[go: up one dir, main page]

WO2005092909A1 - 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法 - Google Patents

立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法 Download PDF

Info

Publication number
WO2005092909A1
WO2005092909A1 PCT/JP2005/003812 JP2005003812W WO2005092909A1 WO 2005092909 A1 WO2005092909 A1 WO 2005092909A1 JP 2005003812 W JP2005003812 W JP 2005003812W WO 2005092909 A1 WO2005092909 A1 WO 2005092909A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
general formula
hydroxyl
Prior art date
Application number
PCT/JP2005/003812
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Saigo
Takeshi Wada
Satoshi Fujiwara
Terutoshi Sato
Naoki Iwamoto
Original Assignee
Toudai Tlo, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toudai Tlo, Ltd. filed Critical Toudai Tlo, Ltd.
Priority to JP2006511417A priority Critical patent/JP4865544B2/ja
Publication of WO2005092909A1 publication Critical patent/WO2005092909A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a ribonucleotide analog having high stereoregularity and an oligodoxyribonucleotide analog.
  • the antisense method is a method in which a nucleic acid having a nucleotide sequence complementary to a target mRNA is selectively bound to the mRNA to inhibit protein translation.
  • the properties required as an antisense molecule include (1) the ability to recognize and specifically bind to the base sequence of the target mRNA, (2) the ability to form a stable duplex, and (3) the nuclease. (4) high cell membrane permeability.
  • Phosphate moiety-modified dinucleotides have an asymmetric center on the phosphorus atom and differ in their antisense effects due to differences in their absolute configuration.
  • properties of phosphate-modified dinucleotides such as their ability to form duplexes with DNA and RNA, nuclease resistance, and RNase H activity, are affected by chirality on the phosphorus atom.
  • DNA analogs in which two non-bridging oxygen atoms on the phosphorus atom of natural DMA internucleotides are variously substituted that is, inter-nucleotide modified analogs, have both nuclease resistance and cell membrane permeability. It is known to increase (Lev in, AA B i ochem.
  • the DNA analog will have chirality on the phosphorus atom. It is known that the properties and functions of these DNA relatives differ depending on the chirality (Yu, D .; Kanduma lla, ER; Rosky, A .; Zhao, Q .; Chen, J .; Agrawal , S. Bioorg. Med. Ghem., 2000, 8, 275-284.)).
  • phosphorothioate DNA an internucleotide-modified DNA analog in which one of two non-bridging oxygen atoms has been replaced with a sulfur atom, has a double-stranded structure that forms with complementary RNA, a nuclease.
  • H-phosphonate DNA is a DNA analog in which one of the two non-bridging oxygen atoms on the phosphorus atom of the internucleotide of natural DNA is replaced with a hydrogen atom. Having. In addition, it can be converted into various inter-nucleotide-modified DMA analogs by a stereospecific conversion reaction. Thus, if stereochemically pure H-phosphonate DNA is obtained, it will be possible to obtain an internucleotide-modified DMA analog whose stereochemistry is controlled as it is, using the DNA as it is. As described above, H-phosphonate DNA has various three-dimensionally controlled proteins. It is a useful synthetic intermediate that can be converted into a single nucleotide modified DNA analog.
  • stereochemically pure H-phosphonate DMA has only been reported at the dimer level ((a) See la, F .; Kretschner, UJ Org. Chem. 1991, 56, 3861-3869. (B) Loshmer, T .; Engels, JW Nucleic Acids Res. 1990, 18, 5143). Moreover, even when the dimer of H-phosphonate DNA is optically resolved, H-phosphonate DNA is unstable on silica gel column chromatography, and there is a polar difference between the two diastereomers.
  • H-phosphonate DNA Since there is no significant difference, the optical division is extremely inefficient. Considering stereochemically pure H-phosphonate DNA as a synthetic intermediate that can be applied to nucleic acid medicine, H-phosphonate DNA with a steric control at the oligomer level is required. In that case, the number of diastereomers increases exponentially, making optical resolution of H-phosphonate DMA oligomers virtually impossible. Therefore, if a stereoselective synthesis reaction of H-phosphonate DMA can be developed, it will be possible to obtain H-phosphonate DMA with steric control at the oligomer level.
  • RNAi was first reported in 1998 in a study using nematodes by Fire and Mel lo (Fire, A .; Xu, S .; Montgomery, ⁇ . ⁇ .; Kostas, SA; Driver, SE; Mel lo , CG Nature. 1998, 391, 806-811.), It has been revealed that it is a gene silencing system that is conventionally provided among various species such as insects, plants, and fungi. . In 2001, Tuschl et al. Showed that RNAi was applicable to mammalian cells (Elbashir, SM; Harborth, J .; Lendeckel,.; Yale in, A .; Weber, K .; Tuschl, T. Nature. 2001, 411, 494-498.).
  • RNAi has been attracting attention as a powerful method for gene therapy and gene function analysis, as an excellent gene suppression method with high gene suppression effect.
  • RNAi is characterized by its sequence specificity, which can knock out the target gene accurately, and the use of gene silencing mechanisms inherent in living organisms. This makes RNAi a promising new gene therapy with fewer side effects. ing.
  • the effect of RNAi cannot be maintained for a long time at present, because RNA strands of about 21 bases such as siRNA are gradually degraded by nucleases in the living body. Disclosure of the invention
  • An object of the present invention is to provide a method for producing a ribonucleotide analog and a deoxysilipnucleotide analog having a high stereoregularity, which can be used for the antisense method or RNA interference and has a controlled stereo structure on a phosphorus atom. Is to do.
  • the present invention provides a compound represented by the following general formula (I):
  • R 1 and R ′ may be the same or different and represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 14 carbon atoms,
  • R 2 and R may be the same or different and represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 14 carbon atoms;
  • R 3 represents an alkyl group having 1 to 3 carbon atoms
  • R 4 is a hydroxyl-protecting group, is OR 5 (where R 5 is a hydroxyl-protecting group), a hydroxyl group or a hydrogen atom,
  • R 2 and R 3 may form a monocyclo structure or a bicyclo structure together with the nitrogen atom.
  • X— is BF 4 —, PF 6 —, T f O— (T f is CF 3 S 0 2 —; the same applies hereinafter), T f 2 N ⁇ A s F 6 — or S b F 6 — is indicated.
  • the cyclic structure A represents a monocyclo or bicyclo structure having 3 to 16 carbon atoms formed together with a nitrogen atom.
  • a method for producing a nucleotide analog, and a method for producing an oligoribonucleotide analog and an oligodoxyribonucleotide analog having high stereoregularity are provided.
  • B s has the same meaning as
  • first reaction step a condensation reaction
  • second reaction step a reaction with an electrophile
  • first and second divisions are for convenience of explanation only and are not limiting. If necessary, known processing steps such as purification processing can be added.
  • nucleoside (I) An optically active nucleoside 3'-phosphoramidite represented by the general formula (I) [hereinafter referred to as “phosphoramidite (I)”] and a nucleoside represented by the general formula (II) [hereinafter referred to as “nucleoside (II)”] Is condensed in the presence of an activating agent represented by the general formula (III) [hereinafter referred to as “activating agent (III)”].
  • activating agent (III) activating agent
  • the phosphoramidite (I) can be produced from an appropriate 1,2-amino alcohol by a known method as described below (for example, see Tetrahedron: Asy et al. 1995, 6, 1051-1054).
  • the general formula (VII) obtained by reacting an optically active 1,2-amino alcohol (hereinafter referred to as “amino alcohol (VI)”) represented by the general formula (VI) with phosphorus trichloride is used. It can be obtained by reacting the optically active phosphitylating agent represented by [hereinafter referred to as “phosphitylating agent (VII) J”] with the nucleoside represented by the general formula (VIII).
  • the amino alcohols (VI) include (S)-and (R) -2-methylamino-1-phenylethanol, (1R, 2S) -ephedrine, (1R, 2S) 1-2-methylamino-1 , 2-diph Xnylethanol and the like.
  • prolinol derivatives for example, (Of R, 2S)-(pyrrolidine-12-yl) benzyl alcohol, (aS, 2R)-(pyrrolidine-12-yl) benzyl alcohol Amino alcohols that can be converted to H-phosphonates, such as (S) -a, of-diphenyl (pyrrolidine-1-yl) methanol and (2S) -monomethyl (pyrrolidine-l-2-yl) ethanol Ethyl, (2R) -bimethyl (pyrrolidine-1-yl) ethanol, (oiR, 2S)-monomethyl (pyrrolidine-12-yl) benzyl alcohol, (S, 2R)-monomethyl (Pyrrolidine-1-yl)
  • Bs represents a group derived from peracyl, adenine, cytosine, guanine or thymine or a derivative thereof.
  • R 7 has the same meaning as above, and R 8 represents an alkyl group having 1 to 15 carbon atoms, an aryl group, an aralkyl group, an aryloxyalkyl group, among which a methyl group, an isopropyl group, A phenyl group, a benzyl group and a phenoxymethyl group are preferred, and a phenyl group is particularly preferred.
  • R 9 and R 1C) each represent an alkyl group having 1 to 4 carbon atoms, and a methyl group is particularly preferable.
  • R represents a protecting group at position 06 of guanine, preferably 2-cyanoethyl group, p-nitrophenylethyl group, phenylsulfonylethyl group, benzyl group, 2-trimethylsilylethyl group or the like.
  • Nucleoside (VIII) is Urashiru, adenosine, which was protected cytidine, guanosine, the hydroxyl group of thymine or 5 'position of their derivatives, the protecting group (R 4), tert - butyl diphenyl silyl group (TBDPS) Alkylsilyl groups such as tert-butyldimethylsilyl group (TBDMS), trityl groups such as 4,4'-dimethyoxytrityl group (DMT r) and 4-methoxytrityl group (MMT r), and a protecting group represented by the following formula: And the like.
  • Bs When is in the nucleoside (VIII) is a hydrogen atom, Bs is preferably thymine or a derivative thereof. When using a nucleoside other than thymine or a derivative thereof, it is desirable to introduce a protecting group into the base, since side reactions to the base may be feared.
  • Adenine and guanine can use the phenoxyacetyl (Pac) group, and cytosine can use the isobutyl (iBu) group.
  • R 1 and R 2 one of R 1 and R 2 is a hydrogen atom and the other is a phenyl group, one of R 1 and R 2 is a methyl group and the other is a phenyl group, or R 1 and R 2 R 2 is preferably a combination of phenyl groups, R 1 is a phenyl group, and R 2 is more preferably a combination of hydrogen atoms.
  • R 3 is preferably a methyl group. Further, it is preferable that R 1 forms a phenyl group and R 2 and R 3 form a pyrrolidine skeleton together with a nitrogen atom.
  • R 4 and R 5 are OR 5 , R 5 is preferably TBDP S or TBDMS, and more preferably TBD PS.
  • R ′ and R ′′ can be selected from a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • R 1 and R ′ may be the same or different and each may be an alkyl group having 1 to 3 carbon atoms or an alkyl group having 6 to 14 carbon atoms.
  • both R 1 and R are not hydrogen atoms (that is, R 1 and R ′ are The carbon atom to be bonded is a tertiary carbon), and the substituent of the tertiary carbon does not include an aryl group.
  • Nucleoside (II) protects the hydroxyl groups at the 2- and 3-positions of peridine, adenosine, cytidine, guanosine or their derivatives, and peracyl, adenine, cytosine, guanine, thymine or their derivatives represented by Bs
  • the group derived from is exemplified by the nucleoside (VIII).
  • the Bs of the nucleoside (II) and the nucleoside (VI) may be the same or different.
  • R 6 is the same as above, and when E, is 10 R 7 , the protecting group for the hydroxyl group represented by R 7 is TBDPS, TBDMS, acetyl group (Ac), phenoxy Asechiru group (PA c), benzyl group (B z), DMT r, MM Ding r etc. mentioned et been, R 6, R 7 is PA c is preferred.
  • the activator (III) has a capability of supplying a proton to the nitrogen atom of the phosphoramidite (I) and does not act as a nucleophile.
  • X— is preferably BF 4 —, PF 6 —, T f O—, or T f 2 N—.
  • the cyclic structure A represents a monocyclo or bicyclo structure having 3 to 16 carbon atoms formed with a nitrogen atom, and particularly preferably has a monocyclo structure represented by the formula (IU-1).
  • N represents a number of 3 to 7, preferably 4 or 5.
  • the activator (III) has the formula (IX)
  • the reaction between the phosphoamidite (I) and the nucleoside (M) is preferably carried out in a solvent such as acetonitrile.
  • ) are reacted with nucleoside (II) at a ratio of 5 to 1.0 equivalent times to phosphoramidite (I).
  • Activator (III) reacts with phosphoramidite (I)
  • the reaction temperature is preferably 0 to 40 ° C, and the reaction pressure is preferably 1 atm.
  • the phosphite (XI) obtained in the first reaction step is acylated with acetic anhydride, trifluoroacetic anhydride or the like, and then reacted with an electrophilic reagent such as a sulfurizing agent, a selenating agent, or a boranolating agent. Then, the asymmetric auxiliary group of the compound of the general formula (XII) is treated with 1,8-diazabicyclo [5.4.0] pendecar 7-ene (DBU) and the like to remove the compound.
  • DBU 1,8-diazabicyclo [5.4.0] pendecar 7-ene
  • E 13 ⁇ 4 B s and Y have the same meaning as described above.
  • a protected diphosphate site-modified dinucleotide represented by
  • the type of electrophile used for example, 1,2,4-dithiazolidine-1,3,5-dione, 3-ethoxy-1,2,4-dithiazoline-5-one, 3-methyl
  • the preceding acylation step may be omitted.
  • oligomer represented by the general formula (XIII) [hereinafter referred to as “oligomer”
  • the carbon to which R 1 of the monomer represented by the general formula (I) is bonded is a tertiary carbon (both R 1 and R ′ are not hydrogen atoms), and the substituent of the tertiary carbon is
  • the phosphite (XI) obtained in the first reaction step does not contain an aryl group
  • the phosphite (XI) obtained in the first reaction step is acylated with anhydrous acetic acid, trifluoroacetic anhydride, or the like, and then is acidified with an acid such as a 1% trifluoroacetic acid dichloromethane solution of methane.
  • the acylation step can be omitted in the second reaction step, but in order to reduce the carbocation formed, It is necessary to add a reducing agent such as triethylsilane or borane-pyridine complex.
  • an oligomer When an oligomer is synthesized by this method, a monomer having a DMTr group as a protecting group for the 5 ′ hydroxyl group is used, and the phosphite intermediate obtained by the above method is subjected to an acid treatment to form an asymmetric auxiliary group and a 5 ′ hydroxyl group.
  • the protecting group, DMTr is removed at the same time, and the resulting dimer having a hydroxyl group at the 5'-position is condensed with a monomer.
  • an oligomer having an H-phosphonate bond is subjected to a conversion reaction in the same manner as in the case of a dimer, and is guided to a desired phosphorus atom-modified DNA, followed by deprotection, whereby a target nucleic acid analog is obtained. Obtainable.
  • n represents an integer of 1 to 150, a preferred range is 5 to 50, a more preferred range is 10 to 30, and a still more preferred range is 15 to 22.
  • D 2 and E 2 represent a hydroxyl group or a hydrogen atom.
  • the oligomer (XII I) can be produced by applying an oligomer synthesis method by a solid phase method.
  • a solid phase method Specifically, a commercially available automatic synthesizer (Expedite, manufactured by ABI, or ABI Model 394, DNA / RNA Synthesizer ABI) Or a manual method using a solid-phase synthesis vessel equipped with a glass filter.
  • Solid-phase carriers used in the solid-phase method include aminoalkylated porous glass (control led pore glass: CPG) and aminoalkylated highly cross-linked polystyrene (HCP). ) Is preferred, and a polymer carrier that is as swellable as possible and can easily remove excess reagents by washing.
  • Either the 3 'or 2' hydroxyl groups of the ribonucleoside and the solid support are bound via a linker such as succinate, oxalate, or phthalate. May be.
  • a linker such as succinate, oxalate, or phthalate. May be.
  • Protecting groups for 2 'or 3' hydroxyl groups to which the solid phase carrier is not bound include acetyl, benzoyl, 2- (cyanoethoxy) ethyl, t-butyldimethylsilyl, and other RNA and DNA synthesis groups. The protecting groups used can be mentioned.
  • the highly stereoregular ribonucleotide analogs and deoxyribonucleotide derivatives obtained by the production method of the present invention can be used for antisense and RNA interference, which are one of the methods that have attracted attention in the field of gene therapy. Can be used.
  • ribonucleotide analogs and deoxyribonucleotide analogs having high stereoregularity and effective as antisense molecules can be obtained in high yield.
  • Production Example 1-1 Production of N-cyanomethylpyrrolidinium tetrafluoroborate
  • Production Example 1-2 Production of ⁇ -cyanomethylpyrrolidinium hexafluorophosphate
  • Production Example 2-2 Production of (5 R) —2-chloro-1--3-methyl-1-phenyl-1,1,3,2-oxazaphospholidine
  • Triethylamine (1.05 ml, 7.5 inmol) was added to the mixture, and the mixture was cooled to 78 ° G. Then, under an argon atmosphere, a 0.22 M THF solution of (5S) -18d shown in the following formula and Table 1 was added dropwise. After the reaction mixture was stirred at room temperature for 30 minutes, a saturated aqueous solution of sodium hydrogencarbonate (75 ml) and chloroform (75 ml) were added.
  • trans- 19b (0.0520 g, 50 mo I) and 2 ', 3' - 0 - off enoki Xia cetyl ⁇ lysine (0.0256 £, 50 ⁇ ⁇ ) 12 hours in a vacuum drying at [rho 2 0 5 on ⁇ — (cyanomethyl) pyrrolidinium trifluorofluoroester dried for 8 hours with MS 3 ⁇ A 0.25 M solution of methanesulfonate (27a) (400, 100 mol) in acetonitrile and CD 3 CN (100 ju I) were added under an argon atmosphere.
  • Beaucage reagent (0.0120 g, 0.06 mmo I) was added to this solution to sulfide the compound 7.
  • reaction solution was transferred from the NMR sample tube to a 50 ml narrow-necked eggplant flask, washed with 3 ml of pyridine, and then added with 20 ml of a mixed solution of ammonia water / ethanol (3: 1, v / v). In addition, it was sealed and heat-treated at 60 ° C for 4 hours.
  • Example 2 Oligomer (XIII) was produced by the following reactions (1) to (4) and (5) (the following reaction formula).
  • the ribonucleotide bound to the solid support was treated with 50 equivalents of Beaucage reagent (0.5 M) in acetonitrile solution for 60 seconds to sulfide the phosphite intermediate. After the reaction was completed, the substrate was washed with acetonitrile.
  • the ribonucleotide bound to the solid support was treated with a solution of trichloromouth acetate in dichloromethane for 60 seconds to remove the DMTr group at the 5 'end. After the completion of the reaction, the resultant was washed with dichloromethane and then with acetonitrile.
  • the solid support is reacted with 25% aqueous ammonia: ethanol (3: 1, v / v) at 60 ° C for 15 hours.
  • aqueous ammonia: ethanol 3: 1, v / v
  • the protecting groups at the base moiety and the phosphate moiety were removed.
  • the 3'-terminal hydroxyl-protecting group and the extraction of the oligomer from the solid support also proceeded at the same time.
  • a saturated aqueous solution of ammonium chloride (50 ml) and a saturated aqueous solution of sodium chloride (50 ml) were added, and the mixture was extracted with chloroform (50 mix 3), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Then, 30 ml of hexane was added, and the mixture was vigorously stirred, filtered by suction, and dried in vacuo to obtain 3a (7.22 g, 88%). Colorless amorphous.
  • N-ethy I carbamate- (2S)-a? -Methyl (pyrrol idi ⁇ -2-y I) ethano I 3b (9.60 g, 48.7 mmol), add methanol (50 ml), cool to 0 ° C, With stirring, potassium hydroxide (27.0 g, 481.1 mmol) was added. After heating and refluxing for 4 hours while stirring, methanol was distilled off under reduced pressure, 50 ml of water was added, concentrated hydrochloric acid was added until the pH became 1 and the mixture was washed with ether (100 ml x 2) to produce The aqueous phase was recovered from the precipitate.
  • NMR sample tube, 7b (35.1 mg, 55 jumol ) and 9 (17.8 mg, 50 ⁇ Mol) was vacuum-dried for 12 hours over P 2 0 5, 8 and dried for 8 hours at MS 3A (400 il, 1O0 ⁇ mol) of 0.25 M acetonitrile and CD 3 CN (100 jw I) were added under an Ar atmosphere.
  • the collected residue was dissolved in water (0.2 ml) and analyzed by reverse phase HPLG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、立体規則性の高いリボヌクレオチド類縁体の製造法を提供する。詳しくは、光学活性なヌクレオシド3'−ホスホロアミダイトとヌクレオシドとを、活性化剤を用いて縮合した後、硫化及び脱保護を行うことを特徴とする、式(IV)又は(V)で表される立体規則性の高いリボヌクレオチド類縁体の製造法である。[各式中、Y+は炭素数1~3の直鎖又は分岐鎖のアルキル基等、Bsはウラシル等を示し、各式中の2個のBsは同一でも異なっていても良い。]

Description

立体規則性の高いリボヌクレオチド類縁体及びデォキシリボヌクレオチド類縁 体の製造法 技術分野
本発明は、 立体規則性の高いリボヌクレオチド類縁体及びォリゴデォキシリ ボヌクレオチド類縁体の製造法に関するものである。 背景技術
リン酸部位修飾ジヌクレオチドは、 近年、 重要なアンチセンス薬 (アンチセ ンス法) として注目されており、 更 I.こ多くの病気についても臨床試験が行われ ている。 アンチセンス法とは、 標的となる mRNAと相補的な塩基配列をもつ核 酸を用いて、 mRNAと選択的に結合させ、 タンパク質の翻訳を阻害する手法であ る。 アンチセンス分子として必要な性質として、 主に、 (1)標的となる mRNAの 塩基配列を認識し、 特異的に結合できること、 (2)安定な二重鎖を形成できる こと、 (3)ヌクレア一ゼ耐性が高いこと、 (4)細胞膜透過性が高いことなどが挙 げられる。
リン酸部位修飾ジヌクレオチドは、 リン原子上に不斉中心を有しており、 そ の絶対立体配置の相違によりアンチセンス効果が異なる。 また、 近年の i n v i tro研究では、 リン酸部位修飾ジヌクレオチドの性質として、 例えば DNA、 RNAとの二重鎖形成能ゃヌクレアーゼ耐性、 R N ase H活性などはリン原子上の キラリティ一に影響されることが報告されており (Med. Chem. Lett.
2000, 8, 275-284) 、 リン原子上の立体を制御したリン酸部位修飾ォリゴヌクレ ォチドの効率的な製造法が求められている。
し力、し、 従来、 リン酸部位修飾ジヌクレオチドは、 ホスホロアミダイ ト法等 により製造されており (Beaucage,
S丄.; I yer, R. P. Tetrahedron, 1992, 48, 2223- 2311 ) 、 これらの製造法では、 リ ン原子上の立体制御を行うことは困難であったため、 製造されたリン酸部位修 飾オリゴヌクレオチドは、 R体と S体のジァステレオマーの混合物であった。 また、 アンチセンス分子として天然型 DNAを用いた場合、 ヌクレアーゼによ リ加水分解されやすく、 また細胞膜透過性が低いというアンチセンス分子とし ては致命的な問題がある。 そこで、 天然型 DMA に種々の修飾を施すことにより、 これらの問題を克服する試みが行われてきた。 その中で、 天然型 DMAのインタ ーヌクレオチドの、 リン原子上の 2つの非架橋酸素原子を様々に置換した DNA 類縁体、 即ちインタ一ヌクレオチド修飾型類縁体は、 ヌクレアーゼ耐性、 及び 細胞膜透過性がともに高まることが知られている (Lev i n, A. A. B i ochem.
B i ophys. Acta. , 1 999, 1489 (1 ) , 69-84. ) 。
しかしながら、 導入された置換基がそれぞれ異なる場合、 その DNA類縁体は リン原子上にキラリティを有することになる。 これらの DNA類縁休はそのキラ リティにより、 物性や機能が異なることが知られている (Yu, D.; Kanduma l l a, E. R.; Rosky, A.; Zhao, Q.; Chen, J.; Agrawa l , S. B i oorg. Med. Ghem. , 2000, 8, 275-284. ) 。 例えば、 2つの非架橋酸素原子のうち 1つを硫黄原子 に置換したインターヌクレオチド修飾型 DNA類縁体であるホスホロチォエート DNAは、 それと相補的な RNAと形成する二重鎖の構造、 ヌクレア一ゼ加水分解 に対する耐性などが Sp体のォリゴマーと Rp体のォリゴマ一との間で異なるこ とが知られている (前記文献参照) 。 このことから、 薬としても効能を高める うえで、 リン原子の立体を制御したィンタ一ヌクレオチド修飾型 DNA類縁体を 得ることは極めて重要である。
H-ホスホネ一卜 DNAは、 天然型 DNAのィンタ一ヌクレオチドのリン原子上の 2つの非架橋酸素原子のうち、 1つの酸素原子を水素原子に置換した DNA類縁 体であり、 リン原子上にキラリティを有する。 また、 立体特異的な変換反応に より、 種々のインタ一ヌクレオチド修飾型 DMA類縁体へと変換可能である。 よ つて、 立体化学的に純粋な H-ホスホネート DNAが得られれば、 それを用いてそ のまま立体が制御されたィンターヌクレオチド修飾型 DMA類縁体を得ることが 可能となる。 このように、 H-ホスホネー卜 DNAは、 様々な立体の制御されたィ ンタ一ヌクレオチド修飾型 DNA類縁体へと変換可能な有用な合成中間体である。 現在までのところ、 立体化学的に純粋な H -ホスホネ一ト DMAを得る方法は、 そのジァステレオマ一をシリカゲルカラムクロマトグラフィ一によリ光学分割 する方法以外にない。 したがって、 立体化学的に純粋な H-ホスホネート DMAは、 二量体レベルで得た例の報告があるのみである ((a) See la, F.; Kretschner, U. J. Org. Chem. 1991, 56, 3861-3869. (b) Loshmer, T.; Engels, J. W. Nucleic Acids Res. 1990, 18, 5143) 。 しかも、 H -ホスホネート DNAの二量 体を光学分割する場合であっても、 H-ホスホネ一ト DNAはシリカゲルカラムク ロマトグラフィ一上で不安定であり、 かつその 2つのジァステレオマー間に極 性の大きな違いはないため、 その光学分割は極めて非効率的なものである。 立 体化学的に純粋な H-ホスホネ一ト DNAを核酸医薬への応用が可能な合成中間体 として考えた場合、 オリゴマーレベルで立体の制御された H-ホスホネ一ト DNA が必要となる。 その場合、 ジァステレオマーの数は指数関数的に増大するため、 H-ホスホネ一ト DMAオリゴマーの光学分割は事実上不可能なものとなる。 そこ で、 H-ホスホネート DMAの立体選択的合成反応を開発できれば、 オリゴマーレ ベルで立体の制御された H -ホスホネート DMAを得ることが可能となる。
RNAi は 1998年、 Fireと Mel loらにより線虫を用いた研究で初めて報告され た (Fire, A.; Xu, S.; Montgomery, Μ. Κ.; Kostas, S. A.; Driver, S. E.; Mel lo, C. G. Nature. 1998, 391, 806- 811. )のをきつかけに、 昆虫、 植物、 · 菌類などの様々な生物種間に従来備わった遺伝子抑制システムであることが明 らかにされている。 また、 2001年 Tuschl らによって RNAi は哺乳動物細胞にお いても適用可能であることが示された (Elbashir, S. M.; Harborth, J.; Lendeckel, .; Yale in, A.; Weber, K.; Tuschl, T. Nature. 2001, 411, 494-498. ) 。 これにより、 RNAiは遺伝子抑制効果の高い優れた遺伝子抑制法と して、 遺伝子治療や遺伝子機能解析などを行なうための有力な手段として注目 されるようになった。 RNAiの特徴は、 正確に目的の遺伝子をノックアウトでき る配列特異性と元来生体に備わった遺伝子抑制機構を用いていることである。 このことによって、 RNAi は副作用の少ない新しい遺伝子治療法として期待され ている。 しかしながら、 s iRNAのような 21塩基程度の RNA鎖は生体内のヌクレ ァーゼによって徐々に分解されてしまうため、 今のところ RNAiの効果は長時 間持続させることができない。 発明の開示
本発明の課題は、 アンチセンス法や RNA干渉に使用することができ、 リン原 子上の立体を制御した、 立体規則性の高いリボヌクレオチド類縁体及びデォキ シリポヌクレオチド類縁体の製造法を提供することにある。
本発明は、 課題の解決手段として、 一般式 ( I )
Figure imgf000006_0001
[式中、 R 1及び R ' は、 同一又は異なっていてもよい、 水素原子、 炭素数 1 〜 3のアルキル基又は炭素数 6 ~ 1 4のァリール基を示し、
R2及び R " は、 同一又は異なっていてもよい、 水素原子、 炭素数 1 〜 3の アルキル基又は炭素数 6 〜 1 4のァリール基を示し、
R3は炭素数 1 〜 3のアルキル基を示し、
R4は水酸基の保護基、 は一 O R 5 (ここで R5は水酸基の保護基) 、 水酸 基又は水素原子を示し、
B sは、 次式
Ο
Figure imgf000006_0002
で表されるゥラシル、 アデニン、 シトシン、 グァニン、 チミンあるいはそれら の誘導体から誘導される基を示す。 但し、 R2及び R3は、 窒素原子と共にモノ シクロ構造又はビシクロ構造を形成していてもよい。 ]
で表される光学活性なヌクレオシド 3' —ホスホロアミダイ 卜と、
一般式 (II)
Figure imgf000007_0001
[式中、 Re、 及び B sは前記と同じ意味を示す。 ]
で表されるヌクレオシドとを、
一般式 (III)
Figure imgf000007_0002
[式中、 X—は B F4—、 P F6—、 T f O— (T f は C F3S 02—を示す。 以下同じ) 、 T f 2N\ A s F6—又は S b F6—を示す。 また、 環状構造 Aは窒素原子と共に形 成する炭素数 3〜 1 6のモノシクロ又はビシクロ構造を示す。 ]
で表される活性化剤を用いて縮合した後、 求電子試薬との反応及び脱保護を行 うことを特徴とする、 式 (IV) 又は (V) で表される立体規則性の高いリボヌ クレオチド類縁体の製造法、 及び立体規則性の高いォリゴリボヌクレオチド類 縁体及びォリゴデォキシリボヌクレオチド類縁体の製造法を提供する。
Figure imgf000008_0001
[各式中、 Yは炭素数 1〜 1 0の直鎖又は分岐鎖のアルキル基、 炭素数 1〜 1 0の'直鎖又は分岐鎖のアルコキシ基、 炭素数 1〜 1 0の直鎖又は分岐鎖のヒド ロキシアルキル基、 炭素数 6 ~ 1 4のァリール基、 炭素数 1 ~ 1 0のアルキル チォ基、 炭素数 1〜 1 0のァシル基、 アミノ基、 炭素数 1〜 1 0のアルキルァ ミノ基、 炭素数 1 ~ 1 0のジアルキルアミノ基、 又は Υ=Υ' Ζ+を示す (Υ' は S一、 S e―、 B H 3—を、 Z+はアンモニゥムイオン、 第 1級〜第 4級の低級アルキ ルアンモニゥムイオン又は 1価の金属イオンを示す) 。 B sは、 前記と同じ意 味を示し、 各式中の 2個の B sは、 同一でも異なっていてもよい。 D2及び E2 は水酸基又は水素原子を示す。 ] 発明の詳細な説明
以下、 本発明の製造法を、 縮合反応 (第 1反応工程) と、 求電子試薬との反 応及び脱保護反応 (第 2反応工程) に分けて説明する。 第 1及び第 2の分け方 は説明の便宜のためだけのものであり、 これに限定されるものではなく、 また ら 必要に応じて精製処理等の公知の処理工程を付加することもできる。
〔第 1反応工程〕
一般式 (I) で表される光学活性なヌクレオシド 3' —ホスホロアミダイ ト 〔以下 「ホスホロアミダイ 卜 (I) 」 という〕 と、 一般式 (II) で表されるヌ クレオシド 〔以下 「ヌクレオシド (II) 」 という〕 とを、 一般式 (III) で表 される活性化剤 〔以下 「活性化剤 (III) 」 という〕 の存在下で縮合反応させ る。
ホスホロアミダイト (I) は、 下記のとおり、 適当な 1 , 2—アミノアルコ —ルから公知の方法で製造することができる (例えば Tetrahedron: Asy謹 etry 1995, 6, 1051- 1054参照) 。
即ち、 一般式 (VI) で表される光学活性な 1 , 2—ァミノアルコール 〔以下 「アミノアルコール (VI) 」 という〕 と、 三塩化リンを反応させて得られる一 般式 (VII) で表される光学活性なホスフイチル化剤 〔以下 「ホスフイチル化 剤 (VII) J という〕 と、 一般式 (VIII) で表されるヌクレオシドを反応させ て得ることができる。
Figure imgf000009_0001
Figure imgf000009_0002
〔式中、 R1、 R2、 R3、 R D,及び B sは、 一般式 (1 ) と同じ意味を示 す。 〕 ァミノアルコール (VI) としては、 (S) —及ぴ (R) —2—メチルァミノ — 1一フエニルエタノール、 (1 R, 2S) —エフェドリン、 (1 R, 2 S) 一 2—メチルアミノー 1 , 2—ジフ Xニルエタノール等が挙げられる。
その他にも、 プロリノール誘導体、 例えば、 (Of R, 2S) — 一(ピロリ ジン一 2—ィル) ベンジルアルコール、 (aS, 2 R)— 一 (ピロリジン一 2—ィル) ベンジルアルコールが挙げられ、 H-ホスホネートに誘導可能なアミ ノアルコール類、 例えば、 ( S) —a, of—ジフエニル (ピロリジン一 2— ィル) メタノール、 (2S) — 一メチル (ピロリジン一 2—ィル) ェタノ一 ル、 (2 R) —び一メチル (ピロリジン一 2—ィル) エタノール、 (oiR, 2 S) — 一メチル (ピロリジン一 2—ィル) ベンジルアルコール、 ( S, 2 R)— 一メチル (ピロリジン一 2—ィル) ベンジルアルコールが挙げられる ヌクレオシド (VIII) において、 Bsはゥラシル、 アデニン、 シ卜シン、 グ ァニン又はチミンあるいはそれらの誘導体から誘導される基を示すが、 誘導体 としては、 アデニン、 シトシン及びグァニンのアミノ基を保護基で保護したも の等が挙げられ、 具体的には、 下記式で表される化合物が挙げられる。
Figure imgf000010_0001
Figure imgf000011_0001
〔式中、 R7は上記と同じ意味を示し、 R8は炭素数 1〜 1 5のアルキル基、 ァ リール基、 ァラルキル基、 ァリールォキシアルキル基を示し、 中でもメチル基、 イソプロピル基、 フエニル基、 ベンジル基、 フエノキシメチル基が好ましく、 特にフエニル基が好ましい。 また、 R9及び R1C)は、 それぞれ炭素数 1〜4のァ ルキル基を示し、 特にメチル基が好ましい。 R"は、 グァニン 06位の保護基を 示し、 2 -シァノエチル基、 p -ニトロフエニルェチル基、 フエニルスルホニルェ チル基、 ベンジル基、 2-トリメチルシリルェチル基等が好ましい。
ヌクレオシド (VIII) は、 ゥラシル、 アデノシン、 シチジン、 グアノシン、 チミン又はそれらの誘導体の 5' 位の水酸基を保護したもので、 保護基 (R4) としては、 tert -ブチルジフエニルシリル基 (TBDPS) 、 tert -ブチルジメ チルシリル基 (TBDMS) 等のアルキルシリル基、 4, 4' ージメ トキシト リチル基 (DMT r ) 、 4—メ トキシトリチル基 (MMT r ) 等のトリチル基、 次式で表される保護基等が挙げられる。
Figure imgf000011_0002
ヌクレオシド (VIII) の が水素原子のとき、 B sはチミン又はその誘導 -体が好ましい。 チミン又はその誘導体以外のヌクレオシドを用いる場合、 塩基 部への副反応が危惧されるため、 塩基部に保護基を導入することが望ましく、 アデニンとグァニンにはフエノキシァセチル (Pac)基、 シトシンにはイソプチ ル(iBu)基を用いることができる。
ホスホロアミダイ ト ( I ) において、 R1、 R, 、 R2、 R" の意味は上記し たとおりである。
R1及び R2としては、 R1及び R2のいずれか一方が水素原子で他方がフエ二 ル基、 R1及び R2のいずれか一方がメチル基で他方がフエニル基、 あるいは R1 及び R2が共にフエニル基の組み合わせが好ましく、 R1がフ: L二ル基、 R2が水 素原子の組み合わせが更に好ましい。 R3はメチル基が好ましい。 また、 R1が フエニル基、 R2及び R3が窒素原子と共にピロリジン骨格を形成していること が好ましい。 R4及び がー OR5のときの R5は TBDP S、 T B D M Sが好 ましく、 T BD PSが更に好ましい。
R1及び R2が上記の組み合わせであるとき、 R' 及び R" は、 水素原子、 炭 素数 1〜 3のアルキル基又は炭素数 6〜 1 4のァリール基から選択できる。 本発明の一般式 ( I ) で表される光学活性なヌクレオシド 3' —ホスホロア ミダイ トにおいては、 R1と R' は、 同一又は異なっていてもよい、 炭素数 1 〜 3のアルキル基又は炭素数 6〜 14のァリール基である化合物が好ましい。 また、 H-ホスホネート (一般式 (XII) において Y二 H) を得る場合は、 R1と R, の両方が水素原子ではなく (即ち、 R1と R' が結合する炭素原子が第 3 級炭素であり) 、 かつ前記第 3級炭素の置換基がァリール基を含まない組み合 わせにする。
ヌクレオシド (II) は、 ゥリジン、 アデノシン、 シチジン、 グアノシン又は それらの誘導体の 2位と 3位の水酸基を保護したものであり、 B sで示される ゥラシル、 アデニン、 シトシン、 グァニン、 チミン又はそれらの誘導体から誘 導される基は、 ヌクレオシド (VIII) で例示したものが挙げられる。
ヌクレオシド (II) とヌクレオシド (VIリ) の B sは、 同一でも異なってい ても良い。
R6は上記と同じものであり、 E,が一 0 R7のときの R7で示される水酸基の 保護基としては、 TBDPS、 TBDMS、 ァセチル基 (A c) 、 フエノキシ ァセチル基 (PA c) 、 ベンジル基 (B z ) 、 DMT r、 MM丁 r等が挙げら れ、 R6、 R7は PA cが好ましい。
活性化剤 (III) は、 ホスホロアミダイ 卜 ( I ) の窒素原子に対するプロ ト ン供給能力を有し、 求核試薬としては働かないものである。
活性化剤 (III) 中、 X—としては、 BF4-、 P F6—、 T f O—、 T f 2N—が好ま しい。 また、 環状構造 Aは、 窒素原子と共に形成する炭素数 3〜1 6のモノシ クロ又はビシクロ構造を示し、 特に式 (IU-1) で表されるモノシクロ構造を 有するものが好ましい。
Figure imgf000013_0001
(式中、 X—は前記と同じ意味を示す。 nは 3〜 7の数を示し、 4又は 5が好ま しい。 )
活性化剤 (III) は、 式 (IX)
Figure imgf000013_0002
(式中、 環状構造 Aは前記と同じ意味を示す。 )
で表されるァミンと、 次式 (X) :
HX (X) (式中、 Xは前記の意味を示す。 )
で表される化合物とを反応させることにより容易に得ることができる。
活性化剤 (III) は、 特にァセトニトリルに良い溶解性を示すので、 ホスホ 口アミダイ 卜 ( I ) とヌクレオシド (M) の反応は、 ァセトニトリル等の溶媒 中で行うことが好ましい。
ホスホロアミダイ ト ( I ) とヌクレオシド (||) とは、 ホスホロアミダイ ト ( I ) に対し、 ヌクレオシド (II) を◦. 5〜 1. 0当量倍の割合で反応させ ることが好ましい。 活性化剤 (III) は、 ホスホロアミダイ ト ( I ) に対し、
1〜 5当量倍の割合で用いることが好ましい。 反応温度は 0〜40°Cが好まし く、 反応圧力は 1気圧が好ましい。
以上の第 1反応工程により、 下記一般式' (XI)
Figure imgf000014_0001
[式中、 R R2、 R3、 R R6、 D,, E 及び B sは前記と同じ意味を示 す。 ]
で表されるホスフアイ 卜 〔以下 「ホスフアイト (XI) 」 という〕 を得る。
〔第 2反応工程〕
まず、 第 1反応工程で得られたホスフアイ 卜 (XI) を、 無水酢酸、 無水トリ フルォロ酢酸等でァシル化した後、 硫化剤、 セレノ化剤、 ボラノ化剤等の求電 子試薬と反応させ、 その後、 一般式 (XII) の化合物の不斉補助基を 1 , 8— ジァザビシクロ [5. 4. 0] ゥンデカー 7—ェン (DB U) 等で処理して除 き、 一般式 (XII)
Figure imgf000014_0002
E B s及び Yは前記と同じ意味を示す。 ] で表される保護されたジリン酸部位修飾ジヌクレオチドを得る。 なお、 使用す る求電子試薬の種類により (例えば、 硫化剤として 1, 2, 4—ジチアゾリジン 一 3, 5—ジオン、 3—エトキシ一 1, 2, 4—ジチアゾリンー 5—オン、 3— メチル一1 , 2, 4—ジチアゾリン一 5—オン等を用いた場合) 、 前段のァシル 化工程を省略してもよい。
最後に、 水酸基の保護基を、 (CH3CH2) 3N ■ 3 H F等で除き、 一般式 (IV) 又は (V) で表される立体規則性の高いリポヌクレオチド類縁体を得る ことができる。
また、 本発明においては、 上記した第 1反応工程と第 2反応工程を繰り返す ことにより、 一般式 (XI I I) で表されるオリゴマー 〔以下 「オリゴマー
(XI I I) 」 という〕 を製造することができる。
一般式 (I) で表されるモノマーの R1が罈合する炭素が第 3級炭素であり (R1と R' の両方が水素原子ではない) 、 かつ前記第 3級炭素の置換基がァ リール基を含まない場合、 第 1反応工程で得られたホスファイ ト (XI) を、 無 水酢酸、 無水トリフルォロ酢酸等でァシル化した後、 1 %トリフルォロ酢酸ジ クロ口メタン溶液等の酸で処理すると、 不斉補助基が脱離して、 対応する H-ホ スホネート (XIし Y=H) が得られる。 前記第 3級炭素の置換基のうち、 1っ以 上がァリール基の場合は、 第 2反応工程においてァシル化の工程を省略するこ とができるが、 生成するカルボカチオンを還元するために、 トリェチルシラン やボラン■ ピリジン錯体などの還元剤を添加する必要がある。
この方法で 2量体を合成する場合、 得られた H -ホスホネート (XIし Y=H) に 硫化剤を反応させれば、 ホスホロチォェ一卜 (XIし Y=S") が得られ、 ァミンの 四塩化炭素溶液を反応させれば、 ホスホロアミデート (XIし Y=NR2) が得られ る。
この方法でオリゴマーを合成する場合、 5' 水酸基の保護基として DMTr基 を有するモノマーを用い、 上記の方法によって得られたホスフアイ ト中間体を 酸処理することで不斉補助基と 5' 水酸基の保護基である DMTr基を同時に除 去し、 得られた 5' 位に水酸基を有する 2量体に対してモノマーを縮合し、 上 記工程を繰り返すことにより、 H -ホスホネート結合を有するオリゴマーを合成 できる。
次に、 H-ホスホネ一卜結合を有するオリゴマーを 2量体の場合と同様に変換 反応を行い、 望みのリン原子修飾 DNAに導いた後に脱保護を行うことで、 目的 とする核酸類縁体を得ることができる。
Figure imgf000016_0001
—般式 (XIII) 中、 nは 1〜 1 50の整数を示し、 好ましい範囲は 5〜 50 であり、 より好ましい範囲は 1 0〜30、 更に好ましい範囲は 1 5〜22であ る。 D2及び E 2は水酸基又は水素原子を示す。
オリゴマー (XII I) は、 固相法によるオリゴマー合成法を適用して製造する ことができ、 具体的には市販の自動合成機 (Expedite, ABI社製, 又は ABI Model 394, DNA/RNA Synthesizer ABI社製) などを用いて合成するか、 グラ スフィルターのついた固相合成容器を用いた手動法で合成することができる。 固相法で用いる固相担体としては、 アミノアルキル化され、 孔径が制御され た多孔性ガラス (control led pore glass: CPG) 、 アミノアルキル化された高 架橋ポリスチレン (highly cross-l inked polystyrene: HCP) といった公矢!]の 高分子担体であって, できるだけ膨潤性がな 過剰に用いた試薬を洗浄によ つて簡単に除去できるものが好ましい。
固相担体とリボヌクレオシドの 3' 又は 2' 水酸基のいずれかは、 コハク酸 エステル、 シユウ酸エステル、 フタル酸エステル等のリンカ一を介して結合し ても良い。 固相担体が結合していない 2' 又は 3' 水酸基の保護基としては、 ァセチル基、 ベンゾィル基、 2- (シァノエトキシ) ェチル基、 t-ブチルジメチ ルシリル基等の RNA合成及び DNA合成で一般的に用いられる保護基を挙げるこ とができる。
本発明の製造法により得られる立体規則性の高いリボヌクレオチド類縁体及 びデォキシリボヌクレオチド誘導体は、 遺伝子治療の分野で注目されている手 法の一つであるアンチセンス法や RNA干渉に使用することができる。
本発明によれば、 アンチセンス分子として有効な立体規則性の高いリボヌク レオチド類縁体及びデォキシリボヌクレオチド類縁体を高い収率で得ることが できる。 実施例
例中の%は特記しない限リ質量%である。
式および表中、 dr, d.にはジァステレオマ一比を、 rtは室温を、 equiv, eq は当量を、 TFAはトリフルォロ酢酸を、 Pyはピリジンを示す。
<活性化剤 (III) の製造例 >
製造例 1-1 : N—シァノメチルピロリジニゥムテトラフルォロボレイ 卜の製 造
アルゴン雰囲気下、 N—シァノメチルピロリジン 0. 551 g (5·. 00 mmol) のェチルエーテル (5. OOml) 溶液を一 78 °Cに冷却し、 攪拌しつつ 54%四フッ化硼素酸ェチルエーテル溶液 0. 689ml (5. 0 Ommol) を滴 下した。 溶液を室温に戻した後、 減圧下濃縮、 乾燥し、 残渣にェチルェ一テル
(5ml) を加えて激しく攪拌し、 シリンジを用いて溶媒を除去した。 この洗浄 操作を 5回繰り返した後、 真空乾燥し、 目的物 〔一般式 (III) において、 n =4、 X— =B F4—の活性化剤〕 0. 990 g (5. 00圆 ol) を得た。 収率定 量的。 白色粉末。 潮解性大。
-融点: 1 1 3. 0〜 1 14. 0°C
, I R (KB r ) x : 2988, 2950, 2825, 2527, 2445, 1451, 1407, 1374, 1298, 1119, 929 cm"1
^H— NMR (300MHz, CD3CN) δ : 7.17(br, 1H), 4.30(s,2H), 3.51 (br,4H), 2.13〜2.08(m, 4H)
13C— NMR (75 MHz, C D3CN) δ: 112.0, 55.9, 41.8, 23.2。
製造例 1 - 2: Ν—シァノメチルピロリジニゥムへキサフルォロホスフエ一ト の製造
6 1 %へキサフルォロリン酸水溶液 1. 20 g (5. O Ommol) に水 5. 0 Oml を加え、 攪拌しつつ N—シァノメチルピロリジン 0. 55 1 g (5. 00 画 ol) を滴下した後、 溶液を凍結乾燥した。 残渣にェチルエーテル (1 Oml) を加え、 激し〈攪拌し、 シリンジを用いて溶媒を除去した。 この洗浄操作を 3 回繰り返した後、 真空乾燥し、 目的物 〔一般式 (III) において、 n = 4、 X一 二 P F6—の活性化剤〕 1. 28 g (5. O Ommol) を得た。 収率定量的。 白色 粉末。 潮解性大。
•融点: 56. 0〜5フ. 0°C
- I R (KB r ) : 2988, 2828, 2532, 2448, 1626, 1457, 1296, 1082, 987, 834 cm-1
' 1Η— NMR (300MHz, CD3CN) δ : ,8.27 (br,1H), 4.24(s,2H), 3.48 (br,4H), 2.12〜2.08(m, 4H)
13C— NMR (7 5 MHz, CD3CN) δ: 112.1, 56.0, 42.1, 23.5
31 P - N M R ( 1 2 1 MHz, C D3C N) δ: -146.0 (septet, 1 J PF=707Hz) 0 製造例 1 - 3: N—シァノメチルピロリジニゥムトリフルォロメタンスルホネ 一卜の製造
N—シァノメチルピロリジン 0. 55 1 g (5. 0 Omtnol) のジクロ口メタ ン (5. 0 Oml) 溶液を 0°Cに冷却し、 攪拌しつつトリフルォロメタンスルホ ン酸 0. 442ml (5. O Ommol) を滴下した後、 ェチルエーテル (1 0ml) を加えた。 生じた固体を吸引ろ過によって集め、 ェチルエーテル (1ml X 3) で洗浄した後、 減圧下乾燥して、 目的物 〔一般式 (III) において、 n = 4、 X-=T f O—の活性化剤〕 1. 1 1 g (4. 27mmol) を得た。 収率 85。ノ0。 白色粉末。 潮解性小。
-融点: 67. 0〜67. 5°C
■ I R (KB r ) : 2996, 2841, 2651, 2477, 2347, 2282, 1637, 1462, 1437, 1269, 1228, 1168, 1033, 985, 911, 849, 761, 641 cm—1
1H-NMR (300MHz, C D3CN) δ : 8.16(br, 1H), 4.30(s,2H), 3.50(br,4H), 2.14〜2· 09 (m, 4H)
13C— NMR (75 MHz, CD3CN) δ : 121.2(q, 1JCF=320Hz) , 55.9, 42.0, 23.5。
製造例 1 - 4: Ν—シァノメチルビペリジニゥムテトラフルォロボレ一卜の製 造
Ν—シァノメチルビペリジン 1. 24 g (1 0. Ommol) のジクロロメタン (1 0. Oml) 溶液に対し、 攪拌しつつ 54%四フッ化硼素酸ェチルエーテル 溶液 1. 38ml (1 0. Ommol) を滴下した。 溶液をェチルエーテル (20 ml) で希釈し、 生じた固体を吸引ろ過によって集め、 ェチルエーテル (1 0 mi x 2) で洗浄した後、 減圧下乾燥して、 目的物 〔一般式 (I I I) において、 n = 5、 X— =B F4—の活性化剤〕 2. 0 1 g (9. 48mmol) を得た。 収率 9 5%。 白色粉末。 潮解性なし。.
'融点: 1 03. 0〜 1 03. 5°C
■ I R (KB r ) ymx 3149, 2997, 2952, .2876, 2591, 2570, 2491, 2372, 1457, 1422, 1296, 1074, 980, 935, 850, 641 cm"1
- 1H— NMR (300MHz, CD3CN) δ 6.74(br, 1H), 4.22(s,2H), 3.58(br,2H), 3.15(br,2H), 1.97〜1.51 (m, 6H)
- 13C-NMR (75 MHz, CD3CN) δ : 111.2, 54.6, 44.0, 23.0, 20.5。 製造例 1 - 5: Ν—シァノメチルビペリジニゥムへキサフルォロホスフエ一ト の製造
6 1 %へキサフルォロリン酸水溶液 1 · 20 g (5. 0 Ommol) に水 5. 0 Oml を加え、 攪袢しつつ N—シァノメチルビペリジン 0. 62 1 g (5. 00 画 ol) を滴下した後、 溶液を凍結乾燥した。 残渣にジクロロメタン (5mi) 、 ェチルエーテル (1 0ml) を加え、 一 78°Cに冷却し、 激しく攪拌すると固体 が生じたので、 室温に昇温した後、 シリンジを用いて溶媒を除去した。 残渣に ェチルエーテル (5ml) を加え、 激しく攪拌した後、 シリンジを用いて溶媒を 除去した。 この洗浄操作を 3回繰り返した後、 真空乾燥し、 目的物 〔一般式
(III) において、 n = 5、 X— =P F6—の活性化剤〕 1. 31 g (4. 85 mmol) を得た。 収率 97%。 白色粉末。 潮解性大。
•爾虫点: 54. 0〜55. 0°C
- I R (KB r ) vmm: 2997, 2953, 2876, 2589, 2570, 2490, 2372, 1655, 1455, 1422, 1297, 1192. 1142, 1084, 1037, 981, 953, 837, 746 cm-1
- 1H-NMR (30 OMHz, CD3CN) δ : 7.94 (br, 1H), 4.15(s,2H), 3.31 (br,4H), 1.92〜1.83 (m, 4H) , 1.63(br,2H)
- 13C— NMR (75MHz, CD3CN) δ 111.5, 54.5, 44.2, 23.1, 20.8
31 P - N M R (1 21 MHz, CD3CN) δ : -145.9 (septet, 1JPF=707Hz)。 製造例 1 - 6: N—シァノメチルビペリジニゥム卜リフルォロメタンスルホネ
—卜の製造
N—シァノメチルビペリジン 0. 621 g (5. 00圆 ol) のジクロ口メタ ン (5. 0 Oml) 溶液を 0°Cに冷却し、 攪拌しつつトリフルォロメタンスルホ ン酸 0. 442ml (5. 0 Ommol) を滴下した。 溶液を室温に昇温し、 ェチル エーテル (1 Oml) を加えた後、 固体を吸引ろ過によって集め、 ェチルェ一テ ル (1ml x 3) で洗浄した後、 減圧下乾燥して、 目的物 〔一般式 (III) にお いて、 n = 5、 X— =T f O—の活性化剤〕 T. 37 g (5. 0 Ommol) を得た。 収率定量的。 白色粉末。 潮解性小。
-融点: 1 1 0. 0~ 1 1 0. 5°C
■ I R (KB r ) vmx: 2999, 2723, 1460, 1289, 1226, 1168, 1083, 1027, 978, 936, 762, 641 cm一1
' 1Η— NMR (300MHz, C D3C N) δ 8.12(br, 1H), 4.19(s,2H), 3.58(br,2H), 3.09(br,2H), 2.21(br,4H), 1.50(br, 1H)
, 13C— NMR (75 MHz, CD3CN) 6 : 120.9 (q, 1JCF=319Hz), 111.4, 54.5, 44.2, 23.0, 20.7。
<ホスフイチル化剤 (VII) の製造 >
製造例 2 - 1 : (5S) —2—クロロー 3—メチル一5—フエ二ルー 1, 3, 2—ォキサァザホスホリジンの製造
(S) —2—メチルアミノー 1—フエニルエタノール 3. 02 g (1 5. 0 mmol) 、 トリェチルァミン 5. 58ml (40. Ommol) のテトラヒドロフラン (TH F) (20. Oml) 溶液を 0°Cに冷却した三塩化リン 1. 75ml (20. Ommol) の T H F (20. Oml) 溶液に対して、 攪拌しつつ滴下し、 温度を室 温にして 30分間攪拌した。 生じた塩を、 グラスフィルタ一でアルゴン雰囲気 下ろ過し、 塩を TH F ( 1 Oml X 3) で洗浄した。
ろ液を濃縮し、 残渣を減圧下蒸留することにより、 目的物 〔一般式 (VII) において、 R1-フエニル基、 R2=H、 R3=メチル基である化合物の 5 S体〕 2. 59 g (1 2. Ommol) を得た。 収率 60%。 89〜90°CZ0. 2画 H go 無色透明液体。
1H-NMR (300MHz, CDC I 3) δ : 7.54〜7.34 (m, 5Η), 5.83,
5.44 (br.br, 1H), 3.60〜3,42(m, 1H), 3.22〜3· 12(m, 1H) ,
Figure imgf000021_0001
31 P - N M R (1 21 MHz, CDC I 3) δ ■■ 172.4(br), 171.3(br)。
製造例 2 - 2 : (5 R) —2—クロ口一 3—メチル一5—フエニル一 1 , 3, 2—ォキサァザホスホリジンの製造
(R) —2—メチルアミノー 1—フエニルエタノール 2. 27 g (1 5. 0 國 ol) を用い、 製造例 2-1 と同様の手法により目的物 〔一般式 (VII) におい て、 R1 フエニル基、 R2=H、 R3=メチル基である化合物の 5 R体〕 を製造 した。 収率 65%。 81〜82°CZ0. 2mmHg。 無色透明液体。
' 1H— NMR (300MHz, CDC I 3) δ : 7· 55〜7.35 (m, 5Η), 5.84,
5.46 (br.br, 1Η),
3.58〜3.43(m, 1Η), 3· 22〜3· 13 (m, 1H) , 2.78 (d, 3JHP=16.5Hz, 3Η)
31 P - N M R (1 21 MHz, CDC I 3) δ : 172.4(br), 171.4(br) 製造例 2-3 : (2 R, 4 S, 5 R) —2—クロ口一 3—メチル一4, 5—ジ フエ二ルー 1 , 3, 2—ォキサァザホスホリジンの製造
( 1 R, 2 S) —2—メチルアミノー 1 , 2—ジフエニルエタノール 2. 2 7 g (1 0. Ommol) 、 卜リエチルァミン 2. 79ml (20. Ommol) の TH F (1 0. Oml) 溶液を、 0°Cに冷却した三塩化リン 0. 872ml (1 0. 0 mmol) の TH F (1 0. Oml) 溶液に対して、 攪拌レつつ滴下した後、 1時間 加熱環流した。
溶液を室温まで放冷し、 生じた塩を、 グラスフィルタ一でアルゴン雰囲気下 ろ過し、 塩を TH F (1 Oml X 2) で洗浄した後、 ろ液を減圧下濃縮して、 目 的物 〔一般式 (VII) において、 R1-フエニル基、 R2=フエニル基、 R3=メチ ル基である化合物の 2 R, 4 S, 5 R体〕 3. 1 7 g (1 0. Ommol) を得た。 収率定量的 (純度 92%) 。 乳白色固体。
1H-NMR (30 O Hz, CDC I 3) δ 7.08〜7, 05 (m, 6Η) , 6.91- 6.81 (m, 4H) , 6.15 (d, 3J=8.3Hz, 1H), 4.64 (dd, 3JHH=8.3Hz, 3JHP=4.2Hz, 1 H) '
2.64(d,3JHP=15.3Hz,3H)
31 P - N M R (1 21 MHz, CDC I 3) δ 171.70
<ホスホロアミダイ 卜 ( I ) の製造 >
製造例 3-1
5' - 0 - 〔ビス (4-メ トキシフエ二ル) フエニルメチル〕 -3' - 0 - 〔 (2S, 5S) -3 -メチル -5-フエニル- 1,3, 2-才キサザホスホリジン- 2-ィル〕 - 2' - 0- (tert -プチルジメチルシリル) ゥリジン [(Sp)- 19b]の製造
5' -0- 〔ビス (4 -メ トキシフエ二ル) フエニルメチル〕 -2' -0- (tert -プチ ルジメチルシリル) ゥリジン(4) (0.820 g, 1.5mmol) を、 ピリジン、 トルェ ンと繰り返し共沸することによって乾燥し、 THF (7.50 ml) 溶液とした。
これにトリェチルァミン (1.05ml, 7.5画 I) を加え、 -78。 G に冷却した後、 アルゴン雰囲気下、 下記式及び表 1に示す(5S)-18bの 0.22M THF溶液を滴下し た。 反応混合物を室温で 30分間撹拌した後、 飽和炭酸水素ナトリウム水溶液 (75 ml) 及びクロ口ホルム (75 ml) を加えた。 有機相を分離後、 飽和炭酸水 素ナトリウム水溶液で洗浄 (75 mlx2) し、 集めた洗液をクロ口ホルム (75 ml 2) で抽出した。
集めた有機相を無水硫酸ナトリウムで乾燥後、 ろ過し、 減圧下濃縮した。 残 渣をシリカゲルカラムクロマトグラフィー 〔2.5x14cm, シリカゲル 40g, トル ェンー酢酸ェチルートリエチルァミン (10:1:0.2, v/v/v) 〕 で分離精製した。 目的物を含むフラクションを集め、 飽和炭酸水素ナトリウム水溶液 (100 ml) で洗浄後、 無水硫酸ナトリウムで乾燥、 ろ過し、 減圧下濃縮乾燥して、 下 記式及び表 1に示す (Sp)- 19b を収率 70%で得た。 無色非晶質。
1H NMR (300 MHz, CDC I 3) <5 8.80 (br, 1H), 8.20 (d, 3JHH = 8.1Hz, 1H), 7.42-7.18 (m, 13H), 6.84 (m, 4H), 5.80 (s, 1H), 5.58 (t, 3JHH = 6.6Hz 1H), 4.60 (m, 1H), 4.18 (br, 2H), 3.80 (s, 6H), 3.40 ( m, 2H), 1.40- 1.00 (m, 6H), 0.91 (t, 3JHH = 13.5Hz 9H), 2.22 (d, 3JHH = 13.5Hz 6H).
製造例 4 - 2
5' -0-〔ビス (4-メチルフエニル) フエニルメチル〕 -3' -0 - 〔 (2R.4S.5R) 一 5—フエ二ル―テトラヒドロー 1H.3H -ピロ口 〔1,2-G〕 - 1,3,2 -才 キサザホスホリジン- 2-ィル〕 -2' -0- (tert-プチルジメチルシリル) ゥリジ ン [(Sp)-19d]の製造
5' -0-〔ビス (4-メ トキシフエ二ル) フエニルメチル〕 -2' -0- (tert-プチ ルジメチルシリル)ゥリジン(4) (0.820g, 1.5mmo I ) を、 ピリジン、 トルエン と繰り返し共沸することによって乾燥し、 THF (7.50ml) 溶液とした。
これにトリェチルァミン (1.05 ml,7.5inmol) を加え、 一78° Gに冷却した後、 アルゴン雰囲気下、 下記式及び表 1に示す(5S)- 18dの 0.22 M THF溶液を滴下 した。 反応混合物を室温で 30分間撹拌した後、 飽和炭酸水素ナトリウム水溶 液 (75ml) 及びク t]口ホルム (75ml) を加えた。
有機相を分離後、 飽和炭酸水素ナトリウム水溶液で洗浄 (75ml x2) し、 集 めた洗液をクロ口ホルム (75ml x2) で抽出した。 集めた有機相を無水硫酸ナ トリウムで乾燥後、 ろ過し、 減圧下濃縮した。 残渣をシリカゲルカラムクロマ トグラフィ一 〔2.5 x14cm, シリカゲル 40g, トルエン一酢酸ェチルートリエチ ルァミン (10:1:0.2, v/v/v) 〕 で分離精製した。
目的物を含むフラクションを集め、 飽和炭酸水素ナトリウム水溶液
(100ml) で洗浄後、 無水硫酸ナトリウムで乾燥、 ろ過し、 減圧下濃縮乾燥し て、 下記式及び表 1に示す(Sp)- 19d を収率 46%で得た。 無色非晶質。
1H NMR (300 MHz, C D C \ ζ) δ 9.82 (br, 1Η), 8.17 (d, 3JHH = 8.1Hz, 1H), 7.42-7.18 (m, 14H), 6.81 (m, 4H), 5.88 (s, 1H), 5.71 (d, 3JHH = 6.6Hz, 1H), 5.18 (d, 3JHH = 8.1Hz, 1H), 2.62 (br, 1H), 4.40 (s, 1H), 4.28 (d, 1H), 3.83 (br, 1H), 3. 8 (s, 6H), 3.60 (m, 3H), 3.20 (br, 1H), 2.39 (s 1H),' 2.64 (br, 2H), 1.21 (br, 1H),0.97 (s, 9H), 0.24 (s, 6H).
Figure imgf000024_0001
表 1
R3 R4 R5 19a-da trans: cis
1 18a iPr H P 19a 87 ·· 13
2 18b CH3 H Ph 19b 94: 6
3 18c (CH2)3 H 19c
4 18d (CH2)3 Ph 19d >99: 1 a : 3ュ? NMRで測定されたジァステレオマー比率
実施例 1
下記反応式により、 ホスホロアミダイ ト (I) と、 ヌクレオシド (II) とを、 活性化剤 (III) を用いて縮合した後、 硫化反応を行った。 Pyridine(1°eqUiV)
Ac20 ( 2 equi )
Figure imgf000025_0001
(Sp .
d.r. > 99:1*
Figure imgf000025_0002
(Sp)-7 (Sp)-9 d.r. > 99:1' d. >99:1* d.r. > 99:1*
* 31 P NMRによって測定されたジァステレオマ一比
その後、 下記反応式により、 脱保護を行い 目的とするリボヌクレオチド類 縁体を得た。
Figure imgf000026_0001
(Sp)-11 (fip)-11
Sp:flp = >99:1 Sp:Rp = >1:99
逆相 HPLCにより測定。 逆相 HPLCにより測定。
(flp)-3cから 37%, 6工程 (Sp)-3cから 32%, 6工程 上記反応における詳細な反応操作は、 以下のとおりである。 なお、 縮合反応 の反応追跡ならびに生成物のジァステレ'ォマ一比の測定は全て以下の要領で行 つた。 剛 Rサンプルチューブ中、 trans - 19b (50jumol)と 2' ,·3' -0 -フエノキ シァセチルゥリジン (50 mol) を、 P205上で 12時間真空乾燥し、 MS 3Aで 8 時間乾燥した N - (シァノメチル) ピロロリジニゥム トリフルォロロンメタン スルホネート(27a) (400 1, 100 mol) の 0.25Mァセトニトリル溶液と
CD3CN(100ju I) をアルゴン雰囲気下加えた。 その 3分後、 NMRによる積算を開 始し、 反応のジァステレオマ一比は NMRシグナルの積分比によって決定した。
(化合物 3→6)
NMRサンプルチューブ中、 trans- 19b (0.0520 g , 50 mo I ) と 2' ,3' - 0-フ エノキシァセチルゥリジン (0.0256£,50^υηιοΙ) を Ρ205上で 12時間真空乾燥し. MS 3Αで 8時間乾燥した Ν— (シァノメチル) ピロロリジニゥム トリフロロ口 メタンスルホネート(27a) (400 1, 100 mol) の 0.25Mァセトニトリル溶液と CD3CN (100 ju I) をアルゴン雰囲気下加えた。
(化合物 6→7)
これを 15分間良くかき混ぜた後に、 ピリジン (43 I, 0.5瞧 01 ) と無水酢酸 (10jU I, 0.1國 ol) をマイクロシリンジで加えて、 化合物 6を 7ベと変換した。
(化合物 7→8)
更にこの溶液中に Beaucage reagent (0.0120g, 0.06mmo I ) を加え、 化合物 7の硫化を行った。
(化合物 8→9)
ここで、 NMRサンプル管から 50ml細口のナスフラスコに反応溶液を移し変え、 3ml のピリジンで洗いこみを行った後、 これにアンモニア水一エタノール (3:1, v/v) 混合溶液 20m I を加え、 密栓をして 60°Cで 4時閩加熱処理を行った。
加熱後に、 溶媒を減圧下留去し、 0.1M TEAAバッファ一 5ml とジクロ口メタ ン 5ml を加え、 化合物 9を有機相へ回収し、 無水硫酸ナトリウムで乾燥、 ろ過 し、 減圧下濃縮乾燥を行った。
(化合物 9→10)
十分乾燥させた化合物 9に対し、 3HF- ξ1:3Ι\Ι 1.5ml を neatで加え、 2時間撹 拌した後に、 0.1M AAバッファ一 3ml とメタノール 3ml を加え、 エーテル 3ml を用いて洗浄したのち、 水相を回収し減圧下濃縮乾燥を行い、 更に凍結乾燥を 繰り返すことにより、 脱塩を行った。
(化合物 10→11)
凍結乾燥を行った後の化合物 10に 80%酢酸水溶液 20ml を加え、 30分間室 温で撹拌した後、 減圧下濃縮乾燥を行った。 80%酢酸を留去した後、 ジェチル エーテル 3ml を用いて洗浄した後、 蒸留水を用いて抽出を行った。 回収した水 相を減圧下濃縮乾燥し、 更に凍結乾燥を繰り返し、 脱塩を行った後、 逆相 HPLG 及び UVによる分析を行った。 その結果、 (Sp)-11 を、 縮合からのトータル収 率 37%で得た。
実施例 2 下記の各反応工程 (1 ) 〜 (4) 及び (5) の反応 (下記反応式) により、 オリゴマー (XIII) を製造した。
( 1 ) 縮合反応
固相担体 [highly cross- linked polystyrene (HCP)] に結合したリボヌクレ 才シド 〔一般式 ( I ) 〕 immol に対して 20当量のモノマ一ユニット 〔一般式 (II) 、 (III) のュニット〕 (0.2 Ml) 、 50当量の活性化剤 (N -シァノメチル アンモニゥ厶塩, 0.5 M) をァセトニトリル中で 90秒間反応させた。 反応終了 後、 ァセトニトリルで洗浄した。
(2) キャップ化反応 (ァセチル化反応)
固相担体に結合したリボヌクレオチドを無水酢酸: N -メチルイミダゾ一ル: THF=1 : 2 : 7の混合溶液で 60秒間処理し, 未反応の 5' 水酸基及び遊離した 不斉補助基のアミノ基をァセチル化した。 応終了後, ァセトニトリルで洗浄 した。
(3) 硫化反応
固相担体に結合したリボヌクレオチドを 50当量の Beaucage試薬 (0.5 M) のァセトニトリル溶液で 60秒間処理し, ホスファイ ト中間体を硫化した。 反 応終了後, ァセトニトリルで洗浄した。
(4) 脱トリチル化反応
固相担体に結合したリボヌクレオチドを 3 ¾トリクロ口酢酸のジクロロメタ — ン溶液で 60秒間処理し, 5' 末端の DMTr基を除去した。 反応終了後、 ジクロ ロメタン、 次にァセトニトリルで洗浄した。
(5) 鎖延長反応と、 脱保護反応及び精製
上記の (1 ) から (4) の反応操作を繰り返し、 オリゴリボヌクレオチド鎖 を固相担体上で延長した。
目的とする鎖長のオリゴリボヌクレオチド誘導体が固相担体上に合成できた ら、 固相担体を 25%アンモニア水:エタノール (3:1, v/v) で 60 ° Cで 15時 間反応させて, 塩基部及びリン酸部位の保護基を除去した。 このとき, 3' 末 端の水酸基の保護基と固相担体からのオリゴマーの切り出しも同時に進行した。 固相担体を濾過して除き、 濾液を減圧下濃縮乾燥後、 Et3N ' 3HF (100当量) を加え、 室温で 2時間反応させて 2' 水酸基の保護基である TBDMS基を除去し た。 反応終了後、 減圧下 Et3M ' 3HF を留去して乾燥後、 水 (1ml) に溶解して. エーテル (1 mi x 3回) で洗浄した。 水層を減圧下で濃縮乾燥した後に、 水
( 1ml) に溶解し、 逆相 HPLGによって精製して、 収率 20— 70%の範囲で目的 物を得た。
Figure imgf000029_0001
実施例 3
〔スキーム 1 :キラル不斉補助基としての 1,2—ァミノアルコールの合成〕
Figure imgf000029_0002
Figure imgf000030_0001
3a (R = Ph) 88% 4a (R = Ph) 60% 3b (R = Me) 98% 4b (R = Me) 88%
(S) -プロリン- N-ェチルカルバメート(1)の合成
10規定の NaOH水溶液 (50 ml)に S- proline (5.75 g, 49.9 画 ol)を加え、 0 °Cに冷却し、 攪拌しつつ 40分間かけて chloroformic acid ethyl esther (5.75 ml, 60.4 剛 o I)を、 pH 9 - 10に保ちつつ、 滴下した。 室温で 3.5時間攪 拌した後、 ジクロロメタン (30 ml)を加え、 1規定の HGI水溶液 (360 ml)を加 えて pH 1にしたのち、 ジクロロメタン (300 ml X 10)で抽出し、 無水硫酸ナト リウ厶で乾燥し、 濾過レ、 減圧下濃縮して 1 (9.19 g, 98%)を得た。 無色透明 液体。
1H NMR (CDGIg) δ 10.85 - 10.42 (br, 1H), 4.41 - 4.30 (m, 1H), 4.22 - 4.15 (m, 2H), 3.60 - 3.37 (in, 2Η), 2.32一 2.20 (m, 1H), 2.17 - 2.05 (m, 1H), 1.98 - 1.90 (m, 2H), 1.31- 1.19 (m, 3H); IR (NaCI, cm-1) 3459 (一 C00H) , 1724 (-C00H) , 1682 (N- C=0)。
(S) -プロリン- N -ェチルカルバメ一トメチルエステル(2)の合成
Ar雰囲気下、 S-prol ine-N-ethyl carbamate 1 (9.19 g, 49.1 瞻 I)にメタ ノール (150 ml)を加え、 0 °Cに冷却し、 攪拌しつつ thionyl chloride (5.40 ml, 74.3 raiol)を加えた。 室温で 5時間攪拌したのち、 減圧下、 メタノールを 留去し、 飽和炭酸水素ナトリウム水溶液(100 ml)を加え、 クロ口ホルム(100 ml x3)で抽出し、 無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮して 2 (9.80 g, 99%)を得た。 無色透明液体。
1H NMR (CDC 13) δ 4.29 - 4.20 (m, 1H), 4.08 - 3,98 (m, 2H), 3.65 (s, 3H), 3.56 - 3.35 (m, 2H) , 2.21 - 2.09 (m, 1H), 1.94 - 1.82 (m, 3H), 1.21 - 1.10 (m, 3H); IR (NaCI, cm"1) 1751 (COOMe), 1702 (N-C=0) 0
N-ェチルカルバメート-(2S)- , a-ジフエニル (ピロリジン- 2-ィル) メタ ノール(3a)の合成
(S) - Pro l ine - N - ethyl carbamate methyl esther 2 (5.03 g, 25.0 瞻1)を トルエンで繰り返し共沸を行い、 THF (50 ml)に溶かし、 0 °Cに冷却した。 攪 拌しつつ、 THF (96.2 ml)に溶かした PhMgBr (18.0 ml, 100.0 議 ol)を加え、 0 °Cで 3時間攪拌した。 飽和塩化アンモニゥム水溶液 (50 ml), 飽和塩化ナト リウム水溶液(50 ml)を加え、 クロ口ホルム(50 mi x 3)で抽出し、 無水硫酸ナ トリウムで乾燥し、 濾過し、 減圧下濃縮したのち、 へキサン 30 ml を加え、 激 しく攪拌し、 吸引濾過し、 真空乾燥して 3a (7.22 g, 88%)を得た。 無色非晶質。 ^ NMR (CDCI3) δ 7.40 - 7.12 (m, 10H), 4.94 — 4.87 (m, 1H), 4.19 - 3.98 (m, 2H), 3.45 - 3.35 (m, 2H), 2.17 - 2.02 (m, 1H), 1.99 - 1.88 (m, 1H), 1.55 - 1.42 (m, 1H), 1.25一 1.22 (t, J = 7.2 Hz, 3H); IR (NaCI, cm"1) 3375 (-OH), 1680 (N-G=0)。
N -ェチルカルバメート-(2S)- -メチル (ピロリジン - 2 -ィル) エタノール (3b) の合成
Ar雰囲気下、 マグネシウム(4.80 g, 197.3 mmol)にエーテル (100 ml)を加 え、 0 °Cに冷却し、 攪拌しつつ、 methyl iodide (12.5 ml, 200.7 園 ol)を溶 かしたエーテル (50 ml)を加えた。 室温で 45 分攪拌したのち、 0 °Cに冷却し、 攪拌しつつ、 (S)-Prol ine- N-ethyl carbamate methyl esther 2 (9.80 g, ' 48.7 mmol)を溶かしたエーテル (50 ml)を加えた。 0 °Cで 1.5時間攪拌したの ち、 飽和塩化アンモニゥム水溶液 (75 ml), 飽和塩化ナトリウム水溶液 (75 ml) を加え、 ジクロロメタン(150 ml x3)で抽出し、 無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮して 3b (9.60 g, 98%)を得た。 黄色透明液体。
1H NMR (CDCI3) δ 5.72 - 5.66 (br, 1H), 4.09 (q, J = 6.9 Hz, 2H), 3.84 (t, J = 7.5 Hz, 1H), 3.72一 3.62 (m, 1H), 3.20 - 3.11 (m, 1H), 2.03 - 1.94 (m, 1H), 1.84 - 1.76 (m, 1H), 1.69 - 1.51 (m, 2H), 1.24 - 1.20 (t, J = 6.9 Hz, 3H), 1.11 (s, 3H), 1.03 (s, 3H); IR (NaCI, cm"1) 3391 (- OH), 1670 (N - G=0)。
(2S)- of, ひ-ジフエニル (ピロリジン- 2 -ィル) メタノール (4a) の合成 N - ethyl carbamate- (2S)- a, a -di phenyl (pyrrol i d i η-2-y I ) methano I 3a (6.51 g, 20.0 raiol)にメタノール (40 ml)を加え、 攪拌しつつ、 水酸化カリ ゥム (11.2 g, 200.0 画 ol)を加えた。 昇温し、 攪拌しつつ 4時間加熱還流し たのち、 減圧下、 メタノールを留去し、 水 50 ml を加え、 ジクロロメタン (50 ml 2)で抽出し、 飽和食塩水 (100ml X 2)で洗浄し、 無水硫酸ナトリウムで 乾燥し、 濾過し、 減圧下濃縮した。 得られた結晶にへキサン (50 ml)を加え、 激しく攪拌したのち、 吸引濾過を行い、 白色粉末を得た。 得られた白色粉末を、 1H N R (GDGI3)で測定したところ、 ケミカルシフトが文献記載のものと異なる こと、 13C剛 R (CDGI3)で測定したところ、 炭素数が 14であること、 さらに得ら れた白色粉末 (5 mg)をマンデル酸 (3 mg)との塩を形成させ、 1H NMR (CDGI3) で測定したところ、 シグナルがシフトしなかったことから、 得られた白色粉末 !ま目的物 4aではなく、 ォキサゾリジノン環を形成していると判断した。 そこ で、 全て回収し、 同様の条件で 6時間反応をおこなった。 精製も同様に行い、 4a (2.99 g, 60%)を得た。 無色非晶質。
1H NMR (CDCI3) δ 7.57 - 7.11 (m, 10H), 4.26 — 4.21 (m, 1H), 3.06 - 2,89 (m, 2H), 1.78 - 1.52 (m, 4H); IR (KBr, cm -1) 3350 (- OH, NH)。
(2S)—ひ-メチル (ピロリジン- 2 -ィル) エタノール (4b) の合成
N-ethy I carbamate- (2S)- a? -methyl (pyrrol i d i η-2-y I ) ethano I 3b (9.60 g, 48.7 mmol)にメタノール (50 ml)を加え、 0 °Cに冷却し、 攪拌しつつ、 水酸化 カリウム (27.0 g, 481.1 mmol)を加えた。 昇温し、 攪拌しつつ 4時間加熱還 流したのち、 減圧下、 メタノールを留去し、 水 50 ml を加え、 pHlになるまで 濃塩酸を加え、 エーテル (100 ml x2)で洗浄し、 生じた沈殿物もともに水相を 回収した。 pH 12になるまで水酸化カリウムを加え、 沈殿物を吸引濾過により 取リ除いたのち、 ジクロロメタン(200 ml X 6)で抽出し、 無水硫酸ナトリゥム で乾燥し、 濾過し、 減圧下濃縮して 4b (5.54 g, 88%)を得た。 黄色針状結晶。 1H 剛 R (CDCI3) δ 3.03 - 2.87 (m, 3H), 2.66 - 2.48 (br, 2H), 1.80 - 1.58 (in, 4Η), 1.16 (s, 3H), 1.13 (s, 3H); IR (KBr, cm—1) 3376 (-0H, NH) 0 〔スキーム 2 :ホスフイチル化剤の合成〕
Figure imgf000033_0001
5a (
5b (
(4S) -2-クロロテトラヒドロ- 1H, 3H -ピロ口 [1 , 2 - G]- 5, 5 -ジフェ二ルー 1 , 3, 2- ォキサァザホスホリジン (5a) の合成
(2S) - , - di phenyl (pyrrol id in - 2 - yl) methanol 4a (1.27 g, 5 mmol) ¾: 卜 ルェンを用いて共沸乾燥し、 トルエン 2.5 ml に溶かした。 溶液に N- methylmorphol ine (1.1 ml, 10.0 画 ol)を加え、 この混合溶液を Ar 雰囲気下、 phosphorus trichloride (0.44 ml, 5.0 mmol)のトルエン溶液に対し、 攪拌し つつ 0 °Cで滴下した。 反応混合物を室温で 30分攪袢したのち、 生じた塩を Ar 雰囲気下、 - 78°Cで濾別し、 Ar雰囲気下、 濾液を減圧濃縮し、 5a (1.79 g, crude)を得た。
1H NMR (CDGI3) δ 7.57 - 7.01 (m, 10H), 4.68 — 4.51 (m, 1H), 3.44 -
3.35 (m, 1H), 3.17一 3,07 (m, 1H), 2.06一 1.89 (m, 2H), 1.67一 1.24 (m,
2H) ; 31P NMR (121 MHz, CDCI3) δ 158.2 · (71%) , 173.6 (29%) 0
(4S)-2 -クロロテトラヒドロ- 1H, 3H -ピロ口 [1, 2-c] - 5, 5-ジメチルー 1, 3, 2-2- ォキサァザホスホリジン (5b) の合成
(2S)-oi -methyl (pyrrol idin-2-yl)ethanol 4b (1.95 g, 15.1 mmol)をトル ェンを用いて共沸乾燥し、 トルエン 5.0 ml に溶かした。 溶液に N - methylmorphol ine (3.3 ml, 29.8 mmol)を加え、 この混合溶液を Ar 雰囲気下、 phosphorus trichloride (1.4 ml, 16.0 mmol)のトルエン溶液に対し、 攪拌し つつ 0 °Cで滴下した。 反応混合物を室温で 30分攪拌したのち、 生じた塩を Ar 雰囲気下、 - 78°Cで濾別し、 Ar雰囲気下、 濾液を減圧濃縮した。 減圧蒸留 (bp. 55 。C/ 0.2 mmHg)により精製を試みたが単離にはいたらず、 5b (0.85 g, crude)を得た。 無色透明液体。 ·
1H NMR (CDCIg) δ 3.70 - 3.61 (m, 1H), 3.53 - 3.40 (m, 1H), 3.19 - 3.05 (m, 1H), 2.21 - 2.04 (m, 2H), 1.84 - 1.71 (m, 2H), 1.53 (s, 3H), 1.37 (s, 3H); 31P NMR (121 MHz, CDGI3) δ 171.0 (35%) , 164.5 (26%), 161.6 (39%)。
〔スキーム 3 :ォキサァザホスホリジン誘導体の合成〕
Figure imgf000034_0001
表 2 dr
5 temp., time 収率
(Sp)-7: (flP)-7*
7a (R = Ph) 3.3 equiv reflux 15 h >99: 1 70%
7b (R = Wle) 2.4 equiv Π2 h 98: 2 36%
*31P MRにより測定
5' - 0- (tert -プチルジフエニルシリル)- 3' - 0- [(2S, 5R)- 5, 5-ジフエ二ル-テ トラヒドロ- 1H, 3H-ピロ口 [1,2-c]-1,3, 2- 2-才キサァザホスホリジン- 2 -ィル] チミジン (7a) の合成
5' -0- (tert-Buty I d i pheny I s i I y I ) thym i d i ne 6 (722.3 mg, 1.5 mmol)をピ リジン、 トルエンと繰り返し共沸することによって乾燥し、 THF溶液とした。 これに Et3N (1, 1 ml, 7.9 mmol)を加え、 - 78°Cに冷却したのち、 Ar雰囲気下 (4S) - 2 - ch I orotetrahydro-1 H, 3H-Pyr ro [1 , 2 - c] - 5, 5-d i pheny 1-1 , 3, 2- oxazaphosphol idine 5aの 0.22 THF溶液 22.5 ml (5.0 mmol)を滴下した。 反応混合物を室温で 3時間攪拌したところ、 反応が完了していなかったので、 終夜で加熱還流を行った。 反応混合物に飽和炭酸水素ナトリウム水溶液 (75 ml)及びクロ口ホルム (75 ml)を加えた。 有機相を分離後、 飽和炭酸水素ナト リウム水溶液で洗浄(75 ml x2)し、 集めた洗液をクロ口ホルム(75 ml x 2)で 抽出した。 集めた有機相を無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮 した。 残渣を酢酸ェチルに溶かし、 へキサンに滴下して目的化合物を再沈殿さ せた。 吸引濾過で固体を回収し、 へキサンで洗浄して 7a (801.6 mg, crude)を 得た。 無色非晶質。
1H R (CDGI3) δ 7.65 - 7.12 (m, 11H), 6.13 (dd, 3JHH = 7.8, 7.8 Hz, 1H), 4.65一 4.57 (m, 1H), 4.55 ― 4.49 (m, 1H), 3.79 (dd, 2JHH = 11.3 Hz, 3JHH = 2.4 Hz, 1H), 3.84 (dd, 2JHH = 11.7 Hz, 3JHH = 2.4 Hz, 1H), 3.57 一 3.48 (m, 1H), 3.45 ― 3.44 (m, 1H), 3.17 一 3.07 (m, 1H), 2.33 - 2.25 (m 1H), 1.92 - 1.82 (m, 1H), 1.81 - 1.50 (m, 4H), 1.49 (s, 3H), 1.06 (s, 9H); IR (KBr, cm"1) 3423, 2930, 1688, 1466, 1448, 1278, 1113, 1066, 958,
5' - 0-(tert -プチルジフエニルシリル) - 3' - 0 - [(2S, 5R)-5, 5-ジメチル-テ卜 ラヒドロ- 1H,3H-ピロ口 [1,2- G] - 1,3, 2 - 2 -ォキサァザホスホリジン - 2 -ィル]チ ミジン (7b) の合成
5' -0- (tert-Buty I d i pheny I s i I y I ) thym i d i ne 6 (1.31 , 2.72 mmol)をピリ ジン、 トルエンと繰り返し共沸することによって乾燥し、 THF溶液 (7.50 ml) とした。 これに Et3N (1.9 ml, 13.6圆 ol)を加え、 - 78°Cに冷却したのち、 Ar 雰囲気下(4S)- 2- chloro tetrahydro - 1H, 3H-Pyrro[1, 2-c]-5, 5-d i methyl - 1,3, 2-oxazaphosphol idine 5bの 0.38 M THF溶液 (10.0 ml, 3.81 mmol)を滴 下した。 反応混合物を室温で 30分攪拌したのち、 飽和炭酸水素ナトリウム水 溶液 (100 ml)及びクロ口ホルム (100 ml)を加えた。 有機相を分離後、 飽和炭 酸水素ナトリウム水溶液で洗浄(100 ml X 2)し、 集めた洗液をクロ口ホルム (200 mlxl)で抽出した。 集めた有機相を無水硫酸ナトリウムで乾燥し、 濾過 し、 減圧下濃縮した。 残渣をシリカゲルカラムクロマトグラフィ [4x16 cm, 100 g of silica gel , hexan-ethy I acetate - tri ethyl amine (50:50:5,
v/v/v) → hexan-ethy I acetate- tr i ethyl amine (50:50:2, v/v/v)]で分離精 製した。 7bを含むフラクションを集め、 飽和炭酸水素ナトリウム水溶液 (100 ml x 1)で洗浄後、 無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮して 7b (614.8 mg, 36%)を得た。 蕪色非晶質。
1H MR (CDCI3) δ 9.83— 9.63 (br, 1Η), フ.68— 7, 34 (m, 11H), 6.42 (dd, 3JHH = 8.1, 8.1 Hz, 1H), 4.90 - 4.85 (m, 1H), 4.09 - 4.08 (m, 1H), 3.99 (dd, 2JHH = 11.7 Hz, 3JHH = 2.1 Hz, 1H), 3.84 (dd, 2JHH = 11.1 Hz, 3JHH = 2.1 Hz, 1H), 3.53一 3.47 (m, 2H), 3.09一 2.09 (m, 1H), 2.53一 2,46 (m, 1H), .2.24一 2.15 (m, 1H), 1.85一 1.65 (m, 4H), 1.58 (s, 3H), 1.47 (s, 3H), 1.20 (s, 3H), 1.11 (s, 9H) ; 31P NMR (121 MHz, CDCI3) δ 152.2 (98%) , 142.9 (2D; IR (KBr, cm—1) 3423, 2963, 1689, 1467, 1428, 1273, 1113, 1074, 956。 '
〔スキーム 4 : 7と 9の縮合〕
Figure imgf000036_0001
表 3 dr dr
e
(Sp)-7: tim
(Rp)-7* (Rp)-10: (Sp)-10:
7a (R= Ph) > 99 : 1 20 min 87: 13
7b {R = Me) 98 :2 < 5 min 97 :3
99: 1 < 5 min 98 :2
*31P Rにより測定。
31P NMR分光分析法による 8の存在下における 7と 9の縮合のモニタリング。 8の存在下における 7a - bと 9の縮合の代表的モニタリング
刚 Rサンプルチューブ中、 7a (41.9 mg, 55 mol)と 9 (17.8 mg, 50 03812
mol)を P205上で 12時間真空乾燥し、 MS 3Aで 8時間乾燥した 8 (ΑΟΟμ I, 100 mo I)の 0.25 Μァセトニトリル溶液と GD3GN (100 i I)を Ar雰囲気下加え た。 その 3分後、 關 Rによる積算を開始し、 反応のジァステレオマー比を NMR シグナルの積分比によって決定した。
NMRサンプルチューブ中、 7b (35.1 mg, 55 jumol)と 9 (17.8 mg, 50 〃mol)を P205上で 12時間真空乾燥し、 MS 3Aで 8時間乾燥した 8 (400 i l, 1O0〃mol)の 0.25 Mァセトニトリル溶液と CD3CN (100jw I)を Ar雰囲気下加え た。
スキーム 5
Figure imgf000037_0001
(flp): (Sp) = 97:3
5' - 0-(tert-ブチルジフエニルシリル)チミジン -3' -yl 3' - 0- (tert -プチ ルジメチルシリル)チミジン - 5' -ィル M -ァセチル -(2S)-び-メチル(ピロリジ ン- 2-ィル)エタノィル フォスファイト (12b) の合成
NMRサンプルチューブ中、 7b (35.1 mg, 55〃mol)と 9 (17.8 mg, 50 /mol) を P205上で 12時間真空乾燥し、 MS 3Aで 8時間乾燥した 8 (400〃 I,
100 imol)の 0.25 Mァセ卜二トリル溶液と GD3GM (100 I)を Ar雰囲気下加え た。 5分後、 ピリジン (40.1 1 , 500〃mol)と無水酢酸 (9.5 I, 100 ol)を 加えた。 3分後、 クロ口ホルム (30 ml)を加え、 飽和炭酸水素ナトリウム水溶 液 (15 ml x2)で洗浄し、 集めた洗液をクロ口ホルム (30 ml x1)で抽出した。 集めた有機相を無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮し、 トルェ ンと共沸することで 12b (86.9 mg, crude)を得た。
]W NMR (CDC 13) δ 9.73 (br, 2H), 7.63 - 7.61 (m, 4H), 7.46 ― 7.36 (m, 7H), 6,39 (dd, 3JHH = 6.6, 3 Hz, 1H), 6.23 (t, 6.0 Hz) , 4.89 (m, 1H), 4.30 (m, 2H), 4.08一 3.80 (m, 6H), 3.58一 3.38 (m, 2H), 2.45 (m, 1H), 2.34 - 2.23 (m, 3H) , 2.23 - 1.98 (m, 4H), 1.89 (s, 3H), 1.60 (s, 3H) , 1.46 (s, 3H), 1.41 (s, 3H), 1.10 (s, 9H), 0.87 (s, 9H), 0.05 (6H); 31P NMR (121 MHz, CDCI3) δ 137.2 (79%) , 137.0 (7%) , 136.7 (8%) , 135.7 (1%), 135.2 (5%); IR (KBr, cm—1) 3430, 2930, 1742, 1694, 1471, 1274, 1112,. 1034, 966, 835。
(Rp) - 5' —0 -(tert-ブチルジフエニルシリル)チミジン- 3' -ィル 3' - 0 - (tert-プチルジメチルシリル) チミジン- 5' -yl H-ホスフォネート [(Rp)- 11] の合成
フォーム状にして 5時間真空乾燥させた 12b (86.9 mg, crude)に、 At'雰囲 気下、 蒸留した TFA (2 ml)を溶かした CH2GI2 (20 ml)を加えた。 0 °Cで 2分攪 拌したのち、 ジクロロメタン (100 ml)を加え、 飽和炭酸水素ナトリウム水溶 液 (50 ml X 2)で洗浄し、 集めた洗液をジクロロメタン (100 ml 1)で抽 出した。 集めた有機相を無水硫酸ナトリウムで乾燥し、 濾過し、 減圧下濃縮し た。 残渣をシリカゲルカラムクロマトグラフィ [4x16 cm, 100 g of si I ica gel , hexan - ethyl acetate (1:1, v/v) → hexan-ethy I acetate (1:2, v/v) -→ hexan-ethy I acetate (1:3, v/v) → hexan-ethy I acetate (1:4, v/v)] で分離精製した。 (Rp) - 11を含むフラクションを集め、 減圧下濃縮し、 クロ口 ホルム (50 ml)を加え、 飽和炭酸水素ナトリウム水溶液 (50 mlxl)で洗浄後、 洗液をクロ口ホルム (50 ml XI)で抽出し、 集めた有機相を無水硫酸ナ卜リウ ムで乾燥し、 濾過し、 減圧下濃縮して 11b (43.4 mg, 84% (purity 93%))を得 た。 無色非晶質。
】H NMR (CDGI3) «59.45 - 9.33 (br, 2H), 7.64― 7.60 (m, 4H), 7.47― 7.37 (m, 8H), 6.90 (d, JPH = 715.0 Hz, 1H) 6.39 (dd, 3JHH = 6.0, 6.0 Hz, 1H), 6.14 (t, 3JHH = 7.2 Hz, 1H), 5.23— 5,22 (m, 1H), 4.46— 4.40 (m, 1H), 4.35 - 4.19 (m, 2H), 4.18 (s, 1H), 3.99一 3.78 (m, 3H), 2.65― 2.55 (m 1H), 2.33— 2.28 (m, 3H), 1.91 (s, 3H), 1.57 (s, 3H), 1.06 (s, 9H), 0.89 (s, 9H), 0.10 (s, 6H); 31P NMR (121 MHz, GDCI3) δ 9.3 (3% for (Sp)-11), 7.8 (97% for (Rp)- 11); IR (KBr, cm—1) 3448, 2930, 1695, 1471, 1276, 1114, 1035, 971, 837。
〔スキーム 6〕
Figure imgf000039_0001
表 4 (Sp)-13: (flp)-13 (Sp)-18: (fip)-18 18の収率
98.1: 1.9 98.6: 1.4
1.9: 98.1 1.9: 98.1 手動固相合成の代表的手順
(1) 3% DCA in CH2CI2; 15-20 sx4
(2)洗浄 (GH2CI2 fol lowed by CH3CN)
(3)カップリング (0.2 Mモノマー 13 and 1.0 M 8 in CH3CN; 3 min)
(4)保護 020-1^-11161 1 !1^0|3∑0|6-丁 (1 : 2 : 7, v/v/v); 30 s]
(5) 1% TFA in CH2CI2; 15-20 sx4
(6)硫化 [10% S8 in CS2-Py-Et3N (35 : 35 : 1, v/v/v); 3 h]
(7)洗浄 [GS2 - Py- Et3N (35 : 35 : 1, v/v/v) fol lowed by Py]
(8) 25% NH3 aq. (5.0 ml; 1h)
(9)吸引濾過, 洗浄 (H20; 1.0 ml x 5)
(10)溶媒の減圧留去
(11)希釈 (H20; 5.0 ml)
(12)洗浄(Et20; 5.0 ml x 3)
(13)溶媒の減圧留去
(14)凍結乾燥
集めた残渣を水 (0.2 ml)に溶かして逆相 HPLCにより分析した。
〔スキーム 7〕
Figure imgf000040_0001
Figure imgf000041_0001
表 5
(Sp)-13: (flp)-13 (Sp)-19: (fip)-19 19の収率
98.1: 1.9 96.5: 3.5 97,5 1.9: 98.1 4.2: 95.8 97.6 手動固相合成の代表的手順
(1) 1% TFA in CH2CI2; 15-20 sx4
(2)洗浄(CH2CI2 fol lowed by CH3CN)
(3)カップリング (0.2 モノマ一 13 and 1.0 M 8 in CH3CN; 3 min)
(4)保護 [Ac20-N- methyl imidazole - THF (1 : 2 : 7, v/v/v); 30 s]
(5) 1% TFA in CH2GI2; 15-20 sx4
(6)酸化的ァミノ化 (飽和 NH3 in CG 14 - dioxane (4 : 1, v/v); 0°C, 30 min)
(7)吸引濾過,洗浄 (dioxane ;1.0 mi x 2)
(8)溶媒の減圧留去
(9)希釈 (H20; 5.0 ml)
(10)溶媒の減圧留去
(11)凍結乾燥
集めた残渣を水 (0.2 ml)に溶かして逆相 HPLGにより分析した。

Claims

請求の範囲
又 ^
( / \
Figure imgf000042_0001
[式中、 R1及び R' は、 同一又は異なっていてもよい、 水素原子、 炭素数 1 〜 3のアルキル基又は炭素数 6〜 1 4のァリール基を示し、
R2及び R" は、 同一又は Mなっていてもよい、 水素原子、 炭素数 1〜3の アルキル基又は炭素数 6〜 1 4のァリール基を示し、
R3は炭素数 1〜3のアルキル基を示し、
R4は水酸基の保護基、 D,は一 OR5 (ここで R5は水酸基の保護基) 、 水酸 基又は水素原子を示し、 .
B sは、 次式
Figure imgf000042_0002
で表されるゥラシル、 アデニン、 シ卜シン、 グァニン、 チミンあるいはそれら の誘導体から誘導される基を示す。 但し、 R2及び R3は、 窒素原子と共にモノ シクロ構造又はビシクロ構造を形成していてもよい。 ]
で表される光学活性なヌクレオシド 3' —ホスホロアミダイ トと、 一般式
(II)
Figure imgf000043_0001
[式中、 R6は水酸基の保護基及び E,は一 OR7 (ここで R5は水酸基の保護 基) 、 水酸基又は水素原子、 B sは前記と同じ意味を示す。 ]
で表されるヌクレオシドとを、
—般式 (III)
Figure imgf000043_0002
[式中、 X-は B F4—、 P F6—、 T f CT (T f は C F3S 02—を示す。 以下同じ) 、 T f 2Ν―、 A s F6—又は S b F6—を示す。 また、 環状構造 Aは窒素原子と共に形 成する炭素数 3〜 1 6のモノシクロ又はビシクロ構造を示す。 ]
で表される活性化剤を用いて縮合した後、 求電子試薬との反応及び脱保護を行 うことを特徴とする、 式 (IV) 又は (V) で表される立体規則性の高いリポヌ クレオチド類縁体及びデォキシリポヌクレ才チド類縁体の製造法。
Figure imgf000043_0003
Figure imgf000044_0001
[各式中、 Yは炭素数 1〜 1 0の直鎖又は分岐鎖のアルキル基、 炭素数 1〜1 0の直鎖又は分岐鎖のアルコキシ基、 炭素数 1〜 1 0の直鎖又は分岐鎖のヒド ロキシアルキル基、 炭素数 6〜 1 4のァリール基、 炭素数 1〜1 0のアルキル チ才基、 炭素数 1〜 1 0のァシル基、 アミノ基、 炭素数 1〜 1 0のアルキルァ ミノ碁、 炭素数 1 ~1 0のジアルキルアミノ基、 又は Υ=Υ' Ζ+を示す (Υ' は S―、 S e―、 BH3—を、 Z+はアンモニゥムイオン、 第 1級〜第 4級の低級アルキ ルアンモニゥムイオン又は 1価の金属イオンを示す) 。 B sは、 前記と同じ意 味を示し、 各式中の 2個の B sは、 同一でも異なっていてもよい。 D2及び E2 は水酸基又は水素原子を示す。 ]
2. —般式 (I) で表される光学活性なヌクレオシド 3' —ホスホロアミ ダイトが、 一般式 (VI) で表される光学活性な 1, 2—ァミノアルコールと三 塩化リンを反応させて得られる一般式 (VII) で表される光学活性なホスフィ チル化剤と、 一般式 (VIII) で表されるヌクレオシドを反応させて得られるも のである請求項 1記載の製造法。
Figure imgf000044_0002
Figure imgf000045_0001
〔式中、 R1、 R2、 R3、 R4、 D,及び B sは、 前記と同じ意味を示す。 〕
3. 一般式 ( I ) において、 R1と R' は、 同一又は異なっていてもよい 炭素数 1〜 3のアルキル基又は炭素数 6〜 1 4のァリール基である、 請求項 1 又は 2記載の製造法。
4. 請求項 1〜 3のいずれかに記載の製造法における反応を繰り返すこと を特徴とする、 一般式 (XII I) で表される立体規則性の高いオリゴリボヌクレ ォチド類縁体及びオリゴデォキシリポヌクレオチド類縁体の製造法。
Figure imgf000045_0002
[式中、 丫、 B、 02及び已2はー般式 (IV) 、 (V) と同じ意味を示し nは 1〜 1 50の整数を示す。 〕
PCT/JP2005/003812 2004-03-25 2005-02-28 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法 WO2005092909A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511417A JP4865544B2 (ja) 2004-03-25 2005-02-28 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004089152 2004-03-25
JP2004-089152 2004-03-25
JP2004-240753 2004-08-20
JP2004240753 2004-08-20

Publications (1)

Publication Number Publication Date
WO2005092909A1 true WO2005092909A1 (ja) 2005-10-06

Family

ID=35056137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003812 WO2005092909A1 (ja) 2004-03-25 2005-02-28 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法

Country Status (2)

Country Link
JP (1) JP4865544B2 (ja)
WO (1) WO2005092909A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034072A1 (ja) * 2009-09-16 2011-03-24 株式会社キラルジェン Rna及びその誘導体合成のための新規保護基
WO2011108682A1 (ja) * 2010-03-05 2011-09-09 国立大学法人 東京大学 リボヌクレオシドホスホロチオエートの製造方法
JP2012510460A (ja) * 2008-12-02 2012-05-10 株式会社キラルジェン リン原子修飾核酸の合成方法
WO2014012081A2 (en) 2012-07-13 2014-01-16 Ontorii, Inc. Chiral control
WO2014010250A1 (en) * 2012-07-13 2014-01-16 Chiralgen, Ltd. Asymmetric auxiliary group
WO2015107425A2 (en) 2014-01-16 2015-07-23 Wave Life Sciences Pte. Ltd. Chiral design
WO2017015575A1 (en) 2015-07-22 2017-01-26 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US9605019B2 (en) 2011-07-19 2017-03-28 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US9617547B2 (en) 2012-07-13 2017-04-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
WO2018177825A1 (en) * 2017-03-29 2018-10-04 Roche Innovation Center Copenhagen A/S Orthogonal protecting groups for the preparation of stereodefined phosphorothioate oligonucleotides
US10144933B2 (en) 2014-01-15 2018-12-04 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
CN109937206A (zh) * 2016-11-14 2019-06-25 学校法人东京理科大学 聚合性化合物、化合物、及硼烷磷酸酯低聚物的制造方法
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10724035B2 (en) 2016-05-04 2020-07-28 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
JP2020525442A (ja) * 2017-06-21 2020-08-27 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. 合成のための化合物、組成物、及び方法
US11013757B2 (en) 2016-06-03 2021-05-25 Wave Life Sciences Ltd. Oligonucleotides, compositions and methods thereof
WO2022163846A1 (ja) 2021-02-01 2022-08-04 第一三共株式会社 抗体-免疫賦活化剤コンジュゲートの新規製造方法
US11407775B2 (en) 2016-03-13 2022-08-09 Wave Life Sciences Ltd. Compositions and methods for phosphoramidite and oligonucleotide synthesis
US11597927B2 (en) 2017-06-02 2023-03-07 Wave Life Sciences Ltd. Oligonucleotide compositions and methods of use thereof
US11596646B2 (en) 2017-10-12 2023-03-07 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11603532B2 (en) 2017-06-02 2023-03-14 Wave Life Sciences Ltd. Oligonucleotide compositions and methods of use thereof
US11608355B2 (en) 2017-09-18 2023-03-21 Wave Life Sciences Ltd. Technologies for oligonucleotide preparation
US11739325B2 (en) 2017-08-08 2023-08-29 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11873316B2 (en) 2016-11-23 2024-01-16 Wave Life Sciences Ltd. Compositions and methods for phosphoramidite and oligonucleotide synthesis
WO2024024935A1 (ja) * 2022-07-29 2024-02-01 第一三共株式会社 抗腫瘍効果を有する抗体薬物複合体の新規製造方法
WO2025005147A1 (ja) * 2023-06-27 2025-01-02 学校法人東京理科大学 ヌクレオチドモノマー、及び核酸オリゴマーの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056749A1 (en) * 1999-03-24 2000-09-28 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services N-acylphosphoramidites and their use in oligonucleotide synthesis
JP2003238586A (ja) * 2002-02-12 2003-08-27 Daicel Chem Ind Ltd 立体規則性の高いジヌクレオシドホスホロチオエートの製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056749A1 (en) * 1999-03-24 2000-09-28 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services N-acylphosphoramidites and their use in oligonucleotide synthesis
JP2003238586A (ja) * 2002-02-12 2003-08-27 Daicel Chem Ind Ltd 立体規則性の高いジヌクレオシドホスホロチオエートの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OKA N. ET AL: "An Oxazaphospholidine Approach for the Stereocontrolled Synthesis of Oligonucleoside Phosphorothioates.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 125, no. 27, 2003, pages 8307 - 8317, XP002315448 *

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044842A (ja) * 2008-12-02 2015-03-12 株式会社Wave Life Sciences Japan リン原子修飾核酸の合成方法
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
JP2012510460A (ja) * 2008-12-02 2012-05-10 株式会社キラルジェン リン原子修飾核酸の合成方法
US9695211B2 (en) 2008-12-02 2017-07-04 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
US9394333B2 (en) 2008-12-02 2016-07-19 Wave Life Sciences Japan Method for the synthesis of phosphorus atom modified nucleic acids
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
JP2016164141A (ja) * 2009-09-16 2016-09-08 株式会社Wave Life Sciences Japan Rna及びその誘導体合成のための新規保護基
CN102574888A (zh) * 2009-09-16 2012-07-11 株式会社启拉坚 用于rna及其衍生物的合成的新型保护基
JP5878758B2 (ja) * 2009-09-16 2016-03-08 株式会社Wave Life Sciences Japan Rna及びその誘導体合成のための新規保護基
WO2011034072A1 (ja) * 2009-09-16 2011-03-24 株式会社キラルジェン Rna及びその誘導体合成のための新規保護基
US8470987B2 (en) 2009-09-16 2013-06-25 Chiralgen, Ltd. Protective group for synthesis of RNA and derivative
US8859755B2 (en) 2010-03-05 2014-10-14 Chiralgen, Ltd. Method for preparing ribonucleoside phosphorothioate
WO2011108682A1 (ja) * 2010-03-05 2011-09-09 国立大学法人 東京大学 リボヌクレオシドホスホロチオエートの製造方法
JP5847700B2 (ja) * 2010-03-05 2016-01-27 株式会社Wave Life Sciences Japan リボヌクレオシドホスホロチオエートの製造方法
JP2016074701A (ja) * 2010-03-05 2016-05-12 株式会社Wave Life Sciences Japan リボヌクレオシドホスホロチオエートの製造方法
CN102918052A (zh) * 2010-03-05 2013-02-06 国立大学法人东京大学 硫代磷酸核糖核苷的制造方法
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US9605019B2 (en) 2011-07-19 2017-03-28 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
JP7030749B2 (ja) 2012-07-13 2022-03-07 ウェイブ ライフ サイエンシズ リミテッド 不斉補助基
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
US9598458B2 (en) 2012-07-13 2017-03-21 Wave Life Sciences Japan, Inc. Asymmetric auxiliary group
AU2020213420B2 (en) * 2012-07-13 2022-12-22 Wave Life Sciences Ltd. Asymmetric auxiliary group
JP2018058845A (ja) * 2012-07-13 2018-04-12 株式会社Wave Life Sciences Japan 不斉補助基
KR101850319B1 (ko) * 2012-07-13 2018-04-20 웨이브 라이프 사이언시스 리미티드 비대칭 보조 그룹
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
JP7625544B2 (ja) 2012-07-13 2025-02-03 ウェイブ ライフ サイエンシズ リミテッド キラル制御
JP2022071016A (ja) * 2012-07-13 2022-05-13 ウェイブ ライフ サイエンシズ リミテッド 不斉補助基
JP2022050518A (ja) * 2012-07-13 2022-03-30 ウェイブ ライフ サイエンシズ リミテッド キラル制御
US9617547B2 (en) 2012-07-13 2017-04-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant
JP2020015735A (ja) * 2012-07-13 2020-01-30 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. 不斉補助基
WO2014012081A2 (en) 2012-07-13 2014-01-16 Ontorii, Inc. Chiral control
JP2015523316A (ja) * 2012-07-13 2015-08-13 株式会社Wave Life Sciences Japan 不斉補助基
EP4219516A2 (en) 2012-07-13 2023-08-02 Wave Life Sciences Ltd. Chiral control
AU2018202884B2 (en) * 2012-07-13 2020-05-14 Wave Life Sciences Ltd. Asymmetric auxiliary group
JP7390417B2 (ja) 2012-07-13 2023-12-01 ウェイブ ライフ サイエンシズ リミテッド 不斉補助基
CN104684893A (zh) * 2012-07-13 2015-06-03 日本微物生命科学公司 不对称辅助基团
US10590413B2 (en) 2012-07-13 2020-03-17 Wave Life Sciences Ltd. Chiral control
RU2693381C2 (ru) * 2012-07-13 2019-07-02 Уэйв Лайф Сайенсес Лтд. Асимметричная вспомогательная группа
WO2014010250A1 (en) * 2012-07-13 2014-01-16 Chiralgen, Ltd. Asymmetric auxiliary group
US10144933B2 (en) 2014-01-15 2018-12-04 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
WO2015107425A2 (en) 2014-01-16 2015-07-23 Wave Life Sciences Pte. Ltd. Chiral design
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
EP4137572A1 (en) 2014-01-16 2023-02-22 Wave Life Sciences Ltd. Chiral design
US10479995B2 (en) 2015-07-22 2019-11-19 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11634710B2 (en) 2015-07-22 2023-04-25 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
WO2017015575A1 (en) 2015-07-22 2017-01-26 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11407775B2 (en) 2016-03-13 2022-08-09 Wave Life Sciences Ltd. Compositions and methods for phosphoramidite and oligonucleotide synthesis
US10724035B2 (en) 2016-05-04 2020-07-28 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11013757B2 (en) 2016-06-03 2021-05-25 Wave Life Sciences Ltd. Oligonucleotides, compositions and methods thereof
CN109937206A (zh) * 2016-11-14 2019-06-25 学校法人东京理科大学 聚合性化合物、化合物、及硼烷磷酸酯低聚物的制造方法
CN109937206B (zh) * 2016-11-14 2022-04-01 学校法人东京理科大学 聚合性化合物、化合物、及硼烷磷酸酯低聚物的制造方法
US11873316B2 (en) 2016-11-23 2024-01-16 Wave Life Sciences Ltd. Compositions and methods for phosphoramidite and oligonucleotide synthesis
US11591362B2 (en) 2017-03-29 2023-02-28 Roche Innovation Center Copenhagen A/S Orthogonal protecting groups for the preparation of stereodefined phosphorothioate oligonucleotides
WO2018177825A1 (en) * 2017-03-29 2018-10-04 Roche Innovation Center Copenhagen A/S Orthogonal protecting groups for the preparation of stereodefined phosphorothioate oligonucleotides
CN110475784A (zh) * 2017-03-29 2019-11-19 罗氏创新中心哥本哈根有限公司 用于制备立体限定硫代磷酸酯寡核苷酸的正交保护基
US11597927B2 (en) 2017-06-02 2023-03-07 Wave Life Sciences Ltd. Oligonucleotide compositions and methods of use thereof
US11603532B2 (en) 2017-06-02 2023-03-14 Wave Life Sciences Ltd. Oligonucleotide compositions and methods of use thereof
JP2020525442A (ja) * 2017-06-21 2020-08-27 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. 合成のための化合物、組成物、及び方法
US11718638B2 (en) 2017-06-21 2023-08-08 Wave Life Sciences Ltd. Compounds, compositions and methods for synthesis
JP7402696B2 (ja) 2017-06-21 2023-12-21 ウェイブ ライフ サイエンシズ リミテッド 合成のための化合物、組成物、及び方法
US11739325B2 (en) 2017-08-08 2023-08-29 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US11608355B2 (en) 2017-09-18 2023-03-21 Wave Life Sciences Ltd. Technologies for oligonucleotide preparation
US11596646B2 (en) 2017-10-12 2023-03-07 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
KR20230142544A (ko) 2021-02-01 2023-10-11 다이이찌 산쿄 가부시키가이샤 항체-면역 부활화제 콘주게이트의 신규 제조 방법
WO2022163846A1 (ja) 2021-02-01 2022-08-04 第一三共株式会社 抗体-免疫賦活化剤コンジュゲートの新規製造方法
WO2024024935A1 (ja) * 2022-07-29 2024-02-01 第一三共株式会社 抗腫瘍効果を有する抗体薬物複合体の新規製造方法
WO2025005147A1 (ja) * 2023-06-27 2025-01-02 学校法人東京理科大学 ヌクレオチドモノマー、及び核酸オリゴマーの製造方法

Also Published As

Publication number Publication date
JP4865544B2 (ja) 2012-02-01
JPWO2005092909A1 (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2005092909A1 (ja) 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法
US10730904B2 (en) Method for liquid-phase synthesis of nucleic acid
JP3207915B2 (ja) オリゴヌクレオチドとオリゴヌクレオチド類似体の固相合成のための方法と化合物
JP6128529B2 (ja) 官能化核酸の合成のための方法
US5783690A (en) Protecting group for synthesizing oligonucleotide analogs
US5646267A (en) Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
JPH08508513A (ja) リン含有共有結合をつくる方法およびその中間体
US20100273999A1 (en) Preparation of Nucleotide Oligomer
PT98931B (pt) Processo para a ligacao de nucleosidos com uma ponte siloxano
JP2016074701A (ja) リボヌクレオシドホスホロチオエートの製造方法
JPH09511250A (ja) 核酸治療に有用な修飾オリゴヌクレオチド及び中間体
JP4348044B2 (ja) 立体規則性の高いジヌクレオシドホスホロチオエートの製造法
MXPA96004355A (en) Oligonucleotides and used modified intermediaries in nucleic acids therapeuti
WO2005014609A2 (en) Method of producing a highly stereoregular phosphorus atom-modified nucleotide analogue
CN110678447B (zh) 经修饰的核酸单体化合物及寡核酸类似物
JP2011088935A (ja) リン原子修飾ヌクレオチド類縁体の製造のための光学活性ヌクレオシド3’−ホスホロアミダイト
JPH10195098A (ja) 新規ヌクレオチド類縁体
JP2000506849A (ja) オリゴヌクレオチド類似体
JP2011184318A (ja) リボヌクレシドh−ボラノホスホネート
FI111265B (fi) Menetelmä lääkeaineina käyttökelpoisten modifioitujen oligodeoksiribonukleotidien valmistamiseksi ja niiden välituotteita
US20070004911A1 (en) Silylated oligonucleotide compounds
EP4450512A1 (en) Oligonucleotide production method
JPWO2019212063A1 (ja) 立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法
KR20240164804A (ko) 방법 및 화합물
WO2025005147A1 (ja) ヌクレオチドモノマー、及び核酸オリゴマーの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511417

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase