[go: up one dir, main page]

WO2005069356A1 - 単結晶薄膜の製造方法及びその単結晶薄膜デバイス - Google Patents

単結晶薄膜の製造方法及びその単結晶薄膜デバイス Download PDF

Info

Publication number
WO2005069356A1
WO2005069356A1 PCT/JP2004/019195 JP2004019195W WO2005069356A1 WO 2005069356 A1 WO2005069356 A1 WO 2005069356A1 JP 2004019195 W JP2004019195 W JP 2004019195W WO 2005069356 A1 WO2005069356 A1 WO 2005069356A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
crystal
crystal silicon
producing
solar cell
Prior art date
Application number
PCT/JP2004/019195
Other languages
English (en)
French (fr)
Inventor
Suguru Noda
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2005516983A priority Critical patent/JPWO2005069356A1/ja
Priority to US10/585,731 priority patent/US7887632B2/en
Priority to EP20040807552 priority patent/EP1708254A4/en
Publication of WO2005069356A1 publication Critical patent/WO2005069356A1/ja
Priority to US12/963,168 priority patent/US9130111B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1692Thin semiconductor films on metallic or insulating substrates the films including only Group IV materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a single-crystal thin film and a single-crystal thin-film device thereof, and more particularly to a method for manufacturing a single-crystal silicon thin film for a high-purity solar cell and a single-crystal silicon thin-film solar cell.
  • Hydrogen ions (H + and H ⁇ ) are implanted into a single-crystal silicon substrate, bonded to a supporting substrate, and then subjected to a heat treatment to destroy and strip off the layer into which the hydrogen ions have been implanted.
  • a crystalline silicon thin film can be formed on a supporting substrate.
  • the surface of the single crystal silicon substrate When the surface of the single crystal silicon substrate is anodized, pores can be formed at a high density. Oxidation treatment is applied to the surface of the pores, the oxide layer is removed near the outer surface with hydrofluoric acid, and only the portion is removed. When annealing is performed in a hydrogen atmosphere, the outermost surface returns to a single-crystal continuous film, and a structure including a large number of voids is formed thereunder. After this is attached to the support substrate, the single-crystal silicon thin film can be separated by chemically dissolving the layer containing the voids by the liquid phase method or mechanically breaking it by a water jet or the like. (See Patent Document 3 below).
  • the thickness of the upper silicon layer is only about 1 m, which contributes to the surface tension.
  • the single crystal silicon substrate is damaged during peeling due to mechanical destruction, and repeated use is limited.
  • a number of steps are required for the process, and the process is complicated.
  • a silicon dioxide film, a polycrystalline or amorphous silicon thin film, and a protective film made of silicon dioxide are laminated in this order, and scanning of a linear molten zone by lamp heating or the like is performed to obtain a surface.
  • a polycrystalline silicon thin film having a crystal grain size developed inward can be produced.
  • the protective film is removed with a chemical solution, the polycrystalline silicon thin film is thickened by a CVD method, and then the polycrystalline silicon thin film is etched with hydrofluoric acid to separate the polycrystalline silicon thin film (see the following patent). Reference 4).
  • the epitaxy lift-off (ELO) method uses a single-crystal substrate as a ⁇ type, epitaxically grows a sacrificial layer on it, and then epitaxically grows the target film on it, and removes the sacrificial layer. It is a method of obtaining a single crystal thin film of a material.
  • a layer having a different composition from pure silicon, specifically, metal silicide or heavily doped silicon is used as a sacrificial layer (intermediate layer) by epitaxy.
  • a single-crystal silicon thin film is formed by epitaxially growing silicon thereon, and the single-crystal silicon substrate and the single-crystal silicon thin film are separated by etching and removing the sacrificial layer. Proposed a method of manufacturing a single-crystal silicon thin film while repeatedly reusing a single-crystal silicon substrate.
  • Patent document 1 JP-A-2000-077352
  • Patent Document 2 JP-A-11 040785
  • Patent Document 3 Japanese Patent Application Laid-Open No. 05-275663
  • Patent Document 4 JP-A-07-226528
  • Patent Document 5 WO0240751
  • FIG. 1 is a cross-sectional view of a single-crystal silicon film manufacturing process by an ELO method using sacrificial layers having different elemental compositions (part 1).
  • a single crystal silicon substrate 1 is prepared.
  • an intermediate layer (sacrificial layer) is formed on the surface of the single crystal silicon substrate 1.
  • a metal silicide (MS: where M is a metal) film 2 is epitaxially grown.
  • a single-crystal silicon film 3 is epitaxially grown on the surface of the sacrificial layer 2.
  • the metal silicide film 2 is removed by etching.
  • FIG. 2 is a sectional view (part 2) of a process for manufacturing a single-crystal silicon film by the ELO method using sacrificial layers having different element compositions.
  • a heavily doped silicon film 12 is epitaxially grown on the surface of the single crystal silicon substrate 1 as an intermediate layer (sacrificial layer), or An intermediate layer (sacrifice layer) is formed by doping the surface of the crystalline silicon substrate 11.
  • a single-crystal silicon film 13 is epitaxially grown on the surface of the high-concentration doped silicon film 12.
  • the heavily doped silicon film 12 is removed by etching, and the single crystal silicon film 13 is separated.
  • the agent is an aqueous HF solution, and the selective etching of the metal silicide film 2 is easy.Since metal atoms are mixed into the single-crystal silicon film 3, the high-purity single-crystal silicon film cannot be manufactured. .
  • FIG. 3 is a diagram showing the effect of the concentration of various elements mixed in a single-crystal silicon thin film on the power generation efficiency of a solar cell, which is a conventional problem that is a strong problem.
  • FIG. Effect FIG. 3 (b) shows the effect on p-type silicon.
  • B According to the method for manufacturing a single crystal silicon film shown in FIG.
  • FIG. 4 is a schematic diagram for explaining the diffusion of the dopant during the epitaxial growth of the single-crystal silicon thin film on the high-concentration doped silicon sacrificial layer Z single-crystal silicon substrate structure, which is a conventional problem.
  • Fig. 4 (a) is an ideal diagram of the target film structure and dopant concentration distribution
  • Fig. 4 (b) is the actual film structure and dopant concentration distribution.Dipant diffusion occurs during epitaxial growth. It is a figure which shows a mode that a three-layer structure cannot be maintained.
  • the present invention is directed to a method for manufacturing a single-crystal thin film, which eliminates the above-mentioned problems, provides good lift-off of the single-crystal silicon film, and can obtain a high-purity single-crystal silicon film for solar cells. And a single crystal thin film device thereof.
  • the single crystal substrate is a single crystal silicon substrate
  • the sacrificial layer is a silicon sacrificial layer
  • the single crystal thin film is a single crystal silicon. It is characterized by being a thin film.
  • step (b) may be performed by
  • the method is characterized in that a silicon sacrificial layer containing crystal defects is epitaxially grown by performing physical vapor deposition or chemical vapor deposition at 00 ° C.
  • the crystal defects are twins, vacancies, interstitial atoms, edge transitions, and spiral transitions. It is characterized by the following.
  • the number density of the crystal defects may be smaller than that of the single crystal silicon substrate and the silicon sacrifice.
  • the number density of twins on the surface of the silicon sacrificial layer may be smaller than that of the silicon sacrificial layer and the single crystal silicon substrate.
  • the number density of twins at the interface of is less than 1/100 or less.
  • the step (c) may be performed at a substrate temperature of 1000 to 1400 ° C.
  • a single-crystal silicon thin film with few crystal defects is epitaxially grown by a physical vapor deposition method or a chemical vapor deposition method.
  • the single-crystal silicon thin film is supported on a support substrate following the step (c). After holding on the material, before The method is characterized in that the silicon sacrificial layer is etched to produce a single crystal silicon thin film.
  • holes may be formed at intervals in the single-crystal silicon substrate. It is characterized by.
  • the thickness of the silicon sacrificial layer may be 100 nm or less, The unevenness on the lower surface of the single-crystal silicon thin film is suppressed to 100 nm or less.
  • the thickness of the silicon sacrificial layer may be 100 nm or more, A texture structure of 100 nm or more is introduced into the lower surface of the single-crystal silicon thin film.
  • the etching of the silicon sacrificial layer may be performed using hydrofluoric acid and an oxidizing agent. It is characterized by performing with a mixed solution.
  • a single-crystal silicon substrate is prepared, (b) an epitaxy sacrificial layer is formed on the substrate, and (c) A single crystal silicon thin film is rapidly epitaxially grown on the sacrificial layer, and (d) the sacrificial layer is etched to produce a solar cell power generation layer single crystal silicon thin film.
  • the rapid epitaxial growth of the single-crystal silicon thin film is performed by a physical vapor deposition method. It is characterized by.
  • the number density of the crystal defects may be larger than that of the single-crystal silicon substrate and the silicon sacrificial layer. At the interface, it is 1 / m 2 -1 / nm 2 .
  • the sacrificial layer may be formed in the following step (b). It is characterized by eliminating crystal defects on the surface.
  • the dopant concentration in the highly doped single crystal silicon is 10 18 atoms Z cm 3 or more.
  • a silicon source and a dopant source are simultaneously formed on a single-crystal silicon substrate.
  • a high-doped single-crystal silicon sacrificial layer is formed.
  • the ratio of the silicon source to the dopant source is controlled with respect to time.
  • the former being a sacrificial layer and the latter being a single crystal of a solar cell power generation layer. It is characterized by being a silicon thin film.
  • the compound crystal containing silicon is a metal silicide such as CoSi, NiSi, CrSi.
  • the sacrificial layer is etched with an aqueous solution containing hydrofluoric acid to obtain a solar cell.
  • the pond power generation layer is characterized by producing a single-crystal silicon thin film.
  • the single crystal is formed in the following step (c). After holding the silicon thin film on the supporting substrate, the silicon sacrificial layer is etched to produce a single-crystal silicon thin film for a solar cell power generation layer.
  • a single-crystal silicon thin-film solar cell which is obtained by the method for manufacturing a single-crystal silicon thin film for a solar cell according to any one of [23] to [42]. Solar cells.
  • FIG. 1 is a cross-sectional view of a conventional single-crystal silicon film manufacturing process by an ELO method using sacrificial layers having different element compositions (part 1).
  • FIG. 2 is a cross-sectional view of a conventional single-crystal silicon film manufacturing process by an ELO method using sacrificial layers having different element compositions (part 2).
  • FIG. 3 is a view showing the influence of the concentration of various elements mixed in a single-crystal silicon thin film on the power generation efficiency of a solar cell, which is a conventional problem.
  • FIG. 4 is a schematic view for explaining the diffusion of a dopant during epitaxy growth of a single-crystal silicon thin film on a high-doped silicon sacrificial layer Z single-crystal silicon substrate structure, which is a conventional problem.
  • FIG. 5 is a cross-sectional view (No. 1) of a manufacturing process of a single crystal thin film showing an example of the present invention.
  • FIG. 6 is a sectional view (part 2) of a process for producing a single-crystal thin film showing an embodiment of the present invention.
  • FIG. 7 is a sectional view (part 3) of a process for producing a single-crystal thin film showing an embodiment of the present invention.
  • FIG. 8 is a sectional view (part 4) of a process for producing a single-crystal thin film showing an embodiment of the present invention.
  • FIG. 9 is a sectional view (part 5) of a process for producing a single-crystal thin film showing an embodiment of the present invention.
  • FIG. 10 is a process sectional view showing Example 1 of the present invention.
  • FIG. 11 is an electron micrograph of a cross section of a sample obtained by partially etching a sacrificial film showing Example 1 of the present invention.
  • FIG. 12 is a process sectional view showing Example 2 of the present invention.
  • FIG. 13 is a sectional view of the manufacturing process of the single-crystal thin film showing Example 3 of the present invention.
  • FIG. 14 is an optical micrograph of a plane of a perforated substrate showing Example 3 of the present invention.
  • FIG. 15 is a cross-sectional view showing a manufacturing step of a single-crystal thin film showing Example 4 of the present invention.
  • FIG. 16 is a cross-sectional view of a substrate in which a pyramid-shaped texture according to Example 4 of the present invention is introduced. 4 is an electron micrograph.
  • FIG. 17 is a diagram showing the relationship between temperature and film forming rate according to the present invention.
  • FIG. 18 is a view showing a ⁇ scan measurement result [in-plane X-ray diffraction (XRD) pattern] of (220) in-plane X-ray diffraction of a silicon thin film according to the present invention.
  • XRD in-plane X-ray diffraction
  • FIG. 19 is a cross-sectional photograph taken by a scanning electron microscope of a selectively etched single crystal silicon thin film Z high-concentration P-doped silicon sacrificial layer Z single crystal silicon substrate according to the present invention.
  • FIG. 20 is a schematic cross-sectional view of a manufacturing process of a single-crystal silicon thin film for a solar cell, showing an example of the present invention.
  • FIG. 21 is a schematic view of a high-throughput vapor deposition (doped layer formation) apparatus showing an embodiment of the present invention.
  • FIG. 22 is a manufacturing cross-sectional view of a solar cell power generation layer formed according to the flow of the high-throughput vapor deposition apparatus showing the embodiment of the present invention.
  • FIG. 23 is a schematic view of a high-throughput vapor deposition (defect layer formation) apparatus showing an embodiment of the present invention.
  • FIG. 5 is a sectional view (part 1) of a process for producing a single crystal thin film showing an embodiment of the present invention.
  • a single crystal substrate 21 is prepared.
  • a single-crystal sacrificial layer 22 made of the same material as that of the single-crystal substrate 21 and including crystal defects is formed by epitaxial growth.
  • a high-purity single-crystal thin film 23 of the same substance and having few crystal defects is formed by epitaxy on the single-crystal sacrificial layer 22.
  • the single-crystal sacrificial layer 22 is etched (dissolved) to obtain a high-purity single-crystal thin film 23 with few crystal defects.
  • the single crystal substrate 21 left in FIG. 5D can be reused.
  • FIG. 6 is a sectional view (part 2) of a process for producing a single crystal thin film showing an embodiment of the present invention.
  • a single crystal substrate 31 is prepared.
  • a single-crystal sacrificial layer 32 containing the same material as that of the single-crystal substrate 31 and containing crystal defects is formed by epitaxial growth.
  • the surface 33 To eliminate crystal defects.
  • a high-purity single crystal thin film 34 of the same substance and having few crystal defects is epitaxially grown on the surface 33 of the single crystal sacrificial layer 32 from which the crystal defects have been eliminated. And formed.
  • the single-crystal sacrificial layer 32 is etched (dissolved) to obtain a high-purity single-crystal thin film 34 with few crystal defects.
  • the single crystal substrate 31 left in Fig. 6 (e) can be reused.
  • FIG. 7 is a sectional view (part 3) of a process for producing a single crystal thin film showing an embodiment of the present invention.
  • a single crystal substrate 41 is prepared.
  • a single-crystal sacrificial layer 42 made of the same material as that of the single-crystal substrate 41 and containing crystal defects is formed by epitaxial growth.
  • a high-purity single-crystal thin film 43 having the same substance and having few crystal defects is formed by epitaxy on the single-crystal sacrificial layer 42.
  • a high-purity single-crystal thin film 43 having few crystal defects is held by a supporting base material. Therefore, as shown in FIG. 7E, the single crystal sacrificial layer 42 is etched (dissolved) to obtain a single crystal thin film 43 of high purity with few crystal defects supported by the support base material 44.
  • single crystal substrate 41 left in FIG. 7 (e) can be reused.
  • FIG. 8 is a sectional view (part 4) of a process for manufacturing a single crystal thin film showing an example of the present invention.
  • a single crystal substrate 51 is prepared.
  • a single-crystal sacrificial layer 52 containing the same material as that of the single-crystal substrate 51 and containing crystal defects is formed by epitaxial growth.
  • crystal defects on the surface 53 of the single-crystal sacrificial layer 52 are eliminated.
  • a high-purity single crystal thin film 54 of the same substance and few crystal defects is epitaxially grown on the surface 53 of the single crystal sacrificial layer 52 in which crystal defects have been eliminated. And formed.
  • a high-purity single-crystal thin film 54 having few crystal defects is held by a supporting substrate 55.
  • the single-crystal sacrificial layer 52 is etched (dissolved) to obtain a high-purity single-crystal thin film 54 with few crystal defects supported by the supporting substrate 55.
  • single crystal substrate 51 left in FIG. 8 (f) can be reused.
  • the single-crystal substrate is a single-crystal silicon substrate
  • the sacrificial layer is a silicon sacrificial layer
  • the single-crystal Thin film Is a single crystal silicon thin film.
  • the single crystal substrate is a single crystal GaAs substrate.
  • the single crystal substrate is an MgO substrate.
  • the step (b) is performed by a physical vapor deposition method or a chemical vapor deposition method at 400 to 1200 ° C.
  • a silicon sacrificial layer containing crystal defects is epitaxially grown.
  • the crystal defects are twins, vacancies, interstitial atoms, edge transitions, and spiral transitions. .
  • FIG. 9 is a sectional view (part 5) of a process for producing a single crystal thin film showing an embodiment of the present invention.
  • a single-crystal silicon thin film is obtained as the single-crystal thin film.
  • a single crystal silicon substrate 61 is prepared.
  • silicon is epitaxially grown to form a single crystal containing twins.
  • a crystalline silicon sacrificial film 62 is grown.
  • twins on the surface 63 of the single-crystal silicon sacrificial film 62 are eliminated by annealing in a reducing atmosphere.
  • the single-crystal silicon thin film 64 with few defects is deposited under the second film formation condition in which the residual gas pressure is lower and the temperature is higher than the first film formation condition. Growing it up in pitch. Therefore, as shown in FIG. 9E, the single crystal sacrificial layer 62 is etched (dissolved) to obtain a high-purity single crystal silicon thin film 64 having few crystal defects.
  • the single-crystal silicon thin film 64 is epitaxially grown, the upper single-crystal silicon film 64 is supported by a supporting substrate (not shown), and the single-crystal sacrificial layer 62 is etched (dissolved). Then, a high-purity single-crystal silicon film 64 with few crystal defects supported by the supporting base material is manufactured. [0096] Again, the single crystal substrate 61 left in Fig. 9 (e) can be reused.
  • step (b) In the method for producing a single crystal thin film according to the above (2) or (4), after the step (b), thermal annealing is performed at a temperature of 1000 to 1400 ° C. in a reducing atmosphere. And eliminating crystal defects on the surface of the silicon sacrificial layer.
  • the number density of twins on the surface of the silicon sacrificial layer may be smaller than that of the silicon sacrificial layer and the single crystal silicon substrate. Less than one hundredth of the twin density at the interface.
  • the step (c) may be performed at a substrate temperature.
  • a single-crystal silicon thin film with few crystal defects is epitaxially grown at 1000-1400 ° C by physical vapor deposition or chemical vapor deposition.
  • the thickness of the silicon sacrificial layer is set to 100 nm or less, whereby irregularities on the lower surface of the single-crystal silicon thin film are suppressed to 100 nm or less.
  • the etching (dissolution) of the silicon sacrificial layer is performed by mixing hydrofluoric acid and an oxidizing agent. Perform with solution.
  • a single-crystal thin-film device is obtained by the method for producing a single-crystal thin film according to any one of (1) to (20) above.
  • the single crystal thin film is a power generation layer for a solar battery.
  • the single crystal thin film is a single crystal thin film for SOI.
  • the single-crystal silicon thin film is formed at a temperature ⁇ (° C.) at a deposition rate GR ( ⁇ m / min).
  • GR deposition rate
  • the sacrificial layer is crystalline silicon containing crystal defects.
  • the crystal defects are twins, vacancies, interstitial atoms, edge transitions, and spiral transitions.
  • the sacrificial layer may be formed in the step following the step (b). Eliminates crystal defects on the surface.
  • the sacrificial layer of the crystal is single crystal silicon highly doped.
  • the dopant in the highly-doped single-crystal silicon is a group III to group V element.
  • the dopant concentration in the highly-doped single-crystal silicon is 10 18 atoms Z cm 3 or more.
  • the method for producing a single crystal silicon thin film for a solar cell according to any one of the above (30), (31), and (32) by supplying a dopant source to the surface of the single crystal silicon substrate. Forming a heavily doped single crystal silicon sacrificial layer;
  • the silicon source and the dopant source are simultaneously formed on the single-crystal silicon substrate.
  • the supply forms a highly doped single crystal silicon sacrificial layer.
  • the ratio of the silicon source to the dopant source is controlled with respect to time.
  • the former being a sacrificial layer and the latter being a single crystal of a solar cell power generation layer. Silicon thin film.
  • the sacrificial layer of the crystal is a compound crystal containing silicon.
  • the compound crystal containing silicon is a metal silicide such as CoSi, NiSi, and CrSi.
  • the sacrificial layer of the crystal is a crystal containing no silicon.
  • the single crystal is formed in the following step (c). After holding the silicon thin film on the supporting substrate, the silicon sacrificial layer is etched to produce a solar cell power generation layer single crystal silicon thin film.
  • FIG. 10 is a process sectional view showing Example 1 of the present invention.
  • a single-crystal silicon substrate (for example, 500 / 500 ⁇ ) 71 is prepared.
  • the single crystal silicon substrate 71 has a flat upper surface for epitaxially growing a single crystal silicon sacrificial film described later.
  • FIG. 11 shows that a silicon sacrificial film 72 containing crystal defects of 0.5 ⁇ m was epitaxially grown on a single-crystal silicon substrate 71 at 600 ° C. by a substrate heating sputtering method, and a 1200 ° C. was formed thereon.
  • Trichlorosilane with C Z-hydrogen mixed gas as raw material with few 20 ⁇ m crystal defects by chemical vapor deposition
  • a single-crystal silicon thin film 73 is formed, and a sacrificial film 72 is formed using an HF / HNO ZCH COOH mixed solution.
  • FIG. 5 is an electron micrograph of a cross section of a sample obtained by partially etching. It is shown that the sacrificial film 72 is selectively etched.
  • FIG. 12 is a process sectional view showing Example 2 of the present invention.
  • a single-crystal silicon substrate (for example, 500 / ⁇ ) 81 is prepared.
  • the single crystal silicon substrate 81 has a flat upper surface for epitaxially growing a single crystal silicon sacrificial film described later.
  • a minute amount of oxygen and water vapor is deposited on the single-crystal silicon substrate 81 by the substrate heating sputtering method by epitaxy growth of defect-containing silicon. Perform under existing conditions. That is, a single-crystal silicon sacrificial film (for example, 0.1—: m) 82 is formed. This single crystal silicon sacrificial film 82 can be easily and accurately removed by force etching described later.
  • various types of epitaxial growth can be used.
  • a CVD method using a silane-based gas or a chlorosilane-based gas, or a vapor deposition method using silicon. can be.
  • the supporting base material 84 is held on the single-crystal silicon thin film 83.
  • the support base 84 tempered glass or the like is used.
  • FIG. 13 is a cross-sectional view showing a manufacturing process of a single-crystal thin film showing Example 3 of the present invention.
  • This embodiment is the same as the first and second embodiments except that holes 91A are formed in the single-crystal silicon substrate 91 at intervals. That is,
  • FIG. 14 shows an optical microscope photograph of a plane of the single crystal silicon substrate 91 in which holes 91 A of 100 ⁇ m are formed at intervals of 1 mm by photolithography and selective etching.
  • various types of epitaxy can be used.
  • a CVD method using a silane-based gas or a chlorosilane-based gas, or a vapor deposition method using silicon. can be.
  • the supporting base material 94 is held on the single-crystal silicon thin film 93.
  • the supporting substrate 94 tempered glass or the like is used.
  • the etchant can easily enter the single-crystal silicon substrate 91 by the holes 91A formed at intervals, so that the single-crystal silicon thin film 93 with few defects can be separated smoothly. That is, the single-crystal silicon sacrificial film 92 can be removed quickly and accurately.
  • the thickness of the silicon sacrificial layer 92 equal to or less than 100 nm, the single-crystal silicon
  • the unevenness on the lower surface of the thin film 93 is controlled to 100 nm or less.
  • a texture structure of 100 nm or more may be introduced to the lower surface of the single-crystal silicon thin film 93.
  • sunlight can be efficiently taken into the single-crystal thin film, and power generation efficiency can be improved.
  • FIG. 15 is a cross-sectional view of a single crystal thin film manufacturing process showing Example 4 of the present invention
  • FIG. 16 is an electron micrograph of a cross section of a substrate in which a pyramid-shaped texture is introduced, showing this Example.
  • the other points are the same as those of the first and second embodiments except that the unevenness 101A is formed on the surface of the single crystal silicon substrate 101. That is,
  • a single-crystal silicon substrate 101 having a surface with irregularities 101A is prepared.
  • FIG. 16 shows an electron micrograph of a cross section of the substrate 101 in which a pyramid-shaped texture covered with ⁇ 111 ⁇ planes is introduced on a Si (100) wafer by utilizing this feature.
  • the epitaxial growth of the defect-containing silicon is carried out on the single-crystal silicon substrate 101 by a substrate heating sputtering method with trace amounts of oxygen and water vapor. Perform under the condition where is present. That is, the single crystal silicon sacrificial film 102 having the unevenness 102A formed on the surface is formed.
  • the present embodiment in which the unevenness is formed is applied to the manufacturing method of the second embodiment, but the same can be applied to the first embodiment.
  • PVD Physical Vapor Deposition
  • the film formation rate is as shown in FIG. 17 for chemical species such as SiCl and HC1.
  • Desorption is rate-limiting, and the growth rate of ⁇ -10 / z mZmin becomes the limit around 1200 ° C.
  • the temperature can be increased by increasing the temperature, but the number is easily controlled by the material supply; z mZmin is the practical upper limit.
  • the film formation rate for preventing the sacrificial layer degradation described later is about the same as the lower limit of the GR, which indicates that it is difficult to suppress the sacrificial layer degradation by the CVD method.
  • the thickness of the target single crystal silicon thin film is 10 m
  • the thickness of the sacrificial layer is preferably 1Z10 or less, that is, 1 m or less.
  • the dopant (B, P) diffuses by: m
  • the structure of the sacrificial layer deteriorates.
  • the time constant is expressed as (1 ⁇ m) 2 ZD, where D is the diffusion coefficient.
  • the upper single-crystal silicon thin film needs to grow 10 m or more, so the deposition rate GR must be GR> 10D / 1 ⁇ m.
  • FIG. 17 is a diagram showing the relationship between the temperature thus obtained and the film formation rate.
  • FIG. 18 is a diagram showing a ⁇ scan measurement result [in-plane X-ray diffraction (XRD) pattern] of (220) in-plane X-ray diffraction of the obtained silicon thin film.
  • XRD in-plane X-ray diffraction
  • a high-concentration P-doped silicon sacrificial layer is formed on a single-crystal silicon substrate by a diffusion method, and a 4 m single-crystal silicon thin film is formed thereon by an RVD method. Etching was performed for 1 minute with a mixed solution of nitric acid and acetic acid.
  • Figure 19 shows a cross-sectional photograph of the selectively etched single-crystal silicon thin film Z high-concentration P-doped silicon sacrificial layer Z single-crystal silicon substrate taken by a scanning electron microscope. As shown in this figure, only the sacrificial layer was selectively etched.
  • a single-crystal silicon thin film can be formed without deteriorating the structure of the sacrificial layer, and the single-crystal silicon thin film is selectively etched by the sacrificial layer. This facilitates separation of the thin film and the single crystal silicon substrate.
  • the diffusion of the dopant in the doped silicon sacrificial layer by the ELO method can be suppressed, and the single crystal silicon film can be lifted off favorably.
  • a single-crystal silicon thin film with few defects or a single-crystal silicon thin film with few defects supported on a supporting base material can be obtained, and these can be used as a single-crystal thin-film device.
  • it can be used as a power generation layer for a solar cell or an SOI (Silicon On Insulator) semiconductor device.
  • FIG. 20 is a schematic cross-sectional view of a manufacturing process of a single-crystal silicon thin film for a solar cell showing an example of the present invention.
  • a single-crystal silicon substrate ( ⁇ -type Si substrate) 201 is prepared, and as shown in FIG. A sacrificial layer 202 is formed.
  • a single-crystal silicon thin film 203 is rapidly epitaxially grown on the sacrificial layer 202 by the RVD method, and then, as shown in FIG. 202 is etched to obtain a solar cell power generation layer single crystal silicon thin film 204.
  • the deposition rate GR (m / min) of the single crystal silicon thin film 204 of the solar cell power generation layer was GR> 2 X 10 12 exp [-1 325 (kj / mol) / 8.
  • the structural change of the sacrificial layer 202 is prevented by epitaxial growth at a rate satisfying 8. 31 (j / mol-K) / ( ⁇ + 273) ( ⁇ )].
  • the film forming rate can be arbitrarily increased by exceeding the upper limit of the desorption rate. At this time, if the substrate temperature is set sufficiently high, epitaxial growth can be performed by the RVD method.
  • the single-crystal silicon thin film 203 can be rapidly epitaxially grown on the surface of the sacrificial layer 202.
  • the sacrificial layer can be made of crystalline silicon containing crystal defects.
  • the number density of the crystal defects can be set at 1 / m 2 -1 / nm 2 at the interface between the single crystal silicon substrate and the silicon sacrificial layer.
  • crystal defects on the surface of the sacrificial layer can be eliminated.
  • a single-crystal layer containing a crystal defect and made of a material having the same element composition is used as a sacrificial layer.
  • a single-crystal silicon thin film when silicon is grown on a single-crystal silicon substrate under a condition where a small amount of oxygen 'water vapor is present, the silicon layer grows epitaxially as a whole. , Twin and other crystal defects Will be included. Thereafter, when thermal annealing is performed in a reducing atmosphere (hydrogen atmosphere), defects on the outermost surface disappear due to surface diffusion of silicon. On top of that, rapid epitaxy growth by PVD allows rapid growth of silicon under clean conditions free of crystal defects. Since the sacrificial layer containing crystal defects can be selectively etched with a mixed solution of hydrofluoric acid and an oxidizing agent, a single crystal silicon thin film of a solar cell power generation layer with good lift-off and high purity can be obtained.
  • a group III element or a group V element can be used as a dopant in the highly doped single crystal silicon.
  • the dopant concentration in the single crystal silicon doped to the high concentration it may be 10 18 atoms ZCM 3 or more.
  • a dopant source to the surface of the single crystal silicon substrate, a high concentration doped single crystal silicon sacrificial layer can be formed.
  • a highly doped single crystal silicon sacrificial layer may be formed.
  • the ratio of the silicon source and the dopant source with respect to time and supplying the silicon source to the single crystal silicon substrate, a layer having a high dopant concentration and a layer having a low dopant concentration are rapidly incorporated into the silicon film that is epitaxially grown.
  • the former can be a sacrificial layer and the latter can be a single crystal silicon thin film of a solar cell power generation layer.
  • the silicon-containing compound crystal may be a metal crystal such as CoSi, NiSi, or CrSi.
  • a crystal containing no silicon can be used as the sacrifice layer of the crystal.
  • a single-crystal silicon thin film for a solar cell power generation layer can be manufactured.
  • the solar cell power generation layer single-crystal silicon thin film was held on a supporting base material, and then the silicon sacrificial layer was etched.
  • a single crystal silicon thin film for a solar cell power generation layer can be manufactured.
  • holes may be formed in the single crystal silicon substrate at intervals.
  • the productivity is not only increased by increasing the epitaxy growth rate of the single-crystal silicon thin film by the RVD method, but the entire substrate is exposed to a high temperature. Since the time is shortened, the structural change of the sacrificial layer is suppressed, the separation between the single crystal silicon thin film and the single crystal silicon substrate by the selective etching of the sacrificial layer is improved, and as a result, a single crystal silicon thin film with high purity and no defect is obtained. And a very promising process.
  • the present invention is not limited to single crystal silicon, and can be applied to the manufacture of a single crystal thin film of any material such as Ge, GaAs, GaN, and GeN.
  • FIG. 21 is a schematic view of a high-throughput vapor deposition (doped layer formation) apparatus showing an embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of manufacturing a solar cell power generation layer formed along the flow of the high-throughput vapor deposition apparatus. It is.
  • A is a high-throughput deposition apparatus (reactor)
  • B is a susceptor (graphite, etc.)
  • C is a silicon substrate
  • D is a crucible (quartz, etc.)
  • E is a silicon solution
  • F is a heating apparatus. (Electric heating device, induction heating device, electron beam heating device, etc.).
  • This high-throughput vapor deposition system is constructed by a conveyor system using a susceptor B to enable continuous and continuous film formation of a high-concentration doped layer and a solar cell power generation layer (including pZn junction).
  • the manufacturing equipment uses an H carrier to prevent impurity back-diffusion by differential pumping.
  • a single crystal silicon p ++ layer 302 is grown on the surface of a single crystal silicon substrate 301, and 22 (b) As shown in (c), a single-crystal silicon P layer 303 is grown by rapid epitaxy by the PVD method. These Single-crystal silicon p-layer 303 and layer 302 are formed by vapor deposition using B or BH added to Si.
  • an n + layer 304 is grown on the surface of the single crystal silicon p layer 303.
  • This n + layer 304 is formed by in-situ doping (doping a desired impurity into a film to be doped simultaneously in the same reaction furnace), that is, a vapor phase growth method in which P or PH is added to Si.
  • the laminated substrate of the n + layer 304Zp layer 303ZP ++ layer 302ZSi substrate 301 on which continuous and continuous film formation was performed by the high-throughput evaporation apparatus was taken out from the apparatus, and FIG. As shown, by etching the layer (highly doped layer) 302 with an aqueous solution containing hydrofluoric acid, a single crystal silicon thin film 305 for a solar cell power generation layer can be manufactured.
  • FIG. 23 is a schematic view of a high-throughput vapor deposition (defect layer formation) apparatus according to an embodiment of the present invention.
  • the conveyor system using the graphite susceptor B enables the formation of a defect layer, the elimination of surface defects, and the continuous and continuous deposition of the power generation layer (including the pZn junction). It is configured as follows.
  • H the power generation layer
  • process block I defect epitaxy is performed in an atmosphere of 800 to 1200 ° C, and then, in process block II, annealing is performed in an atmosphere of 1000 to 1400 ° C. Then, in processing block III, rapid epitaxy growth by PVD method is performed to achieve high quality epitaxy growth of the solar cell power generation layer.
  • the defect layer and the solar cell power generation layer on which continuous and continuous film formation has been performed by the high-throughput vapor deposition apparatus are taken out of the apparatus, and the defect layer is etched with an aqueous solution containing hydrofluoric acid. Accordingly, a single-crystal silicon thin film of a solar cell power generation layer can be manufactured.
  • a 10 m solar cell power generation layer is formed at 11 lOmin by the PVD method. Therefore, vapor deposition is performed at a high temperature.
  • elements other than silicon are also adsorbed on the growth surface together with silicon, so that the desorption rate of these elements can be the upper limit of the film formation rate.
  • the desorption of chlorine and hydrogen is rate-limiting, and the upper limit of the growth rate is limited.
  • Decide the time required for the epitaxial growth of the single-crystal silicon thin film is limited, during which time the structural change of the sacrificial layer and the diffusion of elements into the single-crystal silicon thin film and the substrate occur. Is the cause of the problem described above.
  • the present invention invented to increase the film forming rate by the PVD method as described above. That is, if only silicon is supplied to the growth surface, desorption of other elements such as chlorine and hydrogen becomes unnecessary, and the upper limit of the desorption rate is eliminated with respect to the deposition rate.
  • the upper limit of the deposition rate in the PVD method is determined by the time it takes for the supplied silicon to move to a single-crystal silicon substrate or an epitaxy arrangement with the film surface.
  • silicon was actually supplied to the surface of the single crystal silicon substrate by the PVD method at a substrate temperature of 800 ° C.
  • epitaxy growth at a deposition rate of 10 IX mZmin was confirmed.
  • the substrate temperature can be reduced by 400 ° C because the CVD method requires about 1200 ° C to achieve the same film formation rate. With a temperature drop of 400 ° C, the diffusion rate can be reduced to 1Z20000.
  • a three-layer structure of a single-crystal silicon thin film Z sacrificial layer Z single-crystal silicon substrate can be manufactured without deterioration of the sacrificial layer, and thus a single-crystal silicon thin film can be manufactured.
  • a high-purity single-crystal silicon film for a solar cell with good lift-off of the single-crystal silicon film and few crystal defects can be obtained.
  • high purity silicon is used in the production of crystalline silicon substrates, which account for 40% of the cost of the Balta crystal silicon module, which accounts for the entire 2Z3 cost of home photovoltaic power generation systems.
  • the volume can be significantly reduced to 1Z10-1Z100.
  • the present invention relates to a power generation layer of a solar cell and a silicon compound semiconductor as a semiconductor device. Suitable for manufacturing single crystal thin film, SOI substrate, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 単結晶シリコン膜のリフトオフが良好であり、かつ高純度の単結晶シリコン膜を得ることができる単結晶薄膜の製造方法とそれを用いて得られるデバイスを提供する。  単結晶シリコン基板(鋳型Si基板)201を用意して、この単結晶シリコン基板201上にエピタキシャルな犠牲層202を形成する。次いで、この犠牲層202上に単結晶シリコン薄膜203をRVD法により急速にエピタキシャル成長させ、次に、前記犠牲層202をエッチングし、太陽電池発電層単結晶シリコン薄膜204を得る。

Description

単結晶薄膜の製造方法及びその単結晶薄膜デバイス
技術分野
[0001] 本発明は、単結晶薄膜の製造方法及びその単結晶薄膜デバイスにかかり、特に、 高純度の太陽電池用単結晶シリコン薄膜の製造方法及びその単結晶シリコン薄膜 太陽電池に関するものである。
背景技術
[0002] 従来の単結晶シリコン薄膜の製造方法につ!、て説明する。
(a)酸素イオン注入法
単結晶シリコン基板に酸素イオンを注入した後、熱処理を施すことで、単結晶シリコ ン Z二酸化珪素 Z単結晶シリコン基板の構造を作製する。
[0003] し力しながら、単結晶シリコン基板への酸素イオン注入に際して、上部単結晶シリコ ンに欠陥が多く入ることや、イオン注入のコストが高いといった問題がある(下記特許 文献 1参照)。
(b)水素イオン注入法
単結晶シリコン基板に水素イオン (H+および H— )を注入し、支持基板に貼り合わせ た後、熱処理を施し、水素イオンが注入された層を破壊し、はぎとることで、サブ/ z m オーダーの単結晶シリコン薄膜を支持基板上に形成することができる。
[0004] し力しながら、水素の注入深さがサブ/ z mオーダーに留まるため、例えば、太陽電 池の用途では 1000°C以上の高温でィ匕学蒸着法又は物理蒸着法により単結晶シリコ ン薄膜を 10 m前後に厚膜ィ匕することが必要となるが、耐熱性'熱膨張力の要件を 満たす安価な基板を得ることが困難である。また、水素イオン注入層を基板から剥が す前に厚膜ィ匕する方法については、厚膜ィ匕条件下で水素イオン注入層が壊れてし まうので不可能である(下記特許文献 2参照)。
(c)ポーラスシリコン法
単結晶シリコン基板表面を陽極酸化すると、細孔を高密度に形成できる。この細孔 表面に酸化処理を施し、フッ酸により外表面に近 、部分のみ酸化層を除去した後、 水素雰囲気下でァニールすると、最表面が単結晶の連続膜に戻り、その下に空隙を 多数含んだ構造ができる。これを支持基板に貼り付けた後、空隙を含んだ層を液相 法により化学的に溶解することや、ウォータージェット等により機械的に破壊すること で、単結晶シリコン薄膜を分離することができる(下記特許文献 3参照)。
[0005] し力しながら、上部シリコン膜厚は表面張力の寄与する 1 m前後にしかならず、太 陽電池に応用するには、 CVD法による厚膜ィ匕が必須である。更に、機械的破壊によ る剥離の際、単結晶シリコン基板も傷んでしまい、繰り返し利用が制限されるという問 題もある。また、プロセス的にも多数のステップが必要で、複雑である。
(d)溶融再結晶化法 ·溶融結晶化法
シリコン基板上に、二酸ィ匕シリコン膜、多結晶ないしアモルファスシリコン薄膜、二酸 化珪素からなる保護膜の順に積層させ、ランプ加熱等による線状の溶融帯のスキヤ ンを行うことで、面内方向に結晶粒径の発達した多結晶シリコン薄膜を作製できる。 その後、保護膜を薬液により除去し、 CVD法により多結晶シリコン薄膜を厚膜ィ匕した 後、二酸ィ匕シリコン膜をフッ酸によりエッチングすることにより、多結晶シリコン薄膜を 分離できる(下記特許文献 4参照)。
[0006] し力しながら、得られるのはあくまでも多結晶シリコン薄膜であるため、発電効率が 劣る上、溶融帯のスキャニングの際、シリコン基板まで劣化してしまうという問題があり 、さらに、プロセス的にも多数のステップ力もなり複雑である。
(e)元素組成の異なる犠牲層を用いたェピタキシャルリフトオフ (ELO)法
ェピタキシャルリフトオフ (ELO)法とは、単結晶基板を铸型に用い、その上に犠牲 層をェピタキシャル成長させ、更にその上に目的膜をェピタキシャル成長させ、犠牲 層を除去することで目的材料の単結晶薄膜を得る方法のことである。
[0007] ところで、単結晶シリコン薄膜は、太陽電池として用いる場合には発電効率や安全 性'安定性等で優れている力 そのコストが高いことが問題となっている。太陽電池に 用いられる超高純度シリコンとしては、半導体産業で作られたものの規格外品を安価 に購入している力 それでもシリコン基板力コストの多くを占め、かつ半導体産業での シリコンの余剰もなくなってきているのが現状である。従って単結晶シリコンを、基板 力 薄膜に置き換えることができれば、コストと原料量の問題を解決できる。 [0008] そこで、本願発明者は、単結晶シリコン薄膜を ELO法で製造する方法を提案した( 下記特許文献 5参照)。ここでは、犠牲層として、金属シリサイドやドープシリコン層と いった「元素組成の異なる材料」を用いることで、シリコンでも ELO法の適用が可能に なることを提案した。
[0009] 具体的には、単結晶シリコン基板上に、純シリコンとは糸且成の異なる層、具体的に は金属シリサイドや高濃度ドープシリコンを犠牲層(中間層)としてェピタキシャル成 長させ、更にその上にシリコンをェピタキシャル成長させることで単結晶シリコン薄膜 を成膜し、犠牲層をィ匕学的にエッチング '除去することで、単結晶シリコン基板と単結 晶シリコン薄膜を分離し、単結晶シリコン基板を繰り返し再利用しながら、単結晶シリ コン薄膜を製造する方法を提案した。
[0010] し力しながら、上記したような犠牲層を用いる方法でも問題があった。即ち、金属シ リサイド等の材料を用いると、単結晶シリコン薄膜に不純物が混入するため、太陽電 池の発電効率に問題が生じる。一方、ドープシリコン層を用いると、単結晶シリコン薄 膜をェピタキシャル成長させるプロセスにおいて、ドーパントが、単結晶シリコン薄膜 および基板方向に拡散してしま 、、高濃度のドープ層を保てなくなると 、う問題があ つた o
特許文献 1:特開 2000-077352号公報
特許文献 2:特開平 11 040785号公報
特許文献 3:特開平 05— 275663号公報
特許文献 4:特開平 07— 226528号公報
特許文献 5: WO0240751号公報
発明の開示
[0011] 上記した (e)元素糸且成の異なる犠牲層を用いた ELO法についてさらに詳細に説明 するとともに、その問題点について説明する。
[0012] 図 1は力かる元素組成の異なる犠牲層を用いた ELO法による単結晶シリコン膜の 製造工程断面図(その 1)である。
[0013] (1)まず、図 1 (a)に示されるように、単結晶シリコン基板 1を用意する。
[0014] (2)次に、図 1 (b)に示されるように、単結晶シリコン基板 1の表面に、中間層(犠牲 層)として金属シリサイド (MS :ここで Mは金属)膜 2をェピタキシャル成長させる。
[0015] (3)次に、図 1 (c)に示されるように、犠牲層 2の表面に単結晶シリコン膜 3をェピタ キシャル成長させる。
[0016] (4)次に、図 1 (d)に示されるように、金属シリサイド膜 2をエッチングによって除去し
、単結晶シリコン膜 3を分離する。
[0017] 図 2は力かる元素組成の異なる犠牲層を用いた ELO法による単結晶シリコン膜の 製造工程断面図(その 2)である。
[0018] (1)まず、図 2 (a)に示されるように、単結晶シリコン基板 11を用意する。
[0019] (2)次に、図 2 (b)に示されるように、単結晶シリコン基板 1の表面に、中間層(犠牲 層)として高濃度ドープシリコン膜 12をェピタキシャル成長させる、又は単結晶シリコ ン基板 11表面にドーピングを施すことで中間層(犠牲層)を形成する。
[0020] (3)次いで、図 2 (c)に示されるように、高濃度ドープシリコン膜 12の表面に単結晶 シリコン膜 13をェピタキシャル成長させる。
[0021] (4)次いで、図 2 (d)に示されるように、高濃度ドープシリコン膜 12をエッチングによ つて除去し、単結晶シリコン膜 13を分離する。
[0022] し力しながら、上記した単結晶シリコン膜の製造方法によれば、以下のような問題点 かあつた。
[0023] (A)上記した図 1による単結晶シリコン膜の製造方法によれば、
犠牲層に金属シリサイド (CoSi , NiSi , CrSi )膜 2を用いる場合には、エッチング
2 2 2
剤は HF水溶液とし、この金属シリサイド膜 2の選択エッチングは容易である力 単結 晶シリコン膜 3へ金属原子が混入するために、高純度の単結晶シリコン膜を製造する ことができな力 た。
[0024] 特に、単結晶シリコン薄膜を太陽電池の発電層として利用する場合、金属元素の 混入が 0. Ippm以下という極微量でも、太陽電池の発電効率は著しく低下してしまう ことになる(図 3参照)。
[0025] 図 3は力かる従来の問題点である単結晶シリコン薄膜中への各種元素混入濃度の 太陽電池の発電効率への影響を示す図であり、図 3 (a)は n型シリコンにおける影響 、図 3 (b)は p型シリコンにおける影響を示している。 [0026] (B)上記した図 2による単結晶シリコン膜の製造方法によれば、
B, P, - -- (p, nともに可能であり、く 10— 2 Ω cm)をドーパントとした高濃度ドープシリ コン膜 12を犠牲層とした場合、エッチング剤は、 HFZHNO /CH COOHとし、ド
3 3
一パントの単結晶シリコン膜 13への混入の問題は少ないが、単結晶シリコン膜 13を ェピタキシャル成長させる際に、拡散によりドーパントの分布が大きく広がるために、 単結晶シリコン膜 13のリフトオフが不完全であるといった問題があった。
[0027] 具体的には、犠牲層(高濃度ドープシリコン膜 12)上へ単結晶シリコン薄膜 13をェ ピタキシャル成長させる際に、ある程度の時間が必要となる力 その最中に犠牲層 1 2中のドーパントが拡散し、層状構造を保てなくなるという問題が生じる(図 4参照)。
[0028] 図 4は従来の問題点である高濃度ドープシリコン犠牲層 Z単結晶シリコン基板構造 上への単結晶シリコン薄膜のェピタキシャル成長時における、ドーパントの拡散の説 明のための模式図であり、図 4 (a)は目的とする膜構造とドーパント濃度分布の理想 図、図 4 (b)は実際の膜構造とドーパント濃度分布であり、ェピタキシャル成長時にド 一パントの拡散が起き、三層構造を保てなくなる様子を示す図である。
[0029] そこで、本発明は、上記問題点を除去し、単結晶シリコン膜のリフトオフが良好であ り、かつ高純度の太陽電池用単結晶シリコン膜を得ることができる単結晶薄膜の製造 方法及びその単結晶薄膜デバイスを提供することを目的とする。
[0030] 〔1〕単結晶薄膜の製造方法において、(a)単結晶基板を準備し、(b)この単結晶基 板上に同一の物質で結晶欠陥を含んだ犠牲層をェピタキシャル成長させ、(c)この 犠牲層上に同一の物質で前記犠牲層より結晶欠陥の少ない単結晶薄膜をェピタキ シャル成長させ、(d)前記犠牲層をエッチングし、結晶欠陥の少ない単結晶薄膜を 製造することを特徴とする。
[0031] 〔2〕上記〔1〕記載の単結晶薄膜の製造方法において、前記 (b)工程に次いで前記 犠牲層の表面の結晶欠陥を消失させることを特徴とする。
[0032] 〔3〕上記〔1〕又は〔2〕記載の単結晶薄膜の製造方法において、前記単結晶基板が 単結晶シリコン基板、前記犠牲層がシリコン犠牲層、前記単結晶薄膜が単結晶シリコ ン薄膜であることを特徴とする。
[0033] 〔4〕上記〔1〕又は〔2〕記載の単結晶薄膜の製造方法において、前記単結晶基板が 単結晶 GaAs基板であることを特徴とする。
[0034] 〔5〕上記〔1〕又は〔2〕記載の単結晶薄膜の製造方法において、前記単結晶基板が 単結晶 MgO基板であることを特徴とする。
[0035] 〔6〕上記〔1〕記載の単結晶薄膜の製造方法において、前記 (b)工程を、 400— 12
00°Cで物理蒸着法又は化学蒸着法で行うことにより、結晶欠陥を含んだシリコン犠 牲層をェピタキシャル成長させることを特徴とする。
[0036] 〔7〕上記〔3〕又は〔6〕記載の単結晶薄膜の製造方法にお!、て、前記結晶欠陥が双 晶、空孔、格子間原子、刃状転移、螺旋転移であることを特徴とする。
[0037] 〔8〕上記〔3〕、〔6〕又は〔7〕記載の単結晶薄膜の製造方法にお!、て、前記結晶欠 陥の数密度が、前記単結晶シリコン基板と前記シリコン犠牲層との界面において、 1
/ μ m2— lZnm2であることを特徴とする。
[0038] 〔9〕上記〔3〕又は〔6〕一〔8〕の何れか一項記載の単結晶薄膜の製造方法にお!、て
、前記単結晶シリコン基板と前記シリコン犠牲層との界面において、 Ι/ μ ηι - 1/η m2の数密度で双晶が存在することを特徴とする。
[0039] 〔10〕上記〔3〕又は〔6〕一〔9〕の何れか一項記載の単結晶薄膜の製造方法にお!、 て、前記(b)工程に次いで、還元性雰囲気下、温度 1000— 1400°Cで熱ァニールを 行うことにより、前記シリコン犠牲層の表面の結晶欠陥を消失させることを特徴とする
[0040] 〔11〕上記〔10〕記載の単結晶薄膜の製造方法において、前記ァニール処理後に、 前記シリコン犠牲層表面における双晶の数密度が、前記シリコン犠牲層と前記単結 晶シリコン基板との界面における双晶の数密度の、 100分の 1以下であることを特徴 とする。
[0041] 〔12〕上記〔3〕又は〔6〕 - [11]の何れか一項記載の単結晶薄膜の製造方法にお いて、前記 (c)工程を、基板温度 1000— 1400°Cで物理蒸着法又は化学蒸着法で 行うことにより、結晶欠陥の少ない単結晶シリコン薄膜をェピタキシャル成長させるこ とを特徴とする。
[0042] 〔13〕上記〔3〕又は〔6〕一〔12〕の何れか一項記載の単結晶薄膜の製造方法にお いて、前記 (c)工程に次いで前記単結晶シリコン薄膜を支持基材に保持した後、前 記シリコン犠牲層をエッチングし、単結晶シリコン薄膜を製造することを特徴とする。
[0043] 〔14〕上記〔3〕又は〔6〕一〔13〕の何れか一項記載の単結晶薄膜の製造方法にお いて、前記単結晶シリコン基板に間隔をとつて穴を形成することを特徴とする。
[0044] [15]上記〔3〕又は〔6〕一〔14〕の何れか一項記載の単結晶薄膜の製造方法にお いて、前記シリコン犠牲層の厚さを lOOnm以下にすることで、前記単結晶シリコン薄 膜の下面の凹凸を lOOnm以下に抑えることを特徴とする。
[0045] 〔16〕上記〔3〕又は〔6〕一〔14〕の何れか一項記載の単結晶薄膜の製造方法にお いて、前記シリコン犠牲層の厚さを lOOnm以上にすることで、前記単結晶シリコン薄 膜の下面に lOOnm以上のテクスチャ構造を導入することを特徴とする。
[0046] 〔17〕上記〔3〕又は〔6〕一〔16〕の何れか一項記載の単結晶薄膜の製造方法にお いて、前記単結晶シリコン基板の表面に凹凸を形成することを特徴とする単結晶薄 膜の製造方法。
[0047] 〔18〕上記〔3〕又は〔6〕一〔17〕の何れか一項記載の単結晶薄膜の製造方法にお V、て、前記シリコン犠牲層のエッチングをフッ酸と酸化剤の混合溶液で行うことを特 徴とする。
[0048] 〔19〕単結晶薄膜デバイスであって、上記〔1〕から〔5〕のいずれか一項記載の単結 晶薄膜の製造方法によって得られる単結晶薄膜デバイス。
[0049] 〔20〕単結晶薄膜デバイスであって、上記〔3〕又は〔6〕一〔18〕のいずれか一項記 載の単結晶シリコン薄膜の製造方法によって得られる単結晶薄膜デバイス。
[0050] 〔21〕上記〔20〕記載の単結晶薄膜デバイスにおいて、前記単結晶シリコン薄膜が 太陽電池用発電層であることを特徴とする。
[0051] 〔22〕上記〔20〕記載の単結晶薄膜デバイスにおいて、前記単結晶シリコン薄膜が S
OI用単結晶シリコン薄膜であることを特徴とする。
[0052] 〔23〕太陽電池用単結晶シリコン薄膜の製造方法において、(a)単結晶シリコン基 板を準備し、(b)この基板上にェピタキシャルな犠牲層を形成し、(c)この犠牲層上 に単結晶シリコン薄膜を急速にェピタキシャル成長させ、(d)前記犠牲層をエツチン グし、太陽電池発電層単結晶シリコン薄膜を製造することを特徴とする。
[0053] 〔24〕上記〔23〕記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 単結晶シリコン薄膜を、温度 τ (°C)にお 、て成膜速度 GR ( μ m/min)力 SGR> 2 X 1012exp [-325 (kj/mol) /8. 31 (j/mol 'K) / (T+ 273) (K)〕を満足する速度 でェピタキシャル成長させることにより、前記犠牲層の構造変化を防ぐことを特徴とす る。
[0054] [25]上記〔23〕又は〔24〕記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記単結晶シリコン薄膜の急速なェピタキシャル成長を、物理蒸着法により行 うことを特徴とする。
[0055] 〔26〕上記〔23〕、〔24〕又は〔25〕記載の太陽電池用単結晶シリコン薄膜の製造方 法において、前記犠牲層が結晶欠陥を含んだ結晶シリコンであることを特徴とする。
[0056] 〔27〕上記〔26〕記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 結晶欠陥が双晶、空孔、格子間原子、刃状転移、螺旋転移であることを特徴とする。
[0057] 〔28〕上記〔26〕又は〔27〕記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記結晶欠陥の数密度が、前記単結晶シリコン基板と前記シリコン犠牲層との 界面において、 1/ m2— 1/nm2であることを特徴とする。
[0058] 〔29〕上記〔25〕から〔28〕の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法にお!、て、前記 (b)工程に次 、で前記犠牲層の表面の結晶欠陥を消失さ せることを特徴とする。
[0059] 〔30〕上記〔23〕、〔24〕又は〔25〕記載の太陽電池用単結晶シリコン薄膜の製造方 法において、結晶の犠牲層が高濃度ドープされた単結晶シリコンであることを特徴と する。
[0060] 〔31〕上記〔30〕記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 高濃度にドープされた単結晶シリコン中のドーパントが、 III族ないし V族元素であるこ とを特徴とする。
[0061] 〔32〕上記〔30〕又は〔31〕記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記高濃度にドープされた単結晶シリコン中のドーパント濃度が、 1018原子 Z cm3以上であることを特徴とする。
[0062] 〔33〕上記〔30〕、〔31〕、〔32〕の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、単結晶シリコン基板表面にドーパント源を供給することにより、 高濃度にドープされた単結晶シリコン犠牲層を形成することを特徴とする。
[0063] 〔34〕上記〔30〕、〔31〕、〔32〕の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、単結晶シリコン基板上にシリコン源とドーパント源を同時に供 給することにより、高濃度にドープされた単結晶シリコン犠牲層を形成することを特徴 とする。
[0064] 〔35〕上記〔30〕、〔31〕、〔32〕の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、シリコン源とドーパント源の比率を時間に対して制御して単結 晶シリコン基板上に供給することにより、急速にェピタキシャル成長するシリコン膜中 にドーパント濃度の高い層と低い層を形成し、前者を犠牲層とし後者を太陽電池発 電層単結晶シリコン薄膜とすることを特徴とする。
[0065] 〔36〕上記〔23〕、〔24〕又は〔25〕記載の太陽電池用単結晶シリコン薄膜の製造方 法において、結晶の犠牲層がシリコンを含む化合物結晶であることを特徴とする。
[0066] 〔37〕上記〔36〕記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 シリコンを含む化合物結晶が CoSi、 NiSi、 CrSiなどの金属シリサイドであることを
2 2 2
特徴とする。
[0067] 〔38〕上記〔23〕、〔24〕又は〔25〕記載の太陽電池用単結晶シリコン薄膜の製造方 法において、結晶の犠牲層がシリコンを含まない結晶であることを特徴とする。
[0068] 〔39〕上記〔23〕一〔38〕の何れか一項記載の太陽電池用単結晶シリコン薄膜の製 造方法において、犠牲層をフッ酸を含む水溶液でエッチングすることにより、太陽電 池発電層単結晶シリコン薄膜を製造することを特徴とする。
[0069] 〔40〕上記〔23〕一〔39〕の何れか一項記載の太陽電池用単結晶シリコン薄膜の製 造方法にお!ヽて、前記 (c)工程に次 ヽで前記単結晶シリコン薄膜を支持基材に保持 した後、前記シリコン犠牲層をエッチングし、太陽電池発電層単結晶シリコン薄膜を 製造することを特徴とする。
[0070] 〔41〕上記〔23〕から〔40〕の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法において、前記単結晶シリコン基板に間隔をとつて穴を形成することを特徴 とする。
[0071] 〔42〕上記〔23〕から〔41〕の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法において、前記単結晶シリコン基板の表面に凹凸を形成することを特徴と する。
[0072] 〔43〕単結晶シリコン薄膜太陽電池であって、上記〔23〕から〔42〕の何れか一項記 載の太陽電池用単結晶シリコン薄膜の製造方法によって得られる単結晶シリコン薄 膜太陽電池。
図面の簡単な説明
[0073] [図 1]従来の元素組成の異なる犠牲層を用いた ELO法による単結晶シリコン膜の製 造工程断面図(その 1)である。
[図 2]従来の元素組成の異なる犠牲層を用いた ELO法による単結晶シリコン膜の製 造工程断面図(その 2)である。
[図 3]従来の問題点である単結晶シリコン薄膜中への各種元素混入濃度の太陽電池 の発電効率への影響を示す図である。
[図 4]従来の問題点である高濃度ドープシリコン犠牲層 Z単結晶シリコン基板構造上 への単結晶シリコン薄膜のェピタキシャル成長時における、ドーパントの拡散の説明 のための模式図である。
[図 5]本発明の実施例を示す単結晶薄膜の製造工程断面図 (その 1)である。
[図 6]本発明の実施例を示す単結晶薄膜の製造工程断面図 (その 2)である。
[図 7]本発明の実施例を示す単結晶薄膜の製造工程断面図 (その 3)である。
[図 8]本発明の実施例を示す単結晶薄膜の製造工程断面図(その 4)である。
[図 9]本発明の実施例を示す単結晶薄膜の製造工程断面図(その 5)である。
[図 10]本発明の実施例 1を示す工程断面図である。
[図 11]本発明の実施例 1を示す犠牲膜を途中までエッチングしたサンプルの断面の 、電子顕微鏡写真である。
[図 12]本発明の実施例 2を示す工程断面図である。
[図 13]本発明の実施例 3を示す単結晶薄膜の製造工程断面図である。
[図 14]本発明の実施例 3を示す孔空き基板の平面の光学顕微鏡写真である。
[図 15]本発明の実施例 4を示す単結晶薄膜の製造工程断面図である。
[図 16]本発明の実施例 4を示すピラミッド形状のテクスチャを導入した基板の断面の 、電子顕微鏡写真である。
[図 17]本発明に係る温度と成膜速度の関係を示す図である。
[図 18]本発明に係るシリコン薄膜の(220)面内 X線回折の φスキャン測定結果〔面内 X線回折 (XRD)パターン〕を示す図である。
[図 19]本発明に係る選択エッチングした単結晶シリコン薄膜 Z高濃度 Pドープシリコ ン犠牲層 Z単結晶シリコン基板の走査型電子顕微鏡による断面写真である。
[図 20]本発明の実施例を示す太陽電池用単結晶シリコン薄膜の製造工程断面模式 図である。
[図 21]本発明の実施例を示す高スループット蒸着 (ドープ層形成)装置の模式図であ る。
[図 22]本発明の実施例を示す高スループット蒸着装置のフローに沿って形成される 太陽電池発電層の製造断面図である。
[図 23]本発明の実施例を示す高スループット蒸着 (欠陥層形成)装置の模式図であ る。
発明を実施するための最良の形態
[0074] 以下、本発明の実施の形態について詳細に説明する。
[0075] (1)図 5は本発明の実施例を示す単結晶薄膜の製造工程断面図(その 1)である。
[0076] まず、図 5 (a)に示すように単結晶基板 21を準備する。次に、図 5 (b)に示すように、 この単結晶基板 21と同一の物質で結晶欠陥を含んだ単結晶犠牲層 22をェピタキシ ャル成長させ形成する。次に、図 5 (c)に示すように、この単結晶犠牲層 22上に同一 の物質で結晶欠陥の少ない高純度の単結晶薄膜 23をェピタキシャル成長させ形成 する。そこで、図 5 (d)に示すように、前記単結晶犠牲層 22をエッチング (溶解)し、結 晶欠陥の少ない高純度の単結晶薄膜 23を得る。
[0077] なお、図 5 (d)において残された単結晶基板 21は再利用することができる。
[0078] (2)図 6は本発明の実施例を示す単結晶薄膜の製造工程断面図(その 2)である。
[0079] まず、図 6 (a)に示すように単結晶基板 31を準備する。次に、図 6 (b)に示すように、 この単結晶基板 31と同一の物質で結晶欠陥を含んだ単結晶犠牲層 32をェピタキシ ャル成長させ形成する。次に、図 6 (c)に示すように、この単結晶犠牲層 32の表面 33 の結晶欠陥を消失させる。次に、図 6 (d)に示すように、結晶欠陥を消失させた単結 晶犠牲層 32の表面 33上に同一の物質で結晶欠陥の少ない高純度の単結晶薄膜 3 4をェピタキシャル成長させ形成する。次に、図 6 (e)に示すように、前記単結晶犠牲 層 32をエッチング (溶解)し、結晶欠陥の少ない高純度の単結晶薄膜 34を得る。
[0080] ここでも、図 6 (e)において残された単結晶基板 31は再利用することができる。
[0081] (3)図 7は本発明の実施例を示す単結晶薄膜の製造工程断面図(その 3)である。
[0082] まず、図 7 (a)に示すように単結晶基板 41を準備する。次に、図 7 (b)に示すように、 この単結晶基板 41と同一の物質で結晶欠陥を含んだ単結晶犠牲層 42をェピタキシ ャル成長させ形成する。次に、図 7 (c)に示すように、この単結晶犠牲層 42上に同一 の物質で結晶欠陥の少ない高純度の単結晶薄膜 43をェピタキシャル成長させ形成 する。次に、図 7 (d)に示すように、結晶欠陥の少ない高純度の単結晶薄膜 43を支 持基材 44で保持する。そこで、図 7 (e)に示すように、前記単結晶犠牲層 42をエッチ ング (溶解)し、支持基材 44で支持された結晶欠陥の少な ヽ高純度の単結晶薄膜 4 3を得る。
[0083] ここでも、図 7 (e)において残された単結晶基板 41は再利用することができる。
[0084] (4)図 8は本発明の実施例を示す単結晶薄膜の製造工程断面図(その 4)である。
[0085] まず、図 8 (a)に示すように単結晶基板 51を準備する。次に、図 8 (b)に示すように、 この単結晶基板 51と同一の物質で結晶欠陥を含んだ単結晶犠牲層 52をェピタキシ ャル成長させ形成する。次に、図 8 (c)に示すように、この単結晶犠牲層 52の表面 53 の結晶欠陥を消失させる。次に、図 8 (d)に示すように、結晶欠陥を消失させた単結 晶犠牲層 52の表面 53上に同一の物質で結晶欠陥の少ない高純度の単結晶薄膜 5 4をェピタキシャル成長させ形成する。次に、図 8 (e)に示すように、結晶欠陥の少な い高純度の単結晶薄膜 54を支持基材 55で保持する。次いで、図 8 (f)に示すように 、前記単結晶犠牲層 52をエッチング (溶解)し、支持基材 55で支持された結晶欠陥 の少な 、高純度の単結晶薄膜 54を得る。
[0086] ここでも、図 8 (f)において残された単結晶基板 51は再利用することができる。
[0087] (5)上記(1)一(4)記載の何れかに記載の単結晶薄膜の製造方法において、前記 単結晶基板が単結晶シリコン基板、前記犠牲層がシリコン犠牲層、前記単結晶薄膜 が単結晶シリコン薄膜である。
[0088] (6)上記(1)一(4)の何れかに記載の単結晶薄膜の製造方法において、前記単結 晶基板が単結晶 GaAs基板である。
[0089] (7)上記(1)一(4)の何れかに記載の単結晶薄膜の製造方法において、前記単結 晶基板が MgO基板である。
[0090] (8)上記(1)一(4)の何れかに記載の単結晶薄膜の製造方法において、前記 (b) 工程を、 400— 1200°Cで物理蒸着法又は化学蒸着法で行うことにより、結晶欠陥を 含んだシリコン犠牲層をェピタキシャル成長させることを特徴とする。
[0091] (9)上記(1)一(4)の何れかに記載の単結晶薄膜の製造方法において、前記結晶 欠陥が双晶、空孔、格子間原子、刃状転移、螺旋転移である。
[0092] (10)上記(9)記載の単結晶薄膜の製造方法にお!、て、前記結晶欠陥の数密度が
、前記単結晶シリコン基板と前記シリコン犠牲層との界面において、 l/ ^ m'-l/n m (?める。
[0093] (11)図 9は本発明の実施例を示す単結晶薄膜の製造工程断面図(その 5)である 。ここでは、単結晶薄膜として、単結晶シリコン薄膜を得るようにしている。
[0094] まず、図 9 (a)に示すように、単結晶シリコン基板 61を準備する。次に、図 9 (b)に示 すように、残留ガス圧が比較的高ぐかつ比較的低温下の第 1の成膜条件で、シリコ ンをェピタキシャル成長させて双晶の入った単結晶シリコン犠牲膜 62を成長させる。 次に、図 9 (c)に示すように、還元性雰囲気下でのァニールにより、前記単結晶シリコ ン犠牲膜 62の表面 63の双晶を消失させる。次に、図 9 (d)に示すように、前記第 1の 成膜条件よりも残留ガス圧が低ぐかつ高温下の第 2の成膜条件で、欠陥の少ない 単結晶シリコン薄膜 64をェピタキシャル成長させる。そこで、図 9 (e)に示すように、 前記単結晶犠牲層 62をエッチング (溶解)し、結晶欠陥の少ない高純度の単結晶シ リコン薄膜 64を得る。
[0095] また、単結晶シリコン薄膜 64をェピタキシャル成長させた後に、この上部単結晶シリ コン膜 64を支持基材 (図示なし)で支持し、前記単結晶犠牲層 62をエッチング (溶解 )して、支持基材に支持された結晶欠陥の少ない高純度の単結晶シリコン膜 64を製 造するようにしてちょい。 [0096] ここでも、図 9 (e)において残された単結晶基板 61は再利用することができる。
[0097] (12)上記(2)又は (4)記載の単結晶薄膜の製造方法において、前記 (b)工程に 次いで、還元性雰囲気下、温度 1000— 1400°Cで熱ァニールを行うことにより、前記 シリコン犠牲層の表面の結晶欠陥を消失させる。
[0098] (13)上記(12)記載の単結晶薄膜の製造方法において、前記ァニール処理後に、 前記シリコン犠牲層表面における双晶の数密度が、前記シリコン犠牲層と前記単結 晶シリコン基板との界面における双晶の数密度の、 100分の 1以下である。
[0099] (14)上記(3)記載の単結晶薄膜の製造方法において、前記 (c)工程を、基板温度
1000— 1400°Cで物理蒸着法又は化学蒸着法で行うことにより、結晶欠陥の少ない 単結晶シリコン薄膜をェピタキシャル成長させる。
[0100] (15)上記(3)記載の単結晶薄膜の製造方法において、前記 (c)工程に次いで前 記単結晶シリコン薄膜を支持基材に保持した後、前記シリコン犠牲層をエッチングし
、単結晶シリコン薄膜を製造する。
[0101] (16)上記(3)記載の単結晶薄膜の製造方法において、前記単結晶シリコン基板 に間隔をとつて穴を形成して、シリコン犠牲層のエッチングを容易に実施する。
[0102] (17)上記(3)記載の単結晶薄膜の製造方法において、前記シリコン犠牲層の厚さ を lOOnm以下にすることで、前記単結晶シリコン薄膜の下面の凹凸を lOOnm以下 に抑える。
[0103] (18)上記(3)記載の単結晶薄膜の製造方法において、前記シリコン犠牲層の厚さ を lOOnm以上にすることで、前記単結晶シリコン薄膜の下面に lOOnm以上のテクス チヤ構造を導入する。
[0104] (19)上記(1)一(4)の何れかに記載の単結晶薄膜の製造方法において、前記単 結晶基板の表面に凹凸を形成する。それにより、特に、太陽電池用発電層として用 いる場合には、発電効率の向上を図る。
[0105] (20)上記(1)、(2)、(3)又は (4)記載の単結晶薄膜の製造方法において、前記シ リコン犠牲層のエッチング (溶解)をフッ酸と酸化剤の混合溶液で行う。
[0106] (21)上記(1)一 (20)記載の 、ずれか一項記載の単結晶薄膜の製造方法によつ て、単結晶薄膜デバイスを得る。 [0107] (22)上記(21)記載の単結晶薄膜デバイスにおいて、前記単結晶薄膜が太陽電 池用発電層である。
[0108] (23)上記(21)記載の単結晶薄膜デバイスにおいて、前記単結晶薄膜が SOI用 単結晶薄膜である。
[0109] (24)上記(23)記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 単結晶シリコン薄膜を、温度 τ (°C)にお 、て成膜速度 GR ( μ m/min)力 SGR> 2 X 1012exp [-325 (kj/mol) /8. 31 (j/mol 'K) / (T+ 273) (K)〕を満足する速度 でェピタキシャル成長させることにより、前記犠牲層の構造変化を防ぐ。
[0110] (25)上記(23)又は(24)記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記単結晶シリコン薄膜の急速なェピタキシャル成長を、物理蒸着法により行
[0111] (26)上記(23)、 (24)又は(25)記載の太陽電池用単結晶シリコン薄膜の製造方 法において、前記犠牲層が結晶欠陥を含んだ結晶シリコンである。
[0112] (27)上記(26)記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 結晶欠陥が双晶、空孔、格子間原子、刃状転移、螺旋転移である。
[0113] (28)上記(26)又は(27)記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記結晶欠陥の数密度が、前記単結晶シリコン基板と前記シリコン犠牲層との 界面において、 lZ / m2— lZnm2である。
[0114] (29)上記(25)から(28)の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法にお!、て、前記 (b)工程に次 、で前記犠牲層の表面の結晶欠陥を消失さ せる。
[0115] (30)上記(23)、 (24)又は(25)記載の太陽電池用単結晶シリコン薄膜の製造方 法において、結晶の犠牲層が高濃度ドープされた単結晶シリコンである。
[0116] (31)上記(30)記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 高濃度にドープされた単結晶シリコン中のドーパントが、 III族ないし V族元素である。
[0117] (32)上記(30)又は(31)記載の太陽電池用単結晶シリコン薄膜の製造方法にお いて、前記高濃度にドープされた単結晶シリコン中のドーパント濃度が、 1018原子 Z cm3以上である。 [0118] (33)上記(30)、 (31)、 (32)の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、単結晶シリコン基板表面にドーパント源を供給することにより、 高濃度にドープされた単結晶シリコン犠牲層を形成する。
[0119] (34)上記(30)、 (31)、 (32)の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、単結晶シリコン基板上にシリコン源とドーパント源を同時に供 給することにより、高濃度にドープされた単結晶シリコン犠牲層を形成する。
[0120] (35)上記(30)、 (31)、 (32)の何れか一項記載の太陽電池用単結晶シリコン薄膜 の製造方法において、シリコン源とドーパント源の比率を時間に対して制御して単結 晶シリコン基板上に供給することにより、急速にェピタキシャル成長するシリコン膜中 にドーパント濃度の高い層と低い層を形成し、前者を犠牲層とし後者を太陽電池発 電層単結晶シリコン薄膜とする。
[0121] (36)上記(23)、 (24)又は(25)記載の太陽電池用単結晶シリコン薄膜の製造方 法において、結晶の犠牲層がシリコンを含む化合物結晶である。
[0122] (37)上記(36)記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記 シリコンを含む化合物結晶が CoSi、 NiSi、 CrSiなどの金属シリサイドである。
2 2 2
[0123] (38)上記(23)、 (24)又は(25)記載の太陽電池用単結晶シリコン薄膜の製造方 法にぉ 、て、結晶の犠牲層がシリコンを含まな 、結晶である。
[0124] (39)上記(23)— (38)の何れか一項記載の太陽電池用単結晶シリコン薄膜の製 造方法において、犠牲層をフッ酸を含む水溶液でエッチングすることにより、太陽電 池発電層単結晶シリコン薄膜を製造する。
[0125] (40)上記(23)— (39)の何れか一項記載の太陽電池用単結晶シリコン薄膜の製 造方法にお!ヽて、前記 (c)工程に次 ヽで前記単結晶シリコン薄膜を支持基材に保持 した後、前記シリコン犠牲層をエッチングし、太陽電池発電層単結晶シリコン薄膜を 製造する。
[0126] (41)上記(23)から (40)の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法において、前記単結晶シリコン基板に間隔をとつて穴を形成する。
[0127] (42)上記(23)から (41)の何れか一項記載の太陽電池用単結晶シリコン薄膜の 製造方法において、前記単結晶シリコン基板の表面に凹凸を形成する。 [0128] (43)単結晶シリコン薄膜太陽電池であって、上記(23)から (42)の何れか一項記 載の太陽電池用単結晶シリコン薄膜の製造方法によって得られる。
[0129] 以下、具体的実施例について説明する。
実施例 1
[0130] 図 10は本発明の実施例 1を示す工程断面図である。
[0131] (1)まず、図 10 (a)に示すように、単結晶シリコン基板 (例えば、 500 /ζ πι) 71を準 備する。
[0132] この単結晶シリコン基板 71は後述する単結晶シリコン犠牲膜をェピタキシャル成長 させるために平坦な上面を有して 、る。
[0133] (2)次に、図 10 (b)に示すように、その単結晶シリコン基板 71上へ基板加熱スパッ タ法により、結晶欠陥を含んだシリコンのェピタキシャル成長を微量の酸素、水蒸気 が存在する条件下で行う。つまり、結晶欠陥を含んだ単結晶シリコン犠牲膜 (例えば 、 0. 1-1 μ m) 72を形成する。この単結晶シリコン犠牲膜 72は後述するが、エツチン グにより容易に的確に除去可能である。
[0134] (3)次いで、図 10 (c)に示すように、その単結晶シリコン犠牲膜 72上へ CVD法によ り欠陥の少ない単結晶シリコンのェピタキシャノレ成長を行う。つまり、欠陥の少ない高 純度の単結晶シリコン薄膜 (例えば、 10 m) 73を形成する。これにより、中間に結 晶欠陥を含んだ単結晶シリコン犠牲膜 72を含む、同一材料による 3層構造を形成す ることがでさる。
[0135] ェピタキシャル成長としては、種々のものを用いることができる力 例えば、気相成 長であれば、シラン系ガスやクロロシラン系ガスを用いた CVD法や、シリコンを用いた 蒸着法〖こよることができる。
[0136] (4)次に、図 10 (d)に示すように、 HF/HNO /CH COOH混合溶液、または H
3 3
F/KMnO /CH COOH混合溶液による単結晶シリコン犠牲膜 72の選択エツチン
4 3
グを行い、欠陥の少ない高純度の単結晶シリコン薄膜 73の分離を行う。
[0137] 図 11は単結晶シリコン基板 71上に基板加熱スパッタ法にて 600°Cで 0. 5 μ mの結 晶欠陥を含んだシリコン犠牲膜 72をェピタキシャル成長させ、その上に 1200°Cでト リクロロシラン Z水素混合ガスを原料に化学蒸着法にて 20 μ mの結晶欠陥の少ない 単結晶シリコン薄膜 73を形成し、 HF/HNO ZCH COOH混合溶液で犠牲膜 72
3 3
を途中までエッチングしたサンプルの断面の、電子顕微鏡写真である。犠牲膜 72が 選択的にエッチングされる様子が示されて 、る。
実施例 2
[0138] 図 12は本発明の実施例 2を示す工程断面図である。
[0139] (1)まず、図 12 (a)に示すように、単結晶シリコン基板 (例えば、 500 /ζ πι) 81を用 意する。
[0140] この単結晶シリコン基板 81は後述する単結晶シリコン犠牲膜をェピタキシャル成長 させるために平坦な上面を有して 、る。
[0141] (2)次に、図 12 (b)に示すように、その単結晶シリコン基板 81上へ基板加熱スパッ タ法により、欠陥を含んだシリコンのェピタキシャル成長を微量の酸素、水蒸気が存 在する条件下で行う。つまり、単結晶シリコン犠牲膜 (例えば、 0. 1—: m) 82を形 成する。この単結晶シリコン犠牲膜 82は後述する力 エッチングにより容易に的確に 除去可能である。
[0142] (3)次いで、図 12 (c)に示すように、その単結晶シリコン犠牲膜 82上へ CVD法によ り欠陥の少ない単結晶シリコンのェピタキシャノレ成長を行う。つまり、欠陥の少ない高 純度の単結晶シリコン薄膜 (例えば、 10 m) 83を形成する。これにより、中間に結 晶欠陥を含んだ単結晶シリコン犠牲膜 82を含む、同一材料による 3層構造を形成す ることがでさる。
[0143] ここで、ェピタキシャル成長としては、種々のものを用いることができる力 例えば、 気相成長であれば、シラン系ガスやクロロシラン系ガスを用いた CVD法や、シリコン を用いた蒸着法によることができる。
[0144] (4)次に、図 12 (d)に示すように、単結晶シリコン薄膜 83上に支持基材 84を保持 する。この支持基材 84としては強化ガラスなどを用いる。
[0145] (5)次に、図 12 (e)に示すように、 HF/HNO /CH COOH混合溶液、または H
3 3
F/KMnO ZCH COOH混合溶液による単結晶シリコン犠牲膜 82の選択エツチン
4 3
グを行 、、支持基材 84に支持された欠陥の少な 、高純度の単結晶シリコン薄膜 83 の分離を行う。 実施例 3
[0146] 図 13は本発明の実施例 3を示す単結晶薄膜の製造工程断面図である。
[0147] この実施例では、単結晶シリコン基板 91に間隔をとつて穴 91Aを形成するようにし た点を除くとその他の点は上記実施例 1, 2と同様である。すなわち、
(1)まず、図 13 (a)に示すように、間隔をとつて穴 91Aが形成された単結晶シリコン 基板 91を用意する。
[0148] ここで、フォトリソグラフィ一と選択エッチングにより、 100 μ mの穴 91Aを lmm間隔 であけた、単結晶シリコン基板 91の平面の光学顕微鏡写真を図 14に示す。
[0149] (2)次に、図 13 (b)に示すように、その単結晶シリコン基板 91上へ基板加熱スパッ タ法による、欠陥を含んだシリコンのェピタキシャル成長を微量の酸素、水蒸気が存 在する条件下で行う。つまり、単結晶シリコン犠牲膜 92を形成する。
[0150] (3)次いで、図 13 (c)に示すように、その単結晶シリコン犠牲膜 92上に CVD法によ り欠陥の少ない単結晶シリコンのェピタキシャノレ成長を行う。つまり、欠陥の少ない単 結晶シリコン薄膜 93を形成する。
[0151] ここで、ェピタキシャル成長としては、種々のものを用いることができる力 例えば、 気相成長であれば、シラン系ガスやクロロシラン系ガスを用いた CVD法や、シリコン を用いた蒸着法によることができる。
[0152] (4)次に、図 13 (d)に示すように、単結晶シリコン薄膜 93上に支持基材 94を保持 する。この支持基材 94としては強化ガラスなどを用いる。
[0153] (5)次に、図 13 (e)に示すように、 HF/HNO /CH COOH混合溶液、または H
3 3
F/KMnO /CH COOH混合溶液による単結晶シリコン犠牲膜 92の選択エツチン
4 3
グを行う。その際に、エツチャントは単結晶シリコン基板 91に間隔をとつて形成された 穴 91Aによって浸入し易くなるので欠陥の少ない単結晶シリコン薄膜 93の分離を円 滑に行うことができる。つまり、単結晶シリコン犠牲膜 92の除去を迅速かつ的確に行 うことができる。
[0154] ここでは、実施例 2の製造方法に穴を形成する本実施例を適用した例を示したが、 実施例 1にも同様に適用できる。
[0155] また、前記シリコン犠牲層 92の厚さを lOOnm以下にすることで、前記単結晶シリコ ン薄膜 93の下面の凹凸を lOOnm以下に抑えるようにする。
[0156] 又は、前記シリコン犠牲層 92の厚さを lOOnm以上にすることで、前記単結晶シリコ ン薄膜 93の下面に lOOnm以上のテクスチャ構造を導入するようにしてもよい。特に 、単結晶シリコン薄膜を太陽電池用発電層として用いる場合には、太陽光を効率よく 単結晶薄膜に取り込むことができ、発電効率の向上を図ることができる。
実施例 4
[0157] 図 15は本発明の実施例 4を示す単結晶薄膜の製造工程断面図、図 16はこの実施 例を示すピラミッド形状のテクスチャを導入した基板の断面の電子顕微鏡写真である
[0158] この実施例では、単結晶シリコン基板 101の表面に凹凸 101Aを形成するようにし た点を除くとその他の点は上記実施例 1, 2と同様である。すなわち、
(1)まず、図 15 (a)に示すように、表面に凹凸 101Aが形成された単結晶シリコン基 板 101を用意する。
[0159] ここで、アルカリ水溶液でのシリコンの溶解は、 { 111 }面が最も遅い。この特徴を利 用して、 Si (lOO)ウェハ上に、 { 111 }面で覆われたピラミッド形状のテクスチャを導入 した基板 101の断面の、電子顕微鏡写真を図 16に示す。
[0160] (2)次に、図 15 (b)に示すように、その単結晶シリコン基板 101上へ基板加熱スパ ッタ法により、欠陥を含んだシリコンのェピタキシャル成長を微量の酸素、水蒸気が 存在する条件下で行う。つまり、表面に凹凸 102Aが形成された単結晶シリコン犠牲 膜 102を形成する。
[0161] (3)次に、図 15 (c)に示すように、その単結晶シリコン犠牲膜 102上へ CVD法によ り欠陥の少ない単結晶シリコンのェピタキシャル成長を行う。つまり、表面に凹凸 103 Bが、裏面に凹凸 103Aが形成された欠陥の少ない単結晶シリコン薄膜 103を形成 する。
[0162] (4)次いで、図 15 (d)に示すように、単結晶シリコン薄膜 103上に支持基材 104を 保持する。
[0163] (5)次に、図 15 (e)に示すように、 HF/HNO /CH COOH混合溶液、または H
3 3
F/KMnO /CH COOH混合溶液による単結晶シリコン犠牲膜 102の選択エッチ ングを行い、支持基材 104に支持され、表面に凹凸 103Aが、裏面に凹凸 103Bが 形成された欠陥の少ない単結晶シリコン薄膜 103の分離を行う。
[0164] ここでは、実施例 2の製造方法に凹凸を形成する本実施例を適用したが、実施例 1 にも同様に適用することができる。
[0165] 次に、上述した単結晶薄膜の製造方法を用いて、太陽電池用発電層を形成する発 明について述べる。
[0166] 単結晶シリコン基板上にシリコンをェピタキシャル成長させる方法として、物理蒸着
(PVD ; Physical Vapor Deposition)法がある。一般的には、実験室で理想的環 境 (超高真空等)下、低温でゆっくりとシリコンを成長させる方法として用いられている 。一方、生産プロセスでは、化学気相成長(CVD ; Chemical Vapor Deposition )法が、高温で高速に半導体層を堆積させる方法として用いられる。
[0167] CVD法により単結晶シリコン薄膜をェピタキシャル成長させると、例えば、クロロシ ランを原料にした場合は、成膜速度は図 17に示す通り、 SiClや HC1等の化学種の
2
脱離が律速となり、 1200°C付近では Ι-10 /z mZminの成長速度が限界となる。高 温にすることにより速度を上げられるが、しかし原料供給律速となり易ぐ数; z mZmi nが実用上の上限となる。後述の、犠牲層劣化を防ぐ成膜速度 GRの下限とほぼ同程 度の速度となってしまい、 CVD法では犠牲層の劣化抑制が困難であることが分かる 。また、上記した本願発明者の提案によるドープシリコン層を用いた ELO法において 、ドープシリコン犠牲層上に単結晶シリコン薄膜を CVD法により成長させると、上記し た成長速度では 10 mの単結晶シリコン薄膜を形成するのに 1—10分力かってしま い、その時間内にドーパントが単結晶シリコン薄膜中に拡散してしまうため、犠牲層を 維持できな 、と 、う問題があった。
[0168] 一方、 PVD法ではシリコンのみが吸着するため、化学種の脱離がない。そのため、 脱離律速の上限を超え、成膜速度を任意に増大させることができる。ただし、成膜速 度を上げすぎると、低温ではシリコンがェピタキシャル成長せずに、多結晶もしくは非 晶質となってしまう。し力しながら、例えばシリコンの融点 1410°Cでの融液成長では 、 10mm/s,即ち、 600, 000 mZminもの速度でェピタキシャル成長することが 知られている。そこで、温度を融点近くまで上げれば、急速蒸着 (RVD ; Rapid Vap or Deposition)法でもェピタキシャル成長できる。
[0169] RVD法の特徴について、以下、 Bや Pを用いた高濃度ドープ犠牲層について具体 的に説明する。目的の単結晶シリコン薄膜の厚さが 10 mであるため、犠牲層の厚 さとしては 1Z10以下、即ち 1 m以下が望ましい。ドーパント(B, P)が: m拡散す ると、犠牲層の構造が劣化してしまうが、その時定数は、拡散係数を Dとすると、 ( 1 μ m) 2ZDで表される。この時間内に、上部単結晶シリコン薄膜が 10 m以上成長する 必要があるため、成膜速度 GRは、 GR> 10D/1 μ mが必要となる。既知の拡散係 数 Dと温度 Tの関係を用いることにより、 GR> 2 X 1012exp (-325 [kj/mol] /8. 3 l Q[/mol -K] / (T+ 273) [K] )の関係式が得られる。図 17は、このようにして得ら れた温度と成膜速度の関係を示す図である。
[0170] 実際に、基板温度 800°C、シリコン融液温度 1800°Cにて PVDを行ったところ、 10 μ mZminで単結晶シリコン薄膜のェピタキシャル成長に成功した。図 17からも明ら かなように、目標の成膜速度より 20000倍も速く成長でき、犠牲層の構造劣化の抑 制が容易となる。
[0171] 図 18は得られたシリコン薄膜の(220)面内 X線回折の φスキャン測定結果〔面内 X 線回折 (XRD)パターン〕を示す図である。この図に示す通り、(220)面の 4回対称の ピークが現れ、基板と同じく(100)方位の単結晶シリコン薄膜がェピタキシャル成長 した事が示された。
[0172] また、実際に、高濃度 Pドープシリコンを犠牲層とした三層構造の選択エッチングを 行ったところ、図 19に断面の電子顕微鏡写真を示す通り、選択エッチングは良好で めつに。
[0173] 具体的には、単結晶シリコン基板上に、高濃度 Pドープシリコン犠牲層を拡散法に より形成し、その上に RVD法により 4 mの単結晶シリコン薄膜を形成し、フッ酸'硝 酸 ·酢酸混合溶液で 1分間エッチングした。図 19にその選択エッチングした単結晶シ リコン薄膜 Z高濃度 Pドープシリコン犠牲層 Z単結晶シリコン基板の走査型電子顕微 鏡による断面写真を示す。この図に示す通り、犠牲層のみが選択的にエッチングさ れた。このように、 RVD法を用いることにより、犠牲層の構造を劣化させることなく単 結晶シリコン薄膜を形成することができ、犠牲層の選択エッチングによる単結晶シリコ ン薄膜と単結晶シリコン基板の分離が容易となる。
[0174] そこで、力かる急速蒸着法を上記した ELO法と組み合わせることにより、単結晶シリ コン膜のリフトオフが良好であり、かつ高純度の太陽電池発電層単結晶シリコン膜を 得ることができる太陽電池用単結晶シリコン薄膜及びそれを用いて得られる単結晶シ リコン薄膜太陽電池を得るようにした。
[0175] すなわち、 ELO法でのドープシリコン犠牲層のドーパントの拡散を抑えて、単結晶 シリコン膜のリフトオフを良好に行うことができる。
[0176] また、結晶欠陥犠牲層からの欠陥消失を抑えるためにも、急速蒸着法が有効であ ることから、急速蒸着法を用いることにより結晶欠陥犠牲層の欠陥消失を抑えて、単 結晶シリコン膜のリフトオフを良好に行うことができる。
[0177] また、このように構成することにより、特に、欠陥の少ない単結晶シリコン薄膜を太陽 電池用発電層として用いる場合には発電効率の向上を図ることができる。
[0178] 上記した方法により、欠陥の少ない単結晶シリコン薄膜又は支持基材に支持された 欠陥の少ない単結晶シリコン薄膜を得ることができ、これらは単結晶薄膜デバイスとし て用いることができる。例えば、太陽電池用発電層や SOI (Silicon On Insulator )半導体装置として用いることができる。
[0179] 最後に、大きな視点からは、シリコンの供給面でもメリットが大きい。高純度シリコン 源から単結晶シリコン薄膜を成長させる際、 CVD法では、一度、シリコンと塩ィ匕水素 を反応させ、クロロシランにする必要がある。しかし、塩素は装置を腐食し、それにより クロロシランの純度を低下させるというデメリットがあり、精製過程がプロセスの大半を 占めてしまう。元来、クロロシランィ匕は、低純度の金属級シリコンを気化'精製する為 の手段であり、高純度シリコンをクロロシランィ匕するメリットは少ない。一方、高純度シ リコンを加熱溶融し、 PVD法を用いる場合は、装置腐食や不純物混入の問題がなく 、プロセス的にも非常にシンプルになる。かつ、高速成膜によるプロセス時間の短縮 は大きな利点となる。
[0180] 以下、本発明の太陽電池用単結晶シリコン薄膜の製造についての実施例について 説明する。
[0181] 図 20は本発明の実施例を示す太陽電池用単結晶シリコン薄膜の製造工程断面模 式図である。
[0182] まず、図 20 (a)に示すように、単結晶シリコン基板 (铸型 Si基板) 201を用意して、 図 20 (b)に示すように、この単結晶シリコン基板 201上にェピタキシャルな犠牲層 20 2を形成する。次いで、図 20 (c)に示すように、この犠牲層 202上に単結晶シリコン薄 膜 203を RVD法により急速にェピタキシャル成長させ、次に、図 20 (d)に示すように 、犠牲層 202をエッチングし、太陽電池発電層単結晶シリコン薄膜 204を得る。
[0183] その場合、太陽電池発電層単結晶シリコン薄膜 204を、温度 T(°C)において成膜 速度 GR ( m/min)が GR> 2 X 1012exp〔一325 (kj/mol) /8. 31 (j/mol-K) / (Τ+ 273) (Κ)〕を満足する速度でェピタキシャル成長させることにより、犠牲層 20 2の構造変化を防ぐようにする。
[0184] また、その場合の太陽電池発電層単結晶シリコン薄膜 204の急速なェピタキシャル 成長を、 PVD法により行う。
[0185] 上記したように、 PVD法ではシリコンのみが吸着するため、化学種の脱離がない。
そのため、脱離律速の上限を超え、成膜速度を任意に増大させることができる。この とき、基板温度を十分に高くすれば、 RVD法でェピタキシャル成長できる。
[0186] そこで、上記した図 20 (b)の犠牲層 202の形成後に、 RVD法にてシリコンを堆積 すれば、犠牲層 202の表面に単結晶シリコン薄膜 203を急速にェピタキシャル成長 させることがでさる。
[0187] さらに、前記犠牲層は結晶欠陥を含んだ結晶シリコンを用いることができる。
[0188] その場合、結晶欠陥が、双晶、空孔、格子間原子、刃状転移、螺旋転移であるもの を用いることができる。
[0189] また、その結晶欠陥の数密度は、前記単結晶シリコン基板と前記シリコン犠牲層と の界面において、 1/ m2— 1/nm2にすることができる。
[0190] さらに、犠牲層の形成後に、犠牲層の表面の結晶欠陥を消失させることができる。
すなわち、 ELO法において、犠牲層として元素組成が等しい材料で、結晶欠陥を含 んだ単結晶層を用いる。例えば、単結晶シリコン薄膜の製造においては、単結晶シリ コン基板上に、微量の酸素'水蒸気が存在する条件下でシリコンを成長させると、シリ コン層は全体としてはェピタキシャルに成長しつつも、双晶をはじめとした結晶欠陥 を含むようになる。その後、還元性雰囲気 (水素雰囲気)で熱ァニール処理を施すと 、シリコンの表面拡散により、最表面の欠陥が消失する。その上に、急速なェピタキシ ャル成長を、 PVD法により行うと、結晶欠陥の入らない清浄な条件下でシリコンを急 速成長させることができる。結晶欠陥を含む犠牲層は、フッ酸と酸化剤の混合溶液で 選択エッチングできるため、リフトオフが良好で、かつ高純度の太陽電池発電層単結 晶シリコン薄膜を得ることができる。
[0191] また、上記した結晶の犠牲層としては高濃度ドープされた単結晶シリコンを用いるこ とがでさる。
[0192] その場合、前記高濃度にドープされた単結晶シリコン中のドーパントとしては、 III族 な 、し V族元素を用いることができる。
[0193] また、前記高濃度にドープされた単結晶シリコン中のドーパント濃度としては、 1018 原子 Zcm3以上とすることができる。
[0194] さらに、単結晶シリコン基板表面にドーパント源を供給することにより、高濃度にドー プされた単結晶シリコン犠牲層を形成することができる。
[0195] また、単結晶シリコン基板上にシリコン源とドーパント源を同時に供給することにより
、高濃度にドープされた単結晶シリコン犠牲層を形成するようにしてもよい。
[0196] さらに、シリコン源とドーパント源の比率を時間に対して制御して単結晶シリコン基 板上に供給することにより、急速にェピタキシャル成長するシリコン膜中にドーパント 濃度の高い層と低い層を形成し、前者を犠牲層とし後者を太陽電池発電層単結晶シ リコン薄膜とすることができる。
[0197] また、結晶の犠牲層としては、シリコンを含む化合物結晶を用いることができる。そ の場合、前記シリコンを含む化合物結晶としては CoSi、 NiSi、 CrSiなどの金属シ
2 2 2
リサイドとすることができる。
[0198] また、結晶の犠牲層としては、シリコンを含まない結晶を用いることができる。
[0199] また、犠牲層をフッ酸を含む水溶液でエッチングすることにより、太陽電池発電層単 結晶シリコン薄膜を製造することができる。
[0200] さらに、太陽電池発電層単結晶シリコン薄膜を形成した後に、その太陽電池発電 層単結晶シリコン薄膜を支持基材に保持した後、前記シリコン犠牲層をエッチングし 、太陽電池発電層単結晶シリコン薄膜を製造することができる。
[0201] また、太陽電池発電層単結晶シリコン薄膜の製造方法において、前記単結晶シリコ ン基板に間隔をとつて穴を形成することができる。
[0202] さらに、太陽電池発電層単結晶シリコン薄膜の製造方法において、前記単結晶シリ コン基板の表面に凹凸を形成することができる。
[0203] 本発明の太陽電池用単結晶シリコン薄膜の製造方法では、 RVD法により単結晶シ リコン薄膜のェピタキシャル成長速度を上げることにより生産性が上がるだけでなぐ 基板全体が高温に曝される時間が短くなるために犠牲層の構造変化が抑えられ、犠 牲層選択エッチングによる単結晶シリコン薄膜と単結晶シリコン基板との分離が良好 となり、結果として高純度で欠陥のない単結晶シリコン薄膜を得ることができ、非常に 有望なプロセスとなる。また、単結晶シリコンに限らず、他の物質、例えば、 Ge、 GaA s、 GaN、 GeN等、任意の材料の単結晶薄膜の製造にも適用可能である。
[0204] 特に、表面に凹凸を形成した単結晶シリコン薄膜を用いる場合には、太陽電池用 発電層として用いると、太陽光を効率よく単結晶薄膜に取り込むことができ、その発 電効率を高めることができる。
[0205] 図 21は本発明の実施例を示す高スループット蒸着 (ドープ層形成)装置の模式図 、図 22はその高スループット蒸着装置のフローに沿って形成される太陽電池発電層 の製造断面図である。
[0206] この図 21において、 Aは高スループット蒸着装置 (反応炉)、 Bはサセプタ(グラファ イトなど)、 Cはシリコン基板、 Dはるつぼ (石英など)、 Eはシリコン溶液、 Fは加熱装 置 (通電加熱装置、誘導加熱装置、電子ビーム加熱装置など)である。この高スルー プット蒸着装置はサセプタ Bを用いたコンベヤー方式により、高濃度ドープ層と太陽 電池の発電層(pZn接合込み)の連続的な一貫成膜が行えるように構成されて!、る 。また、製造装置としては、 Hキャリアを流して、差動排気による不純物逆拡散防止
2
を行うとともに、予熱を行うことができる。
[0207] 太陽電池の発電層の製造工程は、まず、図 22 (a)に示すように、単結晶シリコン基 板 301の表面に単結晶シリコン p++層 302を成長させ、次に、図 22 (b)—(c)に示すよ うに、単結晶シリコン P層 303を、 PVD法により急速ェピタキシャル成長させる。これら の単結晶シリコン p層 303及び 層 302は、 Siに B又は B Hを付加した気相成長法
2 6
により形成する。次に、図 22 (d)に示すように、単結晶シリコン p層 303の表面に n+層 304を成長させる。この n+層 304はインサイチュウ(in situ)ドーピング(同一反応炉 内で同時に被ドーピング膜に所望の不純物をドーピングする)、つまり、 Siに P又は P Hを付加した気相成長法により形成される。
3
[0208] このようにして、高スループット蒸着装置により連続的な一貫成膜が行われた n+層 3 04Zp層 303ZP++層 302ZSi基板 301の積層基板を、その装置から取り出して、図 22 (e)に示すように、 層(高濃度ドープ層) 302をフッ酸を含む水溶液でエツチン グすることにより、太陽電池発電層単結晶シリコン薄膜 305を製造することができる。
[0209] 図 23は本発明の実施例を示す高スループット蒸着 (欠陥層形成)装置の模式図で ある。
[0210] この図 23においても、図 21と同様にグラファイトサセプタ Bを用いたコンベヤー方式 により、欠陥層の形成、表層欠陥の消失、発電層 (pZn接合込み)の連続的な一貫 成膜が行えるように構成されている。また、製造装置としては、 H
2キャリアを流して、 差動排気による不純物逆拡散防止を行うとともに、予熱を行うことができる。
[0211] 太陽電池発電層の製造工程は、まず、処理ブロック Iで、欠陥エピタキシーを 800 一 1200°Cの雰囲気で行い、次いで、処理ブロック IIで、アニーリングを 1000— 1400 °Cの雰囲気で行い、次いで、処理ブロック IIIで、 PVD法による急速ェピタキシャル成 長を行 ヽ、太陽電池発電層の高品質のェピタキシャル成長を行う。
[0212] このようにして、高スループット蒸着装置による連続的な一貫成膜が行われた欠陥 層及び太陽電池発電層を、その装置力 取り出して、欠陥層をフッ酸を含む水溶液 でエッチングすることにより、太陽電池発電層単結晶シリコン薄膜を製造することがで きる。
[0213] 特に、 PVD法により、 10 mの太陽電池発電層を 1一 lOminで形成するようにす る。そのために、高温で蒸着を行うようにする。
[0214] 一方、 CVD法では、シリコンとともにシリコン以外の元素も成長表面に吸着するた め、それらの元素の脱離速度が、成膜速度の上限になり得る。例えば、クロロシランを 用いる典型的な CVD法では、塩素や水素の脱離が律速となり、成長速度の上限を 決める。換言すれば、単結晶シリコン薄膜のェピタキシャル成長に必要な時間に上 限が生じ、その時間内に犠牲層の構造変化や、犠牲層力 単結晶シリコン薄膜や基 板への元素の拡散が起きてしまうことが、上述の問題の原因である。
[0215] このような状況下、本発明では、上記したように、 PVD法により成膜速度を上げるこ とを発明した。即ち、成長表面にシリコンのみを供給すれば、塩素や水素といった他 の元素の脱離が不要となり、脱離律速という上限が、成膜速度に関してなくなる。 PV D法での成膜速度の上限は、供給されたシリコンが、単結晶シリコン基板または膜表 面とェピタキシャルな配置に移動するまでの時間で決まる。実際に基板温度 800°C にて PVD法によりシリコンを単結晶シリコン基板表面に供給したところ、成膜速度 10 IX mZminでのェピタキシャル成長を確認した。同じ成膜速度を得るには CVD法で は 1200°C程度必要であるので、 400°Cの基板温度の低下ができることが現時点で 分かっている。 400°Cの温度低下により、拡散速度は 1Z20000まで低下できる。
[0216] 以上、本発明により、犠牲層の劣化なしに単結晶シリコン薄膜 Z犠牲層 Z単結晶 シリコン基板の三層構造の作製が可能となり、ひいては単結晶シリコン薄膜の製造も 可能となった。
[0217] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0218] 本発明によれば、単結晶シリコン膜のリフトオフが良好であり、かつ結晶欠陥の少な い、高純度の太陽電池用単結晶シリコン膜を得ることができる。
[0219] したがって、太陽電池の大幅な低コストィ匕を図ることができる。
[0220] 具体的には、家庭用太陽光発電システムの全体の 2Z3のコストを占めるバルタ結 晶シリコン型モジュールのうち、更にそのコストの 4割を占める結晶シリコン基板作製 において、高純度シリコンの使用量を 1Z10— 1Z100へと大幅に削減できる。
[0221] また、現在顕在化している高純度シリコン不足の問題も解決する。更に、系統電源 コストに見合う価格まで低コストィ匕できれば、政策的支援無しでの太陽電池普及が可 能となり、太陽電池市場が大幅に拡大すると期待される。
産業上の利用可能性
[0222] 本発明は、太陽電池の発電層、半導体デバイスとしてのシリコン '化合物半導体の 単結晶薄膜の製造、 SOI基板の製造等に適している。

Claims

請求の範囲
[1] (a)単結晶基板を準備し、
(b)該単結晶基板上に同一の物質で結晶欠陥を含んだ犠牲層をェピタキシャル成 長させ、
(c)該犠牲層上に同一の物質で前記犠牲層より結晶欠陥の少ない単結晶薄膜をェ ピタキシャル成長させ、
(d)前記犠牲層をエッチングし、結晶欠陥の少ない単結晶薄膜を製造することを特 徴とする単結晶薄膜の製造方法。
[2] 請求項 1記載の単結晶薄膜の製造方法にお!、て、前記 (b)工程に次 、で前記犠 牲層の表面の結晶欠陥を消失させることを特徴とする単結晶薄膜の製造方法。
[3] 請求項 1又は 2記載の単結晶薄膜の製造方法において、前記単結晶基板が単結 晶シリコン基板、前記犠牲層がシリコン犠牲層、前記単結晶薄膜が単結晶シリコン薄 膜であることを特徴とする単結晶薄膜の製造方法。
[4] 請求項 1又は 2記載の単結晶薄膜の製造方法において、前記単結晶基板が単結 晶 GaAs基板であることを特徴とする単結晶薄膜の製造方法。
[5] 請求項 1又は 2記載の単結晶薄膜の製造方法において、前記単結晶基板が単結 晶 MgO基板であることを特徴とする単結晶薄膜の製造方法。
[6] 請求項 1記載の単結晶薄膜の製造方法において、前記 (b)工程を、 400— 1200
°Cで物理蒸着法又は化学蒸着法で行うことにより、結晶欠陥を含んだシリコン犠牲層 をェピタキシャル成長させることを特徴とする単結晶薄膜の製造方法。
[7] 請求項 3又は 6記載の単結晶薄膜の製造方法において、前記結晶欠陥が双晶、空 孔、格子間原子、刃状転移、螺旋転移であることを特徴とする単結晶薄膜の製造方 法。
[8] 請求項 3、 6又は 7記載の単結晶薄膜の製造方法において、前記結晶欠陥の数密 度力 前記単結晶シリコン基板と前記シリコン犠牲層との界面において、
lZnm2であることを特徴とする単結晶薄膜の製造方法。
[9] 請求項 3又は 6— 8の何れか一項記載の単結晶薄膜の製造方法において、前記単 結晶シリコン基板と前記シリコン犠牲層との界面において、 m 2— l/nm 2の数 密度で双晶が存在することを特徴とする単結晶薄膜の製造方法。
[10] 請求項 3又は 6— 9の何れか一項記載の単結晶薄膜の製造方法において、前記 (b )工程に次いで、還元性雰囲気下、温度 1000— 1400°Cで熱ァニールを行うことに より、前記シリコン犠牲層の表面の結晶欠陥を消失させることを特徴とする単結晶薄 膜の製造方法。
[11] 請求項 10記載の単結晶薄膜の製造方法において、前記ァニール処理後に、前記 シリコン犠牲層表面における双晶の数密度が、前記シリコン犠牲層と前記単結晶シリ コン基板との界面における双晶の数密度の、 100分の 1以下であることを特徴とする 単結晶薄膜の製造方法。
[12] 請求項 3又は 6— 11の何れか一項記載の単結晶薄膜の製造方法において、前記( c)工程を、基板温度 1000— 1400°Cで物理蒸着法又は化学蒸着法で行うことにより
、結晶欠陥の少ない単結晶シリコン薄膜をェピタキシャル成長させることを特徴とす る単結晶薄膜の製造方法。
[13] 請求項 3又は 6— 12の何れか一項記載の単結晶薄膜の製造方法において、前記( c)工程に次いで前記単結晶シリコン薄膜を支持基材に保持した後、前記シリコン犠 牲層をエッチングし、単結晶シリコン薄膜を製造することを特徴とする単結晶薄膜の 製造方法。
[14] 請求項 3又は 6— 13の何れか一項記載の単結晶薄膜の製造方法において、前記 単結晶シリコン基板に間隔をとつて穴を形成することを特徴とする単結晶薄膜の製造 方法。
[15] 請求項 3又は 6— 14の何れか一項記載の単結晶薄膜の製造方法において、前記 シリコン犠牲層の厚さを lOOnm以下にすることで、前記単結晶シリコン薄膜の下面の 凹凸を lOOnm以下に抑えることを特徴とする単結晶薄膜の製造方法。
[16] 請求項 3又は 6— 14の何れか一項記載の単結晶薄膜の製造方法において、前記 シリコン犠牲層の厚さを lOOnm以上にすることで、前記単結晶シリコン薄膜の下面に lOOnm以上のテクスチャ構造を導入することを特徴とする単結晶薄膜の製造方法。
[17] 請求項 3又は 6— 16の何れか一項記載の単結晶薄膜の製造方法において、前記 単結晶シリコン基板の表面に凹凸を形成することを特徴とする単結晶薄膜の製造方 法。
[18] 請求項 3又は 6— 17の何れか一項記載の単結晶薄膜の製造方法において、前記 シリコン犠牲層のエッチングをフッ酸と酸化剤の混合溶液で行うことを特徴とする単結 晶薄膜の製造方法。
[19] 請求項 1から 5の 、ずれか一項記載の単結晶薄膜の製造方法によって得られる単 結晶薄膜デバイス。
[20] 請求項 3又は 6— 18のいずれか一項記載の単結晶シリコン薄膜の製造方法によつ て得られる単結晶薄膜デバイス。
[21] 請求項 20記載の単結晶薄膜デバイスにおいて、前記単結晶シリコン薄膜が太陽 電池用発電層であることを特徴とする単結晶薄膜デバイス。
[22] 請求項 20記載の単結晶薄膜デバイスにおいて、前記単結晶シリコン薄膜が SOI用 単結晶シリコン薄膜であることを特徴とする単結晶薄膜デバイス。
[23] (a)単結晶シリコン基板を準備し、
(b)該基板上にェピタキシャルな犠牲層を形成し、
(c)該犠牲層上に単結晶シリコン薄膜を急速にェピタキシャル成長させ、
(d)前記犠牲層をエッチングし、太陽電池発電層単結晶シリコン薄膜を製造すること を特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[24] 請求項 23記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記単結 晶シリコン薄膜を、温度 T (°C)において成膜速度 GR m/min)が
GR > 2 X 1012exp [-325 (kj/mol) /8. 31 (j/mol · K) / (T + 273) (Κ)〕 を満足する速度でェピタキシャル成長させることにより、前記犠牲層の構造変化を防 ぐことを特徴とする太陽電池発電層単結晶シリコン薄膜の製造方法。
[25] 請求項 23又は 24記載の太陽電池用単結晶シリコン薄膜の製造方法において、前 記単結晶シリコン薄膜の急速なェピタキシャル成長を、物理蒸着法により行うことを 特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[26] 請求項 23、 24又は 25記載の太陽電池用単結晶シリコン薄膜の製造方法において
、前記犠牲層が結晶欠陥を含んだ結晶シリコンであることを特徴とする太陽電池用単 結晶シリコン薄膜の製造方法。
[27] 請求項 26記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記結晶 欠陥が双晶、空孔、格子間原子、刃状転移、螺旋転移であることを特徴とする太陽 電池用単結晶シリコン薄膜の製造方法。
[28] 請求項 26又は 27記載の太陽電池用単結晶シリコン薄膜の製造方法において、前 記結晶欠陥の数密度が、前記単結晶シリコン基板と前記シリコン犠牲層との界面に おいて、 1/ m2— 1/nm2であることを特徴とする太陽電池用単結晶シリコン薄膜 の製造方法。
[29] 請求項 25から 28の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 において、前記 (b)工程に次いで前記犠牲層の表面の結晶欠陥を消失させることを 特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[30] 請求項 23、 24又は 25記載の太陽電池用単結晶シリコン薄膜の製造方法において
、結晶の犠牲層が高濃度ドープされた単結晶シリコンであることを特徴とする太陽電 池用単結晶シリコン薄膜の製造方法。
[31] 請求項 30記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記高濃 度にドープされた単結晶シリコン中のドーパントが、 III族ないし V族元素であることを 特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[32] 請求項 30又は 31記載の太陽電池用単結晶シリコン薄膜の製造方法において、前 記高濃度にドープされた単結晶シリコン中のドーパント濃度が、 1018原子 /cm3以上 であることを特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[33] 請求項 30、 31、 32の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方 法において、単結晶シリコン基板表面にドーパント源を供給することにより、高濃度に ドープされた単結晶シリコン犠牲層を形成することを特徴とする太陽電池用単結晶シ リコン薄膜の製造方法。
[34] 請求項 30、 31、 32の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方 法において、単結晶シリコン基板上にシリコン源とドーパント源を同時に供給すること により、高濃度にドープされた単結晶シリコン犠牲層を形成することを特徴とする太陽 電池用単結晶シリコン薄膜の製造方法。
[35] 請求項 30、 31、 32の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方 法において、シリコン源とドーパント源の比率を時間に対して制御して単結晶シリコン 基板上に供給することにより、急速にェピタキシャル成長するシリコン膜中にドーパン ト濃度の高い層と低い層を形成し、前者を犠牲層とし後者を太陽電池発電層単結晶 シリコン薄膜とすることを特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[36] 請求項 23、 24又は 25記載の太陽電池用単結晶シリコン薄膜の製造方法において
、結晶の犠牲層がシリコンを含む化合物結晶であることを特徴とする太陽電池用単 結晶シリコン薄膜の製造方法。
[37] 請求項 36記載の太陽電池用単結晶シリコン薄膜の製造方法において、前記シリコ ンを含む化合物結晶が CoSi、 NiSi、 CrSiなどの金属シリサイドであることを特徴と
2 2 2
する太陽電池用単結晶シリコン薄膜の製造方法。
[38] 請求項 23、 24又は 25記載の太陽電池用単結晶シリコン薄膜の製造方法において
、結晶の犠牲層がシリコンを含まない結晶であることを特徴とする太陽電池用単結晶 シリコン薄膜の製造方法。
[39] 請求項 23— 38の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 において、犠牲層をフッ酸を含む水溶液でエッチングすることにより、太陽電池発電 層単結晶シリコン薄膜を製造することを特徴とする太陽電池用単結晶シリコン薄膜の 製造方法。
[40] 請求項 23— 39の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 において、前記 (c)工程に次いで前記太陽電池発電層単結晶シリコン薄膜を支持基 材に保持した後、前記シリコン犠牲層をエッチングし、太陽電池発電層単結晶シリコ ン薄膜を製造することを特徴とする太陽電池用単結晶シリコン薄膜の製造方法。
[41] 請求項 23から 40の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 において、前記単結晶シリコン基板に間隔をとつて穴を形成することを特徴とする太 陽電池用単結晶シリコン薄膜の製造方法。
[42] 請求項 23から 41の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 において、前記単結晶シリコン基板の表面に凹凸を形成することを特徴とする太陽 電池用単結晶シリコン薄膜の製造方法。
[43] 請求項 23から 42の何れか一項記載の太陽電池用単結晶シリコン薄膜の製造方法 によって得られる単結晶シリコン薄膜太陽電池。
PCT/JP2004/019195 2004-01-15 2004-12-22 単結晶薄膜の製造方法及びその単結晶薄膜デバイス WO2005069356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005516983A JPWO2005069356A1 (ja) 2004-01-15 2004-12-22 単結晶薄膜の製造方法及びその単結晶薄膜デバイス
US10/585,731 US7887632B2 (en) 2004-01-15 2004-12-22 Process for producing monocrystal thin film and monocrystal thin film device
EP20040807552 EP1708254A4 (en) 2004-01-15 2004-12-22 METHOD FOR PRODUCING MONOCRYSTALLINE THIN FILM AND MONOCRYSTALLINE THIN FILM DEVICE
US12/963,168 US9130111B2 (en) 2004-01-15 2010-12-08 Method for manufacturing monocrystalline thin film and monocrystalline thin film device manufactured thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-007754 2004-01-15
JP2004007754 2004-01-15

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/585,731 A-371-Of-International US7887632B2 (en) 2004-01-15 2004-12-22 Process for producing monocrystal thin film and monocrystal thin film device
US12/963,168 Continuation US9130111B2 (en) 2004-01-15 2010-12-08 Method for manufacturing monocrystalline thin film and monocrystalline thin film device manufactured thereby
US12/963,168 Division US9130111B2 (en) 2004-01-15 2010-12-08 Method for manufacturing monocrystalline thin film and monocrystalline thin film device manufactured thereby

Publications (1)

Publication Number Publication Date
WO2005069356A1 true WO2005069356A1 (ja) 2005-07-28

Family

ID=34792192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019195 WO2005069356A1 (ja) 2004-01-15 2004-12-22 単結晶薄膜の製造方法及びその単結晶薄膜デバイス

Country Status (6)

Country Link
US (2) US7887632B2 (ja)
EP (2) EP2256786A1 (ja)
JP (2) JPWO2005069356A1 (ja)
CN (1) CN100433257C (ja)
TW (1) TWI281705B (ja)
WO (1) WO2005069356A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184252A (ja) * 2005-12-05 2007-07-19 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及びその製造方法、非水電解質二次電池用電極集電体の製造方法、並びに非水電解質二次電池
JP2009529795A (ja) * 2006-03-14 2009-08-20 インスティチュート フュア ミクロエレクトロニク シュトゥットガルト 集積回路を製造する方法
WO2012029333A1 (ja) 2010-08-31 2012-03-08 Akiyama Nobuyuki シリコン薄膜の製造方法、シリコン薄膜太陽電池の製造方法、シリコン薄膜、シリコン薄膜太陽電池
JP2013069719A (ja) * 2011-09-20 2013-04-18 Toshiba Corp 半導体装置及びその製造方法
US8642372B2 (en) * 2008-08-29 2014-02-04 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2016192544A (ja) * 2015-02-25 2016-11-10 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体基板配列、および半導体基板配列の形成方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816191B2 (en) * 2005-11-29 2014-08-26 Banpil Photonics, Inc. High efficiency photovoltaic cells and manufacturing thereof
US8080452B2 (en) 2006-08-01 2011-12-20 Nxp, B.V. Effecting selectivity of silicon or silicon-germanium deposition on a silicon or silicon-germanium substrate by doping
US8937243B2 (en) * 2006-10-09 2015-01-20 Solexel, Inc. Structures and methods for high-efficiency pyramidal three-dimensional solar cells
US20080264477A1 (en) * 2006-10-09 2008-10-30 Soltaix, Inc. Methods for manufacturing three-dimensional thin-film solar cells
US8035027B2 (en) 2006-10-09 2011-10-11 Solexel, Inc. Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells
WO2009028974A1 (en) * 2007-08-31 2009-03-05 Faculdade De Ciências Da Universidade De Lisboa Method for the production of semiconductor ribbons from a gaseous feedstock
TWI377685B (en) * 2008-12-08 2012-11-21 Pvnext Corp Photovoltaic cell structure and manufacturing method thereof
US20110068367A1 (en) * 2009-09-23 2011-03-24 Sierra Solar Power, Inc. Double-sided heterojunction solar cell based on thin epitaxial silicon
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
CN102376788A (zh) * 2010-08-11 2012-03-14 朱忻 用于太阳能电池的多层薄膜及其制备方法和用途
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
CN102054890B (zh) * 2010-10-29 2013-01-02 中国科学院半导体研究所 一种单晶薄膜异质结太阳电池及其制备方法
TWI408732B (zh) * 2010-12-23 2013-09-11 Nat Univ Chung Hsing The epitaxial structure with easy removal of the sacrificial layer and its manufacturing method
US8486746B2 (en) * 2011-03-29 2013-07-16 Sunpower Corporation Thin silicon solar cell and method of manufacture
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
FR2978605B1 (fr) 2011-07-28 2015-10-16 Soitec Silicon On Insulator Procede de fabrication d'une structure semi-conductrice comprenant une couche fonctionnalisee sur un substrat support
TWI456649B (zh) * 2011-10-27 2014-10-11 Atomic Energy Council 去除提純冶金級矽晶圓表面與內部金屬雜質之製備方法
US8685840B2 (en) * 2011-12-07 2014-04-01 Institute Of Nuclear Energy Research, Atomic Energy Council In-situ gettering method for removing metal impurities from the surface and interior of a upgraded metallurgical grade silicon wafer
CN103258716B (zh) * 2012-02-16 2016-03-09 财团法人工业技术研究院 制作具有织化表面的半导体层的方法、制作太阳能电池的方法
US9136134B2 (en) * 2012-02-22 2015-09-15 Soitec Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
US9224911B2 (en) * 2012-09-12 2015-12-29 High Power Opto. Inc. Method for separating light-emitting diode from a substrate
CN104781936A (zh) 2012-10-04 2015-07-15 喜瑞能源公司 具有电镀的金属格栅的光伏器件
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
CN103074672A (zh) * 2013-01-06 2013-05-01 向勇 一种单晶硅的气相外延生长方法
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
CN104143496B (zh) 2013-05-08 2016-12-28 中国科学院上海高等研究院 一种基于层转移的晶硅薄膜的制备方法
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
CN104979425B (zh) * 2014-04-09 2017-03-15 中国科学院上海高等研究院 一种应用于层转移薄膜生长的籽晶阵列的制备方法
CN104078336B (zh) * 2014-07-02 2018-01-09 上海朕芯微电子科技有限公司 无衬底结构的功率器件制造工艺
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
JP6182778B2 (ja) 2014-10-31 2017-08-23 トヨタ自動車株式会社 ハイブリッド車両
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
AU2016336428A1 (en) 2015-10-09 2018-05-24 Milwaukee Silicon, Llc Devices and systems for purifying silicon
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
CN108231534A (zh) * 2016-12-15 2018-06-29 上海新微技术研发中心有限公司 柔性薄膜的制造方法
WO2018195152A1 (en) * 2017-04-18 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating semiconductor devices via remote epitaxy
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
CN108155270B (zh) * 2017-12-13 2019-09-20 北京创昱科技有限公司 一种薄膜与晶片的分离装置和分离方法
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
US20220157604A1 (en) * 2020-11-16 2022-05-19 Applied Materials, Inc. Apparatus, systems, and methods of using atomic hydrogen radicals with selective epitaxial deposition
CN113555456B (zh) * 2021-06-30 2024-08-30 杭州电子科技大学 一种柔性超薄晶硅电池及制备方法
KR102712378B1 (ko) * 2021-12-02 2024-10-04 인하대학교 산학협력단 실리콘계 물질의 단결정 성장방법
CN114300338A (zh) * 2021-12-06 2022-04-08 电子科技大学长三角研究院(湖州) 一种薄膜制造方法
CN114481101B (zh) * 2021-12-15 2023-09-29 中南大学 一种调控金属镀层晶面取向的方法获得的金属材料和应用
KR102510607B1 (ko) * 2022-06-21 2023-03-20 한국과학기술연구원 결정 희생층의 자가 확산 방식으로 도핑된 고결정 산화물 박막과 그 제조 방법
WO2024029217A1 (ja) * 2022-08-03 2024-02-08 信越半導体株式会社 3C-SiC積層基板の製造方法、3C-SiC積層基板及び3C-SiC自立基板
CN115584478B (zh) * 2022-09-27 2024-08-13 中国电子科技集团公司第五十五研究所 一种低缺陷密度外延薄膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275663A (ja) 1992-01-31 1993-10-22 Canon Inc 半導体素子基体及びその作製方法
JPH07226528A (ja) 1993-06-11 1995-08-22 Mitsubishi Electric Corp 薄膜太陽電池の製造方法,及び薄膜太陽電池
JPH10200080A (ja) * 1996-11-15 1998-07-31 Canon Inc 半導体部材の製造方法
JPH1140785A (ja) 1997-07-22 1999-02-12 Nec Ic Microcomput Syst Ltd ゲートアレイの自動配置配線方法
JP2000077352A (ja) 1998-06-18 2000-03-14 Canon Inc 半導体基板及び半導体基板の作製方法
WO2002040751A1 (fr) 2000-11-20 2002-05-23 Hiroshi Komiyama Procede de fabrication d'un film, film obtenu et structure laminee

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255208A (en) * 1979-05-25 1981-03-10 Ramot University Authority For Applied Research And Industrial Development Ltd. Method of producing monocrystalline semiconductor films utilizing an intermediate water dissolvable salt layer
JPH04127421A (ja) * 1990-09-18 1992-04-28 Fujitsu Ltd 半導体装置の製造方法
JP2962918B2 (ja) * 1992-01-31 1999-10-12 キヤノン株式会社 シリコン薄膜の形成方法及び太陽電池の製造方法
JP3257580B2 (ja) * 1994-03-10 2002-02-18 キヤノン株式会社 半導体基板の作製方法
JP3381443B2 (ja) * 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
SG65697A1 (en) * 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
AUPO468697A0 (en) * 1997-01-21 1997-02-13 Australian National University, The A method of producing thin silicon epitaxial films
JP3647191B2 (ja) * 1997-03-27 2005-05-11 キヤノン株式会社 半導体装置の製造方法
CN1184692C (zh) * 2001-08-24 2005-01-12 中国科学院上海冶金研究所 一种多层结构绝缘层上锗化硅材料及制备方法
CN100342492C (zh) * 2003-03-14 2007-10-10 中国科学院上海微系统与信息技术研究所 一种厚膜绝缘层上硅材料的制备方法
KR100553683B1 (ko) * 2003-05-02 2006-02-24 삼성전자주식회사 반도체 소자 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275663A (ja) 1992-01-31 1993-10-22 Canon Inc 半導体素子基体及びその作製方法
JPH07226528A (ja) 1993-06-11 1995-08-22 Mitsubishi Electric Corp 薄膜太陽電池の製造方法,及び薄膜太陽電池
JPH10200080A (ja) * 1996-11-15 1998-07-31 Canon Inc 半導体部材の製造方法
JPH1140785A (ja) 1997-07-22 1999-02-12 Nec Ic Microcomput Syst Ltd ゲートアレイの自動配置配線方法
JP2000077352A (ja) 1998-06-18 2000-03-14 Canon Inc 半導体基板及び半導体基板の作製方法
WO2002040751A1 (fr) 2000-11-20 2002-05-23 Hiroshi Komiyama Procede de fabrication d'un film, film obtenu et structure laminee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1708254A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184252A (ja) * 2005-12-05 2007-07-19 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及びその製造方法、非水電解質二次電池用電極集電体の製造方法、並びに非水電解質二次電池
JP2009529795A (ja) * 2006-03-14 2009-08-20 インスティチュート フュア ミクロエレクトロニク シュトゥットガルト 集積回路を製造する方法
US8642372B2 (en) * 2008-08-29 2014-02-04 Lg Electronics Inc. Solar cell and method for manufacturing the same
US9343599B2 (en) 2008-08-29 2016-05-17 Lg Electronics Inc. Solar cell and method for manufacturing the same
WO2012029333A1 (ja) 2010-08-31 2012-03-08 Akiyama Nobuyuki シリコン薄膜の製造方法、シリコン薄膜太陽電池の製造方法、シリコン薄膜、シリコン薄膜太陽電池
JP2013069719A (ja) * 2011-09-20 2013-04-18 Toshiba Corp 半導体装置及びその製造方法
JP2016192544A (ja) * 2015-02-25 2016-11-10 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体基板配列、および半導体基板配列の形成方法
US10121691B2 (en) 2015-02-25 2018-11-06 Infineon Technologies Ag Semiconductor substrate arrangements and a method for forming a semiconductor substrate arrangement

Also Published As

Publication number Publication date
US20080202582A1 (en) 2008-08-28
US9130111B2 (en) 2015-09-08
US20110073184A1 (en) 2011-03-31
TWI281705B (en) 2007-05-21
US7887632B2 (en) 2011-02-15
JPWO2005069356A1 (ja) 2008-04-24
EP1708254A1 (en) 2006-10-04
TW200524005A (en) 2005-07-16
JP5330349B2 (ja) 2013-10-30
EP2256786A1 (en) 2010-12-01
JP2011023742A (ja) 2011-02-03
CN1918697A (zh) 2007-02-21
EP1708254A4 (en) 2010-11-24
CN100433257C (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5330349B2 (ja) 単結晶薄膜の製造方法
CN102301043B (zh) 外延碳化硅单晶基板及其制造方法
WO2006137192A1 (ja) 炭化ケイ素基板の表面再構成方法
CN103228827A (zh) 外延碳化硅单晶基板的制造方法
JP2001160540A (ja) 半導体装置の製造方法、液相成長法及び液相成長装置、太陽電池
JP2000223419A (ja) 単結晶シリコン層の形成方法及び半導体装置の製造方法、並びに半導体装置
US20060194417A1 (en) Polycrystalline sillicon substrate
WO2011013280A1 (ja) シリコンウェーハの熱処理方法
JP2012186229A (ja) 単結晶シリコン薄膜の製造方法、単結晶シリコン薄膜デバイスの製造方法及び太陽電池デバイスの製造方法並びに単結晶シリコン薄膜及びそれを用いた単結晶シリコン薄膜デバイス及び太陽電池デバイス
JP2004296598A (ja) 太陽電池
JP3298467B2 (ja) エピタキシャルウェーハの製造方法
JP3657036B2 (ja) 炭化ケイ素薄膜および炭化ケイ素薄膜積層基板の製造方法
KR100799144B1 (ko) 단결정 박막의 제조 방법 및 그 단결정 박막 디바이스
JP2001089291A (ja) 液相成長法、半導体部材の製造方法、太陽電池の製造方法
JP2756320B2 (ja) 結晶の形成方法
US20100314804A1 (en) Method for the production of semiconductor ribbons from a gaseous feedstock
JP3922674B2 (ja) シリコンウエハの製造方法
JPH11251241A (ja) 結晶質珪素層の製造方法、太陽電池の製造方法及び薄膜トランジスタの製造方法
JP4509244B2 (ja) 半導体素子の製造方法
TW202405899A (zh) 磊晶晶圓的製造方法
WO2023163078A1 (ja) 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子
JP2000277403A (ja) 半導体基体の作製方法
JP2001351869A (ja) シリコンウェーハおよびその製造方法
JP2002134410A (ja) 半導体基板とこれを利用した太陽電池セルおよびそれらの製造方法
Tsuji et al. Epitaxial Lift-off Technology for Solar Cell Application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005516983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067014228

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2004807552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004807552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200480041710.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004807552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10585731

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067014228

Country of ref document: KR