ素子 121を導通状態にする (第 2の状態)。
[0063] このように、スィッチ素子制御回路 116は、第 1のスィッチ素子 119と、第 2のスイツ チ素子 120及び第 3のスィッチ素子 121とを交互に導通させ、第 1の状態 (充電状態 )と第 2の状態 (放電状態)とを切り換える。第 1の状態力 第 2の状態への切り換えは 、所定の時間が経過することにより実行し、第 2の状態力 第 1の状態への切り換えは 、電流比較器 114の出力に基づ 、て行う「谷電流制御方式」を採用する。
[0064] 上記のように構成された実施の形態 1の誘導性負荷電流制御回路を用いた降圧 D C DCコンバータの動作を説明する。スィッチ素子制御回路 116は起動時にセット 状態に設定され、高電位側の第 1のスィッチ素子 119を導通状態にし、低電位側の 第 2のスィッチ素子 120及び第 3のスィッチ素子 121を遮断状態にする。外部電源 10 4から入力端子 117、スィッチ素子 119、インダクタ 123を介してフィルタ 'キャパシタ 1 24と図示を省略した外部負荷とに電流が供給される。インダクタ電流 IL (t)は時間 tと 共に増え、インダクタ 123にはエネルギーが蓄えられる。この状態を続けるとインダク タ電流は時間と共に増え続ける (第 1の状態:充電状態)。
[0065] 所定の時間毎に、スィッチ素子制御回路 116は、リセット端子力 発振器 115が出 力するクロックを入力する。スィッチ素子制御回路 116は、リセット端子に入力された クロック力Lowから Highに切り換わった時にリセット状態になり、高電位側の第 1のス イッチ素子 119を遮断状態にし、低電位側の第 2のスィッチ素子 120及び第 3のスィ ツチ素子 121を導通状態にする (第 2の状態:放電状態)。
[0066] 第 2の状態において、第 1の状態でインダクタ 123に蓄えられたエネルギーにより、 インダクタ電流は前の状態を保持して連続して流れる特性がある。インダクタ電流は 、接地端子 118から低電位側のスィッチ素子 120とインダクタ 123を介して、出力端 子 125に接続された外部負荷に供給される。
[0067] 第 2のスィッチ素子 120が遮断状態から導通状態に切り換わった時、第 3のスィッチ 素子 121に流れる電流 IS2 (t)は基準電流 I より大きい。電流比較器 114は Lowを
EF
出力する。この状態でインダクタ電流 IL (t)は、時間と共に減少する。
[0068] 電流比較器 114は、電流出力端子 131から第 3のスィッチ素子 121に向力つて流 れる電流 IS2 (t)と、基準電流 I とを比較し、比較結果を出力する。第 2の状態にお
EF
いて、第 3のスィッチ素子 121に流れる電流 IS2 (t)が基準電流 I より小さくなつた時
EF
に、電流比較器 114の出力電圧は Low力も Highに切り換わる。 [0069] スィッチ素子制御回路 116は、再度セット状態 (第 1の状態)になり、低電位側の第 2のスィッチ素子 120及び第 3のスィッチ素子 121を遮断状態にし、高電位側のスィ ツチ素子 119を導通状態にする。外部電源 104から入力端子 117、第 1のスィッチ素 子 119、インダクタ 123を介してフィルタ 'キャパシタ 124と、図示を省略した外部負荷 とに電流が供給される。インダクタ電流 IL (t)は時間 tと共に増え、インダクタ 123には エネルギーが蓄えられる。
[0070] 以下、上記の動作を繰り返す。回路が平衡動作状態となった時、電流比較器 114 を流れる三角波状の電流の最小値と基準電流 I とは一致する。
REF
このように電源装置は、低電位側の第 3のスィッチ素子 121に流れる電流を監視し て、インダクタ 123に流れる三角波状の電流の最小値を制御する。
[0071] 図 2は、実施の形態 1における第 1の状態と第 2の状態とを示すタイミング図である。
図 2 (a)は、第 1および第 2のスィッチ素子の接続点 122の電圧 VLX(t)を示す。図 2 (b)は、インダクタ 123に流れる電流 IL (t)を示す。図 2 (c)は、第 2のスィッチ素子 12 0に流れる電流 IS1 (t)を示す。接地電位側からインダクタ側へ流れる電流の方向を プラスとしている。図 2 (d)は、第 3のスィッチ素子 121に流れる電流 IS2 (t)を示す。 電流比較器 114側からインダクタ側へ流れる電流の方向をプラスとして ヽる。
[0072] 入力電圧側の第 1のスィッチ素子 119が導通している T の期間(第 1の状態)、ィ
ON
ンダクタ 123の接続点 122の電圧 VLX(t)は入力電圧 V に近い電圧となり、インダク
IN
タ電流 IL (t)が時間と共に増加する。
[0073] 一定時間が経過すると T の期間が終了し、接地側の第 2のスィッチ素子 120が導
ON
通する(第 2の状態)。接続点 122の電圧 VLX(t)は接地電位に近くなり、インダクタ 電流 IL (t)は時間と共に減少する。このとき電流は、接地端子 118から第 2のスィッチ 素子 120を通して供給され、第 2のスィッチ素子 120に電流 IS 1 (t)が流れる。
[0074] 第 3のスィッチ素子 121は第 2のスィッチ素子 120と同じ期間導通し、相互の導通抵 抗の比に従って、第 3のスィッチ素子 121に電流 IS2 (t)が流れる。電流 IS2 (t)は電 流 IS1 (t)に比例して時間と共に減少する。
[0075] 電流 IS2 (t)が基準電流源 113の値 I よりも少なくなつた時点で、電流比較器 114
REF
の出力が切換わり、第 1のスィッチ素子 119は導通状態、第 2のスィッチ素子 120と第 3のスィッチ素子 121は遮断状態に移行する。電源装置は、この 2つの状態を交互に 繰り返して動作する。
[0076] 次に、本発明の実施の形態 1における電流検出の精度について述べる。本発明の 実施の形態 1の誘導性負荷電流制御回路は、第 2のスィッチ素子 120に対して所定 の導通抵抗の比にした第 3のスィッチ素子 121に流れる電流を基準電流 I と直接比
REF
較する。導通抵抗の比は、同一プロセスで作られたモノリシック半導体において近接 して配置された素子であれば、絶対値に比べて比較的高精度に作ることができる。 本実施の形態の第 2のスィッチ素子 120と第 3のスィッチ素子 121は、同一プロセス で作られたモノリシック半導体に近接して配置された素子を利用する。これにより、第 2のスィッチ素子 120と第 3のスィッチ素子 121の各端子電圧は実質的に同一に維 持される。従って本発明の誘導性負荷電流制御回路及び電源装置は、高精度に電 流を検出できる。
[0077] 本発明は、電流比較器 114で被検出電流 IS2 (t)を基準電流 I と直接比較するた
EF
め、図 5に示す従来例のように電流検出増幅器 501を必要としない。従来例のように 電流検出増幅器 501を使った場合は、入力オフセット電圧と利得のばらつきが電流 検出の個体誤差の原因となるが、本発明はこの誤差要因を無くすことができる。従つ て本発明の実施の形態 1では、高精度に電流を検出できる。
本発明は、電流検出用の抵抗を使用しないので電力損失も少なくでき、電力効率 を高くすることができる。
[0078] 《実施の形態 2》
図 3を用いて、本発明の実施の形態 2の誘導性負荷電流制御回路及び電源装置 について説明する。図 3は、本発明の実施の形態 2の電源装置の構成を示す図であ る。実施の形態 2の電源装置が図 1の実施の形態 1と異なる点は、図 1の電圧安定ィ匕 回路 133に代えて図 3の電圧安定ィ匕回路 301を有することである。その他の構成に ついては、実施の形態 1と同一であるため、同一番号を付し、説明を省略する。
[0079] 実施の形態 2の電圧安定ィ匕回路 301は、電圧電流変 112に接続された基準 電流源 311と、基準電流源 311の出力端子にベースとコレクタを接続されてェミッタ を接地端子 118に接続されたトランジスタ 312と、トランジスタ 312のベースとコレクタ にベースを接続され、コレクタを電流入力端子 132とバッファアンプ 134の入力端子 に接続され、ェミッタを電流出力端子 131に接続されたトランジスタ 313とを有する。
[0080] 基準電流源 311は、基準電流源 113が出力する基準電流 I に比例した電流 I を
EF 311 出力する。
トランジスタ 312及び 313は、同一又は所定の比率の電流駆動能力を有し、同一の 特性を有するバイポーラトランジスタである。トランジスタ 312は、コレクタ力らェミッタ に電流 I を流す。トランジスタ 313のベース電圧は、トランジスタ 312のベース電圧
311
によって与えられる。
[0081] 電圧電流変換器 (V— I変換器) 112は、基準電流源 113及び 311の電流駆動能力 を、両者が同一又は所定の比率を維持するように制御する。基準電流源 113及び 31 1がそれぞれトランジスタ 313、 312に同一又は所定の比率の電流を流す時、トラン ジスタ 313、 312の動作条件は同一になるように設定されている。従って、トランジス タ 313のェミッタ電位、即ち電流出力端子 131の電位は、常にトランジスタ 312のエミ ッタ電位である接地電位と等しくなるように動作する。
[0082] 電流出力端子 131から流れ出る電流 IS2 (t)が基準電流 I よりも大きいと、トランジ
EF
スタ 313のコレクタ電位は接地電位に近くなる。電流出力端子 131から流れ出る電流 IS2 (t)が基準電流 I よりも小さくなると、コレクタ電位は入力電圧 V に近くなる。バ
REF IN
ッファアンプ 134は、このコレクタ電圧に応じて、ニ値ィ匕した値を電流比較器 114の 出力として出力する。
[0083] 実施の形態 2の電源装置は、実施の形態 1の電源装置と同一の効果を有する。
なお、実施の形態 2ではトランジスタ 312と 313にバイポーラトランジスタを用いたが 、 FETに置き換えても同様の効果が得られる。
[0084] 《実施の形態 3》
図 4を用いて、本発明の実施の形態 3の誘導性負荷電流制御回路及び電源装置 について説明する。図 4は、本発明の実施の形態 3の電圧安定化回路、モノマルチ ノイブレータ及びその周辺回路の構成を示す図である。実施の形態 3の誘導性負荷 電流制御回路及び電源装置が図 1の実施の形態 1又は図 3の実施の形態 2と異なる 点は、図 1及び図 3の電圧安定化回路 133、 301及び発振器 115に代えて、図 4〖こ 示す電圧安定化回路 401及びモノマルチバイブレータ(MMV) 402を有することで ある。その他の構成については、実施の形態 3の誘導性負荷電流制御回路及び電 源装置は実施の形態 1又は実施の形態 2と同一であるため、同一番号を付し、説明 を省略する。
[0085] 実施の形態 3の電圧安定化回路 401は、コレクタを電流入力端子 132及びバッファ アンプ 134の入力端子に接続され、ェミッタを電流出力端子 131に接続されたトラン ジスタ 411と、トランジスタ 411のベースに出力端子を接続された単電源型の演算増 幅器 412を有する。演算増幅器 412の非反転入力端子は接地され、反転入力端子 は電流出力端子 131に接続されて、電流出力端子 131の電圧が接地電位に等しく なるように動作する。
[0086] トランジスタ 411は、バイポーラトランジスタである。トランジスタ 411のベース電圧は 、演算増幅器 412の出力によって与えられる。電流出力端子 131から流れ出る電流 I S2 (t)が基準電流 I よりも大きいと、トランジスタ 411のコレクタ電位は接地電位に
REF
近くなる。電流出力端子 131から流れ出る電流 IS2 (t)が基準電流 I よりも小さくな
EF
ると、トランジスタ 411のコレクタ電位は入力電圧 V に近くなる。バッファアンプ 134は
IN
、このコレクタ電圧に応じて 2値ィ匕した値を電流比較器 114の出力として出力する。
[0087] モノマルチバイブレータ 402は、バッファアンプ 134の出力電圧力Lowから Highに 切り換わった時にトリガーされて Lowを出力し、所定時間後に Highを出力する。
[0088] スィッチ素子制御回路 116は、電流比較器 114の出力をセット端子に入力し、モノ マルチバイブレータ 402の出力をリセット端子に入力する、エッジトリガーのセット Zリ セット型フリップフロップである。実施の形態 3のスィッチ素子制御回路 116は、実施 の形態 1又は実施の形態 2と同様の動作をする。
[0089] 実施の形態 3の誘導性負荷電流制御回路を用いた降圧 DC— DCコンバータの動 作を説明する。図 4に記載されていない、実施の形態 3の電源装置 (DC— DCコンパ ータ)の構成要素については実施の形態 1 (図 1)又は実施の形態 2 (図 3)と同じであ るため、図 1又は図 3に記載されている構成要素を用いて説明する。
電流比較器 114は、起動時に Highを出力するように設定されている。起動時に、 モノマルチバイブレータ 402はトリガーされ、スィッチ素子制御回路 116はセット状態 に設定される (第 1の状態:充電状態)。
[0090] 第 1の状態において、スィッチ素子制御回路 116は、高電位側の第 1のスィッチ素 子 119を導通状態にし、低電位側の第 2のスィッチ素子 120及び第 3のスィッチ素子 121を遮断状態にする。外部電源 104から入力端子 117、スィッチ素子 119、インダ クタ 123を介してフィルタ 'キャパシタ 124と、外部負荷とに電流が供給される。インダ クタ電流 IL (t)は時間 tと共に増え、インダクタ 123にはエネルギーが蓄えられる。
[0091] 所定の時間経過後、モノマルチバイブレータ 402の出力電圧力Lowから Highに切 り換わる。リセット端子にモノマルチバイブレータ 402の出力電圧を入力されたスイツ チ素子制御回路 116は、リセット状態になる。スィッチ素子制御回路 116は、高電位 側の第 1のスィッチ素子 119を遮断状態にし、低電位側の第 2のスィッチ素子 120及 び第 3のスィッチ素子 121を導通状態にする(第 2の状態:放電状態)。
[0092] 第 2の状態において、第 1の状態でインダクタ 123に蓄えられたエネルギーにより、 インダクタ電流は前の状態を保持して連続して流れる特性がある。インダクタ電流は 、接地端子 118から低電位側のスィッチ素子 120とインダクタ 123を介して外部負荷 に供給される。第 2のスィッチ素子 120が遮断状態力 導通状態に切り換わった時、 第 3のスィッチ素子 121に流れる電流 IS2 (t)は基準電流 I より大きい。電流比較器
EF
114は Lowを出力する。この状態でインダクタ電流は時間と共に減少する。
[0093] 電流比較器 114は、電流出力端子 131から第 3のスィッチ素子 121に向力つて流 れる電流 IS2 (t)と、基準電流 I とを比較し、比較結果を出力する。第 2の状態にお
EF
いて、第 3のスィッチ素子 121に流れる電流 IS2 (t)が基準電流 I より小さくなつた時
EF
に電流比較器 114の出力電圧は Low力も Highに切り換わる。モノマルチバイブレー タ 402はトリガーされ、スィッチ素子制御回路 116は、再度セット状態 (第 1の状態)に なる。
[0094] スィッチ素子制御回路 116は、低電位側の第 2のスィッチ素子 120及び第 3のスィ ツチ素子 121を遮断状態にし、高電位側のスィッチ素子 119を導通状態にする。外 部電源 104から入力端子 117、第 1のスィッチ素子 119、インダクタ 123を介してフィ ルタ 'キャパシタ 124と、外部負荷とに電流が供給される。インダクタ電流 IL (t)は時 間 tと共に増え、インダクタ 123にはエネルギーが蓄えられる。 [0095] 以下、上記の動作を繰り返す。回路が平衡動作状態となった時、電流比較器 114 を流れる三角波状の電流の最小値と基準電流 I とは一致する。
REF
このように電源装置は、低電位側の第 3のスィッチ素子 121に流れる電流を監視し て、インダクタ 123に流れる三角波状の電流の最小値を制御する。
[0096] なお、実施の形態 1一 3の基準電流源 113に代えて、直列接続された電圧源と抵 抗によって構成され、その抵抗の一端より所定の電流を得る基準電源を用いても良 い。
[0097] なお、実施の形態 1一 3において、基準電流を発生する基準電流源 113と、電圧電 流変翻 112とを独立した回路構成にしたが、これら 2つの回路を 1つの電圧電流変 換器に置き換えて、電圧電流変換器の出力電流そのものを基準電流として実施して も良い。また、エラー増幅器 102として電圧比較器を用いて、位相補償回路 111によ る発振防止対策を行った形態で説明したが、発振防止対策は必要に応じて実施す れば良ぐ必ずしも必要なものではない。したがって、発振防止対策が必要でない場 合には、実施の形態 1一 3におけるエラー増幅器 102、電圧電流変換器 112および 基準電流源 113の 3つの回路を、 1つの電圧電流変換器に置き換えて、電圧電流変 で構成されたエラー増幅器の出力電流を基準電流として実施することも可能で ある。
[0098] 実施の形態 1一 3では、電流比較器 114が 2値ィ匕した値を出力した。これに代えて、 スィッチ素子制御回路 116が、電流比較器が出力するアナログ電圧を 2値ィ匕しても良 い。
[0099] なお、実施の形態 1一 3の誘導性負荷電流制御回路は、電圧安定化回路 133、 30 1、 401を用いたが、電圧安定ィ匕回路はなくても良い。但し、電圧安定化回路を用い ると電流検出精度が高くなる故に、電圧安定ィ匕回路を設ける方が好ましい。
[0100] 以上説明したように、本発明の誘導性負荷電流制御回路及び電源装置は、誘導性 負荷に流れる電流を電力損失なく精度良く検出し制御するのに有用である。本発明 は、降圧 DC— DCコンバータだけでなぐモーター制御用インバータなど誘導性負荷 の電流を制御する回路として広く利用可能である。例えば、インダクタ 123をモータの ステータ卷線に置き換えることにより、本発明の誘導性負荷電流制御回路をモータ 駆動回路として使用することが出来る。
産業上の利用可能性
本発明は、誘導性負荷の電流を制御する誘導性負荷電流制御回路及び電源装置 に有用である。

Claims

請求の範囲
[1] 入力電圧を入力する入力端子と、
出力電圧を出力する出力端子と、
基準電流を出力する電流駆動能力を有する電流源である基準電源と、 前記入力端子と接地電位との間に直列に接続された第 1のスィッチ素子及び第 2 のスィッチ素子と、
前記第 1のスィッチ素子と前記第 2のスィッチ素子との接続点に一端を接続し、他 端を前記出力端子に接続して前記出力電圧を出力する誘導性負荷と、
前記第 1のスィッチ素子と前記第 2のスィッチ素子との接続点に一端を接続された 第 3のスィッチ素子と、
前記基準電源の出力端子に一端を接続し、他端を前記第 3のスィッチ素子の他端 に接続し、前記第 3のスィッチ素子の電流駆動能力と前記基準電流の電流駆動能力 とを比較して、その大小関係を判定して出力する電流比較器と、
前記第 1のスィッチ素子を導通させ、前記第 2のスィッチ素子及び前記第 3のスイツ チ素子を非導通として、前記入力電圧から前記誘導性負荷に電流を流す第 1の状態 と、前記第 1のスィッチ素子を非導通とし、前記第 2のスィッチ素子及び前記第 3のス イッチ素子を導通させて、前記第 1の状態において前記誘導性負荷に蓄えられたェ ネルギ一によつて前記第 2のスィッチ素子に前記接地電位力 前記誘導性負荷に向 けて電流が流れる第 2の状態と、を交互に制御し、前記電流比較器の出力に基づい て前記第 2の状態から前記第 1の状態への移行を制御するスィッチ素子制御回路と を有することを特徴とする誘導性負荷電流制御回路。
[2] 前記基準電源は、直列接続された電圧源と抵抗によって構成され、前記抵抗の一 端より所定の電流を得ることを特徴とする請求項 1記載の誘導性負荷電流制御回路
[3] 前記基準電源は、所定の基準電流を出力する電流駆動能力を有する基準電流源 であって、前記基準電流源の電流駆動能力の大きさを制御することにより、前記誘導 性負荷の出力電圧を制御することを特徴とする請求項 1記載の誘導性負荷電流制 御回路。
[4] 前記第 2のスィッチ素子及び前記第 3のスィッチ素子はトランジスタによって構成さ れ、前記第 3のトランジスタに流れる電流が前記第 2のトランジスタに流れる電流よりも 小さくなるように導通抵抗を設定することを特徴とする請求項 1記載の誘導性負荷電 流制御回路。
[5] 前記電流比較器は、一端を前記基準電源に接続され、他端を前記第 3のスィッチ 素子の他端に接続され、制御端子に所定の電圧を入力されることによって、他端に 接続された前記第 3のスィッチ素子の他端との接続点の電位をほぼ接地電位に近づ けるように動作するトランジスタを有し、
前記基準電源と前記トランジスタの一端との間の任意の点の電位、又はその電位を 2値ィ匕した値を、判定結果として出力する、
ことを特徴とする請求項 1記載の誘導性負荷電流制御回路。
[6] 基準電圧を出力する基準電圧発生部と、
請求項 1から請求項 5のいずれかの請求項に記載の前記誘導性負荷電流制御回 路と、
前記基準電圧と前記誘導性負荷電流制御回路の前記出力電圧とを比較して、そ の差電圧を増幅したエラー電圧を出力するエラー増幅器と、
を有し、
前記エラー電圧の絶対値が小さくなるように、前記誘導性負荷電流制御回路の前 記基準電流の値を制御する、
ことを特徴とする電源装置。
PCT/JP2005/005413 2004-03-31 2005-03-24 誘導性負荷電流制御回路及び電源装置 WO2005099074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006512013A JP4541358B2 (ja) 2004-03-31 2005-03-24 電源装置
US11/547,487 US7592792B2 (en) 2004-03-31 2005-03-24 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-107072 2004-03-31
JP2004107072 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005099074A1 true WO2005099074A1 (ja) 2005-10-20

Family

ID=35125409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005413 WO2005099074A1 (ja) 2004-03-31 2005-03-24 誘導性負荷電流制御回路及び電源装置

Country Status (6)

Country Link
US (1) US7592792B2 (ja)
JP (1) JP4541358B2 (ja)
KR (1) KR20060132963A (ja)
CN (1) CN100525033C (ja)
TW (1) TW200605483A (ja)
WO (1) WO2005099074A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503776A (ja) * 2007-11-05 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 負荷を駆動するための装置
JP2013051776A (ja) * 2011-08-30 2013-03-14 Ricoh Co Ltd Dc−dcコンバータ回路

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200605483A (en) * 2004-03-31 2006-02-01 Matsushita Electric Ind Co Ltd Inductive load current control circuit and power supply apparatus
JP2007252137A (ja) * 2006-03-17 2007-09-27 Ricoh Co Ltd 非絶縁降圧型dc−dcコンバータ
JP5399734B2 (ja) * 2008-09-30 2014-01-29 スパンション エルエルシー 出力電圧制御装置、出力電圧制御方法および電子機器
DE102008056914A1 (de) * 2008-11-12 2010-05-20 Logicdata Electronic & Software Entwicklungs Gmbh Steuerung für ein elektrisch verstellbares Möbel
TWI374602B (en) * 2008-12-29 2012-10-11 Richtek Technology Corp Power supply control circuit and method for sensing voltage in the power supply control circuit
JP5673165B2 (ja) * 2011-02-04 2015-02-18 富士電機株式会社 誤差増幅器及び誤差増幅器を用いたdc−dcコンバータ
JP5966308B2 (ja) * 2011-10-13 2016-08-10 富士電機株式会社 誘導性負荷制御装置
TW201349696A (zh) * 2012-05-18 2013-12-01 Hon Hai Prec Ind Co Ltd 直流交換式電源供應器
JP6145038B2 (ja) * 2013-12-26 2017-06-07 株式会社東芝 Dc−dcコンバータ、および、半導体集積回路
US9467122B2 (en) * 2014-08-29 2016-10-11 Freescale Semiconductor, Inc. Switching scheme to extend maximum input voltage range of a DC-to-DC voltage converter
US10027225B2 (en) * 2015-03-12 2018-07-17 Qualcomm Incorporated Switched mode power supply having a staircase current limit
KR101721857B1 (ko) * 2015-04-30 2017-04-12 주식회사 지니틱스 코일에 제공되는 전류 제어 방법 및 이를 위한 장치
FR3044771B1 (fr) * 2015-12-03 2017-12-01 Continental Automotive France Procede de detection de charge ouverte
CN107659150B (zh) * 2017-01-19 2023-05-23 深圳市华芯邦科技有限公司 Dcdc模块自动切换的直流电能变换方法和系统
CN108062054B (zh) * 2017-12-22 2020-11-24 深圳市英威腾电气股份有限公司 一种模拟量信号输出电路
JP6805192B2 (ja) 2018-02-06 2020-12-23 株式会社東芝 電流検出回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786587A (ja) * 1993-09-17 1995-03-31 Hitachi Ltd 半導体装置
JPH11164552A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd 電源装置
JP2001136737A (ja) * 1999-11-02 2001-05-18 Fairchild Semiconductor Corp 低い衝撃係数および高いクロック周波数で動作するバック変換器内の無損失電流検出
JP2004096982A (ja) * 2002-07-11 2004-03-25 Fuji Electric Holdings Co Ltd Dc−dcコンバータ
JP2005094994A (ja) * 2003-09-15 2005-04-07 Semiconductor Components Industries Llc Dc−dcコンバータにおける電力効率を最適化する方法および回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510178B2 (ja) * 2000-03-29 2004-03-22 株式会社日立製作所 直流電源装置及びその制御回路
JP4264837B2 (ja) * 2003-09-02 2009-05-20 サンケン電気株式会社 同期整流型dc−dcコンバータ
TW200605483A (en) * 2004-03-31 2006-02-01 Matsushita Electric Ind Co Ltd Inductive load current control circuit and power supply apparatus
US7368897B2 (en) * 2005-10-07 2008-05-06 Intel Corporation Load adaptive power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786587A (ja) * 1993-09-17 1995-03-31 Hitachi Ltd 半導体装置
JPH11164552A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd 電源装置
JP2001136737A (ja) * 1999-11-02 2001-05-18 Fairchild Semiconductor Corp 低い衝撃係数および高いクロック周波数で動作するバック変換器内の無損失電流検出
JP2004096982A (ja) * 2002-07-11 2004-03-25 Fuji Electric Holdings Co Ltd Dc−dcコンバータ
JP2005094994A (ja) * 2003-09-15 2005-04-07 Semiconductor Components Industries Llc Dc−dcコンバータにおける電力効率を最適化する方法および回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503776A (ja) * 2007-11-05 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 負荷を駆動するための装置
JP2013051776A (ja) * 2011-08-30 2013-03-14 Ricoh Co Ltd Dc−dcコンバータ回路

Also Published As

Publication number Publication date
US20080273354A1 (en) 2008-11-06
JP4541358B2 (ja) 2010-09-08
US7592792B2 (en) 2009-09-22
CN100525033C (zh) 2009-08-05
CN1938928A (zh) 2007-03-28
TW200605483A (en) 2006-02-01
JPWO2005099074A1 (ja) 2007-08-16
KR20060132963A (ko) 2006-12-22

Similar Documents

Publication Publication Date Title
WO2005099074A1 (ja) 誘導性負荷電流制御回路及び電源装置
US8289000B2 (en) Charge control circuit
US7385380B2 (en) Switching power supply
Roh High-performance error amplifier for fast transient DC-DC converters
KR100744592B1 (ko) Dc-dc 컨버터, dc-dc 컨버터의 제어 회로 및dc-dc 컨버터의 제어 방법
US10680522B2 (en) Switching regulator and control device therefor
JP4902390B2 (ja) カレント検出回路及び電流モード型スイッチングレギュレータ
US8004349B2 (en) Power supply unit
US7498784B2 (en) Average current detector circuit
KR20090028498A (ko) 스위칭 레귤레이터 및 그 제어 방법
TW200921317A (en) Switching regulator and method for controlling operation thereof
JP2006322711A (ja) 電圧検出回路および電流検出回路
CN114389449B (zh) 自举式开关变换器及其驱动电路
CN116915047A (zh) Dc-dc转换器电路和对应的操作方法
JP4461842B2 (ja) スイッチングレギュレータ及びスイッチングレギュレータの制御方法
JP2004120901A (ja) 昇圧電源装置
CN112198922A (zh) 蓝牙芯片
JP3757851B2 (ja) 電圧変換回路
JP4660921B2 (ja) 電圧レギュレータ回路
CN108418398B (zh) Dc-dc升压转换器的电感采样模块、电路及环路控制系统
JP5333112B2 (ja) 電力増幅回路
US7710175B2 (en) Pulse width modulation circuit and switching amplifier using the same
JP4693527B2 (ja) 誘導性負荷電流制御回路
CN115150986A (zh) 一种调光方法及调光电路
JP4196758B2 (ja) Dc/dcコンバータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512013

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067020084

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11547487

Country of ref document: US

Ref document number: 200580010502.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067020084

Country of ref document: KR

122 Ep: pct application non-entry in european phase