[go: up one dir, main page]

WO2005059602A1 - Light absorptive antireflector - Google Patents

Light absorptive antireflector Download PDF

Info

Publication number
WO2005059602A1
WO2005059602A1 PCT/JP2004/018905 JP2004018905W WO2005059602A1 WO 2005059602 A1 WO2005059602 A1 WO 2005059602A1 JP 2004018905 W JP2004018905 W JP 2004018905W WO 2005059602 A1 WO2005059602 A1 WO 2005059602A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
absorbing
thin film
thickness
Prior art date
Application number
PCT/JP2004/018905
Other languages
French (fr)
Japanese (ja)
Inventor
Yuko Tachibana
Hisashi Ohsaki
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005516359A priority Critical patent/JPWO2005059602A1/en
Publication of WO2005059602A1 publication Critical patent/WO2005059602A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride

Definitions

  • the present invention relates to a light-absorptive antireflective body in which a plurality of films are laminated on a base material.
  • a first thin film having a low refractive index transparent dielectric power from the substrate side for the purpose of improving the antireflection property and electromagnetic shielding property of a display portion of a display or the like. It is known to laminate a layer, a second thin film layer made of a transparent dielectric material having a high refractive index, and a third layer made of a transparent material having a considerable conductivity and a high refractive index (for example, see Patent Reference 1).
  • an antireflection body composed of two layers in which a substrate-side light-absorbing film and a silica film are laminated has been proposed as an extremely simplified number of layers constituting the antireflection body. (For example, see Patent Document 2).
  • Patent Document 1 JP-A-60-168102
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-156964
  • the visible light transmittance of the antireflection body according to Patent Document 2 is 75. / 0 or less, and 80 in this antireflection body.
  • the light-absorbing film is thinned to obtain a visible light transmittance of / o or more, it is possible to obtain an anti-reflection body that has low visible light reflectance of 1% or less and low reflection over a wide wavelength range. Did not.
  • an object of the present invention is to provide a low-cost, low-visible-light reflectance, low-light-reflection, and low-reflection light in a wide wavelength range in addition to high visible-light transmittance.
  • An antireflective body is provided.
  • the present invention achieves the above object and has the following gist.
  • a first thin film made of a substance having a geometric thickness of 11 to 200 nm and a refractive index of 1.3 or more and 2.6 or less on the substrate from the substrate side;
  • a light-absorbing film containing at least one substance selected from the group consisting of titanium nitride, titanium oxynitride, gold, and copper;
  • a light-absorbing anti-reflective body comprising: a second thin film having a refractive index of 45 to 165 nm and a refractive index of 1.3 or more and 1.6 or less.
  • the first thin film is made of magnesium fluoride, aluminum oxide, zinc oxide, tin oxide, indium oxide, molybdenum oxide, tantalum oxide, zirconium oxide, niobium oxide, titanium oxide, silicon nitride, silicon oxynitride and nitrided.
  • the second thin film is formed of at least one selected from the group consisting of silicon oxide, magnesium fluoride, calcium fluoride, fluorinated aluminum, aluminum oxide, lanthanum fluoride, and sodium fluoride aluminate.
  • the light-absorbing anti-reflective body according to 1 or 2 which is a film containing a substance.
  • the light absorbing film is a film containing at least one or more substances selected from the group consisting of titanium nitride and titanium oxynitride. Absorbing anti-reflective body.
  • a first thin film made of a substance having a geometric thickness of 50 nm and a refractive index of 1.3 or more and less than 1.5 on the substrate from the substrate side; At least one material selected from the group consisting of titanium nitride and titanium oxynitride, having a target film thickness of 5-8 nm.
  • a light-absorbing anti-reflective body comprising: a light-absorbing film containing: and a second thin film having a geometric film thickness of 65 to 120 nm and made of silicon oxide.
  • a first thin film made of a substance having a geometric thickness of 11 to 200 nm and a refractive index of 1.5 or more and 1.7 or less on the substrate from the substrate side,
  • a light absorbing film containing at least one substance selected from the group consisting of titanium nitride and titanium oxynitride having a thickness of 37 nm, a geometric thickness of 65 to 120 nm,
  • a second thin film made of silicon oxide.
  • a first thin film made of a substance having a geometric thickness of 1 to 55 nm and a refractive index of 1.9 or more and 2.1 or less on the substrate from the substrate side,
  • a second thin film made of silicon oxide made of silicon oxide.
  • a first thin film made of a material having a geometric film thickness of 125 nm and a refractive index of 2.3 or more and 2.7 or less on the substrate from the substrate side, A light-absorbing film containing at least one material selected from the group consisting of titanium nitride and titanium oxynitride, having a thickness of 3 to 7 nm, and a geometric thickness of 45 to 160 nm; And a second thin film made of silicon oxide.
  • the light-absorbing anti-reflective body of the present invention is a light-absorbing anti-reflective body that is low in cost, has high visible light transmittance, low visible light reflectance, and low reflection in light in a wide wavelength range. I will.
  • FIG. 1 is a schematic cross-sectional view according to an embodiment of the light-absorbing antireflection body of the present invention.
  • FIG. 1 shows a light-absorptive antireflection body 1 according to a first embodiment of the present invention.
  • the light-absorbing antireflective body 1 basically has a first thin film 3 provided on a base material 2, a light-absorbing film 4 provided on the first thin film 3, and a light-absorbing film 4.
  • a second thin film 6 is provided thereon.
  • an oxidation barrier film 5 is provided between the light absorbing film 4 and the second thin film 6, and the first thin film 3, the light absorbing film 4, the oxidation barrier film 5, and the second
  • the light-absorbing anti-reflective body 1 has a four-layer structure including the thin film 6 of FIG.
  • the material of the substrate 2 may be any material as long as it is smooth and transparent and can transmit visible light.
  • plastic, glass and the like can be mentioned.
  • plastic examples include polyethylene terephthalate (PET), polycarbonate, triacetyl cellulose, polyether sulfone, and polymethyl methacrylate.
  • the thickness of the substrate 2 is appropriately selected depending on the application.
  • it may be a film or a plate.
  • the base material 2 may be composed of a single layer or a laminate of a plurality of layers.
  • the base material 2 may be used by sticking it to another glass plate, plastic plate, or the like with an adhesive or the like.
  • a thin film-shaped plastic base material 2 may be used on another plastic plate, glass plate, etc.
  • the base material 2 of the glass plate may be attached to another glass plate, a plastic plate, or the like.
  • the first thin film 3 is made of a substance having a refractive index of 1.3 or more and 2.6 or less. .
  • the first thin film 3 has excellent chemical stability and can have high mechanical strength.
  • the first thin film 3 is preferably made of a substance having a refractive index of 1.6 or more and 2.6 or less.
  • the refractive index ( ⁇ ) in this specification refers to the refractive index of light having a wavelength of 550 nm.
  • the geometric thickness of the first thin film 3 is 11 to 200 nm.
  • the minimum reflectance is reduced and a low visible light reflectance can be obtained.
  • the light reflectance is low. Rapidly increases, does not exhibit low reflectance over a wide wavelength range, and cannot obtain a favorable reflection color tone.
  • the reflectance that becomes the smallest in the visible light wavelength region is defined as the minimum reflectance, and the wavelength that provides the reflectance is referred to as a design wavelength.
  • the geometric thickness of the first thin film 3 is less than 1 nm, the minimum reflectance increases, and a low visible light reflectance cannot be obtained.
  • the geometric thickness of the first thin film 3 is set to be 1 to 200 nm. It is necessary to The optimum geometric film thickness of the first thin film 3 depends on the refractive index of the material constituting the film, but is preferably 1 to 170 nm, more preferably 3 to 160 nm.
  • light-absorbing anti-reflective materials are used to absorb light for the purpose of obtaining high visible light transmittance.
  • the visible light reflectance increases. Since the light-absorbing antireflection body of the present invention has the first thin film on the substrate side of the light-absorbing film, it is possible to suppress an increase in visible light reflectance even when the light-absorbing film is thinned. Thus, low reflection can be obtained for light in a wider wavelength range.
  • the light-absorbing film 4 has a geometric film thickness of 18 nm, and a group consisting of titanium nitride, titanium oxynitride, gold, and copper. It is configured.
  • the light absorbing film 4 is preferably made of at least one substance selected from the group consisting of titanium nitride and titanium oxynitride.
  • titanium oxynitride is used as the light-absorbing film 4, the atomic ratio of oxygen to titanium is preferably 0.11 to 0.33. When the atomic ratio is within the above range, a light-absorbing anti-reflective body having low reflection in light in a wider wavelength range can be obtained.
  • the light-absorbing film containing gold a gold film, an alloy film containing 50% by mass or more of gold, or the like is preferable.
  • the light absorbing film containing copper includes a copper film, a copper nitride film, a copper oxynitride film, a copper carbide film, a copper carbonitride film, an alloy film containing 50% by mass or more of copper, and an alloy film of the alloy.
  • a nitride film, an oxynitride film of the alloy, a carbide film of the alloy, a carbonitride film of the alloy, or the like is preferable.
  • the geometric thickness of the light-absorbing film 4 is 118 nm. If the geometric thickness of the light-absorbing film 4 is less than 1 nm, the visible light transmittance increases, but a low visible light reflectance and a low reflectance in a wide wavelength range cannot be obtained. On the other hand, if the geometric thickness of the light absorbing film 4 is larger than 8 nm, a low visible light reflectance and a low reflectance over a wide wavelength range can be obtained, but the visible light transmittance is low.
  • the optimal geometric film thickness of the light-absorbing film 4 depends on the refractive index of the material constituting the film, but is preferably 3-7 nm, more preferably 4-16 nm.
  • the second thin film 6 has a geometric thickness of 45 to 165 nm and is made of a substance having a refractive index of 1.3 or more and 1.6 or less.
  • silicon oxide n: 1.46
  • magnesium fluoride n: 1.38
  • calcium fluoride n: l. 4
  • aluminum fluoride n: l. 3
  • aluminum oxide n: 1.6
  • lanthanum fluoride n: l. 58
  • sodium fluoroaluminate Na AIF
  • the geometric thickness of the second thin film 6 is 45 165 nm.
  • the wavelength range in which the geometrical thickness of the second thin film 6 is low and the reflectance is low is on the low wavelength side.
  • the wavelength range showing low reflectance is on the long wavelength side.
  • the optimum geometric film thickness of the second thin film 6 depends on the refractive index of the material constituting the film, but is preferably f to 60 to 155 nm, more preferably f to 65 150 nm.
  • the three layers of the first thin film 3, the light absorbing film 4, and the second thin film 6 are adjusted to an optimal geometric film thickness depending on the refractive index of each material constituting the film. This makes it possible to obtain a light-absorbing anti-reflective body 1 having a visible light transmittance of 80% or more and a visible light reflectance of 1% or less, more preferably 0.6% or less.
  • a preferable geometric film thickness of the first thin film 3 is 1 to 50 nm. Yes, more preferably 5-3 Onm.
  • the light absorbing film 4 has a small thickness selected from the group consisting of titanium nitride and titanium oxynitride having a geometric thickness of 5 to 8 nm. Preferably, it is at least one or more substances.
  • the second thin film 6 is preferably a silicon oxide having a geometric thickness of 65 to 120 nm, more preferably 70 to 11 Onm.
  • a preferable geometric film thickness of the first thin film 3 is 11 200 nm, More preferably, it is 30-170 ⁇ m.
  • the light absorbing film 4 has at least a geometric thickness of 37 nm selected from the group consisting of titanium nitride and titanium oxynitride. Preferably, it is one or more substances.
  • the second thin film 6 is preferably a silicon oxide having a geometric thickness of 65 to 120 nm, and more preferably a geometric thickness of 75 to 110 nm.
  • a preferable geometric film thickness of the first thin film 3 is 1-155 nm, More preferably, it is 5-50 nm.
  • the light absorbing film 4 has at least one kind selected from the group consisting of titanium nitride and titanium oxynitride having a geometric film thickness of 37 nm. The above substances are preferably used.
  • the second thin film 6 is preferably a silicon oxide having a geometric film thickness of 60 to 165 nm, more preferably 80 155 nm.
  • a preferable geometric film thickness of the first thin film 3 is 1 25 nm, More preferably, it is 320 nm.
  • the light absorbing film 4 has at least one kind selected from the group consisting of titanium nitride and titanium oxynitride having a geometric film thickness of 37 nm. The above substances are preferably used.
  • the second thin film 6 is preferably a silicon oxide having a geometric thickness of 45 to 160 nm, and more preferably a geometric thickness of 65 to 150 nm.
  • Examples of a method for forming each film in the present invention include a vacuum deposition method and a sputtering method. According to the sputtering method, a film can be uniformly formed on a large-sized substrate. In particular, a DC reactive sputtering method is industrially preferable.
  • an oxide barrier film 5 can be provided in order to keep the atomic ratio of oxygen to titanium at a preferable value.
  • the oxidation barrier film 5 is a thin film formed to prevent the light absorbing film 4 formed thereunder from being oxidized, and is optically meaningless.
  • the geometric thickness of the oxidation barrier film 5 is preferably 5 nm or less so as not to impair the antireflection performance.
  • various metals or metal nitrides such as silicon nitride can be used.
  • a film containing at least one metal as a main component or a film containing these nitrides as a main component, or a film containing at least one metal of the group consisting of titanium, zirconium, and hafnium as a main component is used, It is preferable because both the improvement of the antioxidant performance and the maintenance of the excellent antireflection characteristics can be achieved.
  • a film containing silicon as a main component or a film containing silicon nitride as a main component has excellent oxide barrier performance, and when a silicon oxide film is formed using a Si target. In addition, there is no need to increase the target material, which is advantageous in manufacturing.
  • Examples of the method of forming the oxidation barrier film 5 include a vapor deposition method, a sputtering method, and a CVD method.
  • a hard coat layer can be provided between the base material 2 and the first thin film 3 in order to impart a desired hardness to the light-absorbing anti-reflective body 1.
  • the hard coat layer is transparent and has a refractive index equal to the refractive index (n) of the substrate 2 or within ⁇ 0.1 of the refractive index (n) of the substrate 2. Should be fine.
  • a resin mainly composed of an ultraviolet curable acrylic resin, a silicone resin, or the like can be used. These resins may contain additives.
  • the geometric thickness of the hard coat layer is preferably 10 / m or less.
  • a substrate having a surface drawn with an oil pen in advance is introduced into a film forming chamber.
  • a single-layer film is formed on the substrate under the respective film-forming conditions of the thin film formed in each example, and two types of substrates with a single-layer film with different film-forming times are manufactured. After each of the two types of substrates with a single-layer film is taken out of the film-forming chamber, they are rubbed with a cloth soaked in ethanol, drawn on the substrate with an oil-based pen, and wiped with the thin film formed on the lines.
  • Stylus-type surface gage Using a stylus-type surface tracer (RanK Taylor Hobson, Talystep), scan from the part where the oil-based magic is wiped to the part where the thin film is formed, film Each thickness is measured. From the measured geometric film thickness and film formation time, a calibration curve is prepared under each film formation condition. Using this calibration curve, the geometric film thickness of the thin film corresponding to each film formation time is obtained.
  • a sputter gas consisting of a nitrogen gas concentration of 30% by volume and the balance of argon gas power was introduced into the film formation chamber, and an n-type silicon having a size of 20 cm ⁇ 7 cm ⁇ O. 0.39kw electric power is applied to the contarget, and a 15 ⁇ m-thick silicon nitride (first thin film) is applied on a PET (100 ⁇ m thick) substrate with a hard coat layer by DC reactive sputtering. Formed.
  • the nitrogen gas concentration of 30 vol 0/0, the sputtering gas and the balance argon gas was introduced into the film forming chamber, 20cm X 7cm X O. 5cm size electrodeposition 0 ⁇ 39Kw the n-type silicon target A force was applied, and a 3 nm-thick silicon nitride film was formed thereon by a DC reactive sputtering method.
  • This silicon nitride film is an oxidation barrier film for preventing the titanium nitride film from being oxidized when the second thin film thereon is formed by a reactive sputtering method, and forms the second thin film. Since it is oxidized at the time, it has no optical effect.
  • the oxygen gas concentration of 60 vol 0/0, the sputtering gas and the balance argon gas was introduced into the film forming chamber, 20cm X 7cm X O. 5cm of size n-type silicon target to electrodeposition of 0. 77Kw of A force was applied, and a 125 nm-thick silicon oxide (second thin film) was formed thereon by a DC reactive sputtering method.
  • Table 1 summarizes the composition and thickness of the prepared films. Note that, since each of the formed films is non-stoichiometric, the composition ratio of the films in Table 1 is not considered.
  • a black paint is applied to the surface of the substrate on which the film of the obtained light-absorbing anti-reflective body is not formed.
  • the reflectance and the transmittance on the side of the cloth were measured using a spectrophotometer (ART-25GT, manufactured by JASCO Corporation.
  • the visible light transmittance CJIS Z was obtained from the measurement result of the reflectance.
  • the reflex stimulus value Y) specified in 8701 was determined to be 81.2%.
  • the visible light reflectance tilS Z 8701) was 0.5%. Table 1 shows the measurement results.
  • a light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less is 455 to 635 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
  • a light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the film thicknesses of silicon nitride (first thin film) and silicon oxide (second thin film) were changed.
  • Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
  • a light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more.
  • a light having a reflectance of 1% or less had a wavelength of 460 to 620 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range was obtained. .
  • a light-absorbing anti-reflective body was produced in the same manner as in Example 1, except that the thicknesses of titanium nitride (light-absorbing film) and silicon oxide (second thin film) were changed.
  • Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
  • a light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflective body, the wavelength of light having a reflectance of 1% or less is 450 to 640 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
  • a light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the light-absorbing film was made of titanium oxynitride. Table 1 summarizes the measurement results of the composition and thickness of the formed film, the visible light transmittance and the visible light reflectance.
  • a light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less is 440 to 650 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
  • a light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more.
  • a light having a reflectance of 1% or less had a wavelength of 455 to 600 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range was obtained. .
  • a light-absorbing anti-reflective member is manufactured in the same manner as in Example 1 except that the first thin film is made of titanium oxide and the thickness of silicon oxide (the second thin film) is changed.
  • Table 1 summarizes the measurement results of the composition and thickness of the prepared film, the visible light transmittance and the visible light reflectance.
  • a light-absorbing anti-reflective body having a low visible light reflectance of 1% or less while satisfying a high visible light transmittance of 80% or more can be obtained. Further, in the light-absorbing antireflective body, a light having a reflectance of 1% or less has a wavelength of 460 to 600 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range can be obtained.
  • a light-absorbing anti-reflective member is manufactured in the same manner as in Example 1 except that the first thin film is made of aluminum oxide and the thickness of silicon oxide (the second thin film) is changed.
  • Table 1 summarizes the measurement results of the composition and thickness of the formed film, and the visible light transmittance and visible light reflectance.
  • a light-absorbing anti-reflective body having a low visible light reflectance of 1% or less while satisfying a high visible light transmittance of 80% or more can be obtained.
  • the wavelength of light having a reflectance of 1% or less is 460 to 600 nm, and the light is reflected in a wide wavelength range.
  • a light-absorbing antireflective body having a ratio of 1% or less is obtained.
  • the visible light reflectance of the obtained light-absorbing antireflection body was 1% or more.
  • Example 1 summarizes the measurement results of the composition and thickness of the formed film, the visible light transmittance and the visible light reflectance.
  • the visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%.
  • the wavelength of light having a reflectance of 1% or less was 450 to 700 nm.
  • the thickness of silicon nitride (first thin film), titanium nitride (light absorbing film) and silicon oxide (second thin film) were changed, and the other conditions were the same as in Example 1 except for the light absorbing antireflection.
  • the body was made. Table 1 summarizes the measurement results of the composition and thickness of the formed film, and the visible light transmittance and visible light reflectance.
  • the visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%.
  • the wavelength of light having a reflectance of 1% or less was 430 730 nm.
  • a light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the film thickness of titanium nitride (light-absorbing film) and silicon oxide (second thin film) were changed.
  • Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
  • the visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%. Also, the light In the absorptive antireflection body, the wavelength of light having a reflectance of 1% or less was 460 to 690 nm.
  • the visible light transmittance was 80% or more and the visible light reflectance was

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is a low-cost light absorptive antireflector with high visible light transmittance and low visible light reflectance which has low reflectance to lights in a wide wavelength range. The light absorptive antireflector comprises a base (2), and a first thin film (3), a light absorptive film (4) and a second thin film (6) sequentially formed on the base (2) in this order. The first thin film (3) has a geometrical film thickness of 1-200 nm and is composed of a material having a refractive index of not less than 1.3 and not more than 2.6. The light absorptive film (4) has a geometrical film thickness of 1-8 nm and contains at least one substance selected from the group consisting of titanium nitride, titanium oxynitride, gold and copper. The second thin film (6) has a geometrical film thickness of 45-165 nm and is composed of a material having a refractive index of not less than 1.3 and not more than 1.6.

Description

明 細 書  Specification
光吸収性反射防止体  Light absorbing anti-reflective body
技術分野  Technical field
[0001] 本発明は、基材上に複数の膜を積層させた光吸収性反射防止体に関するもので ある。  The present invention relates to a light-absorptive antireflective body in which a plurality of films are laminated on a base material.
^景技術  ^ Scenic technology
[0002] 従来から、ディスプレイの表示部等の反射防止性と電磁遮蔽性を向上させる目的 で、光吸収性反射防止体として、基材側から低屈折率の透明誘電体力もなる第 1の 薄膜層と、高屈折率の透明誘電体からなる第 2の薄膜層と、相当の導電率及び高屈 折率を有する透明物質からなる第 3の層を積層したものが知られている(例えば特許 文献 1参照)。  [0002] Conventionally, as a light-absorbing antireflective body, a first thin film having a low refractive index transparent dielectric power from the substrate side for the purpose of improving the antireflection property and electromagnetic shielding property of a display portion of a display or the like. It is known to laminate a layer, a second thin film layer made of a transparent dielectric material having a high refractive index, and a third layer made of a transparent material having a considerable conductivity and a high refractive index (for example, see Patent Reference 1).
[0003] しかし、このような多層構成の反射防止体においては、低反射率を示す波長範囲を 広くするために反射防止体を構成する層の数を増やす必要があり、これに伴って製 造コストが増加する問題があった。  [0003] However, in such an antireflection body having a multilayer structure, it is necessary to increase the number of layers constituting the antireflection body in order to widen a wavelength range showing low reflectivity. There was a problem that cost increased.
[0004] それに対し、反射防止体を構成する層の数を極めて単純にしたものとして、基材側 力 光吸収性膜とシリカ膜を積層させた 2層からなる反射防止体が提案されている( 例えば特許文献 2参照)。  [0004] On the other hand, an antireflection body composed of two layers in which a substrate-side light-absorbing film and a silica film are laminated has been proposed as an extremely simplified number of layers constituting the antireflection body. (For example, see Patent Document 2).
特許文献 1 :特開昭 60 - 168102号公報  Patent Document 1: JP-A-60-168102
特許文献 2:特開平 9 - 156964号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 9-156964
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力、しながら、特許文献 2に係る反射防止体の可視光透過率は 75。/0以下であり、こ の反射防止体において、 80。/o以上の可視光透過率を得るために光吸収性膜を薄く すると、 1 %以下の低い可視光反射率を満たしながら、広い波長範囲において低反 射となる反射防止体を得ることができなかった。 [0005] However, the visible light transmittance of the antireflection body according to Patent Document 2 is 75. / 0 or less, and 80 in this antireflection body. When the light-absorbing film is thinned to obtain a visible light transmittance of / o or more, it is possible to obtain an anti-reflection body that has low visible light reflectance of 1% or less and low reflection over a wide wavelength range. Did not.
[0006] 本発明の目的は、上記従来技術の問題点に鑑み、低コストで、かつ、高い可視光 透過率と共に低い可視光反射率と広い波長範囲の光において低反射となる光吸収 性反射防止体を提供する。 [0006] In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a low-cost, low-visible-light reflectance, low-light-reflection, and low-reflection light in a wide wavelength range in addition to high visible-light transmittance. An antireflective body is provided.
課題を解決するための手段 Means for solving the problem
本発明は、上記の目的を達成するものであり、以下の要旨を有する。  The present invention achieves the above object and has the following gist.
1. 基材上に前記基材側から、幾何学的膜厚が 1一 200nmであって、屈折率が 1. 3以上、 2. 6以下である物質からなる第 1の薄膜と、幾何学的膜厚が 1一 8nmであつ て、窒化チタン、酸窒化チタン、金及び銅からなる群から選択される少なくとも 1種以 上の物質を含有する光吸収性膜と、幾何学的膜厚が 45— 165nmであって、屈折率 が 1. 3以上、 1. 6以下である物質力 なる第 2の薄膜と、を有することを特徴とする光 吸収性反射防止体。  1. a first thin film made of a substance having a geometric thickness of 11 to 200 nm and a refractive index of 1.3 or more and 2.6 or less on the substrate from the substrate side; A light-absorbing film containing at least one substance selected from the group consisting of titanium nitride, titanium oxynitride, gold, and copper; A light-absorbing anti-reflective body comprising: a second thin film having a refractive index of 45 to 165 nm and a refractive index of 1.3 or more and 1.6 or less.
2. 前記第 1の薄膜が、フッ化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化スズ 、酸化インジウム、酸化モリブデン、酸化タンタル、酸化ジルコニウム、酸化ニオブ、 酸化チタン、窒化ケィ素、酸窒化ケィ素及び窒化アルミニウムからなる群から選択さ れる少なくとも 1種以上の物質を含有する膜である上記 1に記載の光吸収性反射防 止体。  2. The first thin film is made of magnesium fluoride, aluminum oxide, zinc oxide, tin oxide, indium oxide, molybdenum oxide, tantalum oxide, zirconium oxide, niobium oxide, titanium oxide, silicon nitride, silicon oxynitride and nitrided. 2. The light-absorptive antireflection body according to the above item 1, which is a film containing at least one substance selected from the group consisting of aluminum.
3. 前記第 2の薄膜が、酸化ケィ素、フッ化マグネシウム、フッ化カルシウム、フッ化ァ ノレミニゥム、酸化アルミニウム、フッ化ランタン及びフッ化アルミン酸ナトリウムからなる 群から選択される少なくとも 1種以上の物質を含有する膜である上記 1又は 2に記載 の光吸収性反射防止体。  3. The second thin film is formed of at least one selected from the group consisting of silicon oxide, magnesium fluoride, calcium fluoride, fluorinated aluminum, aluminum oxide, lanthanum fluoride, and sodium fluoride aluminate. 3. The light-absorbing anti-reflective body according to 1 or 2, which is a film containing a substance.
4. 前記第 2の薄膜が、実質的に酸化ケィ素からなる膜である上記 1、 2又は 3に記載 の光吸収性反射防止体。  4. The light-absorbing anti-reflective body according to the above 1, 2, or 3, wherein the second thin film is a film substantially composed of silicon oxide.
5. 前記光吸収性膜が、窒化チタン及び酸窒化チタンからなる群から選択される少 なくとも 1種以上の物質を含有する膜である上記 1一 4のいずれ力、 1項に記載の光吸 収性反射防止体。  5. The light according to any one of items 1 to 4, wherein the light absorbing film is a film containing at least one or more substances selected from the group consisting of titanium nitride and titanium oxynitride. Absorbing anti-reflective body.
6. 前記基材と第 1の薄膜との間に、ハードコート層を含む上記 1一 5のいずれか 1項 に記載の光吸収性反射防止体。  6. The light-absorbing anti-reflective body according to any one of the above items 15 to 15, further comprising a hard coat layer between the base material and the first thin film.
7. 基材上に前記基材側から、幾何学的膜厚が 1一 50nmであって、屈折率が 1. 3 以上、 1. 5未満である物質からなる第 1の薄膜と、幾何学的膜厚が 5— 8nmであって 、窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1種以上の物質 を含有する光吸収性膜と、幾何学的膜厚が 65— 120nmであって、酸化ケィ素から なる第 2の薄膜と、を有することを特徴とする光吸収性反射防止体。 7. a first thin film made of a substance having a geometric thickness of 50 nm and a refractive index of 1.3 or more and less than 1.5 on the substrate from the substrate side; At least one material selected from the group consisting of titanium nitride and titanium oxynitride, having a target film thickness of 5-8 nm. A light-absorbing anti-reflective body comprising: a light-absorbing film containing: and a second thin film having a geometric film thickness of 65 to 120 nm and made of silicon oxide.
8. 基材上に前記基材側から、幾何学的膜厚が 1一 200nmであって、屈折率 1. 5 以上、 1. 7以下である物質からなる第 1の薄膜と、幾何学的膜厚が 3 7nmであって 、窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1種以上の物質 を含有する光吸収性膜と、幾何学的膜厚が 65— 120nmであって、酸化ケィ素から なる第 2の薄膜と、を有することを特徴とする光吸収性反射防止体。  8. a first thin film made of a substance having a geometric thickness of 11 to 200 nm and a refractive index of 1.5 or more and 1.7 or less on the substrate from the substrate side, A light absorbing film containing at least one substance selected from the group consisting of titanium nitride and titanium oxynitride having a thickness of 37 nm, a geometric thickness of 65 to 120 nm, And a second thin film made of silicon oxide.
9. 基材上に前記基材側から、幾何学的膜厚が 1一 55nmであって、屈折率 1. 9以 上、 2. 1以下である物質からなる第 1の薄膜と、幾何学的膜厚が 3 7nmであって、 窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1種以上の物質を 含有する光吸収性膜と、幾何学的膜厚が 60 165nmであって、酸化ケィ素からな る第 2の薄膜と、を有することを特徴とする光吸収性反射防止体。  9. A first thin film made of a substance having a geometric thickness of 1 to 55 nm and a refractive index of 1.9 or more and 2.1 or less on the substrate from the substrate side, A light-absorbing film containing at least one substance selected from the group consisting of titanium nitride and titanium oxynitride having a thickness of 37 nm, a geometric thickness of 60 165 nm, And a second thin film made of silicon oxide.
10. 基材上に前記基材側から、幾何学的膜厚が 1一 25nmであって、屈折率 2. 3 以上、 2. 7以下である物質からなる第 1の薄膜と、幾何学的膜厚が 3— 7nmであって 、窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1種以上の物質 を含有する光吸収性膜と、幾何学的膜厚が 45— 160nmであって、酸化ケィ素から なる第 2の薄膜と、を有することを特徴とする光吸収性反射防止体。  10. A first thin film made of a material having a geometric film thickness of 125 nm and a refractive index of 2.3 or more and 2.7 or less on the substrate from the substrate side, A light-absorbing film containing at least one material selected from the group consisting of titanium nitride and titanium oxynitride, having a thickness of 3 to 7 nm, and a geometric thickness of 45 to 160 nm; And a second thin film made of silicon oxide.
発明の効果  The invention's effect
[0008] 本発明の光吸収性反射防止体は、低コストで、かつ、高い可視光透過率と共に低 い可視光反射率と広い波長範囲の光において低反射となる光吸収性反射防止体で める。  [0008] The light-absorbing anti-reflective body of the present invention is a light-absorbing anti-reflective body that is low in cost, has high visible light transmittance, low visible light reflectance, and low reflection in light in a wide wavelength range. I will.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の光吸収性反射防止体の一実施形態に係る概略断面図である。 FIG. 1 is a schematic cross-sectional view according to an embodiment of the light-absorbing antireflection body of the present invention.
符号の説明  Explanation of symbols
[0010] 1 光吸収性反射防止体 [0010] 1 light-absorbing anti-reflective body
2 基材  2 Substrate
3 第 1の薄膜  3 First thin film
4 光吸収性膜 5 酸化バリア膜 4 Light absorbing film 5 Oxidation barrier film
6 第 2の薄膜  6 Second thin film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施の形態に係る光吸収性反射防止体の例を図面に示し、詳細 に説明する。  Hereinafter, an example of a light-absorbing antireflection body according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0012] [実施形態]  [Embodiment]
図 1に、本発明の第 1の実施形態に係る光吸収性反射防止体 1を示す。この光吸 収性反射防止体 1は、基本的に、基材 2上に第 1の薄膜 3が設けられ、第 1の薄膜 3 上に光吸収性膜 4が設けられ、光吸収性膜 4上に第 2の薄膜 6が設けられている。 本実施形態では、光吸収性膜 4と第 2の薄膜 6との間に、酸化バリア膜 5を設け、第 1の薄膜 3と、光吸収性膜 4と、酸化バリア膜 5と、第 2の薄膜 6とからなる 4層構造で光 吸収性反射防止体 1が構成されている。  FIG. 1 shows a light-absorptive antireflection body 1 according to a first embodiment of the present invention. The light-absorbing antireflective body 1 basically has a first thin film 3 provided on a base material 2, a light-absorbing film 4 provided on the first thin film 3, and a light-absorbing film 4. A second thin film 6 is provided thereon. In the present embodiment, an oxidation barrier film 5 is provided between the light absorbing film 4 and the second thin film 6, and the first thin film 3, the light absorbing film 4, the oxidation barrier film 5, and the second The light-absorbing anti-reflective body 1 has a four-layer structure including the thin film 6 of FIG.
[0013] (基材)  [0013] (Substrate)
基材 2の材質としては、平滑透明で、可視光線を透過し得るものであればよい。例 えば、プラスチック、ガラス等が挙げられる。  The material of the substrate 2 may be any material as long as it is smooth and transparent and can transmit visible light. For example, plastic, glass and the like can be mentioned.
プラスチックとしては、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート 、トリァセチルセルロース、ポリエーテルスルホン、ポリメチルメタタリレート等を挙げる こと力 Sできる。  Examples of the plastic include polyethylene terephthalate (PET), polycarbonate, triacetyl cellulose, polyether sulfone, and polymethyl methacrylate.
[0014] この基材 2の厚さは用途に応じて適宜選定される。例えば、フィルムでもよいし、板 状でもよレ、。また、基材 2は、単一の層で構成してもよいし、複数層の積層体としても よい。  [0014] The thickness of the substrate 2 is appropriately selected depending on the application. For example, it may be a film or a plate. Further, the base material 2 may be composed of a single layer or a laminate of a plurality of layers.
基材 2は、別のガラス板、プラスチック板等に粘着剤等で貼り付けて使用してもよい 例えば、薄いフィルム状のプラスチックの基材 2を別のプラスチック板、ガラス板等に 貝占り付けてもよいし、ガラス板の基材 2を別のガラス板、プラスチック板等に貼り付けて あよい。  The base material 2 may be used by sticking it to another glass plate, plastic plate, or the like with an adhesive or the like.For example, a thin film-shaped plastic base material 2 may be used on another plastic plate, glass plate, etc. Alternatively, the base material 2 of the glass plate may be attached to another glass plate, a plastic plate, or the like.
[0015] (第 1の薄膜)  [0015] (First thin film)
第 1の薄膜 3は、屈折率が 1. 3以上、 2. 6以下である物質によって構成されている 。例えば、フッ化マグネシウム(n: l . 38)、酸化アルミニウム(n : l . 6)、酸化亜鉛(n : 1. 9)、酸化スズ (n : 2. 0)、酸化インジウム(n: 2. 0)、酸化モリブデン、酸化タンタル (η: 2· 4)、酸化ジルコニウム(η : 2. 0)、酸化ニオブ(η : 2. 35)、酸化チタン(η: 2. 4 )、窒化ケィ素 (η: 2. 0)、酸窒化ケィ素 (η: 1. 6—1. 9)及び窒化アルミニウム (η: 1 . 7)などからなる群から選択される少なくとも 1種以上の物質が挙げられる。そのなか でも酸化亜鉛、酸化スズ、窒化ケィ素、酸化チタン、酸化アルミニウムが好ましい。 このような物質を用いることで、第 1の薄膜 3は化学的安定性に優れ、機械的強度を 高くすることができる。第 1の薄膜 3は、屈折率が 1. 6以上、 2. 6以下である物質によ つて構成されていることが好ましい。 The first thin film 3 is made of a substance having a refractive index of 1.3 or more and 2.6 or less. . For example, magnesium fluoride (n: l.38), aluminum oxide (n: l.6), zinc oxide (n: 1.9), tin oxide (n: 2.0), indium oxide (n: 2. 0), molybdenum oxide, tantalum oxide (η: 2.4), zirconium oxide (η: 2.0), niobium oxide (η: 2.35), titanium oxide (η: 2.4), silicon nitride ( η: 2.0), at least one substance selected from the group consisting of silicon oxynitride (η: 1.6-1.9), aluminum nitride (η: 1.7), and the like. Among them, zinc oxide, tin oxide, silicon nitride, titanium oxide and aluminum oxide are preferred. By using such a substance, the first thin film 3 has excellent chemical stability and can have high mechanical strength. The first thin film 3 is preferably made of a substance having a refractive index of 1.6 or more and 2.6 or less.
なお、本明細書における屈折率 (η)とは、波長 550nmの光の屈折率をいう。  Note that the refractive index (η) in this specification refers to the refractive index of light having a wavelength of 550 nm.
[0016] また、第 1の薄膜 3の幾何学的膜厚は 1一 200nmである。基材 2と光吸収性膜 4と の間に第 1の薄膜 3を設けることにより、 80%以上の高い可視光透過率を得る目的で 光吸収性膜 4の膜厚を薄くしても、 1%以下の低い可視光反射率を満たしながら、広 い波長範囲において低反射率を示す光吸収性反射防止体 1を得ることができる。  [0016] The geometric thickness of the first thin film 3 is 11 to 200 nm. By providing the first thin film 3 between the substrate 2 and the light absorbing film 4, even if the film thickness of the light absorbing film 4 is reduced for the purpose of obtaining a high visible light transmittance of 80% or more, The light-absorbing anti-reflective body 1 having low reflectance in a wide wavelength range while satisfying low visible light reflectance of 1% or less can be obtained.
[0017] また、第 1の薄膜 3の幾何学的膜厚が 200nmより大きいと、最小反射率が小さくなり 、低い可視光反射率を得られるが、設計波長以外の波長においては光の反射率が 急激に増加し、広い波長範囲において低反射率を示さず、好ましい反射色調を得る ことができない。  When the geometric thickness of the first thin film 3 is larger than 200 nm, the minimum reflectance is reduced and a low visible light reflectance can be obtained. However, at a wavelength other than the design wavelength, the light reflectance is low. Rapidly increases, does not exhibit low reflectance over a wide wavelength range, and cannot obtain a favorable reflection color tone.
なお、本明細書では、可視光波長域において最も小さくなる反射率を最小反射率 とし、その反射率を与える波長を設計波長という。  In this specification, the reflectance that becomes the smallest in the visible light wavelength region is defined as the minimum reflectance, and the wavelength that provides the reflectance is referred to as a design wavelength.
一方、第 1の薄膜 3の幾何学的膜厚が lnm未満であると、最小反射率が大きくなり 、低い可視光反射率を得ることができない。  On the other hand, if the geometric thickness of the first thin film 3 is less than 1 nm, the minimum reflectance increases, and a low visible light reflectance cannot be obtained.
このため、最小反射率及び可視光反射率を低くすると共に、広い波長範囲におい て低反射率とし、好ましい反射色調を得るためには、第 1の薄膜 3の幾何学的膜厚を 1一 200nmにすることが必要である。第 1の薄膜 3の最適な幾何学的膜厚は、膜を構 成する物質の屈折率に依存するが、好ましくは 1一 170nmであり、より好ましくは 3— 160nmである。  For this reason, in order to reduce the minimum reflectance and the visible light reflectance, to obtain a low reflectance over a wide wavelength range, and to obtain a preferable reflection color tone, the geometric thickness of the first thin film 3 is set to be 1 to 200 nm. It is necessary to The optimum geometric film thickness of the first thin film 3 depends on the refractive index of the material constituting the film, but is preferably 1 to 170 nm, more preferably 3 to 160 nm.
一般に、光吸収性反射防止体において、高い可視光透過率を得る目的で光吸収 性膜を薄くすると、可視光反射率が増加する。本発明の光吸収性反射防止体は、光 吸収性膜より基材側に第 1の薄膜を有するため、光吸収性膜を薄くしても可視光反 射率の増加を抑制することができ、さらに広い波長範囲の光に対して低反射とするこ とができる。 Generally, light-absorbing anti-reflective materials are used to absorb light for the purpose of obtaining high visible light transmittance. When the conductive film is thinned, the visible light reflectance increases. Since the light-absorbing antireflection body of the present invention has the first thin film on the substrate side of the light-absorbing film, it is possible to suppress an increase in visible light reflectance even when the light-absorbing film is thinned. Thus, low reflection can be obtained for light in a wider wavelength range.
[0018] (光吸収性膜)  [0018] (Light absorbing film)
光吸収性膜 4は、幾何学的膜厚が 1一 8nmであって、窒化チタン、酸窒化チタン (ti tanium oxynitride)、金及び銅からなる群力 選択される少なくとも 1種以上の物 質によって構成されている。光吸収性膜 4は、窒化チタン及び酸窒化チタンからなる 群から選択される少なくとも 1種以上の物質によって構成されていることが好ましい。 酸窒化チタンを光吸収性膜 4として用いる場合、チタンに対する酸素の原子数比は 、 0. 11 -0. 33であるのが好ましレ、。原子数比が前記範囲内であると、より広い波長 範囲の光において低反射である光吸収性反射防止体を得ることができる。  The light-absorbing film 4 has a geometric film thickness of 18 nm, and a group consisting of titanium nitride, titanium oxynitride, gold, and copper. It is configured. The light absorbing film 4 is preferably made of at least one substance selected from the group consisting of titanium nitride and titanium oxynitride. When titanium oxynitride is used as the light-absorbing film 4, the atomic ratio of oxygen to titanium is preferably 0.11 to 0.33. When the atomic ratio is within the above range, a light-absorbing anti-reflective body having low reflection in light in a wider wavelength range can be obtained.
また、金を含有する光吸収性膜としては、金膜や、金を 50質量%以上含む合金膜 等が好ましい。  As the light-absorbing film containing gold, a gold film, an alloy film containing 50% by mass or more of gold, or the like is preferable.
さらに、銅を含有する光吸収性膜としては、銅膜、銅窒化物膜、銅酸窒化物膜、銅 炭化物膜、銅炭窒化物膜、銅を 50質量%以上含む合金膜、該合金の窒化物膜、該 合金の酸窒化物膜、該合金の炭化物膜、又は該合金の炭窒化物膜等が好ましい。  Further, the light absorbing film containing copper includes a copper film, a copper nitride film, a copper oxynitride film, a copper carbide film, a copper carbonitride film, an alloy film containing 50% by mass or more of copper, and an alloy film of the alloy. A nitride film, an oxynitride film of the alloy, a carbide film of the alloy, a carbonitride film of the alloy, or the like is preferable.
[0019] 光吸収性膜 4の幾何学的膜厚は 1一 8nmである。光吸収性膜 4の幾何学的膜厚が lnm未満であると、可視光透過率は高くなるが、低い可視光反射率と広い波長範囲 における低反射率を得ることができない。一方、光吸収性膜 4の幾何学的膜厚が 8n mより大きいと、低い可視光反射率と広い波長範囲における低反射率を得ることがで きるが、可視光透過率が低くなる。 [0019] The geometric thickness of the light-absorbing film 4 is 118 nm. If the geometric thickness of the light-absorbing film 4 is less than 1 nm, the visible light transmittance increases, but a low visible light reflectance and a low reflectance in a wide wavelength range cannot be obtained. On the other hand, if the geometric thickness of the light absorbing film 4 is larger than 8 nm, a low visible light reflectance and a low reflectance over a wide wavelength range can be obtained, but the visible light transmittance is low.
光吸収性膜 4の最適な幾何学的膜厚は、膜を構成する物質の屈折率に依存する が、好ましくは 3— 7nmであり、より好ましくは 4一 6nmである。  The optimal geometric film thickness of the light-absorbing film 4 depends on the refractive index of the material constituting the film, but is preferably 3-7 nm, more preferably 4-16 nm.
[0020] (第 2の薄膜) [0020] (Second thin film)
第 2の薄膜 6は、幾何学的膜厚が 45— 165nmであって、屈折率が 1. 3以上、 1. 6 以下である物質によって構成されている。  The second thin film 6 has a geometric thickness of 45 to 165 nm and is made of a substance having a refractive index of 1.3 or more and 1.6 or less.
例えば、酸化ケィ素(n : 1. 46)、フッ化マグネシウム(n : 1. 38)、フッ化カルシウム( n: l . 4)、フッ化アルミニウム(n : l . 3)、酸化アルミニウム(n : 1. 6)、フッ化ランタン( n: l . 58)及びフッ化アルミン酸ナトリウム (Sodium fluoroaluminate: Na AIF ) (n For example, silicon oxide (n: 1.46), magnesium fluoride (n: 1.38), calcium fluoride ( n: l. 4), aluminum fluoride (n: l. 3), aluminum oxide (n: 1.6), lanthanum fluoride (n: l. 58), and sodium fluoroaluminate (Na AIF) ) (n
3 6 3 6
: 1. 35)からなる群から選択される少なくとも 1種以上の物質や有機化合物が挙げら れる。そのなかでも、化学的安定性に優れ、機械的強度が高いことから、酸化ケィ素 が好ましい。 : 1. At least one substance or organic compound selected from the group consisting of 35). Among them, silicon oxide is preferred because of its excellent chemical stability and high mechanical strength.
[0021] 第 2の薄膜 6の幾何学的膜厚は 45 165nmである。第 2の薄膜 6の幾何学的膜厚 力 、さいと、低反射率を示す波長範囲は低波長側になる。一方、幾何学的膜厚が大 きいと、低反射率を示す波長範囲は長波長側になる。  [0021] The geometric thickness of the second thin film 6 is 45 165 nm. The wavelength range in which the geometrical thickness of the second thin film 6 is low and the reflectance is low is on the low wavelength side. On the other hand, if the geometric film thickness is large, the wavelength range showing low reflectance is on the long wavelength side.
第 2の薄膜 6の最適な幾何学的膜厚は、膜を構成する物質の屈折率に依存するが 、好ましく fま 60— 155nmであり、より好ましく fま 65 150nmである。  The optimum geometric film thickness of the second thin film 6 depends on the refractive index of the material constituting the film, but is preferably f to 60 to 155 nm, more preferably f to 65 150 nm.
[0022] 第 1の薄膜 3と、光吸収性膜 4と、第 2の薄膜 6の 3層を、膜を構成する各々の物質 の屈折率に依存した最適な幾何学的膜厚に調節することにより、可視光透過率が 80 %以上、かつ可視光反射率が 1 %以下、より好ましくは 0. 6%以下である光吸収性 反射防止体 1を得ることができる。  [0022] The three layers of the first thin film 3, the light absorbing film 4, and the second thin film 6 are adjusted to an optimal geometric film thickness depending on the refractive index of each material constituting the film. This makes it possible to obtain a light-absorbing anti-reflective body 1 having a visible light transmittance of 80% or more and a visible light reflectance of 1% or less, more preferably 0.6% or less.
[0023] 例えば、第 1の薄膜 3を構成する物質が、屈折率 1. 3以上、 1. 5未満の物質である 場合、第 1の薄膜 3の好ましい幾何学的膜厚は 1一 50nmであり、より好ましくは 5— 3 Onmである。第 1の薄膜 3が、前記の屈折率と膜厚である場合、光吸収成膜 4は、幾 何学的膜厚が 5— 8nmの窒化チタン及び酸窒化チタンからなる群から選択される少 なくとも 1種以上の物質であることが好ましい。第 2の薄膜 6は、幾何学的膜厚が 65— 120nmの酸化ケィ素であることが好ましぐその幾何学的膜厚は 70— 11 Onmである ことがより好ましい。  For example, when the material forming the first thin film 3 is a material having a refractive index of 1.3 or more and less than 1.5, a preferable geometric film thickness of the first thin film 3 is 1 to 50 nm. Yes, more preferably 5-3 Onm. When the first thin film 3 has the above-mentioned refractive index and thickness, the light absorbing film 4 has a small thickness selected from the group consisting of titanium nitride and titanium oxynitride having a geometric thickness of 5 to 8 nm. Preferably, it is at least one or more substances. The second thin film 6 is preferably a silicon oxide having a geometric thickness of 65 to 120 nm, more preferably 70 to 11 Onm.
[0024] 第 1の薄膜 3を構成する物質が、屈折率 1. 5以上、 1. 7以下の物質である場合、第 1の薄膜 3の好ましい幾何学的膜厚は 1一 200nmであり、より好ましくは 30— 170η mである。第 1の薄膜 3が、前記の屈折率と膜厚である場合、光吸収成膜 4は、幾何 学的膜厚が 3 7nmの窒化チタン及び酸窒化チタンからなる群から選択される少な くとも 1種以上の物質であることが好ましい。第 2の薄膜 6は、幾何学的膜厚が 65— 1 20nmの酸化ケィ素であることが好ましぐその幾何学的膜厚は 75— l lOnmである ことがより好ましい。 [0025] 第 1の薄膜 3を構成する物質が、屈折率 1. 9以上、 2. 1以下の物質である場合、第 1の薄膜 3の好ましい幾何学的膜厚は 1一 55nmであり、より好ましくは 5— 50nmであ る。第 1の薄膜 3が、前記の屈折率と膜厚である場合、光吸収成膜 4は、幾何学的膜 厚が 3 7nmの窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1 種以上の物質であることが好ましい。第 2の薄膜 6は、幾何学的膜厚が 60— 165nm の酸化ケィ素であることが好ましぐその幾何学的膜厚は 80 155nmであることがよ り好ましい。 [0024] When the material constituting the first thin film 3 is a material having a refractive index of 1.5 or more and 1.7 or less, a preferable geometric film thickness of the first thin film 3 is 11 200 nm, More preferably, it is 30-170ηm. When the first thin film 3 has the above-mentioned refractive index and thickness, the light absorbing film 4 has at least a geometric thickness of 37 nm selected from the group consisting of titanium nitride and titanium oxynitride. Preferably, it is one or more substances. The second thin film 6 is preferably a silicon oxide having a geometric thickness of 65 to 120 nm, and more preferably a geometric thickness of 75 to 110 nm. [0025] When the material constituting the first thin film 3 is a material having a refractive index of 1.9 or more and 2.1 or less, a preferable geometric film thickness of the first thin film 3 is 1-155 nm, More preferably, it is 5-50 nm. When the first thin film 3 has the above-mentioned refractive index and film thickness, the light absorbing film 4 has at least one kind selected from the group consisting of titanium nitride and titanium oxynitride having a geometric film thickness of 37 nm. The above substances are preferably used. The second thin film 6 is preferably a silicon oxide having a geometric film thickness of 60 to 165 nm, more preferably 80 155 nm.
[0026] 第 1の薄膜 3を構成する物質が、屈折率 2. 3以上、 2. 7以下の物質である場合、第 1の薄膜 3の好ましい幾何学的膜厚は 1一 25nmであり、より好ましくは 3 20nmであ る。第 1の薄膜 3が、前記の屈折率と膜厚である場合、光吸収成膜 4は、幾何学的膜 厚が 3 7nmの窒化チタン及び酸窒化チタンからなる群から選択される少なくとも 1 種以上の物質であることが好ましい。第 2の薄膜 6は、幾何学的膜厚が 45— 160nm の酸化ケィ素であることが好ましぐその幾何学的膜厚は 65— 150nmであることがよ り好ましい。  [0026] When the material constituting the first thin film 3 is a material having a refractive index of 2.3 or more and 2.7 or less, a preferable geometric film thickness of the first thin film 3 is 1 25 nm, More preferably, it is 320 nm. When the first thin film 3 has the above-mentioned refractive index and film thickness, the light absorbing film 4 has at least one kind selected from the group consisting of titanium nitride and titanium oxynitride having a geometric film thickness of 37 nm. The above substances are preferably used. The second thin film 6 is preferably a silicon oxide having a geometric thickness of 45 to 160 nm, and more preferably a geometric thickness of 65 to 150 nm.
[0027] 本発明における各膜の成膜方法としては、真空蒸着法やスパッタリング法が挙げら れる。スパッタリング法によれば、大面積の基体上に均一に成膜できる。特に、工業 的には直流反応性スパッタ法が好ましい。  [0027] Examples of a method for forming each film in the present invention include a vacuum deposition method and a sputtering method. According to the sputtering method, a film can be uniformly formed on a large-sized substrate. In particular, a DC reactive sputtering method is industrially preferable.
[0028] また、光吸収性膜 4と第 2の薄膜 6との間に、第 2の薄膜 6を成膜する際に光吸収性 膜 4が酸化されることを防ぎ、例えば光吸収性膜 4として酸窒化チタンを用いる場合 にチタンに対する酸素の原子数比を好ましい値に維持するために、酸化バリア膜 5を 設けることもできる。  [0028] Further, when the second thin film 6 is formed between the light absorbing film 4 and the second thin film 6, the light absorbing film 4 is prevented from being oxidized. In the case where titanium oxynitride is used as 4, an oxide barrier film 5 can be provided in order to keep the atomic ratio of oxygen to titanium at a preferable value.
酸化バリア膜 5は、その下に形成されている光吸収性膜 4の酸化を防ぐために形成 される薄膜であり、光学的には実質上意味を持たなレ、ものである。  The oxidation barrier film 5 is a thin film formed to prevent the light absorbing film 4 formed thereunder from being oxidized, and is optically meaningless.
酸化バリア膜 5の幾何学的膜厚は、反射防止性能を損なわないために 5nm以下が 好ましい。  The geometric thickness of the oxidation barrier film 5 is preferably 5 nm or less so as not to impair the antireflection performance.
[0029] 酸化バリア膜 5としては、各種の金属又は窒化ケィ素等の金属窒化物を使用できる 。その中でも、クロム、モリブデン、タングステン、バナジウム、ニオブ、タンタル、亜鉛 、ニッケル、パラジウム、白金、アルミニウム、インジウム、スズ及びケィ素からなる群の 少なくとも 1種の金属を主成分とする膜又はこれらの窒化物を主成分とする膜、もしく はチタン、ジルコニウム及びハフニウムからなる群の少なくとも 1種の金属を主成分と する膜を用いると、充分な酸化防止性能の向上と、優れた反射防止特性の維持を両 立させうるので好ましい。 As the oxidation barrier film 5, various metals or metal nitrides such as silicon nitride can be used. Among them, the group consisting of chromium, molybdenum, tungsten, vanadium, niobium, tantalum, zinc, nickel, palladium, platinum, aluminum, indium, tin and silicon When a film containing at least one metal as a main component or a film containing these nitrides as a main component, or a film containing at least one metal of the group consisting of titanium, zirconium, and hafnium as a main component is used, It is preferable because both the improvement of the antioxidant performance and the maintenance of the excellent antireflection characteristics can be achieved.
[0030] 特に、ケィ素を主成分とする膜又はケィ素の窒化物を主成分とする膜は、酸化バリ ァ性能に優れるうえ、酸化ケィ素膜を Siターゲットを用いて成膜する場合は、ターゲッ ト材料を増やす必要がなレ、点で、製造上有利である。  [0030] In particular, a film containing silicon as a main component or a film containing silicon nitride as a main component has excellent oxide barrier performance, and when a silicon oxide film is formed using a Si target. In addition, there is no need to increase the target material, which is advantageous in manufacturing.
酸化バリア膜 5の形成手法としては、蒸着法、スパッタリング法、 CVD法などがある  Examples of the method of forming the oxidation barrier film 5 include a vapor deposition method, a sputtering method, and a CVD method.
[0031] また、基材 2と第 1の薄膜 3との間に、光吸収性反射防止体 1に所望の硬さを付与 するため、ハードコート層を設けることができる。ハードコート層としては、透明性があ り、基材 2の屈折率 (n)と等しいか、又は、基材 2の屈折率 (n)に対し、 ± 0. 1以内の 屈折率である材料であればよい。例えば、紫外線硬化型のアクリル樹脂、シリコン樹 脂等を主体とする樹脂が挙げられる。これらの樹脂には、添加剤を含有させることも できる。 [0031] A hard coat layer can be provided between the base material 2 and the first thin film 3 in order to impart a desired hardness to the light-absorbing anti-reflective body 1. The hard coat layer is transparent and has a refractive index equal to the refractive index (n) of the substrate 2 or within ± 0.1 of the refractive index (n) of the substrate 2. Should be fine. For example, a resin mainly composed of an ultraviolet curable acrylic resin, a silicone resin, or the like can be used. These resins may contain additives.
[0032] ハードコート層の形成方法としては、バーコート法、ドクターブレード法、リバース口 ールコート法、グラビアロールコート法等の公知の塗布方法を用いることができる。 また、ハードコート層の幾何学的膜厚は、 10 / m以下が好ましい。  As a method for forming the hard coat layer, known coating methods such as a bar coating method, a doctor blade method, a reverse mouth coating method, and a gravure roll coating method can be used. The geometric thickness of the hard coat layer is preferably 10 / m or less.
実施例  Example
[0033] 以下、実施例により、本発明をさらに詳しく説明する。なお、以下の実施例及び比 較例における各薄膜の機械的膜厚は、次のようにして求めた。  Hereinafter, the present invention will be described in more detail with reference to Examples. In addition, the mechanical film thickness of each thin film in the following Examples and Comparative Examples was obtained as follows.
予め、表面に油性ペンで線を描いた基板を成膜室に導入する。各例で形成する薄 膜のそれぞれの成膜条件において基板上に単層膜を形成し、成膜時間が異なる 2 種類の単層膜付き基板を作製する。それぞれ 2種類の単層膜付き基板を成膜室より 取り出した後、エタノールを浸した布でこすって基板上に油性ペンで描レ、た線を該線 上に形成された薄膜とともに拭き取る。触針式段差計:タリステップ (a stylus-type surface tracer, RanK Taylor Hobson, Talystep)を用いて、油性マジックが拭き取 られた部分から薄膜が形成された部分にかけて走査させ、段差すなわち幾何学的膜 厚をそれぞれ測定する。測定された幾何学的膜厚と成膜時間とから、それぞれの成 膜条件における検量線を作成する。この検量線を使用し、各成膜時間に相当する薄 膜の幾何学的膜厚を求める。 A substrate having a surface drawn with an oil pen in advance is introduced into a film forming chamber. A single-layer film is formed on the substrate under the respective film-forming conditions of the thin film formed in each example, and two types of substrates with a single-layer film with different film-forming times are manufactured. After each of the two types of substrates with a single-layer film is taken out of the film-forming chamber, they are rubbed with a cloth soaked in ethanol, drawn on the substrate with an oil-based pen, and wiped with the thin film formed on the lines. Stylus-type surface gage: Using a stylus-type surface tracer (RanK Taylor Hobson, Talystep), scan from the part where the oil-based magic is wiped to the part where the thin film is formed, film Each thickness is measured. From the measured geometric film thickness and film formation time, a calibration curve is prepared under each film formation condition. Using this calibration curve, the geometric film thickness of the thin film corresponding to each film formation time is obtained.
[0034] [実施例 1]  [Example 1]
成膜室を 0. 27mPaまで排気した後、窒素ガス濃度 30体積%、残部アルゴンガス 力、ら成るスパッタガスを成膜室に導入し、 20cm X 7cm X O. 5cmの大きさの n型シリ コンターゲットに 0. 39kwの電力を投入して、直流反応性スパッタ法により膜厚 15η mの窒化ケィ素(第 1の薄膜)をハードコート層付き PET (厚さ 100 μ m)基材上に 形成した。  After evacuation of the film formation chamber to 0.27 mPa, a sputter gas consisting of a nitrogen gas concentration of 30% by volume and the balance of argon gas power was introduced into the film formation chamber, and an n-type silicon having a size of 20 cm × 7 cm × O. 0.39kw electric power is applied to the contarget, and a 15 ηm-thick silicon nitride (first thin film) is applied on a PET (100 μm thick) substrate with a hard coat layer by DC reactive sputtering. Formed.
[0035] 次に、窒素ガス濃度 10体積0 /0、残部アルゴンガスから成るスパッタガスを成膜室に 導入し、 20cm X 7cm X O. 5cmの大きさのチタンターゲットに 0. 26kwの電力を投 入して、直流反応性スパッタ法により膜厚 5nmの窒化チタン (光吸収性膜)をその上 に形成した。 [0035] Next, the nitrogen gas concentration of 10 vol 0/0, the sputtering gas and the balance argon gas was introduced into the film forming chamber, the 20cm X 7cm X O. 5cm size power 0. 26Kw titanium target Then, titanium nitride (light absorbing film) with a thickness of 5 nm was formed thereon by DC reactive sputtering.
[0036] さらに、窒素ガス濃度 30体積0 /0、残部アルゴンガスから成るスパッタガスを成膜室 に導入し、 20cm X 7cm X O. 5cmの大きさの n型シリコンターゲットに 0· 39kwの電 力を投入して、直流反応性スパッタ法により膜厚 3nmの窒化ケィ素をその上に形成 した。 [0036] Further, the nitrogen gas concentration of 30 vol 0/0, the sputtering gas and the balance argon gas was introduced into the film forming chamber, 20cm X 7cm X O. 5cm size electrodeposition 0 · 39Kw the n-type silicon target A force was applied, and a 3 nm-thick silicon nitride film was formed thereon by a DC reactive sputtering method.
この窒化ケィ素膜は、その上の第 2の薄膜を反応性スパッタ法により形成する際に 、窒化チタン膜が酸化するのを防ぐための酸化バリア膜であり、第 2の薄膜を形成す る際に酸化されるので光学的な効果は果たさない。  This silicon nitride film is an oxidation barrier film for preventing the titanium nitride film from being oxidized when the second thin film thereon is formed by a reactive sputtering method, and forms the second thin film. Since it is oxidized at the time, it has no optical effect.
[0037] 次いで、酸素ガス濃度 60体積0 /0、残部アルゴンガスから成るスパッタガスを成膜室 に導入し、 20cm X 7cm X O. 5cmの大きさの n型シリコンターゲットに 0. 77kwの電 力を投入して、直流反応性スパッタ法により膜厚 125nmの酸化ケィ素(第 2の薄膜) をその上に形成した。 [0037] Then, the oxygen gas concentration of 60 vol 0/0, the sputtering gas and the balance argon gas was introduced into the film forming chamber, 20cm X 7cm X O. 5cm of size n-type silicon target to electrodeposition of 0. 77Kw of A force was applied, and a 125 nm-thick silicon oxide (second thin film) was formed thereon by a DC reactive sputtering method.
作成した膜の組成と膜厚をまとめて表 1に示す。なお、成膜した各々の膜は非化学 量論的であるため、表 1の膜の組成においては組成比を考慮していない。  Table 1 summarizes the composition and thickness of the prepared films. Note that, since each of the formed films is non-stoichiometric, the composition ratio of the films in Table 1 is not considered.
[0038] <評価 >  [0038] <Evaluation>
得られた光吸収性反射防止体の膜を形成していない側の基材面に黒色塗料を塗 布し、膜を形成してレ、る側の反射率と透過率を、分光光度計(日本分光社製、 ART -25GTを用いて測定した。反射率の測定結果から可視光透過率 CJIS Z 8701に おいて規定されている反射の刺激値 Y)を求めたところ、 81. 2%であった。また、可 視光反射率 tilS Z 8701)は 0. 5%であった。これらの測定結果を表 1に示す。 A black paint is applied to the surface of the substrate on which the film of the obtained light-absorbing anti-reflective body is not formed. After forming a film, the reflectance and the transmittance on the side of the cloth were measured using a spectrophotometer (ART-25GT, manufactured by JASCO Corporation. The visible light transmittance CJIS Z was obtained from the measurement result of the reflectance. The reflex stimulus value Y) specified in 8701 was determined to be 81.2%. The visible light reflectance tilS Z 8701) was 0.5%. Table 1 shows the measurement results.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られた。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 455— 635nmであり、広い波長範囲において反射 率 1。 /。以下である光吸収性反射防止体が得られた。  A light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less is 455 to 635 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
[0039] [実施例 2] [Example 2]
窒化ケィ素(第 1の薄膜)と酸化ケィ素(第 2の薄膜)の膜厚を変えて、それ以外は 実施例 1と同様にして光吸収性反射防止体を作製した。作成した膜の組成と膜厚及 び可視光透過率と可視光反射率の測定結果をまとめて表 1に示す。  A light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the film thicknesses of silicon nitride (first thin film) and silicon oxide (second thin film) were changed. Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られた。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 460— 620nmであり、広い波長範囲において反射 率 1 %以下である光吸収性反射防止体が得られた。  A light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. In addition, in the light-absorbing antireflective body, a light having a reflectance of 1% or less had a wavelength of 460 to 620 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range was obtained. .
[0040] [実施例 3] [Example 3]
窒化チタン (光吸収性膜)と酸化ケィ素(第 2の薄膜)の膜厚を変えて、それ以外は 実施例 1と同様にして光吸収性反射防止体を作製した。作成した膜の組成と膜厚及 び可視光透過率と可視光反射率の測定結果をまとめて表 1に示す。  A light-absorbing anti-reflective body was produced in the same manner as in Example 1, except that the thicknesses of titanium nitride (light-absorbing film) and silicon oxide (second thin film) were changed. Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られた。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 450— 640nmであり、広い波長範囲において反射 率 1。 /。以下である光吸収性反射防止体が得られた。  A light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflective body, the wavelength of light having a reflectance of 1% or less is 450 to 640 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
[0041] [実施例 4] Example 4
光吸収性膜を酸窒化チタンとした以外は実施例 1と同様にして光吸収性反射防止 体を作製した。作成した膜の組成と膜厚及び可視光透過率と可視光反射率の測定 結果をまとめて表 1に示す。 80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られた。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 440— 650nmであり、広い波長範囲において反射 率 1。 /。以下である光吸収性反射防止体が得られた。 A light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the light-absorbing film was made of titanium oxynitride. Table 1 summarizes the measurement results of the composition and thickness of the formed film, the visible light transmittance and the visible light reflectance. A light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. Further, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less is 440 to 650 nm, and the reflectance is 1 in a wide wavelength range. /. The following light-absorbing antireflective body was obtained.
[0042] [実施例 5] Example 5
窒化ケィ素(第 1の薄膜)と窒化チタン (光吸収性膜)と酸化ケィ素(第 2の薄膜)の 膜厚を変えて、それ以外は実施例 1と同様にして光吸収性反射防止体を作製した。 作成した膜の組成と膜厚及び可視光透過率と可視光反射率の測定結果をまとめて 表 1に示す。  The thickness of silicon nitride (first thin film), titanium nitride (light absorbing film), and silicon oxide (second thin film) were changed, and the other conditions were the same as in Example 1 except for the light absorbing antireflection. The body was made. Table 1 summarizes the measurement results of the composition and thickness of the formed film, and the visible light transmittance and visible light reflectance.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られた。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 455— 600nmであり、広い波長範囲において反射 率 1 %以下である光吸収性反射防止体が得られた。  A light-absorbing antireflective body having a low visible light reflectance of 1% or less was obtained while satisfying a high visible light transmittance of 80% or more. In addition, in the light-absorbing antireflective body, a light having a reflectance of 1% or less had a wavelength of 455 to 600 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range was obtained. .
[0043] [実施例 6] Example 6
第 1の薄膜を酸化チタンとし、酸化ケィ素(第 2の薄膜)の膜厚を変えた以外は実施 例 1と同様にして光吸収性反射防止体を作製する。作成した膜の組成と膜厚及び可 視光透過率と可視光反射率の測定結果をまとめて表 1に示す。  A light-absorbing anti-reflective member is manufactured in the same manner as in Example 1 except that the first thin film is made of titanium oxide and the thickness of silicon oxide (the second thin film) is changed. Table 1 summarizes the measurement results of the composition and thickness of the prepared film, the visible light transmittance and the visible light reflectance.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られる。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 460— 600nmであり、広い波長範囲において反射 率 1 %以下である光吸収性反射防止体が得られる。  A light-absorbing anti-reflective body having a low visible light reflectance of 1% or less while satisfying a high visible light transmittance of 80% or more can be obtained. Further, in the light-absorbing antireflective body, a light having a reflectance of 1% or less has a wavelength of 460 to 600 nm, and a light-absorbing antireflective body having a reflectance of 1% or less in a wide wavelength range can be obtained.
[0044] [実施例 7] Example 7
第 1の薄膜を酸化アルミニウムとし、酸化ケィ素(第 2の薄膜)の膜厚を変えた以外 は実施例 1と同様にして光吸収性反射防止体を作製する。作成した膜の組成と膜厚 及び可視光透過率と可視光反射率の測定結果をまとめて表 1に示す。  A light-absorbing anti-reflective member is manufactured in the same manner as in Example 1 except that the first thin film is made of aluminum oxide and the thickness of silicon oxide (the second thin film) is changed. Table 1 summarizes the measurement results of the composition and thickness of the formed film, and the visible light transmittance and visible light reflectance.
80%以上の高い可視光透過率を満たしながら、 1 %以下の低い可視光反射率を示 す光吸収性反射防止体が得られる。また、該光吸収性反射防止体において、反射 率が 1%以下である光の波長が 460— 600nmであり、広い波長範囲において反射 率 1 %以下である光吸収性反射防止体が得られる。 A light-absorbing anti-reflective body having a low visible light reflectance of 1% or less while satisfying a high visible light transmittance of 80% or more can be obtained. In addition, in the light-absorbing antireflective body, the wavelength of light having a reflectance of 1% or less is 460 to 600 nm, and the light is reflected in a wide wavelength range. A light-absorbing antireflective body having a ratio of 1% or less is obtained.
[0045] [比較例 1] [Comparative Example 1]
窒化ケィ素(第 1の薄膜)を形成せず、基板上に直接光吸収性膜を作成し、酸化ケ ィ素(第 2の薄膜)の膜厚を変えて、それ以外は実施例 1と同様にして光吸収性反射 防止体を作製した。作成した膜の組成と膜厚及び可視光透過率と可視光反射率の 測定結果をまとめて表 1に示す。  Without forming silicon nitride (first thin film), a light-absorbing film was formed directly on the substrate, and the thickness of silicon oxide (second thin film) was changed. In the same manner, a light-absorbing antireflection body was produced. Table 1 summarizes the measurement results of the composition and thickness of the formed film, the visible light transmittance and the visible light reflectance.
得られた光吸収性反射防止体の可視光反射率は 1%以上であった。  The visible light reflectance of the obtained light-absorbing antireflection body was 1% or more.
[0046] [比較例 2] [Comparative Example 2]
窒化ケィ素 (第 1の薄膜)を形成せず、基板上に直接光吸収性膜を作成し、窒化チ タン (光吸収性膜)と酸化ケィ素(第 2の薄膜)の膜厚を変えて、それ以外は実施例 1 と同様にして光吸収性反射防止体を作製した。作成した膜の組成と膜厚及び可視光 透過率と可視光反射率の測定結果をまとめて表 1に示す。  Without forming silicon nitride (first thin film), a light-absorbing film was formed directly on the substrate, and the film thickness of titanium nitride (light-absorbing film) and silicon oxide (second thin film) was changed. Otherwise, the procedure of Example 1 was repeated to prepare a light-absorbing antireflective member. Table 1 summarizes the measurement results of the composition and thickness of the formed film, the visible light transmittance and the visible light reflectance.
得られた光吸収性反射防止体の可視光透過率は 80%に達しなかった。また、該光 吸収性反射防止体において、反射率が 1%以下である光の波長は 450— 700nmで あった。  The visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%. In addition, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less was 450 to 700 nm.
[0047] [比較例 3] [Comparative Example 3]
窒化ケィ素(第 1の薄膜)と窒化チタン (光吸収性膜)と酸化ケィ素(第 2の薄膜)の 膜厚を変えて、それ以外は実施例 1と同様にして光吸収性反射防止体を作製した。 作成した膜の組成と膜厚及び可視光透過率と可視光反射率の測定結果をまとめて 表 1に示す。  The thickness of silicon nitride (first thin film), titanium nitride (light absorbing film) and silicon oxide (second thin film) were changed, and the other conditions were the same as in Example 1 except for the light absorbing antireflection. The body was made. Table 1 summarizes the measurement results of the composition and thickness of the formed film, and the visible light transmittance and visible light reflectance.
得られた光吸収性反射防止体の可視光透過率は 80%に達しなかった。また、該光 吸収性反射防止体において、反射率が 1%以下である光の波長は 430 730nmで あった。  The visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%. In addition, in the light-absorbing antireflection body, the wavelength of light having a reflectance of 1% or less was 430 730 nm.
[0048] [比較例 4] [Comparative Example 4]
窒化チタン (光吸収性膜)と酸化ケィ素(第 2の薄膜)の膜厚を変えて、それ以外は 実施例 1と同様にして光吸収性反射防止体を作製した。作成した膜の組成と膜厚及 び可視光透過率と可視光反射率の測定結果をまとめて表 1に示す。  A light-absorbing anti-reflective body was produced in the same manner as in Example 1 except that the film thickness of titanium nitride (light-absorbing film) and silicon oxide (second thin film) were changed. Table 1 summarizes the composition and thickness of the prepared films, and the measurement results of visible light transmittance and visible light reflectance.
得られた光吸収性反射防止体の可視光透過率は 80%に達しなかった。また、該光 吸収性反射防止体において、反射率が 1%以下である光の波長は 460— 690nmで あった。 The visible light transmittance of the obtained light-absorbing antireflective body did not reach 80%. Also, the light In the absorptive antireflection body, the wavelength of light having a reflectance of 1% or less was 460 to 690 nm.
[0049] これらの結果から、実施例では、可視光透過率が 80%以上、かつ可視光反射率が From these results, in the example, the visible light transmittance was 80% or more and the visible light reflectance was
1 %以下の良好な光吸収性反射防止体が得られた。 A good light-absorbing antireflective body of 1% or less was obtained.
[0050] [表 1] [0050] [Table 1]
第 1の薄膜 光吸収性膜 酸化バリア膜 第 2の薄膜 可視光透過率 可視 π反射率 反射率 1 %以下の 組成 膜厚(nm:組成 膜厚(nm:組成 膜厚(nm:組成 膜厚(nm: (%) (%) 光の波長範囲(nm) 実施例 1 SiN 15 TiN 5 SiN 3 SiO 125 81.2 0.5 455~635 実施例 2 SiN 20 TiN 5 SiN 3 SiO 123 81.9 0.6 460-620 実施例 3 SiN 15 TiN 6 SiN 3 SiO 118 80.2 0.5 450~640 実施例 4 SiN 15 TiON 5 SiN 3 SiO 125 81.0 0.5 440—650 実施例 5 SiN 20 TiN 4 SiN 3 SiO 118 84.5 0.6 455~600 実施例 6 TiO 10 TiN 5 SiN 3 SiO 110 81.0 0.5 460-600 実施例 7 AIO 100 TiN 5 SiN 3 SiO 80 81.0 0.5 460~600 比較例 1 TiN 5 SiN 3 SiO 105 80.0 1.2 First thin film Light absorbing film Oxidation barrier film Second thin film Visible light transmittance Visible π reflectance Reflectivity 1% or less Composition Thickness (nm: Composition Thickness (nm: Composition Thickness (nm: Composition Thickness) (Nm: (%) (%) Light wavelength range (nm) Example 1 SiN 15 TiN 5 SiN 3 SiO 125 81.2 0.5 455 to 635 Example 2 SiN 20 TiN 5 SiN 3 SiO 123 81.9 0.6 460-620 Example 3 SiN 15 TiN 6 SiN 3 SiO 118 80.2 0.5 450 to 640 Example 4 SiN 15 TiON 5 SiN 3 SiO 125 81.0 0.5 440--650 Example 5 SiN 20 TiN 4 SiN 3 SiO 118 84.5 0.6 455 to 600 Example 6 TiO 10 TiN 5 SiN 3 SiO 110 81.0 0.5 460-600 Example 7 AIO 100 TiN 5 SiN 3 SiO 80 81.0 0.5 460-600 Comparative example 1 TiN 5 SiN 3 SiO 105 80.0 1.2
比較例 2 TiN 8 SiN 3 SiO 90 72.0 0.5 450-700 比較例 3 SiN 2 TiN 9 SiN 3 SiO 90 71.5 0.3 430-730 比較例 4 SiN 15 TiN 9 SiN 3 SiO 90 0.3 460-690 Comparative Example 2 TiN 8 SiN 3 SiO 90 72.0 0.5 450-700 Comparative Example 3 SiN 2 TiN 9 SiN 3 SiO 90 71.5 0.3 430-730 Comparative Example 4 SiN 15 TiN 9 SiN 3 SiO 90 0.3 460-690
O C O C

Claims

請求の範囲 The scope of the claims
[1] 基材上に前記基材側から、  [1] On the substrate, from the substrate side,
幾何学的膜厚が 1一 200nmであって、屈折率が 1. 3以上、 2. 6以下である物質から なる第 1の薄膜と、  A first thin film made of a material having a geometric thickness of 11 to 200 nm and a refractive index of 1.3 or more and 2.6 or less;
幾何学的膜厚が 1一 8nmであって、窒化チタン、酸窒化チタン、金及び銅からなる群 力 選択される少なくとも 1種以上の物質を含有する光吸収性膜と、  A light-absorbing film having a geometric film thickness of 118 nm and containing at least one substance selected from the group consisting of titanium nitride, titanium oxynitride, gold and copper;
幾何学的膜厚が 45— 165nmであって、屈折率が 1. 3以上、 1. 6以下である物質か らなる第 2の薄膜と、を有することを特徴とする光吸収性反射防止体。  A light-absorbing antireflection body, comprising: a second thin film made of a substance having a geometric thickness of 45 to 165 nm and a refractive index of 1.3 or more and 1.6 or less. .
[2] 前記第 1の薄膜が、フッ化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化スズ、 酸化インジウム、酸化モリブデン、酸化タンタル、酸化ジルコニウム、酸化ニオブ、酸 ィ匕チタン、窒化ケィ素、酸窒化ケィ素及び窒化アルミニウムからなる群から選択される 少なくとも 1種以上の物質を含有する膜である請求項 1に記載の光吸収性反射防止 体。 [2] The first thin film is made of magnesium fluoride, aluminum oxide, zinc oxide, tin oxide, indium oxide, molybdenum oxide, tantalum oxide, zirconium oxide, niobium oxide, titanium oxide, silicon nitride, oxynitride. 2. The light-absorbing antireflective body according to claim 1, wherein the light-absorbing antireflection body is a film containing at least one or more substances selected from the group consisting of silicon and aluminum nitride.
[3] 前記第 2の薄膜が、酸化ケィ素、フッ化マグネシウム、フッ化カルシウム、フッ化アル ミニゥム、酸化アルミニウム、フッ化ランタン及びフッ化アルミン酸ナトリウムからなる群 力 選択される少なくとも 1種以上の物質を含有する膜である請求項 1又は 2に記載 の光吸収性反射防止体。  [3] The second thin film is at least one selected from the group consisting of silicon oxide, magnesium fluoride, calcium fluoride, aluminum fluoride, aluminum oxide, lanthanum fluoride, and sodium fluoride aluminate. 3. The light-absorbing anti-reflective body according to claim 1, wherein the light-absorbing anti-reflective body is a film containing the substance.
[4] 前記第 2の薄膜が、実質的に酸化ケィ素からなる膜である請求項 1、 2又は 3に記載 の光吸収性反射防止体。  4. The light-absorbing anti-reflective body according to claim 1, wherein the second thin film is a film substantially made of silicon oxide.
[5] 前記光吸収性膜が、窒化チタン及び酸窒化チタンからなる群から選択される少なく とも 1種以上の物質を含有する膜である請求項 1一 4のいずれ力、 1項に記載の光吸収 性反射防止体。  5. The light-absorbing film according to claim 1, wherein the light-absorbing film is a film containing at least one or more substances selected from the group consisting of titanium nitride and titanium oxynitride. Light absorbing anti-reflective body.
[6] 前記基材と第 1の薄膜との間に、ハードコート層を含む請求項 1一 5のいずれか 1項 に記載の光吸収性反射防止体。  [6] The light-absorbing anti-reflective body according to any one of [15] to [15], further comprising a hard coat layer between the base material and the first thin film.
[7] 基材上に前記基材側から、 [7] On the substrate, from the substrate side,
幾何学的膜厚が 1一 50nmであって、屈折率が 1. 3以上、 1. 5未満である物質から なる第 1の薄膜と、  A first thin film made of a material having a geometric film thickness of 50 nm and a refractive index of 1.3 or more and less than 1.5;
幾何学的膜厚が 5— 8nmであって、窒化チタン及び酸窒化チタンからなる群から選 択される少なくとも 1種以上の物質を含有する光吸収性膜と、 It has a geometric thickness of 5-8 nm and is selected from the group consisting of titanium nitride and titanium oxynitride. A light-absorbing film containing at least one or more substances selected,
幾何学的膜厚が 65— 120nmであって、酸化ケィ素からなる第 2の薄膜と、を有する ことを特徴とする光吸収性反射防止体。  A light-absorbing anti-reflective body having a geometric thickness of 65 to 120 nm and a second thin film made of silicon oxide.
[8] 基材上に前記基材側から、 [8] On the substrate, from the substrate side,
幾何学的膜厚が 1一 200nmであって、屈折率 1. 5以上、 1. 7以下である物質からな る第 1の薄膜と、  A first thin film made of a material having a geometric film thickness of 200 nm and a refractive index of 1.5 or more and 1.7 or less;
幾何学的膜厚が 3 7nmであって、窒化チタン及び酸窒化チタンからなる群から選 択される少なくとも 1種以上の物質を含有する光吸収性膜と、  A light-absorbing film having a geometric thickness of 37 nm and containing at least one substance selected from the group consisting of titanium nitride and titanium oxynitride;
幾何学的膜厚が 65 120nmであって、酸化ケィ素からなる第 2の薄膜と、を有する ことを特徴とする光吸収性反射防止体。  A light-absorbing antireflective body, comprising: a second thin film made of silicon oxide, having a geometric film thickness of 65 to 120 nm.
[9] 基材上に前記基材側から、 [9] On the substrate, from the substrate side,
幾何学的膜厚が 1一 55nmであって、屈折率 1. 9以上、 2. 1以下である物質からな る第 1の薄膜と、  A first thin film made of a material having a geometric thickness of 1 to 55 nm and a refractive index of 1.9 or more and 2.1 or less;
幾何学的膜厚が 3— 7nmであって、窒化チタン及び酸窒化チタンからなる群から選 択される少なくとも 1種以上の物質を含有する光吸収性膜と、  A light-absorbing film having a geometric thickness of 3 to 7 nm and containing at least one or more substances selected from the group consisting of titanium nitride and titanium oxynitride;
幾何学的膜厚が 60— 165nmであって、酸化ケィ素からなる第 2の薄膜と、を有する ことを特徴とする光吸収性反射防止体。  A light-absorbing anti-reflective body having a geometric thickness of 60 to 165 nm and a second thin film made of silicon oxide.
[10] 基材上に前記基材側から、 [10] On the substrate, from the substrate side,
幾何学的膜厚が 1一 25nmであって、屈折率 2. 3以上、 2. 7以下である物質からな る第 1の薄膜と、  A first thin film made of a material having a geometric thickness of 125 nm and a refractive index of 2.3 or more and 2.7 or less;
幾何学的膜厚が 3— 7nmであって、窒化チタン及び酸窒化チタンからなる群から選 択される少なくとも 1種以上の物質を含有する光吸収性膜と、  A light-absorbing film having a geometric thickness of 3 to 7 nm and containing at least one or more substances selected from the group consisting of titanium nitride and titanium oxynitride;
幾何学的膜厚が 45 160nmであって、酸化ケィ素からなる第 2の薄膜と、を有する ことを特徴とする光吸収性反射防止体。  A light-absorbing antireflective body, comprising: a second thin film made of silicon oxide having a geometric thickness of 45 to 160 nm.
PCT/JP2004/018905 2003-12-18 2004-12-17 Light absorptive antireflector WO2005059602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516359A JPWO2005059602A1 (en) 2003-12-18 2004-12-17 Light-absorbing antireflection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003420766 2003-12-18
JP2003-420766 2003-12-18

Publications (1)

Publication Number Publication Date
WO2005059602A1 true WO2005059602A1 (en) 2005-06-30

Family

ID=34697260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018905 WO2005059602A1 (en) 2003-12-18 2004-12-17 Light absorptive antireflector

Country Status (3)

Country Link
JP (1) JPWO2005059602A1 (en)
TW (1) TW200533949A (en)
WO (1) WO2005059602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262110B2 (en) * 2005-01-31 2013-08-14 旭硝子株式会社 Base with antireflection film
CN108496099A (en) * 2016-04-18 2018-09-04 日本电气硝子株式会社 Anti-dazzling screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226147A (en) * 1998-12-28 2001-08-21 Nippon Electric Glass Co Ltd Electrically conductive antireflection film and glass panel for cathode ray tube on which the film is deposited
JP2001324601A (en) * 2000-05-12 2001-11-22 Asahi Glass Co Ltd Antireflection body
JP2002221601A (en) * 2001-01-25 2002-08-09 Toppan Printing Co Ltd Antireflection laminate
JP2003139909A (en) * 2001-11-08 2003-05-14 Asahi Glass Co Ltd Conductive antireflection film and glass panel for cathode ray tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251801A (en) * 1990-03-01 1991-11-11 Ricoh Opt Ind Co Ltd Antireflection film
JPH10230558A (en) * 1996-12-17 1998-09-02 Asahi Glass Co Ltd Organic substrate with photoabsorptive reflection preventive film and its manufacture
JP2000193801A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Light absorbing reflection preventing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226147A (en) * 1998-12-28 2001-08-21 Nippon Electric Glass Co Ltd Electrically conductive antireflection film and glass panel for cathode ray tube on which the film is deposited
JP2001324601A (en) * 2000-05-12 2001-11-22 Asahi Glass Co Ltd Antireflection body
JP2002221601A (en) * 2001-01-25 2002-08-09 Toppan Printing Co Ltd Antireflection laminate
JP2003139909A (en) * 2001-11-08 2003-05-14 Asahi Glass Co Ltd Conductive antireflection film and glass panel for cathode ray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262110B2 (en) * 2005-01-31 2013-08-14 旭硝子株式会社 Base with antireflection film
CN108496099A (en) * 2016-04-18 2018-09-04 日本电气硝子株式会社 Anti-dazzling screen
EP3447547A4 (en) * 2016-04-18 2019-12-04 Nippon Electric Glass Co., Ltd. Light-shielding plate
US11048024B2 (en) 2016-04-18 2021-06-29 Nippon Electric Glass Co., Ltd. Light-shielding plate

Also Published As

Publication number Publication date
JPWO2005059602A1 (en) 2007-12-13
TW200533949A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
JP6021030B2 (en) Structure, touch panel and display
TWI545591B (en) Transparent conductive film and touch panel
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP6314463B2 (en) Transparent conductor
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
KR930009764A (en) Products comprising glass substrates provided with low emissivity films
WO2007013269A1 (en) Laminated body for reflection film
KR20150126885A (en) Anti-reflective coating
KR102729388B1 (en) Antireflection film
CN108351450B (en) Gold-tinted multilayer coating and reflector comprising said coating
WO2014167835A1 (en) Translucent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
WO2005059602A1 (en) Light absorptive antireflector
JP2007144926A (en) Electroconductive anti-reflection laminate and display
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2017145748A1 (en) Light-reflecting film and backlight unit for liquid crystal display device
JP4967529B2 (en) Transparent conductive laminate
JP3879178B2 (en) Conductive low reflection laminate
WO2015087895A1 (en) Transparent conductive body
JP2018079599A (en) Optical sheet
CN221199978U (en) Red light anti-reflection and anti-reflection film system
KR102615696B1 (en) Transparent gas with multilayer film
JP2005003707A (en) Anti-reflection object and display unit using the same
JP2004126548A (en) Optical article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516359

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase