[go: up one dir, main page]

WO2005029658A1 - 発光素子の装着方法および装着装置 - Google Patents

発光素子の装着方法および装着装置 Download PDF

Info

Publication number
WO2005029658A1
WO2005029658A1 PCT/JP2004/013111 JP2004013111W WO2005029658A1 WO 2005029658 A1 WO2005029658 A1 WO 2005029658A1 JP 2004013111 W JP2004013111 W JP 2004013111W WO 2005029658 A1 WO2005029658 A1 WO 2005029658A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
optical system
stage
suction head
head
Prior art date
Application number
PCT/JP2004/013111
Other languages
English (en)
French (fr)
Inventor
Shigeki Fukunaga
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005514022A priority Critical patent/JP3844009B2/ja
Priority to KR1020067004532A priority patent/KR100758811B1/ko
Priority to US10/573,058 priority patent/US7540080B2/en
Priority to CNB2004800270804A priority patent/CN100420109C/zh
Publication of WO2005029658A1 publication Critical patent/WO2005029658A1/ja
Priority to US12/273,949 priority patent/US8015696B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49131Assembling to base an electrical component, e.g., capacitor, etc. by utilizing optical sighting device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53191Means to apply vacuum directly to position or hold work part

Definitions

  • the present invention relates to a method and an apparatus for mounting a light-emitting element used when mounting a light-emitting element such as a laser chip or an LED on a substrate or the like.
  • an alignment mark is provided to the electronic component, and the alignment mark is aligned with the mark of the substrate to bond the electronic component. It is customary. However, providing an alignment mark to a component in advance increases the cost, and also has a problem that the positional accuracy with respect to the substrate is affected by an error in applying the alignment mark.
  • FIG. 18 shows an example in which an edge-emitting laser chip 100 is bonded to a waveguide substrate 101.
  • a waveguide 102 for transmitting light is formed in the waveguide substrate 101 in a horizontal direction.
  • the waveguide 102 and the optical axis of the laser chip 100 are aligned so as to be coaxial with each other.
  • An optical fiber 104 is attached to a portion of the waveguide substrate 101 where the laser chip 100 is bonded and a portion opposite to the waveguide 102 with the optical axis thereof aligned with the waveguide 102.
  • the light generated by the laser chip 100 is transmitted to the optical communication line through the optical fiber 104.
  • Patent Document 1 an intermediate chip is mounted on a post with reference to a positioning plate, a laser chip is mounted on the intermediate chip, the laser chip emits light, and the laser chip rotates from its emission direction.
  • a method has been proposed in which the post, the intermediate chip, and the laser chip are simultaneously bonded after correcting the direction.
  • this method is a method in which the direction is recognized by emitting the laser chip and the rotation is corrected on the spot, so that only coarse adjustment can be performed, and it takes time to adjust the direction with high accuracy.
  • this method since the relative positional relationship between the laser chip and the post is recognized, even if this method is applied to mounting the laser chip on the waveguide substrate, high accuracy and positional accuracy cannot be expected. ,.
  • Patent Document 1 Japanese Patent Publication No. 7-46747
  • Patent Document 2 a laser chip is mounted on an intermediate stage, emitted light, the X, ⁇ , and ⁇ axes of its optical axis are measured, and after correcting the light emitting direction according to the measured value, a laser is emitted.
  • a method of bonding a chip to a post or the like has been proposed.
  • the light emitting direction of the laser chip can be accurately recognized, but the relative positional relationship with the post to be joined is not recognized, and the position and orientation of the mounted state cannot be guaranteed.
  • the pressure but also the heating is often performed during bonding, and a posture error due to thermal deformation or the like occurs at the time of heat bonding, so that the positional accuracy of the mounting state is not high.
  • Patent Document 2 Japanese Patent Publication No. 7-105575
  • Patent Document 3 discloses a method of image-recognizing a light emission center of a light emitting element and coordinates of an outer diameter reference point of the element. This method relates to a method of mounting a plurality of light emitting elements having an upward optical axis on a substrate so that the light emission centers thereof are at equal intervals, and the positional relationship between the plurality of light emitting elements can be set accurately.
  • it is not possible to guarantee a relative position in a mounted state between the light emitting element and the substrate, which has a position reference on the substrate. Therefore, even when this method is applied to mounting a laser chip on a waveguide substrate, high positional accuracy between the waveguide substrate and the laser chip cannot be obtained.
  • Patent Document 3 JP-A-2000-150970
  • An object of the present invention is to provide a mounting method and a mounting device for a light-emitting element that can be positioned and mounted on an object with high accuracy based on the optical axis of the light-emitting element.
  • an invention according to claim 1 suctions a first component which is a light emitting element having a lateral optical axis at a lower end portion of a suction head, and places the first component on a stage.
  • the first optical system disposed above the suction head and the first optical system located below the stage and connected to the first optical system.
  • the suction head is inserted between the two optical systems, and the first optical system captures an image of the head reference mark applied to the suction head and allows the upward force to be recognized.
  • the component is imaged, and the first component emits light.
  • a step of mounting a two-part provides a method of mounting the light emitting element characterized by comprising a.
  • the invention according to claim 9 is a mounting device for a light-emitting element for aligning and mounting a first component and a second component, which are light-emitting devices having an optical axis in the lateral direction, in a lower end portion.
  • a suction head having a head reference mark that can adsorb one part and recognize the upward force, a stage that holds a second part at the upper end and has a stage reference mark that can also recognize the downward force, and a suction head and a stage that are X ,
  • a drive mechanism for relatively moving in the Y, Z, and 0 directions a first optical system disposed above the suction head and imaging the second component held on the stage and the head reference mark, A second optical system that is disposed below and substantially opposing the optical axis of the first optical system and captures an image of the first component and the stage reference mark adsorbed by the adsorption head, Align the axes so that they are almost orthogonal.
  • a computing device for calculating the relative position of the head and the head reference mark and the stage reference mark are recognized by the first and second optical systems in a state where the suction head and the stage are moved to the mounting position.
  • a mounting device for a light emitting element is provided.
  • the optical system can include a mirror, a lens, and the like that can be connected only by a single camera, and is not limited to a system in which one optical system is equipped with one camera. Alternatively, one optical system can be composed of a plurality of cameras.
  • the first optical system is disposed above the suction head with the optical axis directed downward, and the second optical system is disposed below the stage with the optical axis directed upward.
  • the optical axes of the first optical system and the second optical system are substantially opposed, and have a known positional relationship with each other.
  • the third optical system is disposed so that the direction of the optical axis is substantially orthogonal to the first optical system, and at least a part of the imaging visual field is disposed so as to include the visual field of the first optical system. Is good. If the size of the target first and second components is larger than the expected field of view, it is recommended that the first optical system and the second optical system be able to move in a planar direction while keeping the one optical system! / ,.
  • the suction head is inserted between the first optical system and the second optical system, and the first optical system captures an image of the head reference mark applied to the suction head and allows the upward force to be recognized.
  • the first component adsorbed on the head is imaged, and the first component is caused to emit light, and its optical axis is simultaneously imaged by the third optical system.
  • the first optical system recognized the X and Y coordinates of the head reference mark (Y axis is the direction of the optical axis)
  • the second optical system recognized the Y coordinate of the first component
  • the third optical system emitted light The X and Z coordinates of the optical axis of the first part can be recognized. It is not always necessary to recognize the Z coordinate. In this manner, the relative positions in the X and Y directions between the suction head and the light emission center of the first component can be obtained from the imaging data of the three optical systems.
  • a stage is inserted between the first optical system and the second optical system, and the stage is placed on the stage with the first optical system.
  • the second optical system holds an image of the second component, and the second optical system captures an image of a stage reference mark provided to the stage and recognizable from below.
  • Either the step of imaging the suction head and the first component or the step of imaging the stage and the second component may be performed first.
  • the relative position of the first component and the suction head in the X and Y directions, and the relative position of the second component and the stage in the X and Y directions are calculated using the image information from the first to third optical systems. it can.
  • the head reference mark and the stage reference mark are recognized by the first and second optical systems, and the positional information and the relative positional information described above are recognized.
  • the position of the suction head and the stage is corrected so that the positions of the first component and the second component have a predetermined relationship. If the first component and the second component are mounted in this state, the relative positions of the two components in the mounted state can be guaranteed, and the components can be mounted in a highly accurate alignment.
  • the term “position” generically represents the position in the X, Y, and Z directions and the direction in the ⁇ direction. Therefore, the position includes the posture.
  • the present invention since the position is assured during the mounting operation while imaging the reference marks provided on both the head and the stage, the accuracy required for the shaft mechanism can be limited to the position resolution only, and high-precision reproduction is possible. Does not require sex. Therefore, an inexpensive shaft mechanism can be adopted. In addition, reproducibility errors such as thermal deformation and lost motion can be corrected during mounting work. As a result, the present invention can be applied to the mounting of electronic components that require positional accuracy on the order of submicrons.
  • the first, second, and third optical systems need not always be maintained in a fixed positional relationship at all times as long as they have a known positional relationship at least at the time of imaging.
  • one of the optical systems may be temporarily retracted when the head or the stage is inserted, and then returned to the original position. In this case, it is necessary to use a reproducible mechanism for moving the optical system.
  • the positioning operation can be performed while capturing images with the first, third, and third optical systems, it is possible to detect a shift between the first and second components during the mounting operation.
  • the X axis direction (when the Y axis is the optical axis direction) and the Z axis direction between the optical axis of the light emitting device and the waveguide substrate Position accuracy is important.
  • a pedestal is provided on the waveguide substrate, and the height of the bottom surface of the light-emitting element, the height to the optical axis, the height of the pedestal, the height of the optical axis of the waveguide, etc. are added with high precision in advance For example, it is possible to match the optical axes in the Z direction.
  • the position accuracy in the X direction even if a contact surface is provided in advance on the substrate, the accuracy between the position of the optical axis and the side end surface of the light emitting element is not necessarily high, so that the accuracy in the X direction cannot be guaranteed. Can not.
  • the position of the optical axis of the first component (light emitting element) in the X direction is recognized by the third optical system, and the position of the second component in the X and Y directions is determined by the first and second optical systems. Since it is recognized, the first part can be accurately positioned in the X direction with respect to the second part.
  • a single calibration mark capable of recognizing both vertical forces between the first optical system and the second optical system. May be inserted, and the calibration mark may be imaged by the first optical system and the second optical system to measure the amount of optical axis shift between the first optical system and the second optical system.
  • the optical axis of the first optical system and the optical axis of the second optical system are adjusted in advance so that they are coaxial and accurately oppose each other, it is inevitable that the optical axis will shift due to the passage of time, temperature change, etc. It is difficult to maintain a high precision position accuracy such as on the order of a micron. Therefore, by recognizing the same mark in both the first and second optical systems in both vertical directions, the amount of deviation of the optical axes of both optical systems is determined, and the deviation of the optical axis of the first optical system and that of the first component are used. If the calculation of the relative position of the suction head, the calculation of the relative position of the second component and the stage, and the correction of the position of the suction head and the stage are performed, no error is added and accurate positioning can be performed. .
  • the height of the calibration mark insertion position in the Z-axis direction is desirably the height of the bonding surface.
  • the calibration may be performed every time a component is set, or at every set time or at a set time, at which the highest accuracy can be maintained.
  • the step of preparing the first optical system and the third optical system is performed in such a manner that an upward and a lateral force relative positional relationship between the first optical system and the third optical system are provided. Inserts a known calibration mark and captures the calibration mark with the first optical system and the third optical system, thereby measuring the optical axis shift amount between the first optical system and the third optical system. May be included.
  • the relative positional relationship between the upward and lateral directions is measured as a method of measuring the optical axis deviation in the orthogonal direction.
  • the optical axis deviation can be easily recognized. If the relative position between the first component and the suction head is calculated using this optical axis shift amount, no error is added, and accurate positioning can be performed.
  • a calibration mark for measuring an optical axis shift amount between the first optical system and the second optical system, or an optical axis shift amount between the first optical system and the third optical system may be a mark provided on a suction head or a stage.
  • the calibration mark may be a mark provided on a member separate from the suction head or stage.However, if the calibration mark is provided on the suction head or stage, a separate member for calibration is not required and the structure is simplified. There is an advantage.
  • the calibration mark needs to be simultaneously recognizable from a plurality of optical systems. Therefore, the upper and lower through holes provided in the suction head or the stage, the marks provided in the transparent body (glass plate), and the like can be used as the calibration marks.
  • the light emitting state of the first component is measured, and the light emitting state deviates from the standard value. In this case, it is better to discharge the first part as defective before proceeding to subsequent processes.
  • the sorting process for the first component which is a light emitting element, may be performed separately.However, if the sorting process is performed at the same time as the optical axis measurement as in claim 5, the number of processes can be reduced and productivity can be increased. it can.
  • the optical axes of the first optical system, the second optical system, and the third optical system are always kept so as not to be shifted. Keep it! ,. If the position is recognized using the first, second, and third optical systems whose relative positions are fixed at all times, the influence of the error caused by the moving mechanism can be reduced as compared with the case where the optical systems are moved mutually. Therefore, the positioning accuracy can be improved, and an advanced moving mechanism is not required.
  • the first and second optical systems recognize the head reference mark and the stage reference mark in the position correction process force between the suction head and the stage at the mounting position, and use the relative position information. Temporarily fixing the suction head and the stage so that the positions of the first component and the second component are in a predetermined relationship, and a head reference mark while heating one or both of the suction head and the stage for bonding. And a step of continuously photographing the stage reference mark with the first and second optical systems, and correcting the relative positions of the suction head and the stage so as to maintain the relative positional relationship in the temporary fixing step.
  • the first component and the second component can always be accurately positioned and mounted even if there is thermal deformation.
  • a relative distance between the first component and the second component in the vertical direction is measured using a third optical system. Do not compensate for the joint gap.
  • the second component is a waveguide substrate having a waveguide in the horizontal direction
  • the amount of thermal deformation is large, and reproducibility cannot be expected. Therefore, the amount of thermal deformation cannot be predicted in advance.
  • the first component is corrected.
  • the mounting height of the second component can be accurately controlled.
  • At least one of the suction head and the stage is provided behind the component suction hole, a hollow portion communicating with the component suction hole, and a component suction hole in the hollow portion. It has a transparent body that closes the surface facing the, and allows the parts suction hole to be seen from behind, an air suction passage connected to the hollow part, and a heating heater fixed near the parts suction hole.
  • the component suction hole may be recognized as a head reference mark or a stage reference mark via the transparent body.
  • the component suction hole is a hole for sucking the first component or the second component, and is located closest to the component. Therefore, if the component suction hole is used as a head reference mark or a stage reference mark, even if the suction head or the stage is thermally deformed, the relative positional deviation from the component can be minimized.
  • the component suction holes which are reference marks
  • the component suction holes can be seen through the transparent body from behind the head (or stage)
  • the position of the head (or stage) during mounting can be accurately recognized, highly accurate positioning is possible.
  • the heater is provided closest to the component, that is, in the vicinity of the component suction hole, so that the heat is most effectively applied to the component. It can be transmitted efficiently, and the joining performance can be improved.
  • the head (or the stage) When the head (or the stage) is heated, the image taken by the optical system is distorted due to the fluctuation of the surrounding air, which causes an error.
  • the suction head or the stage having the structure of claim 10 when used, the hollow portion is heated by the heat of the heater.
  • the hollow portion is depressurized by the air suction from the air suction passage. Low density and little fluctuation. Therefore, when the component suction hole is imaged through the transparent body and the hollow portion, it is possible to obtain high-accuracy image data with less error due to fluctuation.
  • a suction head or a stage is attached to a drive mechanism via a bracket, and a first or second optical system for imaging a component suction hole is inserted into the bracket via a transparent body.
  • a cavity is formed.
  • the head (or stage) is driven in the X, Y, Z, or 0 axis directions by the drive mechanism.
  • this head is supported by the drive mechanism in a cantilevered structure, the back of the transparent body is open. It is easy to arrange a camera or a mirror behind the transparent body.
  • the bra behind the head When supported by a drive mechanism or the like via a bracket, high-precision joining to the radius is possible even when a pressing force is applied.
  • the camera does not interfere with the bracket, the component suction holes can be easily imaged, and the head (or stage) can be mounted. It can be stably supported by the drive mechanism.
  • the optical system includes, in addition to a camera, a portion having a function of reflecting an image toward the camera by using a mirror, a prism, or the like. Therefore, only the imaging optical system such as a mirror, a prism, and a lens other than the camera may be inserted into the cavity.
  • the third optical system recognizes the optical axis of the first component, it is preferable to include a power supply device for causing the first component to emit light.
  • the power supply device preferably has a structure capable of retreating in the horizontal direction so as not to interfere with the suction head or the stage.
  • the first component is a light emitting device having electrodes on the front and back surfaces
  • the pair of probes of the power supply device cannot be simultaneously brought into contact with the front and back surfaces of the light emitting device sucked by the suction head. Therefore, for example, an electrode is provided on the suction surface of the suction head, this electrode is brought into contact with one electrode of the light emitting element, and a pair of probes of the power supply device are brought into contact with the electrode of the suction head and the other electrode of the light emitting element.
  • the light emitting element can easily emit light.
  • the relative position between the suction head and the first component and the relative position between the second component and the stage are recognized using the first, second, and third optical systems. Then, since the first component and the second component are mounted, the relative positions of the two components in the mounted state can be accurately recognized, and high-precision mounting is possible. In particular, since the first component recognizes the relative position with respect to the suction head based on its optical axis, the second component can be mounted with high accuracy based on the optical axis.
  • the shaft mechanism that drives the suction head and the stage is mounted.
  • the required accuracy can be only the positional resolution, and high-precision reproducibility is not required. For this reason, extremely accurate mounting must be performed while using an inexpensive shaft mechanism. Can do.
  • mounting work can be performed while imaging vertical forces with the first and second optical systems and imaging from the side with the third optical system, so reproducibility errors such as thermal deformation and lost motion can be reduced. Correction is possible during. Therefore, accurate positioning is possible even under heating conditions.
  • FIGS. 1 to 3 show a first embodiment of a mounting apparatus using the mounting method according to the present invention.
  • an edge emitting laser chip P was used as a first component
  • a substrate B was used as a second component.
  • the mounting apparatus of this embodiment includes a head la, a stage lb, a first camera 20, a second camera 21, a third camera 22, a control device 25, and the like.
  • the head section la includes a suction head 2 for sucking the laser chip P, and drive mechanisms 7, 8, and 9 for driving the suction head 2 in the X, ⁇ , and Z axis directions.
  • the suction head 2 is provided with a suction hole 3 connected to a vacuum suction device (not shown).
  • the laser chip P is sucked into the hole 4.
  • a head reference mark 5 is provided on the upper surface of the suction head 2, particularly at a position substantially corresponding to the component suction hole 4.
  • the reference mark 5 may be a plurality of dot marks as shown in FIG. 3 or a directional shape (for example, a rectangle) in order to check the reproducibility of the position in the ⁇ -axis direction.
  • a light emitting portion P1 is provided on an end face of the laser chip P, and the light emitting portion P1 emits a laser beam in a lateral direction.
  • a heating means for heating the laser chip P may be provided in the suction head 2.
  • the suction head 2 is attached to an X-axis drive mechanism 8 via a Z-axis drive mechanism 7, and the X-axis drive mechanism 8 is connected to a Y-axis drive mechanism 9. Therefore, the suction head 2 can move to any position in the X, ⁇ , and Z axis directions.
  • the suction head 2 can suction the laser chip P at a supply position (not shown), carry it to the mounting position, and mount it on the substrate B.
  • the tip of the stage 11 recognizes the deviation of the optical axis between the first camera 20 and the second camera 21 and the deviation of the optical axis between the first camera 20 and the third camera 22.
  • a transparent body 6 having calibration marks 6a and 6b is provided.
  • the calibration mark 6a is a mark that can be recognized from both the upper and lower sides, and is composed of, for example, a mark formed on the upper or lower surface of the transparent body 6 by a thin film method such as plating.
  • the calibration mark 6b is a mark that can recognize a lateral force, and is composed of, for example, a mark formed on the side surface of the transparent body 6 by a thin film. Both calibration marks 6a and 6b are set in a fixed positional relationship.
  • the calibration marks 6a and 6b are not limited to being formed on the transparent body 6 as described above, but may be formed by forming holes or the like in a non-transparent member. Further, a calibration mark may be provided on the suction head 2 which is not provided on the stage 11.
  • the stage section lb includes a stage 11 for holding the substrate B, and drive mechanisms 15, 16, and 17 for driving the stage 11 in the X, Y, and 0 axis directions.
  • the stage 11 also has a suction hole 12 connected to a vacuum suction device (not shown), and a component suction hole 13 opened at the top end of the suction hole 12 is provided on the upper end.
  • the substrate B is sucked and held by the suction holes 13.
  • a stage reference mark 14 is provided on the lower surface of the stage 11, particularly on a rear position substantially corresponding to the component suction hole 13.
  • the reference mark 14 may be a plurality of dot marks as shown in FIG. 3, or may be a directional shape (eg, a rectangle).
  • an alignment mark B1 is provided on the substrate B corresponding to the reference mark 14.
  • the stage 11 may be provided with a heating means for heating the substrate B.
  • the stage 11 is attached to an X-axis drive mechanism 15, and both ends of the X-axis drive mechanism 15 are connected to a Y1-axis drive mechanism 16 and a Y2-axis drive mechanism 17 via hinges 15a, respectively. Therefore, by changing the amount of movement of the Y1-axis drive mechanism 16 and the amount of movement of the Y2-axis drive mechanism 17, the angle of the stage 11 can be adjusted in the ⁇ -axis direction. Therefore, the stage 11 can move to any position in the X, ⁇ , ⁇ axis directions.
  • the stage 11 has a function of receiving the substrate B at a supply position (not shown) and carrying the substrate B to a mounting position.
  • a first camera 20 and a second camera 21 are respectively installed above the suction head 2 and the stage 11 at the mounting position, and a third camera 22 is installed at a position lateral to the mounting position.
  • the third camera 22 for example, a camera called an NFP optical system is used, and the height of the optical axis is preferably slightly higher than the height of the joint surface.
  • the second camera 21 preferably has an imaging field of view capable of imaging the entire laser chip P.
  • the first and second cameras 20 and 21 are opposed to each other with their optical axes substantially coaxial and the cameras do not move relative to each other.
  • Positioning means 23 such as a motor shaft or the like (shown by broken lines in FIG. 1) Holds the relative position.
  • the third camera 22 is also held by positioning means 23 such as a motor shaft so that the optical axis is substantially orthogonal to the first and second cameras 20 and 21 and the cameras do not move relative to each other.
  • Cameras 20, 21, and 22 are preferably equipped with an automatic focusing (autofocus) function, but the first and second cameras 20 and 21 can be moved in the Z-axis direction, and the third camera 22 can be moved in the Y-axis (laser It may be substituted by moving in the direction of the optical axis of the chip P).
  • the control device 25 captures the image data of the first camera 20, the second camera 21, and the third camera 22, and calculates the optical axis deviation amount between the first camera 20 and the second camera 21 from these data.
  • Optical axis shift amount between first camera 20 and third camera 22, position (posture) of laser chip P, position (posture) of substrate B, relative position (posture) of head reference mark 5 and laser chip P It has a function of calculating and storing a relative position (posture) between the stage reference mark 14 and the substrate B, and controlling the driving mechanisms 7, 8, 9, 15, 16 and 17.
  • FIG. 4A shows a calibration step of the first camera 20, the second camera 21, and the third camera 22.
  • the suction head 2 is inserted between the first camera 20 and the second camera 21 arranged at the mounting position, and the calibration mark 6a is adjusted to the bonding surface height.
  • the calibration marks 6a provided on the suction head 2 are imaged by both the cameras 20, 21, and the optical axis shift amount of both the cameras 20, 21 is obtained.
  • the amount of deviation of the optical axis is used for calculating a relative position between the laser chip P and the suction head 2, calculating a relative position between the substrate B and the stage 11, and correcting a position between the suction head 2 and the stage 11, which will be described later. .
  • the third camera 22 captures an image of the calibration mark 6b.
  • the amount of optical axis deviation between the first camera 20 and the third camera 22 is calculated. You can ask.
  • FIG. 4B shows a state in which the suction head 2 is retracted, and the stage 11 is inserted into a mounting position, that is, a position where the upper surface of the substrate B is at the bonding surface height.
  • the alignment mark B1 of the substrate B on the stage 11 is simultaneously imaged by the first camera 20 and the fiducial mark 14 behind the stage 11 by the second camera 21, and the X, Y coordinate position of the substrate B and the stage Find the X and Y coordinate positions of 11.
  • the positional relationship between the board B and the stage 11 is stored using the image information from the first camera 20 and the second camera 21.
  • FIG. 4C shows a state in which the stage 11 is retracted, and the suction head 2 is lowered to the mounting position, that is, the position where the laser chip P sucked by the suction head 2 is at the bonding surface height.
  • the laser chip P emits light at this position (the optical axis direction is the Y axis).
  • the first camera 20 recognizes the XY coordinate of the head reference mark 5
  • the second camera 21 recognizes the Y coordinate of the light emitting surface (the right side in FIG. 4C) of the laser chip P.
  • the camera 22 recognizes the X and Z coordinates of the optical axis of the laser chip P.
  • the Y coordinate of the light emitting surface can be easily recognized. Then, using the image information from the first camera 20 to the third camera 22, the positional relationship between the laser chip P and the suction head 2 is stored.
  • focal lengths of the first camera 20 and the second camera 21 in FIGS. 4B and 4C are different from the focal length when the calibration mark 6a is recognized (FIG. 4A). It is preferable to use the auto focus function so that the reference mark 5, the alignment mark B1, the stage reference mark 14, and the like can be clearly recognized.
  • FIG. 5 shows the state of the suction head 2 and the laser chip P viewed from the third camera direction.
  • the X coordinate of the light emitting portion P1 of the laser chip P is recognized by the third camera 22, and the XY coordinate of the head reference mark 5 recognized by the first camera 20 is used to determine the relationship between the laser chip P and the suction head 2.
  • the relative position in the X direction can be obtained. Further, based on the position information of the optical axis of the laser chip P in the Z direction by the third camera 22 and, for example, the Z position information of the position sensor provided on the suction head 2, the Z position between the optical axis of the laser chip P and the suction head 2 is determined. It is possible to recognize the relative position of the direction.
  • the Z position information of the optical axis of the laser chip P may be, for example, the height Z between the light emitting portion P1 of the laser chip P and the lower surface of the suction head 2, or the light emitting portion P1 and the lower surface of the laser chip P. of The height may be set, or a mark may be provided on the side surface of the suction head 2 in the field of view of the third camera 22, and the height between the mark and the light emitting unit P1 may be set.
  • FIG. 4D shows a mounting process, in which the stage 11 is moved to the same position as in FIG. 4B while holding the suction head 2 at the mounting position, and the laser chip P is mounted on the substrate B. I do. At this time, positioning in the Z direction may be performed by a position sensor provided on the suction head 2. The amount of thermal deformation in the Z direction during heating is taught in advance.
  • the stage 11 After recognizing the position in (b) of FIG. 4, the stage 11 is retracted in (c) of FIG. 4 and then returned to the mounting position in (d) of FIG. B cannot always return to the position shown in Fig. 4 (b) with good reproducibility. Further, since the field of view of the first camera 20 is blocked by the suction head 2, the substrate B cannot be directly recognized by the first camera 20. Therefore, in the mounting process, the reference mark 14 is recognized by the second camera 21 and the position of the substrate B is changed to the position of the laser chip P in FIG. 4C from the relative position data calculated in FIG. Move the stage 11 in the X and Y directions to fit. Since the suction head 2 is held at the position shown in FIG.
  • the stage 11 may be moved in the axial direction. As described above, the laser chip P and the substrate B can be accurately positioned in the XYZ directions, and a high-precision product can be obtained by mounting in this state.
  • FIG. 4 first, the positional relationship between the substrate B and the stage 11 is recognized, then the positional relationship between the suction head 2 and the laser chip P is recognized, and the laser chip P is held at the mounting position.
  • B is moved to the mounting position and mounted, but it may be mounted in the reverse way! That is, first, the positional relationship between the suction head 2 and the laser chip P is recognized, then the positional relationship between the substrate B and the stage 11 is recognized, and while the substrate B is held at the mounting position, the laser chip P is mounted at the mounting position. It may be moved to and implemented.
  • the suction head 2 or the stage 11 may undergo thermal deformation during mounting. Therefore, even if the laser chip P and the substrate B are correctly aligned just before mounting, the laser chip P and the substrate B may not exactly match when mounting is completed.
  • the head reference mark 5 and the stage reference mark 14 are recognized by the first and second cameras 20 and 21, and the suction head 2 is positioned at a position where the position of the laser chip P and the position of the substrate B match using the above-described relative position information. And stage 11 are temporarily fixed. At this point, the laser chip P and the substrate B are only in light contact with each other.
  • the suction head 2 and the stage 11 are heated for bonding (for example, at 350 ° C. for 5 seconds or more) and pressurized.
  • the head reference mark 5 and the stage reference mark 14 are moved to the first and second stages. 2 Continuous images are taken with cameras 20 and 21.
  • the relative position of the suction head 2 and the stage 11 is corrected so as to maintain the relative positional relationship in the temporary fixing step. If the above method is used, even if a shift in the XY direction occurs during mounting, the shift can be detected and corrected in real time by the cameras 20 and 21, so that accurate joining can be performed.
  • the amount of thermal deformation in the Z direction during heating is a force that has been taught in advance.
  • the first measurement method is a method of measuring the gap 1 from the outer end faces of the laser chip P and the substrate B, as shown in FIG.
  • the second measurement method is a method of measuring the gap t2 from the external end surfaces of the suction head 2 and the stage 11, as shown in FIG.
  • the third measurement method is a method of measuring the gap t3 from the reference marks 2a and 1la provided on the suction head 2 and the stage 11, as shown in FIG. 6 (c).
  • the joining gap between the laser chip P and the substrate B can be arbitrarily adjusted while recognizing and correcting the image.
  • the optical axis of the laser chip p is recognized, it is necessary to recognize the relative position between the optical axis and the end face of the head 2 or the reference mark.
  • FIGS. 7 to 11 show a second embodiment of the mounting apparatus according to the present invention.
  • the mounting device of this embodiment also includes a head unit 30, a stage unit 40, first and third optical systems 60, 61, 66, and a control device (not shown).
  • the head unit 30 includes a suction head 31 for sucking the laser chip P, a drive mechanism 32 for driving in the X, X, and Z-axis directions, for example, and a bracket 33 for connecting the suction head 31 to the drive mechanism 32.
  • the bracket 33 includes a pair of opposing support walls 33a, between which a hollow portion 33b penetrating in the X-axis direction is provided.
  • the first optical system 60 (mirror unit) is inserted into the hollow portion 33b so as to be able to freely enter and exit from the X-axis direction.
  • the suction head 31 includes a base member 34, a transparent plate 35 such as a transparent glass fixed to the upper surface of the base member 34, and a heat insulating material fixed to the lower surface of the base member 34. It comprises a tubular member 36 made of, an attachment member 37 fixed to the lower end of the tubular member 36, and a heater 38 sandwiched between the attachment member 37 and the tubular member 36.
  • the base member 34 is fixed to the lower end of the support wall 33a with screws or the like.
  • the attachment member 37 is preferably formed of a material having good thermal conductivity as much as possible.
  • a hole 34a penetrating vertically is provided at the center of the base member 34.
  • the through hole 34a communicates with the internal hole 36a of the cylindrical member 36, and the hollow portion 39a is formed by these holes 34a, 36a. Is formed.
  • the upper surface of the hollow portion 39 is closed by the transparent plate 35.
  • An air pipe 34b communicating with the hollow portion 39 is connected to the base member 34.
  • the air pipe 34b is connected to a vacuum suction I device (not shown) to form an air suction passage! .
  • a through hole is provided at the center of the heater 38, and the heater 38 is attached to the attachment member 37 so that the through hole and the component suction hole 37a formed at the center of the attachment member 37 coincide with each other. And are fixed concentrically. The laser chip P is sucked into the lower opening of the component suction hole 37a.
  • the hollow portion 39 communicating with the component suction hole 37a is formed behind the component suction hole 37a of the suction head 31, and the surface of the hollow portion 39 facing the component suction hole 37a is the transparent plate 35. It's closed!
  • a bracket 33 for connecting the head 31 to the drive mechanism 32 is provided with a hollow portion 33b, and the first optical system 60 inserted into the hollow portion 33b allows the component suction hole 37a to be easily formed through the transparent plate 35.
  • the part suction hole 37a is Can be used as a work station.
  • the upper opening of the component suction hole 37a is preferably made to have a directional shape such as a rectangle.
  • an electrode 37 b is provided on the surface of the attachment member 37 of the suction head 31, and the suction head 31 suctions the laser chip P having the electrodes Pa and Pb on the front and back surfaces. Then, the upper surface electrode Pa of the laser chip P is brought into contact with the electrode 37b. In this state, if the probes 51 and 52 of the power supply device 50 are brought into contact with the electrode 37b and the lower electrode Pb, respectively, the laser chip P can emit light.
  • FIG. 11 shows the power supply device 50 at the optical axis recognition position (see (c) of FIG. 4).
  • the suction head 31 is lowered with the power supply device 50 advanced in the horizontal direction, the laser chips P emit light because the probes 51 and 52 come into contact with the electrodes 37b and the lower surface electrodes Pb, respectively.
  • An image can be taken by the third optical system 66.
  • the stage section 40 includes a stage 41 that holds the substrate P by suction, a drive mechanism 42 that drives, for example, in the X, Y, and 0 axis directions, and a bracket 43 that connects the stage 41 to the drive mechanism 42.
  • the stage 41 has a vertically symmetric structure with the suction head 31 and the bracket 43 has a vertically symmetric structure with the bracket 33. Therefore, the part numbers of the main parts are listed below, and redundant description will be omitted. That is, 43b is a hollow portion, 44 is a base member, 44b is an air pipe, 45 is a transparent plate, 46 is a cylindrical member, 47 is an attachment member, 47a is a component suction hole, 48 is a heater, and 49 is a hollow portion. .
  • the second optical system 61 (mirror unit) inserted into the hollow portion 43b from the X-axis direction can image the component suction hole 47a via the transparent plate 45, and the component suction hole 47a is positioned at the head reference mark.
  • the first optical system 60 is attached via a Z1-axis drive mechanism 64 to a support 63 provided on an XY-axis drive mechanism 62, and the second optical system 61 is mounted on the support 63 with a Z2 It is mounted via a shaft drive mechanism 65.
  • the third optical system 66 is attached to the support 63 via a Y-axis drive mechanism 67.
  • the first optical system 60 includes a camera 60a, a cylindrical lens 60b extending in the X-axis direction, and a prism or mirror 60c attached to the tip of the lens 60b. Inserted in part 33b. Then, the light from the component suction hole 37a is reflected by the mirror 60c, and the image can be captured by the camera 60a via the lens 60b.
  • the second optical system 61 includes a camera 61a, a cylindrical lens 61b extending in the X-axis direction, and a prism or mirror 61c. ⁇ Entered. Since the mirrors 60c and 61c have smaller cross sections than the hollow portions 33b and 43b, there is room in the XYZ directions. Therefore, even when the suction head 31 and the stage 41 are operated during position recognition, mounting, and position correction, interference between the brackets 33, 43 and the mirrors 60c, 6lc can be prevented.
  • the first, second, and third optical systems 60, 61, and 66 preferably have an autofocus function.
  • the first optical system 60 and the second optical system 61 are supported by the support 63 so that the optical axes of the first optical system 60 and the second optical system 61 face each other coaxially, and the cameras do not relatively move in the X and Y directions.
  • the third optical system 66 is supported by the support 63 so that the optical axis is orthogonal to the first optical system 60 and does not relatively move in the XZ direction.
  • one of the component suction holes 37a and 47a provided in the suction head 31 or the stage 41 may be used as a calibration mark. it can.
  • the two optical systems 20 and 21 can be moved integrally in the XY direction by an XY axis driving mechanism 62.
  • the first optical system 60 is adjusted vertically by the Z1-axis drive mechanism 64
  • the second optical system 61 is adjusted vertically by the Z2-axis drive mechanism 65
  • the third optical system 66 is adjusted to the Y-axis drive mechanism 67. Therefore, the focus adjustment of each of the optical systems 60, 61, and 66 can be independently performed by adjusting the horizontal direction.
  • the operation of the mounting apparatus of the above embodiment is the same as that of the first embodiment shown in FIG. 4, and therefore, the description is omitted.
  • the suction head 31 or the stage 41 is moved before and after the laser chip P or the substrate B is sucked. What is necessary is just to insert between 60 and 61, and to measure the optical axis deviation amount.
  • the component suction holes 37a and 47a are used as a head reference mark and a stage reference mark. Since the component suction holes 37a and 47a are located closest to the component P and the board B, even if the suction head 31 and the stage 41 are slightly deformed, the relative displacement between the component P and the suction head 31, the board B And the stage 41 has the smallest relative displacement. In addition, since the component suction holes, which are reference marks, can be seen through the transparent body from behind the head (or stage), the position of the head (or stage) can be accurately recognized even during mounting, and the accuracy is improved. High positioning is possible.
  • both the suction head 31 and the stage 41 include the heaters 38 and 48, the laser chip P can be mounted on the substrate B by applying heat and pressure.
  • the heaters 38 and 48 are provided at positions very close to the component suction holes 37a and 47a, heat can be transmitted to the component P and the board B most efficiently, and the bonding performance is improved. Can be achieved.
  • the head (or stage) is heated, fluctuations in the surrounding air cause distortion in the captured image due to the force camera, causing errors.However, the hollow portion 39 is depressurized by air suction from the air suction passage 34b. The air density is low, and there is little fluctuation. Therefore, when the component suction hole 37a is imaged through the transparent body 35 and the hollow portion 39, it is possible to obtain high-accuracy image data with less error due to fluctuation.
  • the force optical system in which the mirror portions 60c and 61c provided in the first optical system 60 and the second optical system 61 are inserted into the hollow portions 33b and 43b can be configured in a small size.
  • the lens portions 60b and 6lb and the mirror portions 60c and 61c may be omitted, and the cameras 60a and 6la may be directly inserted into the hollow portions 33b and 43b.
  • the suction head 31 and the stage 41 have a vertically symmetric structure
  • the bracket 33 and the bracket 43 have a vertically symmetric structure
  • the shape and size of the first component (light emitting element) P and the second component (substrate) B to be handled are Any structure can be adopted according to the requirements.
  • brackets 33 and 43 use the structural members supported by the pair of support walls 33a as in the embodiment, the suction head 31 and the stage 41 can be supported by the drive mechanisms 32 and 42 with the both-ends support structure. Therefore, the radius of the suction head 31 and the stage 41 due to the pressing force during mounting can be prevented. Also, since the brackets 33 and 43 have the hollow portions 33b and 43b into which the mirror portions 60c and 61c of the optical systems 60 and 61 can be inserted, the head reference marks 37a and 47a can be easily recognized during mounting. .
  • FIGS. 12 and 13 show a third embodiment of a mounting apparatus according to the present invention, which is an example in which two optical systems (a first optical system and a second optical system) are configured by one camera. is there. Same parts as in the second embodiment shown in FIG. The same reference numerals are given to the same parts, and redundant description is omitted.
  • a mirror (or prism) 73, 74 for dividing the field of view of the camera 71, the lens 72, and the camera 71 into upper and lower halves on a table 70 provided on the support 63 so as to be movable in the Z-axis direction. And is installed.
  • the optical axis of the camera 71 is bent upward by a mirror 73, and is bent downward by two mirrors (or prisms) 76, 77 provided on a mirror support member 75 that cannot be moved in the Z-axis direction.
  • the mark 37a can be imaged.
  • the optical axis bent downward by the mirror 74 is bent upward by two mirrors (or prisms) 79, 80 provided on a mirror support member 78 that cannot be moved in the Z-axis direction.
  • the mark 47a can be imaged. In this way, two optical systems can be configured with one camera 71.
  • FIG. 13 shows a visual field image obtained by the camera 71.
  • the image shown in the upper half is the head reference mark 37a, and the image shown in the lower half is the stage reference mark 47a.
  • FIGS. 14 and 15 show a fourth embodiment of the mounting apparatus according to the present invention. This embodiment is a method of performing high-speed alignment by using five cameras.
  • FIG. 14 is described in comparison with FIG. 1 and FIG. 15 is described in comparison with FIG. Note that the same portions are denoted by the same reference numerals, and redundant description will be omitted.
  • the first camera 81 and the second camera 82 are held by the positioning means 83 so that the optical axes face each other, and the third camera 84 and the fourth camera 85 are positioned so that the optical axes face each other. Holding means 86.
  • the fifth camera 87 is held by positioning means 86 such that the optical axis thereof is orthogonal to the optical axes of the third camera 84 and the fourth camera 85.
  • the mounting position of the fifth camera 87 may be perpendicular to the head moving direction.
  • the relative positions of the first camera 81 and the second camera 82, and the third camera 84 and the fourth camera 85 are fixed in the X and Y directions, respectively, and are movable in the focus direction. Further, the fifth camera 87 is movable in focus in its optical axis direction.
  • the first camera 81 is used to recognize the head reference mark 5 and the second camera 82 Is used to recognize the component P sucked by the suction head 2.
  • the third camera 84 is used, for example, to recognize the substrate B held on the stage 11 and the head reference mark 5, and the fourth camera 85 is used to recognize the stage reference mark 14.
  • the fifth camera 87 is also used for recognition of the optical axis of the component P and recognition of the mounting height.
  • FIG. 15 (a) shows a calibration step in which the tip of the suction head 2 is inserted between the first camera 81 and the second camera 82, and is provided on the suction head 2 by both cameras 81 and 82.
  • the calibration mark 6a is imaged, the optical axis shift amounts of both cameras 81 and 82 are obtained, and the fifth camera 87 images the calibration mark 6b.
  • the stage 11 is inserted between the third camera 84 and the fourth camera 85, and the images of the calibration mark 19 provided on the stage 11 are taken by both cameras 84 and 85.
  • Fig. 15 (b) shows the part P sucked by the suction head 2 inserted between the cameras 81 and 82, and the board B held on the stage 11 to the cameras 84 and 85.
  • the suction head 2 is moved between the third and fourth cameras 84 and 85, the third camera 84 recognizes the head reference mark 5, and the fourth camera 85 recognizes the stage reference mark 14. Then, the head 2 is lowered by the fifth force lens 87 so that the gap between the component P and the substrate B becomes a predetermined value, and the head 2 is stopped.
  • the first camera 81 may recognize the head reference mark 5, and the second camera 82 may recognize the stage reference mark 14.
  • FIG. 15 (d) shows a joining step in which the component P and the board B are joined while being heated.
  • the position of the suction head 2 or the stage 11 is corrected in real time by continuously imaging the marks 5 and 14 with the third and fourth cameras 84 and 85 so that the relative positions of the component P and the board B do not shift. be able to.
  • the gap between the component P and the board B is measured by the fifth camera 87, and the head height can be corrected in real time so that the gap becomes a predetermined value. Therefore, as shown in FIG. 18, the optical axis of the light emitting element can be accurately matched with the waveguide of the waveguide substrate.
  • the first and second cameras 81 and 82 and the third and fourth cameras 84 and 85 are used, one of the camera pairs captures an image of the suction head 2 side. In the meantime, since the stage 11 side can be imaged by the other camera pair, positioning and mounting can be performed at high speed. If a UV-curable resin is used as the bonding material B2, UV can be irradiated from the horizontal direction and fixed at the stage of FIG. 15 (d).
  • the fifth camera 87 performs both the optical axis recognition of the component P and the mounting height recognition.
  • the optical component P is mounted on the waveguide board B as shown in FIG.
  • another camera having a horizontal optical axis may be used.
  • a total of six cameras will be used.
  • (b) and (c) of FIG. 6 when the gap between the components is replaced by the gap between the head and the stage, measurement is performed by using the fifth camera 87 to recognize and mount the optical axis of the component P. Can also be used for height recognition.
  • the present invention can be used for a wide range of applications such as a chip mounter for mounting a light emitting element on a substrate, a TAB bonder, and a flip chip bonder.
  • the mounting device of the present invention is not limited to the structure shown in the above embodiment, but may be any structure that can perform each step of the present invention.
  • a force in which the first optical system is arranged above the suction head and the second optical system is arranged below the stage At least a portion (for example, a lens or a mirror) that receives the light of the head reference mark and the stage reference mark force
  • a plurality of mirrors or prisms may be used to reflect light to a camera arranged on the side or below the suction head or on the side or below the stage.
  • the optical axis of the laser chip P can be imaged by the second optical system 21.
  • the second optical system 21 can also serve as the third optical system 22.
  • the laser chip emits light, and its optical axis is imaged by the third optical system, thereby recognizing the positions of the optical axis in the X and Z directions. ! It is not always necessary to recognize! / ,.
  • FIG. 1 is a perspective view of a first embodiment of a mounting apparatus using a mounting method according to the present invention.
  • FIG. 2 is an enlarged view of a suction head and a stage of the mounting apparatus shown in FIG. 1.
  • FIG. 3 is a perspective view of a suction head and a stage of the mounting apparatus shown in FIG. 1.
  • FIG. 4 is an operation explanatory view showing a positioning operation of the mounting apparatus shown in FIG. 1.
  • FIG. 5 is a diagram of the suction head and the laser chip, also viewing the third optical system directional force.
  • FIG. 6 is a diagram showing a method for measuring a gap between a laser chip P and a substrate B by a third optical system.
  • FIG. 7 is a front view of a second embodiment of the mounting apparatus using the method of the present invention.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 9 is an enlarged view of the suction head of the mounting apparatus shown in FIG. 7, (a) is a front view, and (b) is a cross-sectional view taken along line IX-IX.
  • FIG. 10 is a diagram showing a configuration of a power supply device.
  • FIG. 11 is a diagram showing a state where power is supplied to a laser chip by a power supply device.
  • FIG. 12 is a front view of a third embodiment of the mounting apparatus using the method of the present invention.
  • FIG. 13 is a diagram showing a field-of-view image of a camera in the embodiment of FIG.
  • FIG. 14 is a perspective view of a fourth embodiment of the mounting apparatus according to the present invention.
  • FIG. 15 is an operation explanatory view showing a positioning operation of the mounting apparatus shown in FIG. 14.
  • FIG. 16 is a diagram showing an example in which light from a laser chip is reflected by a mirror.
  • FIG. 17 is a diagram of an example in which a laser chip is mounted on a waveguide substrate using a pedestal.
  • FIG. 18 is a diagram of an example in which a laser chip is mounted on a waveguide substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)
  • Semiconductor Lasers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】発光素子の光軸を基準として、対象物に対して高精度に位置決めし、実装できる発光素子の装着方法を提供する。 【解決手段】光軸が対向しかつ相互に固定の位置関係に配置された第1カメラと第2カメラとの間に吸着ヘッドを挿入し、第1カメラで吸着ヘッドのヘッド基準マークを撮像し、第2カメラで吸着ヘッドに吸着された発光素子の端面を撮像し、第3カメラで発光素子が発する光の光軸を撮像する。次に第1カメラと第2カメラとの間にステージを挿入し、第1カメラでステージ上に保持された基板を撮像し、第2カメラでステージのステージ基準マークを撮像する。両カメラからの画像情報を用いて発光素子と吸着ヘッドの相対位置、基板とステージの相対位置を算出し、吸着ヘッドとステージとを装着位置へ移動させ、ヘッド基準マークとステージ基準マークとを第1,第2のカメラで認識し、上記相対位置情報から吸着ヘッドとステージとを位置補正し装着する。

Description

明 細 書
発光素子の装着方法および装着装置
技術分野
[0001] 本発明は、レーザチップや LEDのような発光素子を基板などに実装する際に使用さ れる発光素子の装着方法および装着装置に関するものである。
背景技術
[0002] 一般に、電子部品を基板などに高精度にボンディングするには、電子部品にァラィメ ントマークを付与しておき、このァライメントマークと基板のマークとを位置合わせして 、電子部品をボンディングするのが通例である。しかし、部品に予めァライメントマー クを付与することは、コスト上昇を招くとともに、ァライメントマークを付与する際の誤差 の影響によって、基板への位置精度も影響を受けるという問題がある。
[0003] 電子部品の中でも、レーザチップや LEDのような発光素子の場合、発光させた時の 光軸を基準にして基板に対して接合するのが望ましい。
図 18は端面発光型のレーザチップ 100を導波路基板 101に接合した例を示す。導 波路基板 101には光を通す導波路 102が水平方向に形成され、この導波路 102とレ 一ザチップ 100の光軸とが同軸となるように位置合わせされ、導電性接合材 103によ つて接合される。導波路基板 101のレーザチップ 100を接合した部位と導波路 102 を間にして反対側の部位には、光ファイバ一 104が導波路 102と軸心を合わせて取 り付けられている。このようにしてレーザチップ 100が発生した光は光ファイバ一 104 を通して光通信回線へ伝送される。
上記のようなレーザチップ 100と導波路基板 101とを接合する際、導波路 102とレー ザチップ 100の光軸とが同軸となるように正確に位置合わせしなければならない。そ のためには、レーザチップ 100の光軸を導波路基板 101の導波路 102に対して、 X 軸, Y軸 (光軸方向), Z軸および Θ軸方向に位置合わせする必要がある。特に、 X軸 方向および Z軸方向には、ミクロンオーダーの位置精度が必要となる。
[0004] 特許文献 1では、ポスト上に位置決め板を基準にして中間チップを載置し、この中間 チップ上にレーザチップを載置し、レーザチップを発光させてその発光方向から回転 方向の補正を行った上で、ポストと中間チップとレーザチップの 3者を同時にボンディ ングする方法が提案されている。しかし、この方法は、レーザチップを発光させて向き を認識し、その場で回転補正する方法であるため、粗い調整しかできず、もし高精度 に向きを調整しょうとすれば、時間を要する。また、レーザチップとポストとの相対的な 位置関係が認識されて 、な 、ので、導波路基板にレーザチップを実装する場合にこ の方法を適用しても、高 、位置精度は期待できな 、。
特許文献 1:特公平 7 - 46747号公報
[0005] 特許文献 2では、中間ステージにレーザチップを載置し、発光させてその光軸の X, Υ, Θ軸を計測し、その計測値に応じて発光方向を補正した上で、レーザチップをポ ストなどにボンディングする方法が提案されている。この場合は、レーザチップの発光 方向は正確に認識できるが、接合対象物であるポストとの相対的な位置関係につい ては認識されておらず、実装状態の位置や姿勢を保証できる訳ではない。特に、ボ ンデイング時には圧力だけでなく加熱を行うことが多ぐ加熱接合時に熱変形などに よる姿勢誤差が発生するため、実装状態の位置精度は高くない。
特許文献 2:特公平 7 - 105575号公報
[0006] 特許文献 3は、発光素子の発光中心と素子の外径基準点座標を画像認識する方法 である。この方法は、上向きの光軸を有する発光素子を、その発光中心が等間隔に なるように基板上に複数個実装する方法に関するものであり、複数の発光素子同士 の位置関係は精度よく設定できても、基板には位置基準となるものがなぐ発光素子 と基板との実装状態での相対位置を保証できない。したがって、この方法を導波路 基板にレーザチップを実装する場合に適用しても、導波路基板とレーザチップとの高 い位置精度が得られない。
特許文献 3 :特開 2000-150970号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、発光素子の光軸を基準として、対象物に対して高精度に位置決 めし、実装できる発光素子の装着方法および装着装置を提供することにある。
課題を解決するための手段 [0008] 上記目的を達成するため、請求項 1に記載の発明は、吸着ヘッドの下端部に横方向 への光軸を有する発光素子である第 1部品を吸着し、この第 1部品をステージ上に保 持された第 2部品に位置合わせして装着する方法において、上記吸着ヘッドより上 方に配置された第 1光学系と、上記ステージより下方であって、第 1光学系と光軸が 略対向するように配置された第 2光学系と、第 1光学系と光軸の方向が略直交するよ うに配置された第 3光学系とを準備する工程と、第 1光学系と第 2光学系との間に吸 着ヘッドを挿入し、第 1光学系で吸着ヘッドに付与され上方力 認識できるヘッド基 準マークを撮像するとともに、第 2光学系で吸着ヘッドに吸着された第 1部品を撮像し 、かつ第 1部品を発光させその発光位置によって第 1部品の光軸を第 3光学系で認 識する工程と、第 1光学系と第 2光学系との間にステージを挿入し、第 1光学系でステ ージ上に保持された第 2部品を撮像するとともに、第 2光学系でステージに付与され 下方力 認識できるステージ基準マークを撮像する工程と、上記第 1光学系,第 2光 学系および第 3光学系力 の画像情報を用いて第 1部品と吸着ヘッドの相対位置、 第 2部品とステージの相対位置を算出する工程と、上記吸着ヘッドとステージとを装 着位置へ移動させた状態で、上記ヘッド基準マークとステージ基準マークとを上記第 1,第 2の光学系で認識し、これらの位置情報と上記相対位置情報とを用いて、第 1 部品と第 2部品の位置が所定の関係となるように吸着ヘッドおよびステージの少なく とも一方を位置補正する工程と、上記位置補正後、第 1部品と第 2部品とを装着する 工程と、を備えたことを特徴とする発光素子の装着方法を提供する。
[0009] 請求項 9に記載の発明は、横方向への光軸を有する発光素子である第 1部品と第 2 部品とを位置合わせして装着する発光素子の装着装置において、下端部に第 1部 品を吸着し、上方力 認識できるヘッド基準マークを有する吸着ヘッドと、上端部に 第 2部品を保持し、下方力も認識できるステージ基準マークを有するステージと、上 記吸着ヘッドおよびステージを X, Y, Zおよび 0方向に相対移動させる駆動機構と、 上記吸着ヘッドの上方に配置され、ステージに保持された第 2部品とヘッド基準マー クとを撮像する第 1光学系と、上記ステージの下方であって、第 1光学系の光軸と略 対向するように配置され、吸着ヘッドに吸着された第 1部品とステージ基準マークとを 撮像する第 2光学系と、第 1光学系と光軸の方向が略直交するように配置され、第 1 部品を発光させた時の光軸を撮像する第 3光学系と、上記第 1一第 3の光学系からの 画像情報を用いて、第 1部品と吸着ヘッドの相対位置、第 2部品とステージの相対位 置を算出する演算装置と、上記吸着ヘッドとステージとを装着位置へ移動させた状 態で、上記ヘッド基準マークとステージ基準マークとを上記第 1,第 2の光学系で認 識し、これらの位置情報と上述の相対位置情報とを用いて、第 1部品と第 2部品の位 置が所定の関係となるように吸着ヘッドとステージとを位置補正する制御装置と、を 備えたことを特徴とする発光素子の装着装置を提供する。
請求項 1に係る装着方法の一例を説明する。
まず、第 1光学系と第 2光学系と第 3光学系とを準備する。ここで光学系とは、カメラ単 体だけでなぐミラーやレンズなどを含むことができ、 1つの光学系が 1つのカメラを備 えたものに限らず、 2つまたは 3つの光学系を 1つのカメラで構成することも可能であり 、逆に 1つの光学系を複数のカメラで構成することも可能である。
第 1光学系は吸着ヘッドの上方に光軸を下方に向けて配置されており、第 2光学系 はステージの下方に光軸を上方に向けて配置されている。第 1光学系と第 2光学系 の光軸は略対向しており、互いに既知の位置関係にある。第 3光学系は、第 1光学系 と光軸の方向が略直交するように配置されたものであり、撮像視野の少なくとも一部 は第 1光学系の視野を含むように配置されているのがよい。なお、対象とする第 1部 品と第 2部品のサイズが想定視野より大きくなる場合には、第 1光学系と第 2光学系と を一体のまま平面方向に移動可能とするのがよ!/、。
次に、第 1光学系と第 2光学系との間に吸着ヘッドを挿入し、第 1光学系で吸着ヘッド に付与され上方力 認識できるヘッド基準マークを撮像するとともに、第 2光学系で 吸着ヘッドに吸着された第 1部品を撮像し、かつ第 1部品を発光させその光軸を第 3 光学系で同時撮像する。つまり、第 1光学系でヘッド基準マークの X, Y座標 (Y軸は 光軸の方向)を認識し、第 2光学系で第 1部品の Y座標を認識し、第 3光学系で発光 した第 1部品の光軸の X, Z座標を認識できる。なお、 Z座標については、必ずしも認 識しなくてもよい。このようにして、 3つの光学系の撮像データから吸着ヘッドと第 1部 品の発光中心との X, Y方向の相対位置を求めることができる。
次に、第 1光学系と第 2光学系との間にステージを挿入し、第 1光学系でステージ上 に保持された第 2部品を撮像し、第 2光学系でステージに付与され下方カゝら認識でき るステージ基準マークを撮像する。第 1光学系の画像情報から第 2部品の位置を認 識し、第 2光学系の画像情報力もステージ (ステージ基準マーク)の位置を認識する ことで、第 2部品とステージの X, Y方向の相対位置を算出できる。
なお、吸着ヘッドと第 1部品とを撮像する工程と、ステージと第 2部品とを撮像するェ 程は、いずれを先にしてもよい。
上記のように、第 1一第 3の光学系からの画像情報を用いて第 1部品と吸着ヘッドの X, Y方向の相対位置、第 2部品とステージの X, Y方向の相対位置を算出できる。 次に、吸着ヘッドとステージとを装着位置へ移動させた状態で、ヘッド基準マークとス テージ基準マークとを第 1,第 2の光学系で認識し、これらの位置情報と上述の相対 位置情報とを用いて、第 1部品と第 2部品の位置が所定の関係となるように吸着へッ ドとステージとを位置補正する。この状態で第 1部品と第 2部品とを装着すれば、実装 状態における両部品の相対位置を保証でき、高精度に位置合わせした状態で装着 することができる。
なお、本発明において、「位置」という用語は、 X, Y, Z方向の位置および Θ方向の 向きを総称的に表す。したがって、位置には姿勢も含まれる。
本発明方法では、装着作業中の位置保証を、ヘッドとステージの双方に設けた基準 マークを撮像しながら行なうため、軸機構として必要な精度を位置分解能だけとする ことができ、高精度な再現性を必要としない。そのため、安価な軸機構を採用すること ができる。また、熱変形やロストモーションなどの再現性誤差は、装着作業中に補正 が可能である。その結果、サブミクロンオーダーの位置精度が要求される電子部品の 実装においても、本発明は適用可能である。
第 1,第 2,第 3の光学系は常時固定の位置関係に保持しておく必要はなぐ少なくと も撮像時において、既知の位置関係にあればよい。例えばヘッドまたはステージの 挿入時に一時的にいずれかの光学系を退避させ、その後で元の位置に復帰させて もよい。この場合の光学系の移動機構は、再現性のある機構を用いる必要がある。 さらに、位置合わせ作業を第 1一第 3の光学系で撮像しながら実施できるので、装着 作業中における第 1,第 2部品間のずれをも検知できる。したがって、例えばバンプ 接合工法などにおいて、ヒータの熱によってヘッドやステージが熱変形を起こしても、 この熱変形を随時認識して第 1,第 2部品の位置を補正できるため、加熱条件下でも 精度のよい位置決めが可能である。
[0012] レーザチップのような発光素子を導波路基板などに接合する場合には、発光素子の 光軸と導波路基板との X軸方向(Y軸が光軸方向の場合)および Z軸方向の位置精 度が重要である。 Z軸方向については、例えば導波路基板に台座を設け、発光素子 の底面力 光軸までの高さ、台座の高さ、導波路の光軸高さなどを予め高精度に加 ェしておけば、 Z方向の光軸を一致させることは可能である。しかし、 X方向の位置精 度については、予め基板に当たり面などを設けても、光軸の位置と発光素子の側端 面との精度は必ずしも高くないので、 X方向の精度を保証することはできない。
本発明では、第 3光学系で第 1部品 (発光素子)の光軸の X方向の位置を認識してお り、第 2部品の X, Y方向の位置は第 1,第 2光学系によって認識しているので、第 2部 品に対して第 1部品を X方向に正確に位置決めできる。
[0013] 請求項 2のように、第 1光学系と第 2光学系とを準備する工程として、第 1光学系と第 2 光学系との間に上下両方力も認識できる単一のキャリブレーションマークを挿入し、こ のキャリブレーションマークを第 1光学系と第 2光学系とで撮像することで、第 1光学 系と第 2光学系の光軸ずれ量を測定する工程を含むようにしてもよい。
第 1光学系と第 2光学系の光軸が同軸で正確に対向するように予め調整しておいて も、時間経過や温度変化などによって光軸のずれが生じることが避けられず、またサ ブミクロンオーダーのような高精度な位置精度を保つことは難しい。そこで、第 1光学 系と第 2光学系とで上下両方力 同一マークを認識することで、双方の光学系の光軸 のずれ量を求め、この光軸ずれ量を用いて、第 1部品と吸着ヘッドの相対位置の算 出、第 2部品とステージの相対位置の算出、さらには吸着ヘッドとステージとの位置 補正などを行えば、誤差が加算されず、精度のよい位置合わせが可能となる。
キャリブレーションマークの挿入位置の Z軸方向高さは、望ましくは接合面の高さとす るのがよい。
なお、キャリブレーションは、部品装着時に毎回行なうのが最も高精度を維持できる 力 部品装着の設定回数毎あるいは設定時間毎に行なってもよい。 [0014] 請求項 3のように、第 1光学系と第 3光学系とを準備する工程は、第 1光学系と第 3光 学系との間に上方向と横方向力もの相対位置関係が既知のキャリブレーションマーク を挿入し、このキャリブレーションマークを第 1光学系と第 3光学系とで撮像することで 、第 1光学系と第 3光学系の光軸ずれ量を測定する工程を含むものでもよい。
第 1光学系と光軸と第 3光学系の光軸とをほぼ直交させる必要があるが、その直交方 向の光軸ずれ量を測定する方法として、上方向と横方向からの相対位置関係が既知 のキャリブレーションマークを第 1光学系と第 3光学系との間に挿入し、そのキヤリブレ ーシヨンマークを撮像することで、光軸ずれ量を容易に認識できる。この光軸ずれ量 を用いて、第 1部品と吸着ヘッドの相対位置の算出などを行えば、誤差が加算されず 、精度のよい位置合わせが可能となる。
[0015] 請求項 4のように、第 1光学系と第 2光学系の光軸ずれ量を測定するためのキヤリブ レーシヨンマーク、あるいは第 1光学系と第 3光学系との光軸ずれ量を測定するため のキャリブレーションマークとしては、吸着ヘッドまたはステージに設けられたマークと してちよい。
キャリブレーションマークを吸着ヘッドやステージとは別の部材に設けたマークとして もよいが、キャリブレーションマークを吸着ヘッドまたはステージに設ければ、キヤリブ レーシヨン用の別部材が不要となり、構造が簡単になるという利点がある。
なお、キャリブレーションマークは複数の光学系から同時に認識できる必要がある。 そのため、吸着ヘッドまたはステージに設けられた上下貫通穴や、透明体 (ガラス板) などに設けたマークなどをキャリブレーションマークとして用いることができる。
[0016] 請求項 5のように、第 1部品を発光させその光軸を第 3光学系で認識する工程におい て、第 1部品の発光状態を計測し、その発光状態が規格値力も外れる場合には、後 続の工程へ進まずに第 1部品を不良品として排出するのがよい。
発光素子である第 1部品の選別工程を別に行ってもよいが、請求項 5のように光軸測 定の際に選別工程を同時に行えば、工程数を削減でき、生産性を高めることができ る。
[0017] 請求項 6のように、第 1光学系、第 2光学系および第 3光学系を位置合わせの全過程 にお 、て、互 、の光学系の光軸がずれな 、ように常時保持しておくのがよ!、。 このように常時相対位置が固定された第 1一第 3光学系を用いて位置の認識を行な えば、光学系を相互に移動させる場合に比べて、移動機構による誤差の影響を少な くできるので、位置決め精度を上げることが可能であり、かつ高度な移動機構を必要 としない。
[0018] 請求項 7のように、装着位置における吸着ヘッドとステージとの位置補正工程力 へ ッド基準マークとステージ基準マークとを第 1,第 2光学系で認識し、相対位置情報を 用いて第 1部品と第 2部品の位置が所定の関係となるように吸着ヘッドとステージとを 仮止めする工程と、吸着ヘッドおよびステージの一方もしくは双方を接合のためにカロ 熱しながら、ヘッド基準マークとステージ基準マークを第 1,第 2光学系で連続的に撮 像し、仮止め工程の相対位置関係を維持すべく吸着ヘッドとステージとを相対位置 補正する工程と、を含むようにしてもよい。
この場合には、装着作業途中における熱変形に対する連続的な位置補正を行なうの で、熱変形があっても常に精度よく第 1部品と第 2部品とを位置決めし、装着すること ができる。
[0019] 請求項 8のように、第 1部品と第 2部品とを装着する工程において、第 3光学系を用い て第 1部品と第 2部品との上下方向の相対距離を測定し、その接合隙間を補正しな 力 装着するのがよい。
例えば、第 2部品が水平方向の導波路を有する導波路基板の場合、第 1部品 (発光 素子)の端面の光軸と導波路との Z方向の位置合わせも重要である。特に、加熱によ つて接合する場合には、熱変形量が大きぐ再現性も期待できないため、予め熱変 形量を予測することができな 、からである。
そこで、請求項 8のように、光軸測定用の第 3光学系を用いて、第 1部品と第 2部品と の上下方向の相対距離を測定し、リアルタイムで補正すれば、第 1部品の第 2部品に 対する実装高さを正確に制御することができる。
[0020] 請求項 10のように、吸着ヘッドおよびステージの少なくとも一方は、部品吸着穴と、 部品吸着穴の背後に設けられ、部品吸着穴と連通する中空部と、中空部の部品吸 着穴と対向する面を閉鎖し、部品吸着穴を背後から透視可能な透明体と、中空部に 接続されたエアー吸引通路と、部品吸着穴の近傍に固定された加熱用ヒータとを備 え、上記透明体を介して部品吸着穴をヘッド基準マークまたはステージ基準マークと して認識可能としたものでもよ 、。
すなわち、部品吸着穴は第 1部品または第 2部品を吸着する穴であり、部品と最も近 い位置にある。そのため、部品吸着穴をヘッド基準マークまたはステージ基準マーク として使用すれば、吸着ヘッドやステージに熱変形があっても、部品との相対位置ず れ量が最も少なくて済む。
また、ヘッド (またはステージ)の背後から透明体を介して基準マークである部品吸着 穴を透視可能であるから、実装途中でもヘッド (またはステージ)の背後から光学系に よって容易に撮像することができる。つまり、実装途中におけるヘッド (またはステージ )の位置を正確に認識することができるので、精度の高い位置決めが可能となる。 第 1部品と第 2部品とを熱と圧力とを力けて装着する場合に、加熱ヒータを部品と最も 近い位置、すなわち部品吸着穴の近傍に設けれることで、部品に対して熱を最も効 率良く伝えることができ、接合性能の向上を図ることができる。
なお、ヘッド (またはステージ)を加熱すると、周囲の空気の揺らぎによって光学系に よる撮像画像に歪みが発生し、誤差の原因になる。しかし、請求項 10の構造の吸着 ヘッドまたはステージを使用した場合、ヒータの熱によって中空部も加熱される力 中 空部はエアー吸引通路からのエアー吸引によって減圧された状態にあるので、空気 の密度が低ぐ揺らぎが少ない。そのため、透明体および中空部を介して部品吸着 穴を撮像したとき、揺らぎによる誤差が少なぐ精度のよい撮像データを得ることがで きる。
請求項 11のように、吸着ヘッドまたはステージを駆動機構に対しブラケットを介して 取り付け、このブラケットに透明体を介して部品吸着穴を撮像するための第 1または 第 2の光学系を挿入自在な空洞部を形成するのがよい。
ヘッド (またはステージ)は駆動機構によって X, Y, Zあるいは 0軸方向に駆動される 力 このヘッドを駆動機構に片持ち構造で支持した場合には、透明体の背後は開放 されているので、透明体の背後にカメラやミラーなどを配置するのは容易である。しか し、片持ち支持構造のヘッドは、第 1部品と第 2部品とを接合した時の加圧力によつ て橈む可能性があるため、高精度の接合が難しい。これに対し、ヘッドの背後をブラ ケットを介して駆動機構などに支持した場合には、加圧力が作用した場合でも橈み にくぐ高精度の接合が可能になる。しかし、ブラケットが邪魔になって背後にカメラな どを配置しにくい。そこで、ヘッドの背後、特に透明体の背後に空洞部を持つブラケ ットで支持することにより、カメラがブラケットと干渉せず、部品吸着穴を容易に撮像で きるとともに、ヘッド (またはステージ)を駆動機構に安定して支持できる。
なお、本発明において光学系とは、カメラのほか、ミラーやプリズムなどを用いて画像 をカメラに向力 て反射させる機能を持つ部分を含む。したがって、空洞部にはカメ ラ以外のミラーやプリズム、レンズなどの撮像用光学系のみが挿入されてもよい。
[0022] 請求項 12のように、第 3光学系で第 1部品の光軸を認識する際、第 1部品を発光させ るための電源装置を備えるのがよい。
電源装置としては、吸着ヘッドまたはステージと干渉しないように、横方向に退避でき る構造のものがよい。第 1部品が表裏面に電極を有する発光素子の場合には、吸着 ヘッドに吸着された発光素子の表裏面に電源装置の一対のプローブを同時に接触 させることができない。そのため、例えば吸着ヘッドの吸着面に電極を設け、この電 極と発光素子の一方の電極を接触させ、吸着ヘッドの電極と発光素子の他方の電極 とに電源装置の一対のプローブを接触させることで、発光素子を容易に発光させるこ とがでさる。
発明の効果
[0023] 以上の説明で明らかなように、本発明によれば、吸着ヘッドと第 1部品との相対位置 、第 2部品とステージとの相対位置を第 1一第 3光学系を用いて認識した上で、第 1 部品と第 2部品とを実装するので、実装状態における両部品の相対位置を正確に認 識でき、高精度な実装が可能である。特に、第 1部品はその光軸を基準として吸着へ ッドとの相対位置を認識するので、第 2部品に対しても光軸を基準として高精度に実 装することができる。
また、上記のように複数の光学系で吸着ヘッドと第 1部品との相対位置、第 2部品とス テージとの相対位置を認識し、装着するので、吸着ヘッドとステージとを駆動する軸 機構として必要な精度を位置分解能だけとすることができ、高精度な再現性を必要と しない。そのため、安価な軸機構を採用しながら、極めて高精度な装着を行なうこと ができる。
さらに、装着作業を第 1,第 2の光学系で上下力 撮像し、かつ側方から第 3光学系 で撮像しながら実施できるので、熱変形やロストモーションなどの再現性誤差は、装 着作業中に補正が可能である。そのため、加熱条件下でも精度のよい位置決めが可 能である。
発明を実施するための最良の形態
[0024] 以下に、実施例を参照しながら本発明の実施の形態について説明する。
実施例 1
[0025] 図 1一図 3は本発明にかかる装着方法を用いた実装装置の第 1実施例を示す。ここ では、第 1部品として端面発光型のレーザチップ Pを、第 2部品として基板 Bを使用し た。
この実施例の実装装置は、ヘッド部 la、ステージ部 lb、第 1カメラ 20、第 2カメラ 21、 第 3カメラ 22、制御装置 25などで構成されている。
[0026] ヘッド部 laは、レーザチップ Pを吸着する吸着ヘッド 2と、吸着ヘッド 2を X, Υ, Z軸方 向に駆動する駆動機構 7, 8, 9とを備えている。吸着ヘッド 2は図 2に示すように、図 示しない真空吸引装置と接続された吸引穴 3を備えており、吸引穴 3の先端に下面 に開口する部品吸着穴 4が設けられ、この部品吸着穴 4にレーザチップ Pが吸着され る。吸着ヘッド 2の上面、特に部品吸着穴 4とほぼ対応する位置にヘッド基準マーク 5 が設けられている。基準マーク 5は、 Θ軸方向の位置の再現性を見るため、図 3に示 すように複数の点状マークとしてもよいし、方向性のある形状 (例えば長方形など)と してもよい。また、レーザチップ Pの端面には発光部 P1が設けられ、この発光部 P1か らレーザ光が横方向に向かって発光される。
なお、吸着ヘッド 2にレーザチップ Pを加熱するための加熱手段を設けてもょ 、。 吸着ヘッド 2は Z軸駆動機構 7を介して X軸駆動機構 8に取り付けられ、さらに X軸駆 動機構 8は Y軸駆動機構 9に連結されている。そのため、吸着ヘッド 2は X, Υ, Z軸方 向の任意の位置に移動することができる。
吸着ヘッド 2は、図示しない供給位置でレーザチップ Pを吸着し、実装位置へ運んで 基板 Bに実装することができる。 [0027] ステージ 11の先端部には、図 4に示すように、第 1カメラ 20と第 2カメラ 21の光軸ず れ量、第 1カメラ 20と第 3カメラ 22の光軸ずれ量を認識するためキャリブレーションマ ーク 6a, 6bを有する透明体 6が設けられている。キャリブレーションマーク 6aは上下 両方から認識できるマークであり、例えば透明体 6の上面または下面にメツキなどの 薄膜法で形成されたマークなどで構成されて ヽる。キャリブレーションマーク 6bは側 方力 認識できるマークであり、例えば透明体 6の側面に薄膜形成されたマークなど で構成されている。両方のキャリブレーションマーク 6a, 6bは一定の位置関係に設定 されている。
なお、キャリブレーションマーク 6a, 6bは上記のような透明体 6に形成する場合に限 らず、非透明部材に穴などを形成することでキャリブレーションマークとしてもよい。ま た、キャリブレーションマークをステージ 11ではなぐ吸着ヘッド 2に設けてもよい。
[0028] ステージ部 lbは、基板 Bを保持するステージ 11と、このステージ 11を X, Y, 0軸方 向に駆動する駆動機構 15, 16, 17とを備えている。ステージ 11も、図 2に示すように 、図示しない真空吸引装置と接続された吸引穴 12を備えており、この吸引穴 12の先 端に上面に開口する部品吸着穴 13が設けられ、この部品吸着穴 13で基板 Bが吸着 保持される。ステージ 11の下面、特に部品吸着穴 13とほぼ対応する背面位置にステ ージ基準マーク 14が設けられている。この基準マーク 14も、ヘッド基準マーク 5と同 様に、図 3に示すような複数の点状マークとしてもよいし、方向性のある形状 (例えば 長方形など)としてもよい。また、基準マーク 14に対応して、基板 Bにもァライメントマ ーク B1が設けられている。
なお、ステージ 11に基板 Bを加熱するための加熱手段を設けてもょ 、。
ステージ 11は X軸駆動機構 15に取り付けられ、 X軸駆動機構 15の両端部はそれぞ れ Y1軸駆動機構 16と Y2軸駆動機構 17とにヒンジ 15aを介して連結されている。そ のため、 Y1軸駆動機構 16の移動量と Y2軸駆動機構 17の移動量とを変えることによ り、ステージ 11を Θ軸方向に角度調整することができる。したがって、ステージ 11は X, Υ, Θ軸方向の任意の位置に移動することができる。
ステージ 11は、図示しない供給位置で基板 Bを受け取り、実装位置へ運ぶ機能を有 する。 [0029] 実装位置における吸着ヘッド 2の上方およびステージ 11の下方に、それぞれ第 1カメ ラ 20と第 2カメラ 21とが設置され、実装位置に対して側方位置に第 3カメラ 22が設置 されている。第 3カメラ 22としては、例えば NFP光学系と呼ばれるカメラを用い、その 光軸の高さは接合面高さより僅かに上方とするのがよい。第 2カメラ 21はレーザチッ プ Pの全体を撮像できる撮像視野を持つものがよい。第 1,第 2カメラ 20, 21は、互い の光軸が略同軸で対向し、かつカメラ同士が相対移動しな 、ようにモータ軸等の位 置決め手段 23 (図 1に破線で示す)によって相対位置が保持されている。また、第 3 カメラ 22も第 1,第 2カメラ 20, 21に対して光軸が略直交し、かつカメラ同士が相対移 動しないようにモータ軸等の位置決め手段 23で保持されている。カメラ 20, 21, 22 は自動焦点合わせ (オートフォーカス)機能を備えたものがよいが、第 1,第 2カメラ 20 , 21を Z軸方向に移動させたり、第 3カメラ 22を Y軸(レーザチップ Pの光軸)方向に 移動させることで、代用してもよい。
[0030] 制御装置 25は、第 1カメラ 20,第 2カメラ 21および第 3カメラ 22の撮像データを取込 み、これらデータから、第 1カメラ 20と第 2カメラ 21との光軸ずれ量、第 1カメラ 20と第 3カメラ 22との光軸ずれ量、レーザチップ Pの位置(姿勢)、基板 Bの位置(姿勢)、へ ッド基準マーク 5とレーザチップ Pとの相対位置(姿勢)、ステージ基準マーク 14と基 板 Bとの相対位置 (姿勢)などを演算し、記憶するとともに、駆動機構 7, 8, 9, 15, 1 6, 17を制御する機能を有する。
[0031] ここで、上記構成よりなる実装装置の作動の一例を図 4,図 5に従って説明する。
図 4の(a)は、第 1カメラ 20、第 2カメラ 21および第 3カメラ 22のキャリブレーションェ 程を示す。まず、実装位置に配置されている第 1カメラ 20と第 2カメラ 21との間に、吸 着ヘッド 2を挿入し、キャリブレーションマーク 6aを接合面高さに調整する。そして、両 方のカメラ 20, 21で吸着ヘッド 2に設けられたキャリブレーションマーク 6aを撮像し、 両方のカメラ 20, 21の光軸ずれ量を求める。光軸のずれ量は、後述するレーザチッ プ Pと吸着ヘッド 2との相対位置の算出、基板 Bとステージ 11との相対位置の算出、 吸着ヘッド 2とステージ 11との位置補正などに利用される。同様に、第 3カメラ 22でキ ヤリブレーシヨンマーク 6bを撮像する。このとき、キャリブレーションマーク 6a, 6bは一 定の位置関係に設定されているので、第 1カメラ 20と第 3カメラ 22との光軸ずれ量を 求めることができる。
[0032] 図 4の(b)は吸着ヘッド 2を退避させ、ステージ 11を実装位置、つまり基板 Bの上面が 接合面高さとなる位置へ挿入した状態を示す。この状態で、ステージ 11上の基板 B のァライメントマーク B1を第 1カメラ 20で、ステージ 11の背後の基準マーク 14を第 2 カメラ 21で同時撮像し、基板 Bの X, Y座標位置とステージ 11の X, Y座標位置とを 求める。そして、第 1カメラ 20と第 2カメラ 21からの画像情報を用いて、基板 Bとステー ジ 11との位置関係を記憶する。
[0033] 図 4の(c)はステージ 11を退避させ、吸着ヘッド 2を実装位置、つまり吸着ヘッド 2に 吸着されているレーザチップ Pが接合面高さとなる位置へ下降させた状態を示す。こ の位置でレーザチップ Pを発光させる(光軸方向は Y軸)。そして、第 1カメラ 20でへッ ド基準マーク 5の XY座標を認識し、第 2カメラ 21でレーザチップ Pの発光面(図 4の( c)では右側面)の Y座標を認識し、第 3カメラ 22でレーザチップ Pの光軸の X, Z座標 を認識する。このとき、第 2カメラ 21の視野はレーザチップ P全体を認識できるので、 発光面の Y座標を簡単に認識できる。そして、第 1カメラ 20—第 3カメラ 22からの画 像情報を用いて、レーザチップ Pと吸着ヘッド 2との位置関係を記憶する。
なお、図 4の (b) , (c)における第 1カメラ 20、第 2カメラ 21の焦点距離が、キヤリブレ ーシヨンマーク 6aを認識した時(図 4の(a) )の焦点距離と異なるので、ヘッド基準マ ーク 5、ァライメントマーク B1およびステージ基準マーク 14などを明確に認識できるよ うに、オートフォーカス機能を用いるのがよい。
[0034] 図 5は第 3カメラ方向からみた吸着ヘッド 2とレーザチップ Pの様子を示す。第 3カメラ 22によってレーザチップ Pの発光部 P1の X座標を認識し、これと第 1カメラ 20によつ て認識したヘッド基準マーク 5の XY座標とから、レーザチップ Pと吸着ヘッド 2との X 方向の相対位置を求めることができる。また、第 3カメラ 22によるレーザチップ Pの光 軸の Z方向の位置情報と、例えば吸着ヘッド 2に設けた位置センサの Z位置情報とか ら、レーザチップ Pの光軸と吸着ヘッド 2との Z方向の相対位置を認識することが可能 である。
レーザチップ Pの光軸の Z位置情報としては、例えばレーザチップ Pの発光部 P1と吸 着ヘッド 2の下面との高さ Zであってもよいし、発光部 P1とレーザチップ Pの下面との 高さであってもよし、さらには吸着ヘッド 2の側面に第 3カメラ 22の視野内にマークを 設け、このマークと発光部 P1との高さであってもよい。
[0035] 図 4の(d)は実装工程であり、吸着ヘッド 2を実装位置で保持したまま、ステージ 11を 図 4の(b)と同じ位置へ移動させ、レーザチップ Pを基板 Bに実装する。このとき、 Z方 向の位置決めは、吸着ヘッド 2に設けた位置センサで行えばよい。なお、加熱時の Z 方向の熱変形量は予め教示しておく。
図 4の(b)で位置認識した後、図 4の(c)でステージ 11を退避させ、さらに図 4の(d) で実装位置へ戻した時、駆動機構 15— 17の精度によっては基板 Bが図 4の (b)の位 置に再現性よく戻れるとは限らない。また、第 1カメラ 20の視界は吸着ヘッド 2によつ て遮られているので、基板 Bを第 1カメラ 20で直接認識できない。そこで、実装工程 では、第 2カメラ 21で基準マーク 14を認識し、図 4の(b)で算出した相対位置データ から、基板 Bの位置が図 4の(c)におけるレーザチップ Pの位置に合うようにステージ 11を XY方向に移動させる。吸着ヘッド 2は図 4の(c)の位置に保持したままであるか ら、レーザチップ Pには位置ずれがなぐ基板 Bの位置補正だけを行なえばよい。な お、 Θ軸方向のずれがある場合には、ステージ 11を Θ方向に移動させればよい。 以上のようにして、レーザチップ Pと基板 Bとを XYZ方向に正確に位置合わせするこ とができ、この状態で実装することで高精度な製品を得ることができる。
[0036] 図 4では、まず基板 Bとステージ 11との位置関係を認識し、次に吸着ヘッド 2とレーザ チップ Pとの位置関係を認識し、レーザチップ Pを実装位置で保持したまま、基板 Bを 実装位置へ移動させて実装する例を示したが、これと逆の方法で実装してもよ!、。 すなわち、まず吸着ヘッド 2とレーザチップ Pとの位置関係を認識し、次に基板 Bとス テージ 11との位置関係を認識し、基板 Bを実装位置で保持したまま、レーザチップ P を実装位置へ移動させて実装してもよ ヽ。
[0037] 図 4で示した位置決め工程において、加熱しながら実装を行う場合には、実装途中 で吸着ヘッド 2またはステージ 11が熱変形を起こすことがある。そのため、実装直前 には正確に位置合わせされて 、ても、実装が終了した時点でレーザチップ Pと基板 B とが正確に合致しな 、場合が生じる。
そのような場合の対策として、実装工程(図 4の(d)参照)において、次のような方法を 用!/、ることができる。
まず、ヘッド基準マーク 5とステージ基準マーク 14とを第 1,第 2カメラ 20, 21で認識 し、上述の相対位置情報を用いてレーザチップ Pと基板 Bの位置が一致する位置に 吸着ヘッド 2とステージ 11とを仮止めする。この時点では、レーザチップ Pと基板 Bと は軽く接触して ヽるに過ぎな 、。
次に、吸着ヘッド 2およびステージ 11の一方もしくは双方を接合のために加熱 (例え ば 350°CZ5sec以上)しつつ加圧し、その間、ヘッド基準マーク 5とステージ基準マ ーク 14を第 1,第 2カメラ 20, 21で連続的に撮像する。そして、上記仮止め工程の相 対位置関係を維持するよう、吸着ヘッド 2とステージ 11とを相対位置補正する。 上記のような方法を用いれば、実装途中に XY方向のずれが発生しても、そのずれを カメラ 20, 21によりリアルタイムで検出して補正するので、正確な接合が可能となる。 図 4では、加熱時の Z方向の熱変形量は予め教示しておくようにした力 実際に変形 量が 10 m程度発生することがあり、その再現性もあまり期待できないことがある。 そこで、第 3カメラ 22を用いてレーザチップ Pと基板 Bとの隙間を測定し、リアルタイム で補正しながら実装すれば、レーザチップ Pの光軸を基板 Bに対して最適な高さに合 わせることが可能になる。
隙間の測定方法には、図 6示すような 3種類の方法が考えられる。
第 1の測定方法は、図 6の (a)に示すように、レーザチップ Pと基板 Bの外形端面より 隙間 1を測定する方法である。
第 2の測定方法は、図 6の (b)に示すように、吸着ヘッド 2とステージ 11の外形端面よ り隙間 t2を測定する方法である。
第 3の測定方法は、図 6の (c)に示すように、吸着ヘッド 2とステージ 11に設けた基準 マーク 2a, 1 laから隙間 t3を測定する方法である。
上記いずれかの方法を用いることで、画像で認識補正しながら、レーザチップ Pと基 板 Bとの接合隙間を任意に調整することができる。なお、第 2と第 3の測定方法では、 レーザチップ pの光軸を認識した時、光軸とヘッド 2の端面または基準マークとの相 対位置を認識しておく必要がある。
実施例 2 [0039] 図 7—図 11は本発明にかかる実装装置の第 2実施例を示す。
この実施例の実装装置も、ヘッド部 30およびステージ部 40と、第 1一第 3光学系 60, 61 , 66と、制御装置(図示せず)とで構成されている。
ヘッド部 30は、レーザチップ Pを吸着する吸着ヘッド 31と、例えば X, Υ, Z軸方向に 駆動する駆動機構 32と、吸着ヘッド 31を駆動機構 32に連結するブラケット 33とで構 成されている。ブラケット 33は対向する一対の支持壁 33aを備えており、その間に X 軸方向に貫通した空洞部 33bが設けられている。この空洞部 33bには、第 1光学系 6 0 (ミラー部)が X軸方向より出入り自在に挿入される。
[0040] 吸着ヘッド 31は、図 9に示すようにベース部材 34と、ベース部材 34の上面に固定さ れた透明ガラスなど力もなる透明板 35と、ベース部材 34の下面に固定された断熱材 よりなる筒状部材 36と、筒状部材 36の下端部に固定されたアタッチメント部材 37と、 アタッチメント部材 37と筒状部材 36との間に挟着されたヒータ 38とで構成されている 。上記ベース部材 34は支持壁 33aの下端部にネジ等によって固定されている。ァタ ツチメント部材 37はできるだけ熱伝導性の良好な材料で形成するのがよい。
[0041] ベース部材 34の中央部には、上下に貫通する穴 34aが設けられ、この貫通穴 34aは 筒状部材 36の内部穴 36aと連通しており、これら穴 34a, 36aによって中空部 39が 形成されている。中空部 39の上面が透明板 35で閉鎖されている。ベース部材 34に は、中空部 39に連通するエアー配管 34bが接続されており、このエアー配管 34bは 図示しな 、真空吸弓 I装置と接続され、エアー吸引通路を構成して!/ヽる。
[0042] ヒータ 38の中心部には貫通穴が設けられ、この貫通穴とアタッチメント部材 37の中心 部に形成された部品吸着穴 37aとが一致するように、ヒータ 38はアタッチメント部材 3 7に対して同心状に固定されている。部品吸着穴 37aの下側開口部にレーザチップ Pが吸着される。
[0043] 上記のように、吸着ヘッド 31の部品吸着穴 37aの背後に部品吸着穴 37aと連通する 中空部 39が形成され、中空部 39の部品吸着穴 37aと対向する面が透明板 35で閉 鎖されて!、る。ヘッド 31を駆動機構 32に連結するためのブラケット 33には空洞部 33 bが設けられ、この空洞部 33bに挿入された第 1光学系 60で透明板 35を介して部品 吸着穴 37aを容易に認識することができる。つまり、部品吸着穴 37aをヘッド基準マ ークとして用いることができる。なお、回転方向の角度ずれを検出するため、部品吸 着穴 37aの上側開口部を長方形などの方向性を持つ異形形状とするのがよい。
[0044] 図 10に示すように、吸着ヘッド 31のアタッチメント部材 37の表面には電極 37bが設 けられており、表裏面に電極 Pa, Pbを持つレーザチップ Pを吸着ヘッド 31が吸着す ると、レーザチップ Pの上面電極 Paは電極 37bに接触導通する。この状態で、電源装 置 50のプローブ 51, 52をそれぞれ電極 37bと下面電極 Pbとに接触させれば、レー ザチップ Pを発光させることが可能になる。
[0045] 図 11は、光軸認識位置(図 4の(c)参照)における電源装置 50を示す。電源装置 50 を水平方向に進出させた状態で、吸着ヘッド 31を降下させると、プローブ 51, 52が それぞれ電極 37bと下面電極 Pbとに接触するため、レーザチップ Pが発光し、この光 軸を第 3光学系 66で撮像することができる。
[0046] ステージ部 40は、基板 Pを吸着保持するステージ 41と、例えば X, Y, 0軸方向に駆 動する駆動機構 42と、ステージ 41を駆動機構 42に連結するブラケット 43とで構成さ れている。ステージ 41は吸着ヘッド 31と、ブラケット 43はブラケット 33と上下対称構 造であるから、以下に主要部の部品符号を列記して重複説明を省略する。すなわち 、 43bは空洞部、 44はベース部材、 44bはエアー配管、 45は透明板、 46は筒状部 材、 47はアタッチメント部材、 47aは部品吸着穴、 48はヒータ、 49は中空部である。 この場合も、空洞部 43bに X軸方向より挿入された第 2光学系 61 (ミラー部)で透明板 45を介して部品吸着穴 47aを撮像することができ、部品吸着穴 47aをヘッド基準マ ークとして用いることができる。
[0047] 第 1光学系 60は、 XY軸駆動機構 62上に設けられた支柱部 63に Z1軸駆動機構 64 を介して取り付けられており、第 2光学系 61は、上記支柱部 63に Z2軸駆動機構 65 を介して取り付けられている。第 3光学系 66は、支柱部 63に Y軸駆動機構 67を介し て取り付けられている。
第 1光学系 60は、カメラ 60aと、 X軸方向に延びる筒形のレンズ 60bと、レンズ 60bの 先端に取り付けられたプリズムまたはミラー 60cとを備えており、このミラー 60cがブラ ケット 33の空洞部 33bに挿入される。そして、部品吸着穴 37aの光をミラー 60cで反 射させ、レンズ 60bを介してカメラ 60aで撮像できるようになって 、る。 [0048] 第 2光学系 61も同様に、カメラ 61aと、 X軸方向に延びる筒形のレンズ 61bと、プリズ ムまたはミラー 61cとを備えており、このミラー 61cがブラケット 43の空洞部 43bに揷 入される。空洞部 33b, 43bに比べてミラー 60c, 61cは小断面であるため、 XYZ方 向にスペース上の余裕が存在する。そのため、位置認識、実装、位置補正時に吸着 ヘッド 31およびステージ 41を動作させた場合でも、ブラケット 33, 43とミラー 60c, 6 lcとの干渉を防止できる。
第 1一第 3光学系 60, 61, 66は、オートフォーカス機能を備えたものがよい。
[0049] 第 1光学系 60と第 2光学系 61は、互いの光軸が同軸で対向し、かつカメラ同士が X Y方向に相対移動しな 、ように支柱部 63によって支持されて 、る。第 3光学系 66は 第 1光学系 60と光軸が直交し、 XZ方向に相対移動しな 、ように支柱部 63で支持さ れている。また、第 1光学系 60と第 2光学系 61との光軸ずれ量を認識するため、吸着 ヘッド 31またはステージ 41に設けられた一方の部品吸着穴 37a, 47aをキヤリブレー シヨンマークとして用いることができる。
大型の基板 Bに複数の部品 Pを実装する場合に対応するため、両光学系 20, 21は XY軸駆動機構 62により XY方向に一体に移動可能となっている。
また、第 1光学系 60を Z1軸駆動機構 64によって上下方向に調整し、第 2光学系 61 を Z2軸駆動機構 65によって上下方向に調整し、第 3光学系 66を Y軸駆動機構 67に よって水平方向に調整することで、各光学系 60, 61, 66のフォーカス調整を独自に 行なうことちできる。
[0050] 上記実施例の実装装置の動作は、図 4に示された第 1実施例と同様であるため、説 明を省略する。なお、キャリブレーションとして吸着ヘッド 31の部品吸着穴 37aまたは ステージ 41の部品吸着穴 47aを使用した場合には、レーザチップ Pまたは基板 Bを 吸着する前に吸着ヘッド 31またはステージ 41を上下の光学系 60, 61の間に挿入し 、光軸ずれ量を測定すればよい。
[0051] 第 2実施例では、部品吸着穴 37a, 47aをヘッド基準マークおよびステージ基準マー クとして用いている。部品吸着穴 37a, 47aは部品 Pおよび基板 Bと最も近い位置に あるので、吸着ヘッド 31やステージ 41に多少の変形があっても、部品 Pと吸着ヘッド 31との相対位置ずれ量、基板 Bとステージ 41との相対位置ずれ量が最も小さくなる。 また、ヘッド (またはステージ)の背後から透明体を介して基準マークである部品吸着 穴を透視可能であるから、実装途中でもヘッド (またはステージ)の位置を正確に認 識することができ、精度の高い位置決めが可能となる。
[0052] また、吸着ヘッド 31およびステージ 41の双方がヒータ 38, 48を備えているので、熱と 圧力とをかけてレーザチップ Pを基板 Bに実装することができる。この場合、ヒータ 38 , 48が部品吸着穴 37a, 47aに非常に近い位置に設けられているので、部品 Pおよ び基板 Bに対して熱を最も効率良く伝えることができ、接合性能の向上を図ることが できる。また、ヘッド (またはステージ)を加熱すると、周囲の空気の揺らぎによって力 メラによる撮像画像に歪みが発生し、誤差の原因になるが、中空部 39はエアー吸引 通路 34bからのエアー吸引によって減圧状態にあるので、空気の密度が低ぐ揺らぎ が少ない。そのため、透明体 35および中空部 39を介して部品吸着穴 37aを撮像し たとき、揺らぎによる誤差が少なぐ精度のよい撮像データを得ることができる。
[0053] 第 2実施例では、第 1光学系 60および第 2光学系 61に設けられたミラー部 60c, 61c を空洞部 33b, 43bに挿入するようにした力 光学系を小型に構成できる場合には、 レンズ部 60b, 6 lbやミラー部 60c, 61cを省略し、直接カメラ 60a, 6 laを空洞部 33 b, 43bに挿入してもよい。
また、吸着ヘッド 31とステージ 41とを上下対称構造とし、ブラケット 33およびブラケッ ト 43も上下対称構造としたが、取り扱う第 1部品 (発光素子) Pおよび第 2部品(基板) Bの形状や大きさに応じて任意の構造を採ることができる。
ブラケット 33, 43として、実施例のような一対の支持壁 33aで支持する構造部材を使 用したので、吸着ヘッド 31およびステージ 41を駆動機構 32, 42に対して両端支持 構造で支持することができ、実装時の加圧力による吸着ヘッド 31およびステージ 41 の橈みを防止できる。し力も、ブラケット 33, 43は光学系 60, 61のミラー部 60c, 61c を挿入自在な空洞部 33b, 43bを有するので、実装途中におけるヘッド基準マーク 3 7a, 47aを容易に認識することができる。
実施例 3
[0054] 図 12,図 13は本発明に力かる実装装置の第 3実施例であり、 1台のカメラで 2つの光 学系(第 1光学系と第 2光学系)を構成した例である。図 8に示す第 2実施例と同一部 分には同一符号を付して重複説明を省略する。
この実施例では、支柱部 63に Z軸方向に移動可能に設けられたテーブル 70上に、 カメラ 71とレンズ 72とカメラ 71の視野を上下半分ずつに分割するミラー(またはプリズ ム) 73, 74とが設置されている。カメラ 71の光軸は、ミラー 73によって上向きに曲げら れ、 Z軸方向に移動不能なミラー支持部材 75に設けられた 2つのミラー(またはプリズ ム) 76, 77によって下向きに曲げられ、ヘッド基準マーク 37aを撮像することができる 。一方、ミラー 74によって下方に向力 て曲げられた光軸は、 Z軸方向に移動不能な ミラー支持部材 78に設けられた 2つのミラー(またはプリズム) 79, 80によって上向き に曲げられ、ステージ基準マーク 47aを撮像することができる。このように、 1台のカメ ラ 71で 2つの光学系を構成することができる。
[0055] 図 13はカメラ 71による視野画像を示す。上半分に写った画像がヘッド基準マーク 37 aであり、下半分に写った画像がステージ基準マーク 47aである。テーブル 70を Z軸 方向に移動させて、上下の光学系の光路の長さを等しくし、フォーカスを Y1軸で合 わせることで、上下の光学系の画像の焦点を同時に合わせることができる。
実施例 4
[0056] 図 14,図 15は本発明にかかる実装装置の第 4実施例である。この実施例は、 5台の カメラを用いることで、高速に位置合わせを行う方式である。図 14は図 1と、図 15は 図 4と対比して説明する。なお、同一部分には同一符号を付して重複説明を省略す る。
図 14において、第 1カメラ 81と第 2カメラ 82とが位置決め手段 83によって光軸が対 向するように保持され、第 3カメラ 84と第 4カメラ 85とが光軸が対向するように位置決 め手段 86によって保持されている。さらに、第 5カメラ 87がその光軸が第 3カメラ 84と 第 4カメラ 85の光軸と直交するように位置決め手段 86で保持されている。なお、第 5 カメラ 87の取付位置は、ヘッド進行方向と直角方向でもよい。第 1カメラ 81と第 2カメ ラ 82、第 3カメラ 84と第 4カメラ 85は、それぞれ XY方向には相対位置が固定され、フ オーカス方向には移動自在である。また、第 5カメラ 87はその光軸方向にフォーカス 移動自在である。
[0057] 例えば、第 1カメラ 81はヘッド基準マーク 5を認識するために用いられ、第 2カメラ 82 は吸着ヘッド 2に吸着された部品 Pを認識するために用いられる。また、第 3カメラ 84 は例えばステージ 11に保持された基板 Bとヘッド基準マーク 5とを認識するために用 いられ、第 4カメラ 85はステージ基準マーク 14を認識するために用いられる。第 5カメ ラ 87は、部品 Pの光軸認識および実装高さ認識に兼用される。
上記構成の実装装置の動作を図 15にしたがって説明する。
図 15の(a)はキャリブレーション工程であり、第 1カメラ 81と第 2カメラ 82との間に吸着 ヘッド 2の先端部を挿入し、両方のカメラ 81, 82で吸着ヘッド 2に設けられたキヤリブ レーシヨンマーク 6aを撮像し、両方のカメラ 81, 82の光軸ずれ量を求めると同時に、 第 5カメラ 87でキャリブレーションマーク 6bを撮像する。同様に、第 3カメラ 84と第 4力 メラ 85との間にステージ 11を挿入し、両方のカメラ 84, 85でステージ 11に設けられ たキャリブレーションマーク 19を撮像し、両方のカメラ 84, 85の光軸ずれ量を求める 図 15の(b)は吸着ヘッド 2に吸着されている部品 Pをカメラ 81, 82の間に挿入し、ス テージ 11に保持されている基板 Bをカメラ 84, 85の間に挿入した状態を示す。なお 、基板 Bの上には接合材 B2が取り付けられている。この状態で、カメラ 81, 82によつ てヘッド基準マーク 5と部品 Pとの相対位置を認識し、カメラ 84, 85によって基板 Bと ステージ基準マーク 14との相対位置を認識する。そして、同時に部品 Pを発光させ、 その光軸位置を第 5カメラ 87で認識する。したがって、部品 Pの位置とヘッド 2のマー ク 5、光軸の位置関係が記憶され、基板 Bの位置とステージ 11のマーク 14との位置 関係が記憶される。
図 15の(c)は第 3,第 4カメラ 84, 85の間に吸着ヘッド 2を移動させ、第 3カメラ 84で ヘッド基準マーク 5を認識し、第 4カメラ 85でステージ基準マーク 14を認識し、第 5力 メラ 87によって部品 Pと基板 Bとの隙間が所定の値となるようにヘッド 2を下降させて 寸止めした状態を示す。ここでは、第 3,第 4カメラ 84, 85の間に吸着ヘッド 2および ステージ 11を移動させた力 第 1,第 2カメラ 81, 82の間に吸着ヘッド 2およびステー ジ 11を移動させ、第 1カメラ 81でヘッド基準マーク 5を認識し、第 2カメラ 82でステー ジ基準マーク 14を認識してもよい。
図 15の (d)は接合工程であり、部品 Pと基板 Bとを加熱しながら接合を行う。加熱によ つて部品 Pと基板 Bの相対位置がずれないように、第 3,第 4カメラ 84, 85で連続的に マーク 5, 14を撮像することで、リアルタイムで吸着ヘッド 2またはステージ 11を位置 補正することができる。同時に、第 5カメラ 87で部品 Pと基板 Bとの隙間を測定し、そ の隙間が所定の値となるようにヘッド高さをリアルタイムで補正することができる。その ため、図 18に示すように発光素子の光軸を導波路基板の導波路に正確に合致させ ることがでさる。
上記のように、第 1,第 2カメラ 81, 82と第 3,第 4カメラ 84, 85の 2組のカメラ対を使 用すれば、一方のカメラ対で吸着ヘッド 2側を撮像している間に、他方のカメラ対でス テージ 11側を撮像できるので、位置合わせおよび実装を高速で行うことができる。 なお、接合材 B2として UV硬化榭脂を使用するとすれば、図 15の(d)の段階で UV を水平方向から照射して固着させることができる。
[0059] 上記のように第 5カメラ 87は、部品 Pの光軸認識および実装高さ認識を兼ねるもので あるが、図 18に示すような光部品 Pを導波路基板 Bに実装する場合には、実装時に 部品光軸方向から第 5カメラ 87で認識しょうとしても、部品 Pと基板 Bとの隙間が基板 Bによって隠れてしまうため検知できない。このような場合には、水平方向の光軸を持 つ別のカメラを使用してもよい。この場合は、合計 6台のカメラを使用することになる。 なお、図 6の (b) , (c)に示すように、部品間の隙間をヘッドとステージの隙間に置き 換えて測定する場合には、第 5カメラ 87で部品 Pの光軸認識および実装高さ認識に 兼用できる。
[0060] 第 1一第 4実施例では、 1枚の基板 Bに対して 1個のレーザチップ Pを装着する例に ついて説明したが、 1枚の基板 Bに対して複数個のレーザチップ Pを装着する場合で も同様である。ただし、その場合には、基板 Bの複数の装着位置にそれぞれァラィメ ントマーク B1を設けるとともに、これに対応するステージ 11にも複数のステージ基準 マーク 14を設ける必要がある。
[0061] 本発明は、発光素子を基板に搭載するチップマウンタや、 TABボンダ、フリップチッ プボンダなど、広い用途に用いることができる。
本発明の装着装置は、上記実施例に示された構造に限るものではなぐ本発明の各 工程を実施できる構造であればょ 、。 本発明において、第 1光学系を吸着ヘッドより上方に配置し、第 2光学系をステージ より下方に配置した力 少なくともヘッド基準マークおよびステージ基準マーク力 の 光を受ける部分 (例えばレンズやミラーなど)が吸着ヘッドより上方およびステージより 下方に位置すればよぐカメラがそれぞれ吸着ヘッドより上方、ステージより下方に配 置されている必要はない。したがって、複数のミラーやプリズムを用いて吸着ヘッドの 側方や下方、あるいはステージの側方や下方に配置されたカメラに光を反射するよう にしてもよい。
[0062] 図 4では、第 1光学系 20の光軸と直交する方向に配置した第 3光学系 22でレーザチ ップ Pの光軸を撮像した力 図 16に示すように、吸着ヘッド 2の下面に反射ミラー 90 を設け、レーザチップ Pの光をミラー 90で 90度曲げることで、第 2光学系 21でレーザ チップ Pの光軸を撮像することも可能である。この場合には、第 2光学系 21で第 3光 学系 22を兼用できる。
[0063] 上記実施例では、レーザチップを発光させ、その光軸を第 3光学系で撮像することで 、光軸の X方向および Z方向の位置を認識する場合について説明した力 Z方向に つ!ヽては必ずしも認識する必要はな!/、。
例えば、図 17に示すように、導波路基板 91に高さ基準となる台座 92を形成した場合 には、レーザチップ 95を台座 92に押し付けた状態で接合するだけで、レーザチップ 95の光軸と導波路基板 91の導波路 93とを Z方向に正確に合わせすることができる ため、第 3光学系で光軸の Z方向の位置を認識する必要がないからである。なお、 96 は金属接合部である。
図面の簡単な説明
[0064] [図 1]本発明にかかる装着方法を用いた実装装置の第 1実施例の斜視図である。
[図 2]図 1に示す実装装置の吸着ヘッドおよびステージの拡大図である。
[図 3]図 1に示す実装装置の吸着ヘッドおよびステージの斜視図である。
[図 4]図 1に示す実装装置の位置合わせ動作を示す動作説明図である。
[図 5]第 3光学系方向力も見た吸着ヘッドとレーザチップの図である。
[図 6]第 3光学系によってレーザチップ Pと基板 Bとの隙間を測定する方法を示す図で める。 [図 7]本発明方法を用いた実装装置の第 2実施例の正面図である。
[図 8]図 7の VIII-VIII線断面図である。
[図 9]図 7に示す実装装置の吸着ヘッドの拡大図であり、(a)は正面図、(b)は IX— IX 線断面図である。
[図 10]電源装置の構成を示す図である。
[図 11]電源装置によってレーザチップに電源を供給した状態を示す図である。
[図 12]本発明方法を用いた実装装置の第 3実施例の正面図である。
[図 13]図 12の実施例におけるカメラの視野画像を示す図である。
[図 14]本発明にかかる実装装置の第 4実施例の斜視図である。
[図 15]図 14に示す実装装置の位置合わせ動作を示す動作説明図である。
[図 16]レーザチップの光をミラーで反射させる例を示す図である。
[図 17]レーザチップを導波路基板に台座を用いて実装する例の図である。
[図 18]レーザチップを導波路基板に実装した例の図である。
符号の説明
P 発光素子 (第 1部品)
P1 発光部
B 基板 (第 2部品)
2 吸着ヘッド
5 ヘッド基準マーク
6a, 6b キャリブレーションマーク
7, 8, 9 ヘッド用駆動機構
11 ステージ
14 ステージ基準マーク
15, 16, 17 ステージ用駆動機構
20 第 1カメラ
21 第 2カメラ
22 第 3カメラ

Claims

請求の範囲
[1] 吸着ヘッドの下端部に横方向への光軸を有する発光素子である第 1部品を吸着し、 この第 1部品をステージ上に保持された第 2部品に位置合わせして装着する方法に おいて、
上記吸着ヘッドより上方に配置された第 1光学系と、上記ステージより下方であって、 第 1光学系と光軸が略対向するように配置された第 2光学系と、第 1光学系と光軸の 方向が略直交するように配置された第 3光学系とを準備する工程と、
第 1光学系と第 2光学系との間に吸着ヘッドを挿入し、第 1光学系で吸着ヘッドに付 与され上方力も認識できるヘッド基準マークを撮像するとともに、第 2光学系で吸着 ヘッドに吸着された第 1部品を撮像し、かつ第 1部品を発光させその光軸を第 3光学 系で認識する工程と、
第 1光学系と第 2光学系との間にステージを挿入し、第 1光学系でステージ上に保持 された第 2部品を撮像するとともに、第 2光学系でステージに付与され下方力 認識 できるステージ基準マークを撮像する工程と、
上記第 1光学系,第 2光学系および第 3光学系からの画像情報を用いて第 1部品と 吸着ヘッドの相対位置、第 2部品とステージの相対位置を算出する工程と、 上記吸着ヘッドとステージとを装着位置へ移動させた状態で、上記ヘッド基準マーク とステージ基準マークとを上記第 1,第 2の光学系で認識し、これらの位置情報と上記 相対位置情報とを用いて、第 1部品と第 2部品の位置が所定の関係となるように吸着 ヘッドおよびステージの少なくとも一方を位置補正する工程と、
上記位置補正後、第 1部品と第 2部品とを装着する工程と、を備えたことを特徴とする 発光素子の装着方法。
[2] 上記第 1光学系と第 2光学系とを準備する工程は、第 1光学系と第 2光学系との間に 上下両方から認識できる単一のキャリブレーションマークを挿入し、このキヤリブレー シヨンマークを第 1光学系と第 2光学系とで撮像することで、第 1光学系と第 2光学系 の光軸ずれ量を測定する工程を含むことを特徴とする請求項 1に記載の発光素子の 装着方法。
[3] 上記第 1光学系と第 3光学系とを準備する工程は、第 1光学系と第 3光学系との間に 上方向と横方向力もの相対位置関係が既知のキャリブレーションマークを挿入し、こ のキャリブレーションマークを第 1光学系と第 3光学系とで撮像することで、第 1光学 系と第 3光学系の光軸ずれ量を測定する工程を含むことを特徴とする請求項 1に記 載の発光素子の装着方法。
[4] 上記キャリブレーションマークは、上記吸着ヘッドまたはステージに設けられたマーク であることを特徴とする請求項 2または 3に記載の発光素子の装着方法。
[5] 上記第 1部品を発光させその光軸を第 3光学系で認識する工程において、
上記第 1部品の発光状態を計測し、その発光状態が規格値力 外れる場合には、後 続の工程へ進まずに第 1部品を不良品として排出することを特徴とする請求項 1ない し 4の 、ずれかに記載の発光素子の装着方法。
[6] 上記第 1光学系、第 2光学系および第 3光学系は、上記ヘッド基準マークと第 1部品 とを撮像する工程、上記第 2部品とステージ基準マークとを撮像する工程、上記吸着 ヘッドおよびステージの少なくとも一方を位置補正する工程、および第 1部品と第 2部 品とを装着する工程の間中、固定の位置関係に保持されていることを特徴とする請 求項 1な!、し 5の 、ずれかに記載の発光素子の装着方法。
[7] 上記装着位置における吸着ヘッドとステージとの位置補正工程は、
上記ヘッド基準マークとステージ基準マークとを上記第 1,第 2光学系で認識し、上 記相対位置情報を用いて第 1部品と第 2部品の位置が所定の関係となるように吸着 ヘッドとステージとを仮止めする工程と、
上記吸着ヘッドおよびステージの一方もしくは双方を接合のために加熱しながら、へ ッド基準マークとステージ基準マークを第 1,第 2光学系で連続的に撮像し、上記仮 止め工程の相対位置関係を維持すべく吸着ヘッドとステージとを相対位置補正する 工程と、を含むことを特徴とする請求項 1な!、し 6の 、ずれかに記載の発光素子の装 着方法。
[8] 上記第 1部品と第 2部品とを装着する工程において、第 3光学系を用いて第 1部品と 第 2部品との上下方向の相対距離を測定し、その接合隙間を補正しながら装着する ことを特徴とする請求項 1な 、し 7の 、ずれかに記載の発光素子の装着方法。
[9] 横方向への光軸を有する発光素子である第 1部品と第 2部品とを位置合わせして装 着する発光素子の装着装置において、
下端部に第 1部品を吸着し、上方力 認識できるヘッド基準マークを有する吸着へッ ドと、
上端部に第 2部品を保持し、下方から認識できるステージ基準マークを有するステー ジと、
上記吸着ヘッドおよびステージを X, Y, Zおよび 0方向に相対移動させる駆動機構 と、
上記吸着ヘッドの上方に配置され、ステージに保持された第 2部品とヘッド基準マー クとを撮像する第 1光学系と、
上記ステージの下方であって、第 1光学系の光軸と略対向するように配置され、吸着 ヘッドに吸着された第 1部品とステージ基準マークとを撮像する第 2光学系と、 第 1光学系と光軸の方向が略直交するように配置され、第 1部品を発光させた時の光 軸を撮像する第 3光学系と、
上記第 1一第 3の光学系からの画像情報を用いて、第 1部品と吸着ヘッドの相対位置 、第 2部品とステージの相対位置を算出する演算装置と、
上記吸着ヘッドとステージとを装着位置へ移動させた状態で、上記ヘッド基準マーク とステージ基準マークとを上記第 1,第 2の光学系で認識し、これらの位置情報と上述 の相対位置情報とを用いて、第 1部品と第 2部品の位置が所定の関係となるように吸 着ヘッドとステージとを位置補正する制御装置と、を備えたことを特徴とする発光素子
[10] 上記吸着ヘッドおよびステージの少なくとも一方は、
部品吸着穴と、上記部品吸着穴の背後に設けられ、部品吸着穴と連通する中空部と 、上記中空部の部品吸着穴と対向する面を閉鎖し、部品吸着穴を背後から透視可 能な透明体と、上記中空部に接続されたエアー吸引通路と、上記部品吸着穴の近 傍に固定された加熱用ヒータとを備え、
上記透明体を介して部品吸着穴をヘッド基準マークまたはステージ基準マークとして 認識可能としたことを特徴とする請求項 9に記載の発光素子の装着装置。
[11] 上記吸着ヘッドまたはステージは、上記駆動機構に対しブラケットを介して取り付けら れており、
上記ブラケットには上記透明体を介して部品吸着穴を撮像するための第 1または第 2 の光学系を挿入自在な空洞部が形成されていることを特徴とする請求項 10に記載 の発光素子の装着装置。
[12] 上記第 3光学系で第 1部品の光軸を認識する際、上記第 1部品を発光させるための 電源装置を備えることを特徴とする請求項 9な 、し 11の 、ずれかに記載の発光素子
[13] 上記第 3光学系は第 1部品および第 2部品、または吸着ヘッドおよびステージを側方 から撮像し、
上記演算装置は、第 3光学系からの画像情報を用いて、第 1部品と第 2部品との上下 方向の相対距離を算出し、
上記制御装置は、上記相対距離情報に基づいて、第 1部品と第 2部品との接合隙間 を補正することを特徴とする請求項 9ないし 12のいずれかに記載の発光素子の装着
PCT/JP2004/013111 2003-09-22 2004-09-09 発光素子の装着方法および装着装置 WO2005029658A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005514022A JP3844009B2 (ja) 2003-09-22 2004-09-09 発光素子の装着方法および装着装置
KR1020067004532A KR100758811B1 (ko) 2003-09-22 2004-09-09 발광소자의 장착방법 및 장착장치
US10/573,058 US7540080B2 (en) 2003-09-22 2004-09-09 Method for mounting component by suction nozzle
CNB2004800270804A CN100420109C (zh) 2003-09-22 2004-09-09 用于安装发光元件的方法和设备
US12/273,949 US8015696B2 (en) 2003-09-22 2008-11-19 Device for mounting light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-329318 2003-09-22
JP2003329318 2003-09-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10573058 A-371-Of-International 2004-09-09
US12/273,949 Division US8015696B2 (en) 2003-09-22 2008-11-19 Device for mounting light emitting element

Publications (1)

Publication Number Publication Date
WO2005029658A1 true WO2005029658A1 (ja) 2005-03-31

Family

ID=34372962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013111 WO2005029658A1 (ja) 2003-09-22 2004-09-09 発光素子の装着方法および装着装置

Country Status (5)

Country Link
US (2) US7540080B2 (ja)
JP (1) JP3844009B2 (ja)
KR (1) KR100758811B1 (ja)
CN (1) CN100420109C (ja)
WO (1) WO2005029658A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294155A (ja) * 2008-06-06 2009-12-17 Hioki Ee Corp アームオフセット取得方法
CN104678510A (zh) * 2013-11-27 2015-06-03 鸿富锦精密工业(深圳)有限公司 光通讯模组的组装方法
US9572293B2 (en) 2013-03-25 2017-02-14 Fujitsu Limited Placement apparatus and a suction nozzle for an optical component
JP2021174904A (ja) * 2020-04-27 2021-11-01 三菱電機株式会社 検査装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029658A1 (ja) * 2003-09-22 2005-03-31 Murata Manufacturing Co., Ltd. 発光素子の装着方法および装着装置
US20060132544A1 (en) * 2004-12-21 2006-06-22 Corley Richard E Jr Laser tacking and singulating method and system
KR101445674B1 (ko) * 2006-12-28 2014-10-01 야마하하쓰도키 가부시키가이샤 부품 인식 장치, 표면 실장기, 및 부품 시험 장치
CN101755229B (zh) * 2007-10-17 2011-11-09 Ads技术株式会社 在光学装置组装期间使用传感器调节自由度的设备
JP5167779B2 (ja) * 2007-11-16 2013-03-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR100935892B1 (ko) * 2008-03-19 2010-01-07 유한회사 마스터이미지쓰리디아시아 입체영상용 디스플레이 패널의 수평 방향/수직 방향 정렬을수행하는 접합 장치
US7810698B2 (en) * 2008-11-20 2010-10-12 Asm Assembly Automation Ltd. Vision system for positioning a bonding tool
KR101065724B1 (ko) * 2009-10-07 2011-09-19 주식회사 프로텍 발광 다이오드 제조용 본드 헤드 모듈
WO2011151440A1 (de) * 2010-06-02 2011-12-08 Kiener Maschinenbau Gmbh Verfahren zur automatisierten montage von modulen an aufnahmeeinrichtungen, insbesondere solarmodulen auf aufständerungen sowie mobile montageeinrichtungen für solche module
JP2012195508A (ja) * 2011-03-17 2012-10-11 Juki Corp 電子部品実装装置
JP5839170B2 (ja) 2011-09-03 2016-01-06 Tdk株式会社 ワーク搬送装置、並びにワーク処理装置及びワーク処理方法
US9083863B2 (en) 2012-04-20 2015-07-14 Hewlett-Packard Development Company, L.P. Alignment system for a digital image capture device
JP2014038946A (ja) * 2012-08-16 2014-02-27 Sony Corp 実装装置、部材の配置方法及び基板の製造方法
WO2014065058A1 (ja) * 2012-10-26 2014-05-01 シャープ株式会社 光学部材搬送装置
TWI549256B (zh) * 2012-12-24 2016-09-11 鴻海精密工業股份有限公司 發光二極體模組之製造方法
AT513747B1 (de) 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Bestückungsverfahren für Schaltungsträger und Schaltungsträger
CN104216087B (zh) * 2013-06-03 2018-01-09 泰州市润杰五金机械制造有限公司 吸取装置
DE102014101901B4 (de) * 2014-02-14 2015-10-15 Asm Assembly Systems Gmbh & Co. Kg Optisches Vermessen eines Bauelementes mit an gegenüberliegenden Seiten vorhandenen strukturellen Merkmalen
CN105074482B (zh) * 2014-03-11 2020-03-06 新东工业株式会社 被测试器件的检查系统及其操作方法
EP3179523B1 (en) 2014-08-04 2020-09-23 FUJI Corporation Mounting device
JP6832499B2 (ja) * 2015-02-26 2021-02-24 パナソニックIpマネジメント株式会社 テープフィーダ
AT517120B1 (de) * 2015-05-04 2020-01-15 Zkw Group Gmbh Verfahren zur positionierung zumindest einer elektronischen komponente auf einer leiterplatte
CN107408309A (zh) * 2015-05-19 2017-11-28 伊斯梅卡半导体控股公司 构件装卸组件及调整构件装卸组件的方法
AT517259B1 (de) 2015-06-09 2020-01-15 Zkw Group Gmbh Verfahren zur positionsgenauen Bestückung eines Schaltungsträgers
GB2539387B (en) * 2015-06-09 2021-04-14 Oxford Metrics Plc Motion capture system
CN108303429A (zh) * 2018-01-12 2018-07-20 嵊州市东浩电子科技有限公司 一种导光板缺陷自动检测及分拣设备
CN109064886B (zh) * 2018-08-29 2020-04-03 武汉华星光电技术有限公司 一种绑定机台水平对位系统及方法
KR102169438B1 (ko) * 2018-09-14 2020-10-26 에이피시스템 주식회사 합착 장치 및 합착 방법
CN109104796B (zh) * 2018-10-09 2023-09-22 西安中科华芯测控有限公司 一种超辐射发光二极管的芯片组装定位夹具及方法
CN109932829B (zh) * 2019-04-10 2021-02-26 武汉锐科光纤激光技术股份有限公司 一种透镜定位装置及方法
CN110752177A (zh) * 2019-10-11 2020-02-04 浙江大学 一种反射式倒装芯片键合机及芯片键合方法
CN112382590A (zh) * 2020-11-11 2021-02-19 华天科技(南京)有限公司 一种编带设备交手校正系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142924A (ja) * 1984-08-06 1986-03-01 Toshiba Corp 位置決め装置
JPS6163075A (ja) * 1984-09-03 1986-04-01 Tokyo Sokuhan Kk 半導体レ−ザ素子ダイボンデイング方法
JP2003133340A (ja) * 2001-10-30 2003-05-09 Mitsubishi Electric Corp 半導体デバイスの製造方法及び装置、並びに検査方法
JP2003152260A (ja) * 2001-11-09 2003-05-23 Sharp Corp 半導体レーザ装置およびそれを用いた光ピックアップ装置、ならびに半導体レーザ装置の製造装置および製造方法
JP2003218137A (ja) * 2002-01-23 2003-07-31 Hitachi Ltd 半導体チップの実装方法および実装装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261770B2 (ja) * 1992-11-19 2002-03-04 松下電器産業株式会社 部品装着装置
JP3273087B2 (ja) * 1992-11-27 2002-04-08 富士機械製造株式会社 電子部品受渡し装置および電子部品装着方法
BE1007167A3 (nl) 1993-05-13 1995-04-11 Philips Electronics Nv Zendstation voor het uitzenden van een pluraliteit van televisie programma's, en een ontvanger voor het ontvangen daarvan.
JPH07105575A (ja) 1993-10-07 1995-04-21 Mitsubishi Chem Corp 光記録媒体
JP2000150970A (ja) 1998-11-18 2000-05-30 Fuji Photo Film Co Ltd 発光素子のボンディング方法および装置
JP3829594B2 (ja) * 2000-06-30 2006-10-04 セイコーエプソン株式会社 素子実装方法と光伝送装置
JP4046030B2 (ja) * 2002-08-30 2008-02-13 株式会社村田製作所 部品装着方法および部品装着装置
WO2005029658A1 (ja) * 2003-09-22 2005-03-31 Murata Manufacturing Co., Ltd. 発光素子の装着方法および装着装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142924A (ja) * 1984-08-06 1986-03-01 Toshiba Corp 位置決め装置
JPS6163075A (ja) * 1984-09-03 1986-04-01 Tokyo Sokuhan Kk 半導体レ−ザ素子ダイボンデイング方法
JP2003133340A (ja) * 2001-10-30 2003-05-09 Mitsubishi Electric Corp 半導体デバイスの製造方法及び装置、並びに検査方法
JP2003152260A (ja) * 2001-11-09 2003-05-23 Sharp Corp 半導体レーザ装置およびそれを用いた光ピックアップ装置、ならびに半導体レーザ装置の製造装置および製造方法
JP2003218137A (ja) * 2002-01-23 2003-07-31 Hitachi Ltd 半導体チップの実装方法および実装装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294155A (ja) * 2008-06-06 2009-12-17 Hioki Ee Corp アームオフセット取得方法
US9572293B2 (en) 2013-03-25 2017-02-14 Fujitsu Limited Placement apparatus and a suction nozzle for an optical component
CN104678510A (zh) * 2013-11-27 2015-06-03 鸿富锦精密工业(深圳)有限公司 光通讯模组的组装方法
JP2021174904A (ja) * 2020-04-27 2021-11-01 三菱電機株式会社 検査装置
JP7338546B2 (ja) 2020-04-27 2023-09-05 三菱電機株式会社 検査装置

Also Published As

Publication number Publication date
US7540080B2 (en) 2009-06-02
KR100758811B1 (ko) 2007-09-13
US8015696B2 (en) 2011-09-13
JPWO2005029658A1 (ja) 2006-11-30
JP3844009B2 (ja) 2006-11-08
US20090133248A1 (en) 2009-05-28
CN100420109C (zh) 2008-09-17
CN1853320A (zh) 2006-10-25
KR20060096990A (ko) 2006-09-13
US20060209910A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP3844009B2 (ja) 発光素子の装着方法および装着装置
JP4046030B2 (ja) 部品装着方法および部品装着装置
KR100619471B1 (ko) 본딩 장치
KR102132094B1 (ko) 전자 부품 실장 장치 및 전자 부품 실장 방법
CN1983539A (zh) 高精度晶粒键合装置
US6466841B2 (en) Apparatus and method for determining a reference position for an industrial robot
JP7112341B2 (ja) 実装装置および実装方法
US5225026A (en) Bonding method and apparatus therefor
US5764366A (en) Method and apparatus for alignment and bonding
JP4710432B2 (ja) 部品実装装置及び部品実装方法
JP4899933B2 (ja) 電子部品搭載装置における基板認識用のカメラの取付方法
JP2010541305A (ja) センサーを用いる光学部品組立用自由度調整装置
JP4048897B2 (ja) 電子部品位置合わせ方法及びその装置
JP2021097234A (ja) ダイホルダーモーションテーブルを備えたダイボンドヘッド装置
US20230400297A1 (en) Passive alignment of lens module relative to an image sensor for manufacturing a camera module
JP5400257B2 (ja) 半導体レーザ素子搭載用基台の半田付け装置および半導体レーザモジュールの製造方法
JP4175203B2 (ja) 電子部品搭載装置および電子部品搭載方法ならびに較正用治具
JP2004279802A (ja) 光モジュールの組立方法及び組立装置
KR100237201B1 (ko) 홀로그램 픽업모듈에서의 수광소자 접합 장치 및 그 방법
JP2008175600A (ja) 電子部品の三次元測定方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027080.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514022

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067004532

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10573058

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067004532

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10573058

Country of ref document: US

122 Ep: pct application non-entry in european phase