[go: up one dir, main page]

WO2005028451A1 - Tetrahydrochinoxaline und ihre verwendung als m2 acetylcholinrezeptor agonisten - Google Patents

Tetrahydrochinoxaline und ihre verwendung als m2 acetylcholinrezeptor agonisten Download PDF

Info

Publication number
WO2005028451A1
WO2005028451A1 PCT/EP2004/009934 EP2004009934W WO2005028451A1 WO 2005028451 A1 WO2005028451 A1 WO 2005028451A1 EP 2004009934 W EP2004009934 W EP 2004009934W WO 2005028451 A1 WO2005028451 A1 WO 2005028451A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
alkyl
compounds
salts
Prior art date
Application number
PCT/EP2004/009934
Other languages
English (en)
French (fr)
Inventor
Alexander Kuhl
Peter Kolkhof
Leila Telan
Jan-Georg Peters
Klemens Lustig
Raimund Kast
Klaus Münter
Johannes-Peter Stasch
Hanna Tinel
Original Assignee
Bayer Healthcare Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare Ag filed Critical Bayer Healthcare Ag
Publication of WO2005028451A1 publication Critical patent/WO2005028451A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the invention relates to tetrahydroquinoxalines, a process for their preparation and their use for the manufacture of medicaments for the treatment and / or prophylaxis of diseases, in particular cardiovascular diseases.
  • Acetylcholine is the carrier of the parasympathetic nervous system. This part of the vegetative nervous system has a decisive influence on fundamental processes of various organ functions, e.g. Lungs, bladder, stomach and intestines, glands, brain, eyes, blood vessels and heart.
  • Acetylcholine itself is not therapeutically applicable due to the very rapid activation by acetylcholinesterase, but its effect can be reduced by direct parasympathomimetics, e.g. the carbachol, are imitated.
  • Active ingredients that act agonistically like acetylcholine at the muscarinic (M) acetylcholine receptors can, depending on the organ or tissue system, influence and control numerous functions. For example, activation of muscarinic acetylcholine receptors in the brain can affect the memory and processes of learning processes and pain processing.
  • the muscarinic M2 acetylcholine receptor which is particularly strongly expressed in cardiac muscle cells, is able to reduce the heart rate and contractility after beta-adrenergic stimulation (B. Rauch, F. Niroomand, J. Eur. Heart. 1991, 12, 76-82). Both effects reduce myocardial oxygen consumption.
  • WO 00/39103 describes tetrahydroquinoxalm derivatives for the treatment of diseases which are caused by cell adhesion, such as, for. B. inflammatory diseases or arteriosclerosis.
  • the object of the present invention is to provide medicaments for the treatment of diseases, in particular cardiovascular diseases.
  • the present invention relates to compounds of the formula
  • X represents CH or N
  • R 1 represents phenyl or pyridyl, where phenyl and pyridyl are optionally substituted by 1 to 3 substituents, independently of one another selected from the group consisting of halogen, hydroxy, hydroxycarbonyl, arnino, trifluoromethyl, trifluoromethoxy, nitro, cyano, alkyl, alkoxy, alkylamino , Alkoxycarbonyl, arninocarbonyl and alkyl arninocarbonyl,
  • R 2 represents cycloalkyl, which is optionally substituted by 1 to 3 substituents, selected independently of one another from the group consisting of halogen, hydroxy, amino, alkyl, alkoxy and alkylamino,
  • R 3 represents alkyl or cycloalkyl, alkyl and cycloalkyl optionally being substituted by 1 to 3 substituents independently of one another selected from the group consisting of halogen, hydroxy, amino, trifluoromethyl, alkoxy, alkylamino, hydroxycarbonyl, alkoxycarbonyl, arninocarbonyl and alkylaminocarbonyl, and cycloalkyl can also be substituted by alkyl,
  • R 4 represents hydrogen or (-CC 4 ) alkyl
  • R 5 represents hydrogen or (CC 4 ) alkyl
  • Compounds according to the invention are the compounds of the formula (I) and their salts, solvates and solvates of the salts, compounds mentioned below as exemplary embodiment (s) and their Salts, solvates and solvates of the salts, insofar as the compounds mentioned below of formula (I) are not already salts, solvates and solvates of the salts.
  • the compounds according to the invention can exist in stereoisomeric forms (enantiomers, diastereomers).
  • the invention therefore relates to the enantiomers or diastereomers and their respective mixtures.
  • the stereoisomerically uniform constituents can be isolated in a known manner from such mixtures of enantiomers and / or diastereomers.
  • the present invention encompasses all tautomeric forms.
  • preferred salts are physiologically acceptable salts of the compounds according to the invention.
  • salts are also included which are not themselves suitable for pharmaceutical applications but can be used for example for the isolation or purification of the compounds according to the invention.
  • Physiologically acceptable salts of the compounds according to the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. Salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid, maleic acid.
  • Salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid acetic acid, trifluoroacetic acid, propionic acid
  • Physiologically acceptable salts of the compounds according to the invention also include salts of conventional bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth metal salts (for example calcium and magnesium salts) and ammonium salts, derived from ammonia or organic amines having 1 to 16 carbon atoms, such as, for example and preferably, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • alkali metal salts for example sodium and potassium salts
  • alkaline earth metal salts for example calcium and magnesium salts
  • ammonium salts derived from ammonia or organic amines having
  • solvates are those forms of the compounds according to the invention which form a complex in the solid or liquid state by coordination with solvent molecules. Hydrates are a special form of solvate, in which coordination takes place with water.
  • Alkyl per se and "alk” and "alkyl” in alkoxy represent a linear or branched alkyl radical with generally 1 to 6, preferably 1 to 4, particularly preferably 1 to 3 carbon atoms, by way of example and preferably methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-pentyl and n-hexyl.
  • Alkoxy is exemplary and preferably methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy, n-pentoxy and n-hexoxy.
  • Alkylamino stands for an alkylamino radical with one or two (independently selected) alkyl substituents.
  • (-C-C 3 ) alkylamino is, for example, a monoalkylamino radical having 1 to 3 carbon atoms or a dialkylamino radical each having 1 to 3 carbon atoms per alkyl substituent, examples and preferably being mentioned: methylamino, ethylamino, n-propylamino, isopropylamino , tert-butylamino, n-pentylamino, n-hexylamino, NN-dimethylamino, NN-diethylamino, N-ethyl-N-methylamino, N-methyl-Nn-propylamino, N-isopropyl-Nn-propylamino, Nt- Butyl-N-mefhylamino, N-ethyl-Nn-p
  • Alkylaminocarbonyl stands for an alkylaminocarbonyl radical with one or two (independently selected) alkyl substituents.
  • (-C-C 3 ) -Alkylaminocarbonyl stands for example for a monoalkylaminocarbonyl radical with 1 to 3 carbon atoms or for a dialkylamino-carbonyl radical with 1 to 3 carbon atoms per alkyl substituent.
  • Alkoxycarbonyl is exemplified and preferably methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, n-pentoxycarbonyl and n-hexoxycarbonyl.
  • Alkanediyl stands for a straight-chain or branched saturated alkanediyl radical having 1 to 6 carbon atoms.
  • a straight-chain or branched alkanediyl radical having 1 to 4 carbon atoms is preferred. Examples include and are preferably methylene, ethane-1,2-diyl, ethane-1,1-diyl, propane-1,3-diyl, propane-1,2-diyl, propane-2,2-diyl, butane-1 , 4-diyl, butane-l, 3-diyl, butane-2,4-diyl, pentane-l, 5-diyl, pentane-2,4-diyl, 2-methylpentane-2,4-diyl.
  • Cycloalkyl stands for a cycloalkyl group with generally 3 to 8, preferably 3 to 6 carbon atoms, by way of example and preferably for cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • Aryl stands for a mono- or tricyclic aromatic, carbocyclic radical with generally 6 to 14 carbon atoms, for example and preferably for phenyl, naphthyl and phenanthrenyl.
  • Halogen stands for fluorine, chlorine, bromine and iodine.
  • radicals in the compounds according to the invention are substituted, the radicals, unless otherwise specified, can be substituted one or more times in the same or different manner. A substitution with up to three identical or different substituents is preferred. Substitution with a substituent is very particularly preferred.
  • A represents (CC 6 ) alkanediyl
  • X represents CH or N
  • R 1 represents phenyl or pyridyl, where phenyl and pyridyl are optionally substituted by a substituent, independently selected from the group consisting of halogen, hydroxy, amino, alkyl, alkoxy, alkylamino, alkoxycarbonyl, arninocarbonyl and alkylaminocarbonyl,
  • R 2 represents (C 3 -C 6 ) cycloalkyl
  • R 3 represents (CC 6 ) alkyl or (C 3 -C 6 ) cycloalkyl, alkyl and cycloalkyl optionally being substituted by 1 to 3 substituents selected independently of one another from the group consisting of hydroxy, trifluoromethyl and (C 1 -C 4 ) alkoxy,
  • R 4 represents hydrogen or methyl
  • R 5 represents hydrogen or methyl
  • A represents ethane-l, l-diyl or pentane-l, l-diyl
  • X represents CH or N
  • R 1 represents phenyl or pyridyl, where phenyl and pyridyl are substituted by a methoxy group
  • R 2 represents cyclopropyl
  • R 3 represents (C 3 -C 6 ) alkyl
  • R 4 represents hydrogen
  • R 5 represents hydrogen or methyl
  • radical definitions specified in detail in the respective combinations or preferred combinations of radicals are also replaced by radical definitions of another combination, regardless of the respectively specified combinations of the radicals. - ⁇
  • the present invention also relates to a process for the preparation of the compounds of the formula (I), which is characterized in that
  • a and R 1 have the meaning given above, in the presence of conventional condensing agents, if appropriate in the presence of a base or
  • R, R, R and R have the meaning given above, and
  • Y 1 represents halogen, preferably bromine or chlorine, with compounds of the formula
  • R 3 has the meaning given above, in the presence of a base.
  • Y, R, R and R have the meaning given above, first with compounds of formula (V) and then with trifluoroacetic acid or hydrogen chloride in dioxane to cleave the tert-butyl ester.
  • R 2 has the meaning given above
  • R 2 and R 5 have the meaning given above
  • R 2 and R 5 have the meaning given above
  • R 4 and R 5 have the meaning given above
  • R 2 and R 4 have the meaning given above
  • R 2 and R 4 have the meaning given above
  • R 2 has the meaning given above
  • R 2 has the meaning given above
  • the amide coupling in process step (II) + (TU) -> (I) is generally carried out in inert solvents, preferably in a temperature range from room temperature to 50 ° C. at normal pressure.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene, ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol ether such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, or other solvents such as nitromethane, ethyl acetate, acetone, dimethylformamide, dimethylacet
  • Typical condensing agents are, for example, carbodiimides such as e.g. N, N'-Diefhyl-, N, N, '- Dipropyl-, N, N'-Diisopropyl-, N, N'-Dicyclohexylcarbodiimid, N- (3-Dimethylaminoisopropyl) -N'-ethylcarbodiimide hydrochloride (EDC), N-cyclohexylcarbodiimide-N'-propyloxymethyl polystyrene
  • carbodiimides such as e.g. N, N'-Diefhyl-, N, N, '- Dipropyl-, N, N'-Diisopropyl-, N, N'-Dicyclohexylcarbodiimid, N- (3-Dimethylaminoisopropyl) -N'-ethylcarbodiimide hydrochloride (ED
  • PS-carbodiimide or carbonyl compounds such as carbonyldiimidazole, or 1,2-oxazolium compounds such as 2-ethyl-5-phenyl-1, 2-oxazolium-3-sulfate or 2-tert-butyl-5-methyl-isoxazolium- perchlorate, or acylamino compounds such as 2-ethoxy-l-ethoxycarbonyl-l, 2-dihydroquinoline, or propanephosphonic anhydride, or isobutylchloroformate, or bis (2-oxo-3-oxazolidinyl) phosphoryl chloride or benzotriazolyloxy-tri (dimethylamino) phosphonium phosphonium , or 0- (benzotriazol-l-yl) -N, N, N ', N'-tetra-methyluronium hexafluorophosphate (HBTU), 2-
  • Bases are, for example, alkali carbonates, e.g. Sodium or potassium carbonate, or hydrogen carbonate, or organic bases such as trialkylamines e.g. Triethylamine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine or diisopropylethylamine.
  • alkali carbonates e.g. Sodium or potassium carbonate
  • hydrogen carbonate or organic bases
  • organic bases such as trialkylamines e.g. Triethylamine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine or diisopropylethylamine.
  • N- (3-dimethylaminoisopropyl) -N'-ethylcarbodiimide hydrochloride (EDC), 1-hydroxybenzotriazole (HOBt) and diisopropylethylamine in methylene chloride or dimethylformamide is preferred.
  • Process steps (IV) + (V) -> (I); (LX) + (XVUJ) -> (XLX) and (XXII) + (XXm) -> (XXI) as well as the first substep of (V) + (VT) -> (IT) are generally carried out in inert solvents , optionally in the presence of a base, preferably in a temperature range from 0 ° C to 50 ° C at normal pressure.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, carbon tetrachloride, 1,2-dichloroethane or Trichlorethylene, ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, or other solvents such as nitromethane, acetonitrile, dimethyl acetate amide, ethyl acetate form , Dimethylacetamide, 1, 2-dimethoxyethane, 2-butanone, dimethyl sulfoxide, acetonitrile or pyridine, or mixtures of the solvents
  • Bases are, for example, alkali carbonates such as cesium carbonate, sodium or potassium carbonate, or amides such as lithium diisopropylamide, or other bases such as DBU, triethylamine or diisopropylethylamine, preferably diisopropylethylamine or triethylamine.
  • reaction with an acid in the second process step from (V) + (VI) -> (JJ) generally takes place in inert solvents, preferably in a temperature range from 0 ° C. to 50 ° C. at normal pressure.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene, or other solvents such as dimethylformamide, dioxane or tetrahydrofuran, methylene chloride or dioxane is preferred.
  • halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene
  • other solvents such as dimethylformamide, dioxane or tetrahydrofuran, methylene chloride or dioxane is preferred.
  • Process step (VH) + (Vffl) -> (VI) is generally carried out in inert solvents, in the presence of a base, preferably in a temperature range from 0 ° C. to the reflux of the solvent at atmospheric pressure.
  • Bases are, for example, amides such as lithium diisopropylamide, or other bases such as DBU, triethylamine or diisopropylethylamine, or mixtures of these bases, preference is given to triethylamine or a mixture of triethylamine and DBU.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene, or other solvents dimethylformamide or tetrahydrofuran, methylene chloride is preferred.
  • halogenated hydrocarbons such as methylene chloride, trichloromethane, carbon tetrachloride, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene, or other solvents dimethylformamide or tetrahydrofuran, methylene chloride is preferred.
  • Process step (VIU) + (LX) -> (X) takes place in two stages.
  • the first stage is carried out in inert solvents with 2 equivalents of the compounds of the formula (VIU), based on the compounds of the formula (LX), in the presence of 2 equivalents of a base, preferably in a temperature range from 0 ° C. to 50 ° C. normal pressure.
  • the second stage closes without Working up the reaction mixture and is carried out by adding a further base and heating the reaction mixture to reflux of the solvent.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane, tetrachloromethane, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichlorethylene, ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol such as xylene glycol, such as xylene glycol, such as xylene glycol, and diethylene glycol xylene glycol , Toluene, hexane, cyclohexane or petroleum fractions, or other solvents such as nitromethane, ethyl acetate, acetone, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 2-butanone, dimethyl sulfoxide, ace
  • Bases are, for example, alkali hydroxides such as sodium or potassium hydroxide, or alkali carbonates such as cesium carbonate, sodium or potassium carbonate, or amides such as lithium diisopropylamide, or other bases such as DBU, triethylamine or diisopropylethylamine, preferred for the first stage is diisopropylethylamine or triethylamine, preferably for the second stage is DBU.
  • alkali hydroxides such as sodium or potassium hydroxide
  • alkali carbonates such as cesium carbonate, sodium or potassium carbonate
  • amides such as lithium diisopropylamide
  • other bases such as DBU, triethylamine or diisopropylethylamine, preferred for the first stage is diisopropylethylamine or triethylamine, preferably for the second stage is DBU.
  • Deacylation in process step (X) -> (XI) is generally carried out in a solvent, in the presence of a base, preferably in a temperature range from 0 ° C. to 50 ° C. at atmospheric pressure.
  • Solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane or 1,2-dichloroethane, ethers such as dioxane or tetrahydrofuran, or mixtures of the solvents with water, a mixture of dioxane and water being preferred.
  • halogenated hydrocarbons such as methylene chloride, trichloromethane or 1,2-dichloroethane
  • ethers such as dioxane or tetrahydrofuran
  • solvents with water, a mixture of dioxane and water being preferred.
  • Bases are, for example, alkali hydroxides such as lithium, sodium or potassium hydroxide, sodium hydroxide is preferred.
  • reaction with borane in process steps (XI) -> (VUa); (XIV) -> (Vllb); (XVII) -> (VIIc) and (XX) -> (VUd) are generally carried out in inert solvents, preferably in a temperature range from 40 ° C. to the reflux of the solvent at normal pressure.
  • Inert solvents are, for example, ethers such as dioxane or tetrahydrofuran, tetrahydrofuran is preferred.
  • the reaction with ⁇ -keto esters or diketones in the process steps (LX) + (XH) -> (XJ ⁇ T) and (LX) + (XV) -> (XVI) is generally carried out in inert solvents, in the presence of acetic acid, preferably in a temperature range from room temperature to 40 ° C at normal pressure.
  • Inert solvents are, for example, halogenated hydrocarbons such as methylene chloride, trichloromethane or 1,2-dichloroethane, ethers such as dioxane or tetrahydrofuran; methylene chloride is preferred.
  • the reduction with sodium cyanoborohydride in process steps (Xm) -> (XIV) and (XVI) -> (XVII) is generally carried out in inert solvents, in the presence of acetic acid, preferably in a temperature range from room temperature to the reflux of the solvent at atmospheric pressure.
  • Inert solvents are, for example, alcohols such as methanol or ethanol; methanol is preferred.
  • the cyclization in process step (XLX) -> (XX) is generally carried out in inert solvents, preferably with reflux of the solvent at normal pressure.
  • Inert solvents are, for example, dimethylformamide, dimethyl sulfoxide or N-methylpyrrolidone, dimethylformamide is preferred.
  • the reduction in process step (XXI) -> (LX) takes place in inert solvents, preferably in a temperature range from room temperature to 50 ° C. at normal pressure.
  • Inert solvents are, for example, alcohols such as methanol, ethanol, propanol, isopropanol or butanol or ethyl acetate or diethyl ether, methanol or ethanol being preferred.
  • Reducing agent is, for example, hydrogen;
  • catalysts are tin dichloride, titanium trichloride or palladium on activated carbon. The combination of palladium on activated carbon and hydrogen is preferred.
  • the compounds according to the invention show an unforeseeable, valuable pharmacological and pharmacokinetic spectrum of action.
  • the compounds according to the invention can be used alone or in combination with other active substances for the treatment and / or prophylaxis of cardiovascular diseases, in particular coronary heart disease, angina pectoris, myocardial infarction, stroke, atherosclerosis, essential, pulmonary and malignant hypertension, heart failure, heart failure, cardiac arrhythmias or thromboembolic disorders.
  • cardiovascular diseases in particular coronary heart disease, angina pectoris, myocardial infarction, stroke, atherosclerosis, essential, pulmonary and malignant hypertension, heart failure, heart failure, cardiac arrhythmias or thromboembolic disorders.
  • the present invention furthermore relates to the use of the compounds according to the invention for the treatment and or prophylaxis of diseases, in particular the aforementioned diseases.
  • the present invention furthermore relates to the use of the compounds according to the invention for the production of a medicament for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is a method for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases, using an atherosclerotically effective amount of the compounds according to the invention.
  • the present invention furthermore relates to medicaments containing at least one compound according to the invention and at least one or more further active compounds, in particular for the treatment and / or prophylaxis of the aforementioned diseases.
  • the compounds according to the invention can act systemically and / or locally.
  • they can be applied in a suitable manner, such as, for example, orally, parenterally, pulmonally, nasally, sublingually, lingually, buccally, rectally, dermally, transdermally, conjunctivally, otically or as an implant or stent.
  • the compounds according to the invention can be administered in suitable administration forms.
  • the state-of-the-art is suitable for rapid and or modified application forms which release the compounds according to the invention and which contain the compounds according to the invention in crystalline and or amorphized and / or dissolved form, such as Tablets (non-coated or coated tablets, for example with gastric juice-resistant or delayed dissolving or insoluble coatings which control the release of the compound according to the invention), rapidly disintegrating tablets or films / wafers, films / lyophilisates, capsules (for example hard or soft gelatin capsules) in the oral cavity , Coated tablets, granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • Tablets non-coated or coated tablets, for example with gastric juice-resistant or delayed dissolving or insoluble coatings which control the release of the compound according to the invention
  • Coated tablets granul
  • Parenteral administration can be done by bypassing an absorption step (e.g. intravenous, intraarterial, intracardiac, intraspinal or intralumbal) or by switching on absorption (e.g. intramuscular, subcutaneous, intracutaneous, percutaneous or intraperitoneal).
  • absorption step e.g. intravenous, intraarterial, intracardiac, intraspinal or intralumbal
  • absorption e.g. intramuscular, subcutaneous, intracutaneous, percutaneous or intraperitoneal.
  • Suitable forms of application for parenteral administration include: Injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Inhalation medication forms including powder inhalers, nebulizers
  • nasal drops, solutions, sprays including tablets, films / wafers or capsules to be applied lingually, sublingually or buccally, suppositories, ear or eye preparations, vaginal capsules, aqueous suspensions (lotions, shaking mixes), lipophilic suspensions, ointments, creams, transdermal therapeutic systems (such as plasters), Milk, pastes, foams, scattering powder, implants or stents.
  • the compounds according to the invention can be converted into the administration forms mentioned. This can be done in a manner known per se by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • auxiliaries include Carriers (for example microcrystalline cellulose, lactose, mannitol), solvents (for example liquid polyethylene glycols), emulsifiers and dispersing or wetting agents (for example sodium dodecyl sulfate, polyoxysorbitanoleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (for example albumin), Stabilizers (for example antioxidants such as ascorbic acid), dyes (for example inorganic pigments such as iron oxides) and taste and / or odor corrections.
  • Carriers for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersing or wetting agents for example sodium dodecyl sulfate
  • the present invention furthermore relates to medicaments which contain at least one compound according to the invention, usually together with one or more inert, non- contain toxic, pharmaceutically suitable auxiliaries, and their use for the aforementioned purposes.
  • the amount is approximately 0.1 to 10 mg / kg, preferably approximately 0.5 to 5 mg / kg body weight.
  • Method 1 Instrument: HP 1100 with DAD detection; Column: Kromasil RP-18, 60 mm x 2 mm, 3.5 ⁇ m; Eluent A: 5 ml of HCl water, eluent B: acetonitrile; Gradient: 0 min 2% B, 0.5 min 2% B, 4.5 min 90% B, 6.5 min 90% B; Flow: 0.75 ml / min; Oven: 30 ° C; UV detection: 210 nm.
  • Method 2 Instrument: Micromass Quattro LCZ, with HPLC Agilent Series 1100; Column: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 ⁇ m; Eluent A: 1 1 water + 1 ml 50% formic acid, eluent B: 1 1 acetonitrile + 1 ml 50% formic acid; Gradient: 0.0 min 100% A - 0.2 min 100% A -> 2.9 min 30% A - 3.1 min 10% A - »4.5 min 10% A; Oven: 55 ° C; Flow: 0.8 ml / min; UV detection: 208-400 nm.
  • Method 3 Device type MS: Micromass ZQ; Device type HPLC: Waters Alliance 2795; Column: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6mm; Eluent A: water + 500 ⁇ l 50% formic acid / 1; Eluent B: acetonitrile + 500 ⁇ l 50% formic acid / 1; Gradient: 0.0 min 10% B ⁇ 3.0 min 95% B-> 4.0 min 95% B; Oven: 35 ° C; Flow: 0.0 min 1.0 ml / min- 3.0 min 3.0 ml / min- 4.0 min 3.0 ml / min; UV detection: 210 nm.
  • LCMS Method 4
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20mm x 4mm
  • Eluent A 1 1 water + 0.5 ml 50% formic acid
  • eluent B 1 1 acetonitrile + 0.5 ml 50% formic acid
  • Flow 0.0 min 1 ml / min, 2.5 min / 3.0 min / 4.5 min. 2 ml / min
  • Oven 50 ° C
  • UV detection 210 nm.
  • Method 5 Instrument: Micromass Platform LCZ with HPLC Agilent Series 1100; Column: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 ⁇ m; Eluent A: 1 1 water + 1 ml 50% formic acid, eluent B: 1 1 acetonitrile + 1 ml 50% formic acid; Gradient: 0.0 min 100% A - 0.2 min 100% A ⁇ 2.9 min 30% A - 3.1 min 10% A - »4.5 min 10% A; Oven: 55 ° C; Flow: 0.8 ml / min; UV detection: 210 nm.
  • LCMS Method 6
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 ⁇ m
  • Eluent A water + 500 ⁇ l 50% formic acid / 1
  • eluent B acetonitrile + 500 ⁇ l 50% formic acid / 1
  • Oven 50 ° C
  • Flow 0.8 ml / min
  • UV detection 210 nm.
  • Method 7 Device type MS: Micromass ZQ; Device type HPLC: Waters Alliance 2795; Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20mm x 4mm; Eluent A: 1 1 water + 0.5 ml 50% formic acid, eluent B: 1 1 acetonitrile + 0.5 ml 50% formic acid; Gradient: 0.0 min 90% A ⁇ »2.5 min 30% A -» 3.0 min 5% A - »4.5 min 5% A; Flow: 0.0 min 1 ml / min, 2.5 min / 3.0 min / 4.5 min 2 ml / min; Oven: 50 ° C; UV detection: 210 nm.
  • the compounds listed in Table 1 are prepared analogously to the compound from Example 7A from the corresponding starting materials and purified on silica gel (mobile phase cyclohexane / ethyl acetate).
  • reaction mixture is concentrated in vacuo and by means of preparative HPLC (column: Phenomenex Luna C18 5 ⁇ m, 250 mm ⁇ 20 mm, eluent: 54.8% water, 45% acetonitrile, 0.2% trifluoroacetic acid; oven: RT; flow: 25 ml / min; UV detection: 210 nm) separately. 14.3 mg (13% of theory) of the product are obtained.
  • the preparation is carried out using the compound from Example 15A and [1- (6-methoxypyridin-3-yl) ethyl] amine by the method described for Example 1.
  • the cleaning takes place by means of preparative HPLC (method 8).
  • the preparation is carried out using the compound from Example 16A and (S) - (-) - (4-methoxyphenyl) ethylamine by the method described for Example 1.
  • the cleaning takes place by means of preparative HPLC (method 8).
  • the preparation is carried out using the compound from Example 15A and (S) - (-) - (4-methoxyphenyl) ethylamine by the method described for Example 1.
  • the cleaning takes place by means of preparative HPLC (method 8).
  • the preparation is carried out using the compound from Example 17A and (S) - (-) - (4-methoxyphenyl) ethylamine by the method described for Example 1.
  • the cleaning takes place by means of preparative HPLC (method 8).
  • the preparation is carried out using the compound from Example 18A and (S) - (-) - (4-methoxyphenyl) ethylamine by the method described for Example 1.
  • the cleaning takes place by means of preparative HPLC (method 8).
  • M2AChR human M2 acetylcholine receptor
  • test cell line constitutively expresses a modified form of the calcium-sensitive photoprotein aequorin, which after reconstitution with the co-factor coelenterazine emits light when the free calcium concentration in the inner mitochondrial compartment increases (Rizzuto R, Simpson AW, Brini M, Pozzan T .; Nature 358 (1992) 325-327).
  • the cell is stably transfected with the human M2AChR (Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon, DJ, EMBO Journal 6 (1987) 3923-3929) and the gene that is responsible for the promiscuous G ⁇ 6 coded protein (Amatruda TT, Steele DA, Slepak VZ, Simon MI, Proceedings in the National Academy of Science USA 88 (1991), 5587-5591).
  • M2AChR Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon, DJ, EMBO Journal 6 (1987) 3923-3929
  • the gene that is responsible for the promiscuous G ⁇ 6 coded protein Amatruda TT, Steele DA, Slepak VZ, Simon MI, Proceedings in the National Academy of Science USA 88 (1991), 5587-5591.
  • the resulting M2AChR test cell responds to stimulation of the recombinant M2ACh receptor with an intracellular release of calcium ions, which can be quantified by the resulting aequorin luminescence with a suitable luminometer (Milligan G, Marshall F, Rees S, Trends in Pharmacological Sciences 17 (1996) 235-237).
  • corresponding CHO Kl cells are used, which likewise have the gene of the calcium-sensitive photoprotein aequorin and the gene of the Ml, M3 or M5 receptor subtype or in the case of M4 receptor subtypes are additionally stably transfected with the gene of the promiscuous G ⁇ ⁇ 6 protein.
  • Test procedure The cells are placed in culture medium (DMEM, 10% FCS, 2 mM glutamine, 10 mM HEPES; Gibco Cat. # 21331-020; belongs to: Invitrogen GmbH, 76131 the day before the test Düsseldorf) plated in 384 (or 1536) well microtiter plates and kept in a cell incubator (96% humidity, 5% v / v C0 2 , 37 ° C).
  • culture medium DMEM, 10% FCS, 2 mM glutamine, 10 mM HEPES; Gibco Cat. # 21331-020; belongs to: Invitrogen GmbH, 76131 the day before the test Düsseldorf
  • 384 or 1536
  • the culture medium is replaced by a Tyrode solution (in mM: 140 NaCl, 5 KC1, 1 MgCl 2 , 2 CaCl 2 , 20 glucose, 20 HEPES), which also contains the co-factor coelenterazine (50 ⁇ M), and the microtiter plate then incubated for another 3-4 hours.
  • a Tyrode solution in mM: 140 NaCl, 5 KC1, 1 MgCl 2 , 2 CaCl 2 , 20 glucose, 20 HEPES
  • the resulting light signal is measured in the luminometer. The results are shown in Table A:
  • Stably transfected CHO Kl cells which express the human muscarinic M2 receptor are, after reaching 80% confluency, in 10 ml binding buffer (20 mM 4- (2-hydroxyethyl) -1-piperazinethanesulfonic acid, 5 mM magnesium chloride, pH 7.4) per 175 cm 2 cell culture bottle suspended and homogenized using an Ultra-Turrax device. The homogenates are centrifuged at 1000 g and 4 ° C for 10 minutes. The supernatant is removed and centrifuged at 20,000 g and 4 ° C. for 30 minutes. The membrane sediment with the M2 receptors is taken up in 10 ml of binding buffer and stored at -70 ° C.
  • 2 nM 3 H-oxotremorin M (200 GBq / mmol, PerkinElmer) are incubated for 60 minutes with 100-1000 ⁇ g / ml M2 membranes per batch (0.2 ml) in the presence of the test substances at room temperature. The incubation is stopped by centrifugation at 10 000 g for 10 minutes and then washing with 0.1% bovine serum albumin in binding buffer at 4 ° C. It is centrifuged for another 10 minutes at 10000 xg and 4 ° C. The sediment is resuspended in 0.1 ml of 1N sodium hydroxide solution and transferred to scintillation tubes.
  • the radioactivity bound to the membranes is quantified using an LS6000 IC scintillation counter from BeckmanCoulter. ed.
  • the non-specific binding is defined as radioactivity in the presence of 10 ⁇ M oxotremorine M and is usually less than 5% of the total radioactivity bound.
  • the binding data (IC 50 and dissociation constant Ki) are determined using the GraphPad Prism Version 3.02 program.
  • anesthetized guinea pigs are removed from the heart and inserted into a conventional Langendorff apparatus.
  • the coronary arteries are perfused at a constant volume (10 ml / min) and the resulting perfusion pressure is registered by a corresponding pressure transducer.
  • a decrease in perfusion pressure in this arrangement corresponds to a relaxation of the coronary arteries.
  • the pressure that is developed by the heart during each contraction is measured via a balloon inserted into the left ventricle and another pressure sensor.
  • the frequency of the isolated beating heart is calculated from the number of contractions per unit of time.
  • mice Male Wistar rats with a body weight of 300-350 g are anesthetized with thiopental (100 mg / kg ip). After tracheotomy, a catheter for measuring blood pressure is inserted into the femoral artery. The substances to be tested are administered orally in Transcutol, Cremophor EL, H 2 0 (10% / 20% / 70%) in a volume of 1 ml / kg.
  • Continuous blood pressure measurements over 24 hours are carried out on spontaneously hypertensive 200-250g free-moving female rats (MOL: SPRD).
  • MOL free-moving female rats
  • the animals are chronically implanted with pressure transducers (Data Sciences Inc., St. Paul, MN, USA) in the descending abdominal aorta below the renal artery and the associated transmitter is fixed in the abdominal cavity.
  • the animals are kept individually in type m cages, which are positioned on the individual receiving stations, and are adapted to a 12-hour light / dark rhythm. Water and feed are freely available.
  • the blood pressure of each rat is recorded every 5 minutes for 10 seconds.
  • the measuring points are combined for a period of 15 minutes and the average value is calculated from these values.
  • test compounds are dissolved in a mixture of Transcutol (10%), Cremophor (20%), H 2 0 (70%) and administered orally using a gavage in a volume of 2 ml / kg body weight.
  • the test doses are between 0.3-30 mg / kg body weight. d) Blood pressure and heart rate measurements on anesthetized dogs
  • the experiments are carried out in dogs (Mongrel) of both sexes with a body weight between 20 and 30 kg. Anesthesia is slow i.v. Injection of 25 mg / kg thiopental (Trapanal®) was initiated and continued during the experiment with a continuous infusion of 0.08 mg / kg / h fentanyl (Fentanyl®) and 0.25 mg / kg / h droperidol (Dehydrobenzperidol®). Alloferin (0.02 mg / kg / h) is added as a muscle relaxant. The dogs are artificially ventilated with 1 part laughing gas and 3 parts oxygen. The test substances are administered intravenously via the femoral vein.
  • a MillarTip catheter for recording left ventricular pressure or calculating contractility is inserted into the left ventricle via the carotid artery.
  • a hollow catheter is inserted into the aorta through the femoral artery and connected to a pressure transducer to measure peripheral blood pressure.
  • the circumflex ramus (LCX) or the interventricular ramus (LAD) of the left coronary artery is dissected and an electromagnetic flow head is applied to measure the coronary flow.
  • the EKG is recorded via an extremity lead and an EKG amplifier, the heart rate and EKG parameters are determined via the measured ECG.
  • Oxygen saturation at the coronary sinus is determined using a Swan-Gantz oximetry TD catheter.
  • the compounds according to the invention can be converted into pharmaceutical preparations as follows:
  • the mixture of active ingredient, lactose and starch is granulated with a 5% solution (m / m) of the PVP in water.
  • the granules are dried with the magnesium stearate for 5 min. mixed.
  • This mixture is compressed with a conventional tablet press (tablet format see above).
  • a pressing force of 15 kN is used as a guideline for the pressing.
  • a single dose of 100 mg of the compound according to the invention corresponds to 10 ml of oral suspension.
  • Rhodigel is suspended in ethanol, the active ingredient is added to the suspension.
  • the water is added with stirring.
  • the mixture is stirred for about 6 hours until the swelling of the Rhodigel is complete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft Tetrahydrochinoxaline der Formel (I) in welcher A, X, R<1>, R<2>, R<3>, R<4> und R<5> wie in Anspruch 1 definiert sind, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere von kardiovaskulären Erkrankungen.

Description

TETRAHYDROCHINOXALINE UND IHRE VERWENDUNG ALS M2 ACETYLCHOLINREZEPTOR AGONISTEN
Die Erfindung betrifft Tetrahydrochinoxaline, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere von kardiovaskulären Erkrankungen. Acetylcholin ist der Überträgerstoff des parasympathischen Nervensystems. Dieser Teil des vegetativen Nervensystems hat entscheidenden Einfluss auf fundamentale Prozesse verschiedenster Organfunktionen, wie z.B. Lunge, Blase, Magen und Darm, Drüsen, Gehirn, Auge, Blutgefäße und Herz.
Acetylcholin selbst ist aufgrund der sehr schnellen lhaktivierung durch die Acetylcholinesterase therapeutisch nicht anwendbar, seine Wirkung kann aber durch direkte Parasympathomimetika, wie z.B. das Carbachol, imitiert werden. Wirkstoffe, die wie Acetylcholin an den muskarinischen (M) Acetylcholinrezeptoren agonistisch wirken, können somit, je nach Organ- oder Gewebesystem, zahlreiche Funktionen beeinflussen und steuern. Beispielsweise kann eine Aktivierung muskarinischer Acetylcholinrezeptoren im Gehirn das Gedächtnis und Prozesse von Lernvor- gangen und Schmerzverarbeitung beeinflussen.
Durch Anwendung rezeptorsubtypspezifischer Agonisten ist man beispielsweise in der Lage, über den muscarinischen M2 Acetylcholinrezeptor, der besonders stark in Herzmuskelzellen exprimiert wird, die Herzfrequenz und die Kontraktilität nach beta-adrenerger Stimulation zu reduzieren (B. Rauch, F. Niroomand, J. Eur. Heart. 1991, 12, 76-82). Beide Effekte reduzieren den myocardialen Sauerstoffverbrauch.
WO 00/39103 beschreibt Tetrahydrochinoxalm-Derivate zur Behandlung von Krankheiten, die durch Zelladhäsion hervorgerufen werden, wie z. B. inflammatorische Erkrankungen oder Arterio- sklerose.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Arzneimitteln für die Behandlung von Erkrankungen, insbesondere kardiovaskulären Erkrankungen.
Die vorliegende Erfindung betrifft Verbindungen der Formel
Figure imgf000003_0001
in welcher für (C C6)-Alkandiyl steht, das gegebenenfalls ein- oder zweifach durch Hydroxy substituiert ist,
X für CH oder N steht,
R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Hydroxycarbonyl, Arnino, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Alkyl, Alkoxy, Alkylamino, Alkoxycarbonyl, Arninocarbonyl und Alkyl- arninocarbonyl,
R2 für Cycloalkyl steht, das gegebenenfalls substituiert ist durch 1 bis 3 Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Alkyl, Alkoxy und Alkylamino,
R3 für Alkyl oder Cycloalkyl steht, wobei Alkyl und Cycloalkyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Trifluormethyl, Alkoxy, Alkylamino, Hydroxycarbonyl, Alkoxycarbonyl, Arninocarbonyl und Alkylaminocarbonyl, und Cycloalkyl auch noch durch Alkyl substituiert sein kann,
R4 für Wasserstoff oder (Cι-C4)-Alkyl steht,
R5 für Wasserstoff oder (C C4)-Alkyl steht
und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
Erfϊndungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, nachfolgend als Ausführungsbeispiel(e) genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.
Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.
Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegenden Erfindung sämtliche tautomere Formen.
Als Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind aber auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind aber beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säure- additionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfon- säure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Trifluoressig- säure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methyl- morpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.
Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordina- tion mit Wasser erfolgt.
Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung: Alkyl per se und "Alk" und "Alkyl" in Alkoxy. Alkylamino, Alkylaminocarbonyl und Alkoxycarbonyl stehen für einen linearen oder verzweigten Alkylrest mit in der Regel 1 bis 6, vorzugsweise 1 bis 4, besonders bevorzugt 1 bis 3 Kohlenstoffatomen, beispielhaft und vorzugsweise für Methyl, Ethyl, n-Propyl, Isopropyl, tert-Butyl, n-Pentyl und n-Hexyl.
Alkoxy steht beispielhaft und vorzugsweise für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, tert- Butoxy, n-Pentoxy und n-Hexoxy.
Alkylamino steht für einen Alkylaminorest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten. (Cι-C3)-Alkylamino steht beispielsweise für einen Monoalkylaminorest mit 1 bis 3 Kohlenstoffatomen oder für einen Dialkylaminorest mit jeweils 1 bis 3 Kohlenstoff- atomen pro Alkylsubstituent, Beispielhaft und vorzugsweise seien genannt: Methylamino, Ethyl- amino, n-Propylamino, Isopropylamino, tert.-Butylamino, n-Pentylamino, n-Hexylamino, NN-Di- methylamino, NN-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl- N-n-propylamino, N-t-Butyl-N-mefhylamino, N-Ethyl-N-n-pentylamino und N-n-Hexyl-N-methyl- amino.
Alkylaminocarbonyl steht für einen Alkylaminocarbonylrest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten. (Cι-C3)-Alkylaminocarbonyl steht beispielsweise für einen Monoalkylaminocarbonylrest mit 1 bis 3 Kohlenstoffatomen oder für einen Dialkylamino- carbonylrest mit jeweils 1 bis 3 Kohlenstoffatomen pro Alkylsubstituent. Beispielhaft und vorzugsweise seien genannt: Methylaminocarbonyl, Ethylaminocarbonyl, n-Propylaminocarbonyl, Isopropyl- arninocarbonyl, tert.-Butylaminocarbonyl, n-Pentylaminocarbonyl, n-Hexylaminocarbonyl, NN-Di- methylaminocarbonyl, NN-Diethylaminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-n- propylaminocarbonyl, N-Isopropyl-N-n-propylaminocarbonyl, N-t-Butyl-N-methylaminocarbonyl, N- Ethyl-N-n-pentylaminocarbonyl undN-n-Hexyl-N-methyl-aminocarbonyl.
Alkoxycarbonyl steht beispielhaft und vorzugsweise für Methoxycarbonyl, Ethoxycarbonyl, n-Prop- oxycarbonyl, Isopropoxycarbonyl, tert.-Butoxycarbonyl, n-Pentoxycarbonyl und n-Hexoxycarbonyl.
Alkandiyl steht für einen geradkettigen oder verzweigten gesättigten Alkandiylrest mit 1 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkandiylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt Methylen, Ethan-l,2-diyl, Ethan- 1,1-diyl, Propan-l,3-diyl, Propan-l,2-diyl, Propan-2,2-diyl, Butan-l,4-diyl, Butan-l,3-diyl, Butan- 2,4-diyl, Pentan-l,5-diyl, Pentan-2,4-diyl, 2-Methyl-pentan-2,4-diyl. Cycloalkyl steht für eine Cycloalkylgruppe mit in der Regel 3 bis 8, bevorzugt 3 bis 6 Kohlenstoffatomen, beispielhaft und vorzugsweise für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.
Aryl steht für einen mono- bi- oder tricyclischen aromatischen, carbocyclischen Rest mit in der Regel 6 bis 14 Kohlenstoffatomen, beispielhaft und vorzugsweise für Phenyl, Naphthyl und Phenanthrenyl.
Halogen steht für Fluor, Chlor, Brom und Jod.
Wenn Reste in den erfmdungsgemäßen Verbindungen substituiert sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach gleich oder verschieden substituiert sein. Eine Substitution mit bis zu drei gleichen oder verschiedenen Substituenten ist bevorzugt. Ganz besonders bevorzugt ist die Substitution mit einem Substituenten.
Bevorzugt sind Verbindungen der Formel (1),
in welcher
A für (C C6)-Alkandiyl steht,
X für CH oder N steht,
R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl gegebenenfalls substituiert sind durch einen Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Alkyl, Alkoxy, Alkylamino, Alkoxycarbonyl, Arninocarbonyl und Alkylaminocarbonyl,
R2 für (C3-C6)-Cycloalkyl steht,
R3 für (C C6)-Alkyl oder (C3-C6)-Cycloalkyl steht, wobei Alkyl und Cycloalkyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, Trifluormethyl und (Cι-C4)-Alkoxy,
R4 für Wasserstoff oder Methyl steht,
R5 für Wasserstoff oder Methyl steht
und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
Besonders bevorzugt sind Verbindungen der Formel (I),
in welcher A für Ethan-l,l-diyl oder Pentan-l,l-diyl steht,
X für CH oder N steht,
R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl durch eine Methoxy-Gruppe substituiert sind,
R2 für Cyclopropyl steht,
R3 für (C3-C6)-Alkyl steht,
R4 für Wasserstoff steht,
R5 für Wasserstoff oder Methyl steht
und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher A für Ethan-l,l-diyl steht.
Ebenfalls ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher R]-A- für einen Rest der Formel
Figure imgf000007_0001
* steht,
wobei * für die Anknüpfstelle an das Stickstoffatom steht.
Ebenfalls ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher R2 für Cyclopropyl steht.
Ebenfalls ganz besonders bevorzugt sind Verbindungen der Formel (ϊ), in welcher R3 für 1,2- Dimethylpropan-1-yl steht.
Ebenfalls ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher R4 und R5 für Wasserstoff stehen.
Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen angegebenen Restedefinitionen werden unabhängig von den jeweiligen angegebenen Kombinationen der Reste beliebig auch durch Restedefinitionen anderer Kombination ersetzt. -
Insbesondere bevorzugt sind Kombinationen von zwei oder mehreren der oben genannten Vorzugsbereiche.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der Formel (I), das dadurch gekennzeichnet ist, dass man
entweder
[A] Verbindungen der Formel
Figure imgf000008_0001
in welcher
R , R , R und R die oben angegebene Bedeutung aufweisen, mit Verbindungen der Formel
R' SNH„ (m), in welcher
A und R1 die oben angegebene Bedeutung aufweisen, in Gegenwart von üblichen Kondensationsmitteln, gegebenenfalls in Gegenwart einer Base oder
[B] Verbindungen der Formel
Figure imgf000009_0001
in welcher
R , R , R und R die oben angegebene Bedeutung aufweisen, und
Y1 für Halogen, bevorzugt Brom oder Chlor, steht, mit Verbindungen der Formel
,R° H2N' (V), in welcher
R3 die oben angegebene Bedeutung aufweist, in Gegenwart einer Base umsetzt.
Verbindungen der Formel (II) können beispielsweise hergestellt werden, indem man Verbindungen der Formel
Figure imgf000009_0002
in welcher
Y , R , R und R die oben angegebene Bedeutung aufweisen, zunächst mit Verbindungen der Formel (V) und anschließend mit Trifluoressigsäure oder Chlorwasserstoffin Dioxan zur Spaltung des tert.-Butylesters umsetzt.
Verbindungen der Formel (VI) können beispielsweise hergestellt werden, indem man Verbindungen der Formel
Figure imgf000010_0001
in welcher
R , R und R die oben angegebene Bedeutung aufweisen,
mit Verbindungen der Formel
Figure imgf000010_0002
in welcher
Y1 die oben angegebene Bedeutung aufweist,
umsetzt.
Verbindungen der Formel (Vlla), die Verbindungen der Formel (VE) entsprechen, in denen R4 und R5 für Wasserstoff stehen, können beispielsweise hergestellt werden, indem man in einem dreistu- figen Verfahren in der ersten Stufe Verbindungen der Formel
Figure imgf000010_0003
in welcher
R die oben angegebene Bedeutung aufweist, mit Verbindungen der Formel (VIJJ) zu Verbindungen der Formel
Figure imgf000011_0001
in welcher
Y1 und R2 die oben angegebene Bedeutung aufweisen,
umsetzt,
in der zweiten Stufe mit Base in Verbindungen der Formel
Figure imgf000011_0002
in welcher
R2 die oben angegebene Bedeutung aufweist,
überführt und in der dritten Stufe mit Boran umsetzt.
Verbindungen der Formel (Vllb), die Verbindungen der Formel (VH) entsprechen, in denen R4 für Wasserstoff und R5 für (Cι-C4)-Alkyl steht, können beispielsweise hergestellt werden, indem man in einem dreistufigen Verfahren in einer ersten Stufe Verbindungen der Formel (LX) mit Verbindungen der Formel
Figure imgf000011_0003
in welcher R die oben angegebene Bedeutung aufweist,
zu Verbindungen der Formel
Figure imgf000012_0001
in welcher
R2 und R5 die oben angegebene Bedeutung aufweisen,
umsetzt,
in einer zweiten Stufe die Doppelbindung mit Natriumcyanoborhydrid zu Verbindungen der Formel
Figure imgf000012_0002
in welcher
R2 und R5 die oben angegebene Bedeutung aufweisen,
reduziert und in der dritten Stufe mit Boran umsetzt.
Verbindungen der Formel (Vüc), die Verbindungen der Formel (VH) entsprechen, in denen R4 für (Cι-C4)-Alkyl und R5 für (Cι-C4)-Alkyl steht, können beispielsweise hergestellt werden, indem man in einem dreistufigen Verfahren in einer ersten Stufe Verbindungen der Formel (LX) mit Verbindungen der Formel
Figure imgf000012_0003
in welcher
R4 und R5 die oben angegebene Bedeutung aufweisen,
zu Verbindungen der Formel
Figure imgf000013_0001
in welcher
R , R und R die oben angegebene Bedeutung aufweisen,
umsetzt,
in einer zweiten Stufe die Doppelbindung mit Natriumcyanoborhydrid zu Verbindungen der Formel
Figure imgf000013_0002
in welcher
R , R und R die oben angegebene Bedeutung aufweisen,
reduziert und in der dritten Stufe mit Boran umsetzt.
Verbindungen der Formel (Vπd), die Verbindungen der Formel (VIT) entsprechen, in denen R4 für (Cι-C4)-Alkyl und R5 für Wasserstoff steht, können beispielsweise hergestellt werden, indem man in einem dreistufigen Verfahren in einer ersten Stufe Verbindungen der Formel (LX) mit Verbindungen der Formel
Figure imgf000014_0001
in welcher
R die oben angegebene Bedeutung aufweist,
zu Verbindungen der Formel
Figure imgf000014_0002
in welcher
R2 und R4 die oben angegebene Bedeutung aufweisen,
umsetzt,
in einer zweiten Stufe zu Verbindungen der Formel
Figure imgf000014_0003
in welcher
R2 und R4 die oben angegebene Bedeutung aufweisen,
zyklisiert und in der dritten Stufe mit Boran umsetzt.
Verbindungen der Formel (LX) können beispielsweise hergestellt werden, indem man Verbindun- gen der Formel
Figure imgf000015_0001
in welcher
R2 die oben angegebene Bedeutung aufweist,
mit Reduktionsmitteln in Gegenwart eines Katalysators umsetzt.
Verbindungen der Formel (XXI) können beispielsweise hergestellt werden, indem man die Verbindung der Formel
Figure imgf000015_0002
mit Verbindungen der Formel
R— NH„ (XXIU),
in welcher
R2 die oben angegebene Bedeutung aufweist,
gegebenenfalls in Gegenwart einer Base umsetzt.
Verbindungen der Formel (IV) können beispielsweise durch Umsetzung der entsprechenden Vorstufe mit Verbindungen der Formel (VIU) analog dem Verfahrensschritt (VII) + (VITf) -> (VI) hergestellt werden (siehe auch Syntheseschema 3).
Verbindungen der Formeln (in), (V), (VUI), (XU), (XV), (XVUJ), (XXII) und (XXm) sind bekannt oder können analog bekannten Verfahren hergestellt werden.
Die Amidkupplung im Verfahrensschritt (II) + (TU) -> (I) erfolgt im Allgemeinen in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von Raumtemperatur bis 50°C bei Normaldruck. Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Tri- chlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlor- ethylen, Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetrahydrofuran, Glykoldi- methylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, Ethyl- acetat, Aceton, Dimethylformamid, Dimethylacetamid, 1,2-Dimethoxyethan, Dimethylsulfoxid, Acetonitril oder Pyridin, bevorzugt sind Tetrahydrofuran, Dimethylformamid oder Methylenchlorid.
Übliche Kondensationsmittel sind beispielsweise Carbodiimide wie z.B. N,N'-Diefhyl-, N,N,'- Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'- ethylcarbodiimid-Hydrochlorid (EDC), N-Cyclohexylcarbodiimid-N' -propyloxymethyl-Polystyrol
(PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumver- bindungen wie 2-Ethyl-5 -phenyl- l,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium- perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-l-ethoxycarbonyl-l,2-dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloroformat, oder Bis-(2-oxo-3-oxazolidi- nyl)phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophos- phat, oder 0-(Benzotriazol-l-yl)-N,N,N',N'-tetra-methyluroniumhexafluorophosphat (HBTU), 2-
(2-Oxo-l-(2H)-pyridyl)-l,l,3,3-tetramethyluroniumtetrafluoroborat (TPTU) oder 0-(7-Azabenzo- triazol-l-yl)-N,N,N',N'-tetramethyluroniumhexafluorophosphat (HATU), oder 1 -Hydroxybenz- triazol (HOBt), oder Benzotriazol-l-yloxytris(dimethylamino)phosphoniumhexafluoro-phosphat
(BOP), oder Mischungen aus diesen.
Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydro- gencarbonat, oder organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylmorpholin, N- Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.
Bevorzugt ist die Kombination von N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydro- chlorid (EDC), 1-Hydroxybenztriazol (HOBt) und Diisopropylethylamin in Methylenchlorid oder Dimethylformamid.
Die Verfahrensschritte (IV) + (V) -> (I); (LX) + (XVUJ) -> (XLX) und (XXII) + (XXm) -> (XXI) sowie der erste Teilschritt von (V) + (VT) -> (IT) erfolgen im Allgemeinen in inerten Lösungs- mittein, gegebenenfalls in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 50°C bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetrahydrofuran, Gly- koldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, Acetonitril, Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 1 ,2-Dimethoxyethan, 2- Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin, oder Gemische der Lösungsmittel, bevorzugt sind Dimethylformamid, Tetrahydrofuran, Methylenchlorid oder ein Gemisch aus Dimethylformamid und Methylenchlorid.
Basen sind beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Amide wie Lithiumdiisopropylamid, oder andere Basen wie DBU, Triethylamin oder Diiso- propylethylamin, bevorzugt Diisopropylethylamin oder Triethylamin.
Die Umsetzung mit einer Säure im zweiten Verfahrensschritt von (V) + (VI) -> (JJ) erfolgt im Allgemeinen in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von 0°C bis 50°C bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1 ,2-Dichlorethan oder Trichlorethylen, oder andere Lösungsmittel wie Dimethylformamid, Dioxan oder Tetrahydrofuran, bevorzugt ist Methylenchlorid oder Dioxan.
Der Verfahrensschritt (VH) + (Vffl) -> (VI) erfolgt im Allgemeinen in inerten Lösungsmitteln, in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis zum Rückfluss des Lösungsmittels bei Normaldruck.
Basen sind beispielsweise Amide wie Lithiumdiisopropylamid, oder andere Basen wie DBU, Triethylamin oder Diisopropylethylamin, oder Gemische dieser Basen, bevorzugt ist Triethylamin oder eine Mischung aus Triethylamin und DBU.
Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, oder andere Lösungsmittel Dimethylformamid oder Tetrahydrofuran, bevorzugt ist Methylenchlorid.
Der Verfahrensschritt (VIU) + (LX) -> (X) erfolgt in zwei Stufen. Die Umsetzung der ersten Stufe erfolgt in inerten Lösungsmitteln mit 2 Äquivalenten der Verbindungen der Formel (VIU) bezogen auf die Verbindungen der Formel (LX), in Gegenwart von 2 Äquivalenten einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 50°C bei Normaldruck. Die zweite Stufe schließt sich ohne Aufarbeitung der Reaktionsmischung an und erfolgt durch Zugabe einer weiteren Base und erwärmen der Reaktionsmischung auf Rückfluss des Lösungsmittels.
Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetrahydrofuran, Gly- koldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 1,2-Dimethoxyethan, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin, bevorzugt ist Methylenchlorid.
Basen sind beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkali- carbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Amide wie Lithiumdiisopropylamid, oder andere Basen wie DBU, Triethylamin oder Diisopropylethylamin, bevorzugt für die erste Stufe ist Diisopropylethylamin oder Triethylamin, bevorzugt für die zweite Stufe ist DBU.
Die Deacylierung im Verfahrensschritt (X) -> (XI) erfolgt im Allgemeinen in einem Lösungs- mittel, in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 50°C bei Normaldruck.
Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan oder 1,2-Dichlorethan, Ether wie Dioxan oder Tetrahydrofuran, oder Gemische der Lösungsmittel mit Wasser, bevorzugt ist ein Gemisch aus Dioxan und Wasser.
Basen sind beispielsweise Alkalihydroxide wie Lithium-, Natrium- oder Kaliumhydroxid, bevorzugt ist Natriumhydroxid.
Die Umsetzung mit Boran in den Verfahrensschritten (XI) -> (VUa); (XIV) -> (Vllb); (XVII) -> (VIIc) und (XX) -> (VUd) erfolgt im Allgemeinen in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von 40°C bis zum Rückfluss des Lösungsmittels bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Ether wie Dioxan oder Tetrahydrofuran, bevorzugt ist Tetrahydrofuran.
Die Umsetzung mit α-Ketoestern oder Diketonen in den Verfahrensschritten (LX) + (XH) -> (XJΣT) und (LX) + (XV) -> (XVI) erfolgt im Allgemeinen in inerten Lösungsmitteln, in Gegenwart von Essigsäure, bevorzugt in einem Temperaturbereich von Raumtemperatur bis 40°C bei Normal- druck. Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan oder 1,2-Dichlorethan, Ether wie Dioxan oder Tetrahydrofuran, bevorzugt ist Methylenchlorid.
Die Reduktion mit Natriumcyanoborhydrid in den Verfahrensschritten (Xm) -> (XIV) und (XVI) - > (XVII) erfolgt im Allgemeinen in inerten Lösungsmitteln, in Gegenwart von Essigsäure, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss des Lösungsmittels bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Alkohole wie Methanol oder Ethanol, bevorzugt ist Methanol.
Die Zyklisierung im Verfahrensschritt (XLX) -> (XX) erfolgt im Allgemeinen in inerten Lösungsmitteln, bevorzugt bei Rückfluss des Lösungsmittels bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Dimethylformamid, Dimethylsulfoxid oder N-Methyl- pyrrolidon, bevorzugt ist Dimethylformamid.
Die Reduktion im Verfahrensschritt (XXI) -> (LX) erfolgt in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von Raumtemperatur bis 50°C bei Normaldruck.
Inerte Lösungsmittel sind beispielsweise Alkohole wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol oder Ethylacetat oder Diethylether, bevorzugt sind Methanol oder Ethanol.
Reduktionsmittel ist beispielsweise Wasserstoff; Katalysatoren sind beispielsweise Zinndichlorid, Titantrichlorid oder Palladium auf Aktivkohle. Bevorzugt ist die Kombination Palladium auf Aktivkohle und Wasserstoff.
Die Herstellung der erfindungsgemäßen Verbindungen kann durch die folgenden Syntheseschemata verdeutlicht werden (Syntheseschemata 1, 2 und 3).
Svntheseschema 1:
Figure imgf000020_0001
Svntheseschema 2:
Figure imgf000021_0001
Svntheseschema 3:
Figure imgf000022_0001
Pd/C analog: (XXI) -> (XI)
Figure imgf000022_0002
Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakolo- gisches und pharmakokinetisches Wirkspektrum.
Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder Prophylaxe von Krankheiten bei Menschen und Tieren.
Sie zeichnen sich als Agonisten des muskarinischen M2 Acetycholinrezeptors aus.
Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prophylaxe von kardiovaskulären Krankheiten, insbesondere von koronarer Herzkrankheit, Angina pectoris, Myocardinfarkt, Schlaganfall, Ateriosklerose, essentielle, pulmonale und maligne Hypertonie, Herzinsuffizienz, Herzversagen, kardiale Arrythmien oder Thromboembolischen Erkrankungen eingesetzt werden.
Weiterhin eignen sie sich zur Behandlung und/oder Prophylaxe von Erkrankungen am Auge (Glaukom), Magen und Darm (Atonien), des Gehirns (z.B. Morbus Parkinson, Morbus Alzheimer, chronisches Schmerzempfinden), Nierenversagen oder erektile oder renale Dysfunktionen.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Erkran- kungen, insbesondere der zuvor genannten Erkrankungen.
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer ateriosklerotisch wirksamen Menge der erfindungsgemäßen Verbindungen.
Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend mindestens eine erfindungsgemäße Verbindung und mindestens einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prophylaxe der zuvor genannten Erkrankungen.
Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent. Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.
Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende schnell und oder modifiziert die erfindungsgemäßen Verbindungen abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nichtüberzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfmdungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.
Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.
Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhala- toren, Nebulizer), Nasentropfen, -lösungen, -sprays; lingual, sublingual oder buccal zu applizie- rende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (wie beispielsweise Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.
Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharma- zeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Laktose, Mannitol), Lösungsmittel (z.B. flüssige Poly- ethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsul- fat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispiels- weise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und / oder Geruchskorrigentien.
Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nicht- toxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.
Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.0001 bis 10 mg/kg, vorzugsweise etwa 0.001 bis 1 mg/kg Körpergewicht zur Erzielung wirk- samer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 0.1 bis 10 mg/kg, vorzugsweise etwa 0.5 bis 5 mg/kg Körpergewicht.
Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.
Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.
A. Beispiele
Abkürzungen:
aq. wässrig
Boc tert.-Butoxycarbonyl
CDCI3 Deuterochloroform
DIEA Diisopropylethylamin
DMAP Dimethylaminopyridin
DMSO Dimethylsulfoxid
DMF Dimethylformamid d. Th. der Theorie
EDC N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid x HCl eq. Äquivalent
ESI Elektrospray-Ionisation (bei MS)
Fp. Schmelzpunkt ges. gesättigt
HATU 0-(7-Azabenzotriazol- 1 -yl)-NN,N' N'-tetramethyluronium- Hexafluorphosphat
HBTU < -(Benzotriazol- 1 -yl)-NNN',N'-tetramethyluronium- Hexafluorphosphat
HOBt 1 -Hydroxy- lH-benzotriazol x H20 h Stunde
HPLC Hochdruck-, Hochleistungsflüssigchromatographie
LC-MS Flüssigchromatographie-gekoppelte Massenspektroskopie
MS Massenspektroskopie
MeOH Methanol
NMR Kernresonanzspektroskopie
Pd/C Palladium/Kohle proz. Prozent
Rf Retentionsindex (bei DC)
RT Raumtemperatur
R. Retentionszeit (bei HPLC)
TFA Trifluoressigsäure
THF Tetrahydrofuran HPLC und LC-MS-Methoden:
Methode 1 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 μm; Eluent A: 5 ml HCIO^ Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 6.5 min 90%B; Fluss: 0.75 ml/min; Ofen: 30°C; UV-Detektion: 210 nm.
Methode 2 (LCMS): Instrument: Micromass Quattro LCZ, mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μm; Eluent A: 1 1 Wasser + 1 ml 50%ige Ameisensäure, Eluent B: 1 1 Acetonitril + 1 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A - 0.2 min 100%A -> 2.9 min 30%A - 3.1 min 10%A -» 4.5 min 10%A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.
Methode 3 (LCMS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6mm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / 1; Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / 1; Gradient: 0.0 min 10%B^ 3.0 min 95%B-> 4.0 min 95%B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min- 3.0 min 3.0 ml/min- 4.0 min 3.0 ml/min; UV-Detektion: 210 nm.
Methode 4 (LCMS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A -» 2.5 min 30%A -> 3.0 min 5%A -» 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min. 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
Methode 5 (LCMS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μm; Eluent A: 1 1 Wasser + 1 ml 50%ige Ameisensäure, Eluent B: 1 1 Acetonitril + 1 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A - 0.2 min 100%A 2.9 min 30%A - 3.1 min 10%A -» 4.5 min 10%A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.
Methode 6 (LCMS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / 1, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / 1; Gradient: 0.0 min 0%B -» 2.9 min 70%B - 3.1 min 90%B -> 4.5 min 90%B; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.
Methode 7 (LCMS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4mm; Eluent A: 1 1 Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A » 2.5 min 30%A -» 3.0 min 5%A -» 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
Methode 8 (Präparative HPLC): Stationäre Phase: RP18; Eluenten: 0.025 %ige wässrige Trifluoressigsäure, Acetonitril.
Ausgangsverbindungen :
Beispiel 1A
4-Fluor-3-nitrobenzoesäure-tert.-butylester
Figure imgf000029_0001
21.5 g (116.15 mmol) 4-Fluor-3-nitrobenzoesäure und 30.5 g (139.4 mmol) tert.-Butyl-trichlor- acetimidat werden unter Argonatmosphäre in 250 ml Diethylether vorgelegt. Es werden 0.64 g (4.52 mmol) Bortrifluorid-Diethylether-Komplex zugetropft und der Ansatz 16 Stunden bei Raumtemperatur nachgerührt. Man gibt 6 g festes Natriumhydrogencarbonat zu dem Reaktionsgemisch und engt im Vakuum ein. Der erhaltene Rückstand wird über Kieselgel chroma- tographisch gereinigt (Laufmittelgradient Cyclohexan -> Cyclohexan-Ethylacetat 1:1). Man erhält 17.8 g (64% d. Th.) Produkt.
'H-NMR (300MHz, DMSO-d6): δ = 1.57 (s, 9H), 7.2 (dd, 1H), 8.25-8.3 (m, 1H), 8.52 (dd, 1H). MS (ESIpos): m/z = 242 (M+H)+ HPLC (Methode 1): Rt = 5.07 min
Beispiel 2A
4-(Cyclopropylamin)-3-nitrobenzoesäure-tert.-butylester
Figure imgf000029_0002
7.8 g (32.3 mmol) der Verbindung aus Beispiel 1A werden in 150 ml Tetrahydrofuran vorgelegt. Bei 0°C wird eine Lösung aus 3.88 g (67.9 mmol) Cyclopropylamin in 50 ml Tetrahydrofuran zugegeben. Man rührt 30 Minuten bei 0°C, dann 16 Stunden bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum eingeengt. Man nimmt den Rückstand in 500 ml Ethylacetat auf und wäscht dreimal mit 100 ml Wasser und einmal mit 100 ml gesättigter Natriumchloridlösung. Es wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Man erhält 8.95 g (99% d. Th.) Produkt.
Η-NMR (300MHz, DMSO-d6): δ = 0.64-0.69 (m, 2H), 0.87-0.93 (m, 2H), 1.54 (s, 9H), 2.67-2.71 (m, 1H), 7.44 (d, 1H), 8.01 (dd, 1H), 8.33 (br. s, 1H), 8.54 (d, 1H). MS (DCI): m/z = 296 (M+NH4)+ HPLC (Methode 1): Rt = 5.47 min
Alternativsynthese zu Beispiel 2A:
1 g (3.88 mmol) der Verbindung aus Beispiel 21 A werden in Tetrahydrofuran (15 ml) vorgelegt. 0.44 g (7.76 mmol) Cyclopropylamin werden bei Raumtemperatur zugegeben. Die Lösung wird 2 Stunden bei 55°C gerührt. Der Ansatz wird dann auf Eiswasser (50 ml) gegossen. Der ausfallende Feststoff wird abgesaugt und getrocknet. Man erhält 0.65 g (58% d. Th.) Produkt.
Beispiel 3A
3-Amino-4-(cyclopropylamin)benzoesäure-tert.-butylester
Figure imgf000030_0001
8.85 g (31.8 mmol) der Verbindung aus Beispiel 2A werden unter Argonatmosphäre in 400 ml Methanol vorgelegt und mit 0.30 g (1.33 mmol) Palladium auf Aktivkohle (10% Pd) versetzt. Man rührt unter Wasserstoffatmosphäre bei Normaldruck über Nacht. Der Ansatz wird über Celite filtriert und das Filtrat im Vakuum eingeengt. Man trocknet 2 Stunden im Hochvakuum und setzt das erhaltene Produkt (8.20 g, 94% d. Th.) ohne Verzögerung weiter um.
Η-NMR (200MHz, DMSO-d6): δ = 0.37-0.47 (m, 2H), 0.68-0.80 (m, 2H), 1.48 (s, 9H), 2.35-2.45 (m, 1H), 4.67 (br. s, 2H), 5.64 (br. s, 1H), 6.75 (d, 1H), 7.08 (d, 1H), 7.15 (dd, 1H). MS (ESIpos): m z = 249 (M+H)+ HPLC (Methode 1): Rt = 4.18 min
Beispiel 4A
4-(Chloracetyl)-l-cyclopropyl-2-oxo-l,2,3,4-tetrahydro-6-chinoxalincarbonsäure-tert.-butylester
Figure imgf000031_0001
7.90 g (31.8 mmol) der Verbindung aus Beispiel 3A werden in 200 ml Dichlormefhan vorgelegt und bei 0°C mit 8.98 g (79.5 mmol) Chloressigsäurechlorid versetzt. Man rührt 30 Minuten bei Raumtemperatur nach. Bei 0°C werden 11.2 ml (79.5 mmol) Triethylamin zugegeben. Man rührt 4 Stunden bei Raumtemperatur. Anschließend werden 7.12 ml (7.26 g, 47.7 mmol) 1,8-Diaza- bicyclo(5.4.0)undec-7-en zugegeben und der Ansatz auf Rückfluss erhitzt. Nach 16 Stunden wird das Reaktionsgemisch abgekühlt und im Vakuum eingeengt. Der Rückstand wird über Kieselgel chromatographisch gereinigt (Laufmittelgradient Cyclohexan -> Cyclohexan-Ethylacetat 1:1). Man erhält 4.69 g (62% d. Th.) Produkt als amorphen Feststoff.
Η-NMR (400MHz, CDC13): δ = 0.68-0.72 (m, 2H), 1.16-1.21 (m, 2H), 1.60 (s, 9H), 2.78-2.82 (m, 1H), 4.21 (s, 2H), 4.51 (br. s, 2H), 7.46 (d, 1H), 7.98 (m, 2H). MS (DCr>: m/z = 382 (M+NH4)+ HPLC (Methode 1): R, = 4.72 min
Beispiel 5A
l-Cyclopropyl-2-oxo-l,2,3,4-tetrahydro-6-chinoxalincarbonsäure-tert.-butylester
Figure imgf000031_0002
0.614 g (1.68 mmol) der Verbindung aus Beispiel 4A werden in 10 ml Dioxan gelöst, mit 2 ml 45%iger Natriumhydroxidlösung versetzt und lh bei RT gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt. Der Rückstand wird mit 10 ml Wasser versetzt und dreimal mit Ethylacetat extrahiert. Die organische Phase wird mit je 10 ml 10%iger Zitronensäurelösung, Wasser und gesättigter Natriumchloridlösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Das erhaltene Produkt wird ohne weitere Reinigung direkt weiter umgesetzt.
LCMS (Methode 4): Rt = 2.33 min MS (ESIpos): m/z = 289 (M+H)+
Beispiel 6A
1 -Cyclopropyl- 1 ,2,3 ,4-tetrahydro-6-chinoxalincarbonsäure-tert.-butylester
Figure imgf000032_0001
0.800 g (2.77 mmol) der Verbindung aus Beispiel 5A werden in 15 ml Tetrahydrofuran gelöst, mit 6.0 ml (6.0 mmol) einer 1 -molaren Lösung von Boran in Tetrahydrofuran versetzt und die Reak- tion 2 h unter Rückfluss gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und wird über Kieselgel chromatographisch gereinigt [Laufmittelgradient Cyclohexan-Ethylacetat 10:1 -> Cyclohexan-Ethylacetat 5:1 (v/v)]. Man erhält 0.446 g (59% d. Th.) Produkt.
!H-NMR (300MHz, DMSO-d6): δ = 0.48-0.56 (m, 2H), 0.78-0.87 (m, 2H), 1.49 (s, 9H), 2.32 (m, 1H), 3.24 (s, 4H), 6.90 (d, 1H), 6.95 (d, 1H), 7.08 (d, 1H). LCMS (Methode 1): Rt = 4.07 min MS (ESIpos): m/z = 275 (M+H)+
Beispiel 7A
4-(Chloracetyl)-l-cyclopropyl-l,2,3,4-tetrahydro-6-chinoxalincarbonsäure-tert.-butylester
Figure imgf000032_0002
0.144 g (0.53 mmol) der Verbindung aus Beispiel 6A werden in 10 ml Dichlormethan gelöst, auf 0°C gekühlt, mit 0.057 ml (0.7 mmol) Chloracetylchlorid und 0.11 ml (0.7 mmol) Triethylamin versetzt und 3 h bei RT gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt. Der Rückstand wird in 20 ml Ethylacetat aufgenommen und mit 5 ml 1 -molarer Salzsäurelösung und 10 ml Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Das Reaktionsgemisch wird über Kieselgel chromatographisch gereinigt [Laufmittel Cyclohexan-Ethylacetat 2:1 (v/v)]. Man erhält 0.130 g (70% d. Th.) Produkt.
Η-NMR (300MHz, DMSO-d6): δ = 0.60-0.68 (m, 2H), 0.83-0.94 (m, 2H), 1.52 (s, 9H), 2.59 (m, 1H), 3.75 (m, 2H), 4.27 (s, 4H), 7.15 (d, 1H), 7.62 (dd, 1H), 7.94 ( , 1H). LCMS (Methode 6): Rt = 3.50 min MS (ESIpos) : m/z = 351 (M+H)+
Die in Tabelle 1 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel 7A aus den entsprechenden Edukten hergestellt und an Kieselgel (Laufmittel Cyclohexan/ Essigsäure- ethylester) gereinigt.
Tabelle 1
Figure imgf000033_0001
Figure imgf000034_0002
Beispiel 11A
1 -Cyclopropyl-4- {N-[( 1 S)-l ,2-dimethylpropyl]glycyl} -1 ,2,3 ,4-tetrahydrochinoxalin-6-carbon- säure-tert.-butylester
Figure imgf000034_0001
0.332 g (0.95 mmol) der Verbindung aus Beispiel 7A werden in einer Mischung aus 13 ml Dichlormethan und 1 ml Dimethylformamid gelöst und mit 0.330 g (3.78 mmol) (S)-3-Methyl-2- butylamin versetzt und 18 h bei RT gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und ohne Reinigung weiter umgesetzt.
LCMS (Methode 3): R, = 1.85 min MS (ESIpos): m z = 402 (M+H)+
Die in Tabelle 2 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel HA hergestellt und ohne Reinigung weiter umgesetzt. Tabelle 2
Figure imgf000035_0001
Beispiel 15A
1 -Cyclopropyl-4- {N-[(l S)- 1 ,2-dimethylpropyl]glycyl} - 1 ,2,3 ,4-tetrahydro-chinoxalin-6-carbon- säure Hydrochlorid
Figure imgf000036_0001
0.490 g (1.22 mmol) der Verbindung aus Beispiel 11A werden mit 10 ml einer 4-molaren Lösung von Chlorwasserstoff in Dioxan versetzt und 18 h bei RT gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und das Produkt direkt weiter umgesetzt.
LCMS (Methode 6): Rt = 1.96 min MS (ESIpos): m z = 346 (M+H)+
Die in Tabelle 3 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel 15A hergestellt und ohne Reinigung weiter umgesetzt.
Tabelle 3
Figure imgf000036_0002
Figure imgf000037_0002
Beispiel 19A
4-Chlor-3-nitrobezoesäure-tert.-butylester
Figure imgf000037_0001
10 g (45.45 mmol) 4-Chlor-3-nitrobenzoesäurechlorid werden in DMF (100 ml) gelöst. 5.10 g Kalium-tert.-butylat werden portionsweise bei Raumtemperatur zugegeben. Die Lösung wird eine Stunde bei Raumtemperatur gerührt. Der Ansatz wird dann portionsweise auf Eiswasser (500 ml) gegossen. Der ausfallende Feststoff wird abgesaugt und getrocknet. Man erhält 7.1 g (60% d. Th.) Produkt.
Η-NMR (300MHz, DMSO-d6): δ = 1.59 (s, 9H), 7.9 (dd, 1H), 8.18 (m, 1H), 8.49 (dd, 1H). MS (ESIpos): m z = 258 (M+H)+ HPLC (Methode 1): Rt = 5.10 min Beispiel 20A
3-[(2-Bromproρanoyl)amino]-4-(cyclopropylamino)benzoesäure-tert.-butylester
Figure imgf000038_0001
1.45 g (5.84 mmol) der Verbindung aus Beispiel 3A werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 0.62 ml (6.1 mmol) 2-Brompropionylchlorid zugegeben und langsam 0.86 ml (6.1 mmol) Triethylamin hinzugetropft. Die Reaktionsmischung wird 1 h bei 0°C gerührt. Zur Aufarbeitung wird auf 50 ml Wasser gegossen, die organische Phase zweimal mit 0.5-molarer Salzsäure, anschließend mit Wasser und gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung erfolgt an Kieselgel. Man erhält 0.63 g (22% d. Th.) des Produkts.
]H-NMR (200MHz, DMSO-d6): δ = 0.38-0.52 (m, 2H), 0.74-0.88 (m, 2H), 1.45-1.68 (s, 9H), 1.69-
1.83 (d, 3H), 2.46 (m, 1H), 4.71 (quartett, 1H), 6.00-6.14 (m, 1H), 7.02 (d, 1H), 7.67 (m, 2H), 9.43
(s, 1H).
MS (ESIpos): m z = 383 (M+H)+
HPLC (Methode 1): Rt = 4.83 min
Beispiel 21A
l-Cyclopropyl-2-methyl-3-oxo-l,2,3,4-tetrahydrochinoxalin-6-carbonsäure-tert.-butylester
Figure imgf000038_0002
0.625 g (1.63 mmol) der Verbindung aus Beispiel 20A werden in 1 ml DMF gelöst und 18 h bei 80°C gerührt. Das Lösungsmittel wird im Vakuum entfernt. Die Reinigung erfolgt an Kieselgel (Cyclohexan/Essigsäureethylester 5:1 -> Cyclohexan/ Essigsäureethylester 3:1). Man erhält 0.113 g (23% d. Th.) des Produkts.
Η-NMR (200MHz, DMSO-d6): δ = 0.31-0.49 (m, IH), 0.57-0.90 (m, 2H), 0.96-1.08 (m, IH), 1.13 (m, 3H), 1.52 (s, 9H), 3.92 (quartett, IH), 7.08 (d, IH), 7.38 (d, IH), 7.52 (dd, IH). MS (ESIpos): m z = 303 (M+H)+ HPLC (Methode 1): Rt = 3.06 min
Beispiel 22A
l-Cyclopropyl-2-methyl-l,2,3,4-tetrahydrochinoxalin-6-carbonsäure-tert.-butylester
Figure imgf000039_0001
0.110 g (0.36 mmol) der Verbindung aus Beispiel 21A werden mit 1 ml einer 1-molaren Lösung von Boran in THF versetzt und 4 h bei 65°C gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt, mit 1 ml Methanol versetzt und das Lösungsmittel im Vakuum entfernt. Man trocknet 0.5 h im Hochvakuum, reinigt an Kieselgel (Eluent: Cyclohexan/Essigsäureethylester 1:6) und setzt das Produkt ohne Verzögerung weiter um.
'H-NMR (400MHz, DMSO-d6): δ = 0.39-0.48 (m, IH), 0.49-0.59 (m, IH), 0.68-0.78 (m, IH), 0.89-0.98 (m, IH), 1.09 (m, 3H), 1.49 (s, 9H), 2.33 (m, IH), 3.02 (dd, IH), 3.24 (dd, IH), 3.56 (m, IH), 5.77 (br s, IH), 6.87 (d, IH), 6.98 (d, IH), 7.09. (dd, IH). MS (ESIpos): m/z = 289 (M+H)+ HPLC (Methode 1): Rt = 4.34 min
Beispiel 23A
4-(Chloracetyl)-l-cyclopropyl-2-methyl-l,2,3,4-tetrahydrochinoxalin-6-carbon-säure-tert.- butylester
Figure imgf000040_0001
0.065 g (0.23 mmol) der Verbindung aus Beispiel 22A werden nach der Vorschrift aus Beispiel 7A umgesetzt. Man erhält 85 mg (94% d. Th.) des Produkts.
Η-NMR (400MHz, DMSO-d6): δ = 0.44-0.55 (m, IH), 0.73-0.92 (m, 2H), 0.95-1.07 (m, IH), 1.13 (d, 3H), 1.50 (s, 9H), 2.54 (m, IH), 3.53 (dd, IH), 3.75 (m, IH), 3.85 (m, IH), 4.52 (m, 2H), 7.15 (d, IH), 7.62 (dd, IH), 7.98. (m, IH). MS (ESIpos): m/z = 365 (M+H)+ HPLC (Methode 1): R, = 5.17 min
Beispiel 24A
1 -Cyclopropyl-4- {N-[( 1 S)- 1 ,2-dimethylpropyl]glycyl } -2-methyl-l ,2,3 ,4-tetrahydrochinoxalin-6- carbonsäure-tert.-butylester
Figure imgf000040_0002
0.082 g (0.23 mmol) der Verbindung aus Beispiel 23A werden in einer Mischung aus Acetonitril und DMF gelöst und 59 mg (0.68 mmol) (S)-3-Methyl-2-butylamin zugegeben. Das Reaktions- gemisch wird 18 h bei 80°C gerührt, anschließend im Vakuum eingeengt und 3 h im Hochvakuum getrocknet. Das Produkt wird direkt weiter umgesetzt. MS (ESIpos): m/z = 416 (M+H)+ LCMS (Methode 6): Rt = 2.33 min
Beispiel 25A
1 -Cyclopropyl-4- {N-[( 1 S)- 1 ,2-dimethylpropyl] glycyl } -2-methyl- 1,2,3 ,4-tetrahydrochinoxalin-6- carbonsäure
Figure imgf000041_0001
CH,
0.094 g (0.23 mmol) der Verbindung aus Beispiel 24A werden nach der Vorschrift aus Beispiel 15A umgesetzt. Das erhaltene Produkt wird ohne Verzögerung direkt weiter umgesetzt.
MS (ESIpos): m z = 360 (M+H)+ LCMS (Methode 2): Rt = 1.91 min
Beispiel 26A
l-Cyclopropyl-3-isopropyl-2 -oxo-1, 2-dihydrochinoxalin-6-carbonsäure-tert.-butylester
Figure imgf000041_0002
0.550 g (1.88 mmol) der Verbindung aus Beispiel 3A werden in 10 ml Dichlormethan gelöst, mit 0.814 g (5.65 mmol) 3-Methyl-2-oxobutansäureethylester sowie 22 mg (0.38 mmol) Essigsäure versetzt und 60 h bei RT gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und ohne Verzögerung weiter umgesetzt.
MS (ESIpos): m/z = 329 (M+H)+ LCMS (Methode 2): Rt = 3.55 min
Die in Tabelle 4 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel 26A aus den entsprechenden Edukten hergestellt und ohne Reinigung weiter umgesetzt.
Tabelle 4
Figure imgf000042_0001
Beispiel 29A
l-Cyclopropyl-3-isopropyl-2-oxo-l,2,3,4-tetrahydrochinoxalin-6-carbonsäure-tert.-butylester
Figure imgf000043_0001
0.617 g (1.88 mmol) der Verbindung aus Beispiel 26A werden in einer Mischung aus 10 ml THF und 10 ml Methanol gelöst, mit 1.42 g (22.6 mmol) Natriumcyanoborhydrid sowie 22 mg (0.38 mmol) Essigsäure versetzt, 16 h bei RT und 2 h unter Rückfluss gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und an Kiesel gel mit Cyclohexan/Essigsäureethylester 10:1 -> Cyclohexan/ Essigsäureethylester 5: 1 gereinigt. Man erhält 0.525 g (62% d. Th.) des Produktes.
MS (ESIpos): m z = 331 (M+H)+ HPLC (Methode 1): Rt = 4.96 min
Die in Tabelle 5 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel 29A aus den entsprechenden Edukten hergestellt und ohne Reinigung weiter umgesetzt.
Tabelle 5
Figure imgf000044_0002
Beispiel 32A
l-Cyclopropyl-3-isopropyl-l,2,3,4-tetrahydrochinoxalin-6-carbonsäure-tert.-butylester
Figure imgf000044_0001
0.513 g (1.10 mmol) der Verbindung aus Beispiel 29A werden in 8 ml THF gelöst, mit 6.0 ml einer 1 -molaren Lösung von Boran in THF versetzt und 5 h unter Rückfluss gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und an Kieselgel mit Cyclohexan/Essigsäureethylester 3:1 gereinigt. Man erhält 0.274 g (64% d. Th.) des Produktes. MS (ESIpos): m/z = 317 (M+H)+ LCMS (Methode 3): Rt = 2.97 min
Die in Tabelle 6 aufgeführten Verbindungen werden analog der Verbindung aus Beispiel 32A aus den entsprechenden Edukten hergestellt und ohne Reinigung weiter umgesetzt.
Tabelle 6
Figure imgf000045_0002
Beispiel 35A
6-Chlor-5 -nitronicotinoylchlorid
Figure imgf000045_0001
0.900 g (4.89 mmol) 6-Hydroxy-5-nitronicotinsäure werden in 26 ml Phosphorylchlorid gelöst und über Nacht unter Rückfluss gerührt. Das Produkt wird im Vakuum vom Lösungsmittel befreit. Das erhaltene Produkt wird ohne Verzögerung weiter umgesetzt. MS (ESIpos): m/z = 221 (M+H)+ HPLC (Methode 1): Rt = 3.72 min
Beispiel 36A
6-Chlor-N-[( 1 S)- 1 -(4-methoxyphenyl)ethyl]-5-nitronicotinamid
Figure imgf000046_0001
0.900 g (4.1 mmol) der Verbindung aus Beispiel 35A werden in 40 ml Dichlormethan gelöst und bei 0°C mit 1.14 ml (8.1 mmol) Triethylamin versetzt. Anschließend werden 0.68 g (S)-4-Meth- oxyphenylethylamin langsam zugetropft und 1 h bei RT gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt, der Rückstand in Essigsäureethylester gelöst, dreimal mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels im Vakuum erhält man 1.1 g (79% d. Th.) des Produktes.
MS (ESI-neg): m/z = 334 (M-H)+ HPLC (Methode 1): Rt = 4.42 min
Beispiel 37A
6-(Cyclopropylamino)-N-[(l S)-l -(4-methoxyphenyl)ethyl]-5-nitronicotinamid
Figure imgf000046_0002
1.1 g (3.24 mmol) der Verbindung aus Beispiel 36A werden in 25 ml THF gelöst, mit 1.13 ml (16 mmol) Cyclopropylamin versetzt und 3 h bei RT gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt, der Rückstand in Essigsäureethylester gelöst, dreimal mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Einengen im Vakuum fällt ein Niederschlag aus, der abfiltriert wird. Man erhält 1.02 g (85% d. Th.) des Produktes.
MS (ESIpos): m/z = 357 (M+H)+ HPLC (Methode 1): Rt = 4.35 min
Beispiel 38A
5-Amino-6-(cyclopropylamino)-N-[(lS)-l-(4-methoxyphenyl)ethyl]-nicotinamid
Figure imgf000047_0001
0.75 g (2.1 mmol) der Verbindung aus Beispiel 37A werden in 10 ml Methanol gelöst, mit 75 mg Pd/C (10%ig) versetzt und 6 h bei RT und Normaldruck hydriert. Zur Aufarbeitung wird über Kieselgur filtriert und das Lösungsmittel im Vakuum entfernt. Man erhält 0.65 g (90% d. Th.) des Produktes.
MS (ESIpos): m/z = 327 (M+H)+ HPLC (Methode 1): Rt = 3.72 min
Beispiel 39A
4-Cyclopropyl-N-[(lS)-l-(4-methoxyphenyl)ethyl]-3-oxo-l,2,3,4-tetrahydropyrido-[2,3-b]pyrazin- 7-carboxamid
Figure imgf000047_0002
248 mg (0.76 mmol) der Verbindung aus Beispiel 38A werden in Dichlormethan gelöst, mit 155 mg (1.52 mmol) Ethylglyoxylat sowie 22 μl (0.38 mmol) Essigsäure versetzt und 48 h bei RT gerührt. Anschließend werden 143 mg (2.3 mmol) Natriumcyanoborhydrid und weitere 22 μl (0.38 mmol) Essigsäure zugegeben und 18 h bei RT gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8). Man erhält 111 mg (40% d. Th.) des Produktes.
MS (ESIpos): m/z = 367 (M+H)+ LCMS (Methode 6): Rt = 2.29 min
Beispiel 40A
4-Cyclopropyl-N-[(lS)-l-(4-methoxyphenyl)ethyl]-l,2,3,4-tetrahydropyrido[2,3-b]pyrazin-7- carboxamid
Figure imgf000048_0001
111 mg (0.26 mmol) der Verbindung aus Beispiel 39A werden in Dichlormethan gelöst, mit 46 mg (1.2 mmol) Lithiumaluminiumhydrid versetzt und 5 h unter Rückfluss erhitzt. Zur Aufarbeitung wird langsam Natronlauge (10% w/w) zudosiert und gerührt, bis ein körniger Niederschlag entstanden ist. Dieser wird dreimal mit THF gewaschen und die vereinigten Filtrate im Vakuum eingeengt. Man erhält 72 mg (30% d. Th.) des Produktes, welches ohne Verzögerung in die nächste Reaktion eingesetzt wird.
MS (ESIpos): m/z = 353 (M+H)+ LCMS (Methode 7) : Rt = 1.35 min
Beispiel 41A
1 -(Chloracetyl)-4-cyclopropyl-N-[(l S)- 1 -(4-methoxyphenyl)ethyl]- 1 ,2,3 ,4-tetrahydropyrido[2,3- b]pyrazin-7-carboxamid
Figure imgf000049_0001
64 mg (0.082 mmol) der Verbindung aus Beispiel 40A werden in 63 ml Dichlormethan gelöst, bei 0°C mit 13 μl (0.16 mmol) Chloracetylchlorid sowie 17 μl (0.12 mmol) Triethylamin versetzt und 2 h gerührt, wobei man die Reaktionsmischung auf RT erwärmen läßt. Zur Aufarbeitung wird die Reaktionsmischung einmal mit 1 -normaler Salzsäure sowie dreimal mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Die Substanz wird an Kieselgel (Laufmittel: Cyclohexan/ Essigsäureethylester 5/1) gereinigt. Man erhält 26 mg (63% d. Th.) des Produktes, welches ohne Verzögerung in die nächste Reaktion eingesetzt wird.
MS (ESIpos): m z = 429 (M+H)+ LCMS (Methode 2): Rt = 2.38 min
Aus fihrungsbeispiele;
Beispiel 1
l-Cyclopropyl-4-{N-[(lS)-l,2-dimethylpropyl]glycyl}-N-[(lS)-l-(4-methoxy-ρhenyl)ethyl]-2- methyl-l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000050_0001
89 mg (0.23 mmol) der Verbindung aus Beispiel 25A werden unter Argon in 5 ml DMF vorgelegt und bei Raumtemperatur mit 51 mg (0.34 mmol) (S)-(-)-(4-Methoxyphenyl)ethylamin, 50 mg (0.26 mmol) EDC, 17 mg (0.12 mmol) HOBt, 5 mg (0.04 mmol) DMAP und schließlich 0.084 ml (0.77 mmol) 4-Methyl-morpholin versetzt und 16 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wird im Vakuum eingeengt und mittels präparativer HPLC (Säule: Phenomenex Luna C18 5 μm, 250 mm x 20 mm, Eluent: 54.8% Wasser, 45% Acetonitril, 0.2% Trifluoressigsäure; Ofen: RT; Fluss: 25 ml/min; UV-Detektion: 210 nm) getrennt. Man erhält 14.3 mg (13% d. Th.) des Produktes.
]H-NMR (400MHz, DMSO-d6): δ = 0.39-0.52 (m, IH), 0.68-1.16 (m, 14H), 1.42 (d, 3H), 1.48- 1.88 (m, 2H), 2.24-2.42 (m, IH), 3.29 (s, 2H), 3.37-4.12 (m, 8H), 5.09 (m, IH), 6.86 (d, 2H), 7.10
(m, IH), 7.26 (m, 2H), 7.54-7.99 (m, 2H), 8.34 (d, IH). MS (ESIpos): m/z = 493 (M+H)+ LCMS (Methode 3): Rt = 1.83 min
Beispiel 2
l-Cyclopropyl-4-{N-[(lS)-l,2-dimethylpropyl]glycyl}-N-[l-(6-methoxypyridin-3-yl)ethyl]- l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000051_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 15A und [l-(6-Methoxypyridin-3- yl)ethyl]amin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
Η-NMR (400MHz, DMSO-d6): δ = 0.52-0.68 (m, 2H), 0.75-1.28 (m, 12H), 1.48 (d, 3H), 1.86- 2.21 (m, IH), 2.58 (m, IH), 3.10 (m, 2H), 3.44 (m, 2H), 3.82 (s, 3H), 4.23 (m, 2H), 5.13 (m, IH), 6.78 (d, IH), 7.16 (d, IH), 7.72 (m, 2H), 8.14 (d, IH), 8.44 (br s, IH), 8.75 (br s, IH) MS (ESIpos): m/z = 480 (M+H)+ LCMS (Methode 3): Rt = 1.59 min Beispiel 3 l-Cyclopropyl-4-{N-[(lS)-l,2-dimethylpropyl]glycyl}-N-[(lS)-l-(4-methoxy-phenyl)pentyl]- 1 ,2,3 ,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000051_0002
Die Darstellung erfolgt mit der Verbindung aus Beispiel 15A und [(lS)-l-(4-Methoxy- phenyl)pentyl]amin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels ' präparativer HPLC (Methode 8). Η-NMR (300MHz, CDC13): 0.63-0.66 (m, 2H), 0.86-0.95 (m, 14H), 1.25-1.68 (m, 4H), 1.67-1.89 (m, 2H), 2.00-1.91 (m, 2H), 2.54-2.50 (m, 2H), 3.42 (m, 2H), 3.51-3.57 (d, IH), 3.66-3.75 (d, IH), 3.79 (s, 3H), 3.90-3.86 ( , IH), 5.05-5.12 (m, IH), 6.24 (s, br, IH), 6.86 (d, 2H), 7.13 (d, IH), 7.27-7.31 (m, 3H), 7.59 (d, IH), 7.65 (s, br, IH). MS (ESIpos): m/z = 521 (M+H)+ LCMS (Methode 2): Rt = 2.50 min
Beispiel 4
1 -Cyclopropyl-4- {N-[( 1 S)- 1 ,2-dimethylpropyl] glycyl } -3 -isopropyl-N-[( 1 S)- 1 -(4-methoxy- phenyl)ethyl] -1,2,3 ,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000052_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 16A und (S)-(-)-(4-Methoxy- phenyl)ethylamin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
Η-NMR (200 MHz, DMSO-d6): δ = 0.40-0.50 (m, IH), 0.63-0.98 (m, 17H), 1.09 (m, IH), 1.29
(m, IH), 1.44 (d, 3H), 1.53 ( , IH), 1.75 (m, IH), 2.32 (m, IH), 2.57 (m, IH), 3.10-3.28 (m, 3H),
3.40-3.51 (m, 2H), 3.73 (s, 3H), 5.62 (m, IH), 6.86 (m, 2H), 7.11 (d, IH), 7.29 (d, 2H), 7.59-7.95
(m, 3H), 8.32 (d, IH).
MS (ESIpos): m/z = 521 (M+H)+
HPLC (Methode 1): Rt = 4.68 min Beispiel 5
1 -Cyclopropyl-4- {N-[(l S)-l ,2-dimethylpropyl]glycyl}-N-[(l S)-l -(4-methoxy-phenyl)ethyl]- l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000053_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 15A und (S)-(-)-(4-Methoxy- phenyl)ethylamin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
Η-NMR (200 MHz, DMSO-d6): δ = 0.53-0.63 (m, 2H), 0.63-0.98 (m, 10H), 1.43 (d, 3H), 1.56 (m, IH), 1.75 (m, IH), 2.36 (m, IH), 2.55 (m, IH), 3.35-3.82 (m, 10H), 5.60 (m, IH), 6.86 (m, 2H), 7.11 (d, IH), 7.29 (d, 2H), 7.59-8.05 (m, 2H), 8.35 (d, IH). MS (ESIpos): m/z = 479 (M+H)+ HPLC (Methode 1): Rt = 4.36 min
Beispiel 6
l-Cyclopropyl-4-{N-[(lS)-l,2-dimethylpropyl]glycyl}-N-[(lS)-l-(4-methoxy-ρhenyl)ethyl]-3- methyl-l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000054_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 17A und (S)-(-)-(4-Methoxy- phenyl)ethylamin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
'H-NMR (200 MHz, DMSO-d6): δ = 0.46-0.59 (m, IH), 0.59-0.71 (m, IH), 0.72-1.26 (m, 13H), 1.39-1.48 (m, 3H), 2.08 (m, IH), 2.60 (m, IH), 3.02-3.49 (m, 7H), 3.71 (s, 3H), 4.40 (m, IH), 5.62 (m, IH), 6.86 (m, 2H), 7.15 (d, IH), 7.29 (dd, 2H), 7.73 (m, IH), 8.35 (m, IH), 8.72 (m, IH). MS (ESIpos): m/z = 493 (M+H)+ LCMS (Methode 3): Rt = 1.77 min
Beispiel 7
1 -Cyclopropyl-4- {N-[( 1 S)- 1 ,2-dimethylpropyl]glycyl} -N-[ 1 -(6-methoxy-pyridin-3-yl)ethyl]-3- methyl-l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000054_0002
Die Darstellung erfolgt mit der Verbindung aus Beispiel 17A und [l-(6-Methoxypyridin-3- yl)ethyl]amin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8). MS (ESIpos): m/z = 494 (M+H)+ HPLC (Methode 1): Rt = 3.92 min
Beispiel 8
4-Cyclopropyl-l-{N-[(lS)-l,2-dimethylpropyl]glycyl}-N-[(lS)-l-(4-methoxy-phenyl)ethyl]- 1 ,2,3 ,4-tetrahydropyrido[2,3-b]pyrazin-7-carboxamid
Figure imgf000055_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 41 A und (S)-3-Methyl-2-butylamin nach der für Beispiel HA beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
Η-NMR (300 MHz, DMSO-d6): δ = 0.61-0.71 (m, 2H), 0.83-0.98 (m, 8H), 1.07-1.28 (m, 4H), 1.44 (d, 3H), 2.10 (m, IH), 2.88 (m, IH), 3.11 (m, IH), 3.52 (m, 2H), 3.74 (s, 3H), 3.75-4.40 (m, 4H), 5.11 (quintett, IH), 6.86 (d, 2H), 7.29 (d, 2H), 8.31-8.62 (m, 2H), 8.76 (m, IH). MS (ESIpos): m/z = 480 (M+H)+ LCMS (Methode 2): R, = 1.91 min
Beispiel 9
l-Cyclopropyl-4-{N-[(lS)-l,2-dimethylpropyl]glycyl}-3-ethyl-N-[(lS)-l-(4-methoxy- phenyl)ethyl]-l,2,3,4-tetrahydrochinoxalin-6-carboxamid
Figure imgf000056_0001
Die Darstellung erfolgt mit der Verbindung aus Beispiel 18A und (S)-(-)-(4-Methoxyphe- nyl)ethylamin nach der für Beispiel 1 beschriebenen Methode. Die Reinigung erfolgt mittels präparativer HPLC (Methode 8).
Η-NMR (200 MHz, DMSO-d6): δ = 0.46-0.59 (m, IH), 0.60-1.19 (m, IH), 0.72-1.26 (m, 16H), 1.27-1.65 (m, 5H), 1.90 (m, IH), 2.33 (m, IH), 2.56 (m, IH), 3.18-3.66 (m, 3H), 3.71 (s, 3H), 4.70 (m, IH), 5.12 (m, IH), 6.86 (m, 2H), 7.11 (d, IH), 7.29 (dd, 2H), 7.61-8.05 (m, 2H), 8.37 (d, IH). MS (ESIpos): m/z = 507 (M+H)+ LCMS (Methode 2): Rt = 2.32 min
Bewertung der physiologischen Wirksamkeit
Abkürzungen:
DMEM Dulbecco's Modified Eagle Medium
FCS Fetal Calf Serum
HEPES 4-(2-hydroxyethyl)-l-ρiperazineethanesulfonic acid
1. in v tro-Tests zur Bestimmung der M2-Aktivität und -Selektivität
a) Zellulärer, funktioneller in vitro-Test
Die Identifizierung von Agonisten des humanen M2-Acetylcholin-Rezeptors (M2AChR) sowie die Quantifizierung der Wirksamkeit der hier beschriebenen Substanzen erfolgte mit Hilfe einer rekombinanten Zelllinie. Die Zelle leitet sich ursprünglich von einer Ovarepithelzelle des Hamsters (Chinese Hamster Ovary, CHO Kl, ATCC: American Type Culture Collection, Manassas, VA 20108, USA) ab. Die Testzelllinie expremiert konstitutiv eine modifizierte Form des calcium-sensitiven Photoproteins Aequorin, das nach Rekonstitution mit dem Co-Faktor Coelenterazin bei Erhöhungen der freien Calcium-Konzentration im inneren mitochondrialen Kompartiment Licht emittiert (Rizzuto R, Simpson AW, Brini M, Pozzan T.; Nature 358 (1992) 325-327). Zusätzlich ist die Zelle stabil transfiziert mit dem humanen M2AChR (Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon, DJ, EMBO Journal 6 (1987) 3923-3929) sowie dem Gen, das für das promiskuitive Gπι6-Protein kodiert (Amatruda TT, Steele DA, Slepak VZ, Simon MI, Proceedings in the National Academy of Science USA 88 (1991), 5587-5591). Die resultierende M2AChR-Testzelle reagiert auf Stimulation des rekombinanten M2ACh-Rezeptors mit einer intrazellulären Freisetzung von Calcium-Ionen, die durch die resultie- rende Aequorin-Lumineszens mit einem geeignetem Luminometer quantifiziert werden kann (Milligan G, Marshall F, Rees S, Trends in Pharmacological Sciences 17 (1996) 235-237).
Zur Bestimmung der in vzYro-Selektivität bezüglich der muskarinergen Acetylcholinrezeptoren- subtypen Ml bis M5 werden entsprechende CHO Kl Zellen verwendet, die ebenfalls mit dem Gen des Calcium-sensitiven Photoproteins Aequorin und dem Gen des Ml, M3 oder M5 Rezeptorsub- typen oder im Fall des M4 Rezeptorsubtypen zusätzlich mit dem Gen des promiskuitiven Gαι6- Proteins stabil transfiziert sind.
Testablauf: Die Zellen werden am Tag vor dem Test in Kulturmedium (DMEM, 10% FCS, 2 mM Glutamine, 10 mM HEPES; Gibco Cat.# 21331-020; gehört jetzt zu: Invitrogen GmbH, 76131 Karlsruhe) in 384- (oder 1536-) Loch-Mikrotiterplatten ausplattiert und in einem Zellinkubator (96% Luftfeuchtigkeit, 5% v/v C02, 37°C) gehalten. Am Testtag wird das Kulturmedium durch eine Tyrodelösung (in mM: 140 NaCl, 5 KC1, 1 MgCl2, 2 CaCl2, 20 Glucose, 20 HEPES), das zusätzlich den Co-Faktor Coelenterazin (50 μM) enthält, ausgetauscht und die Mikrotiterplatte anschließend für weitere 3-4 Stunden inkubiert. Unmittelbar nach Übertragung der Testsubstanzen in die Löcher der Mikrotiterplatte wird das resultierende Lichtsignal im Luminometer gemessen. Die Ergebnisse sind in Tabelle A gezeigt:
Tabelle A
Figure imgf000058_0001
b) Bindungsstudien an humanen muskarinergen Acetylcholinrezeptoren
Stabil transfizierte CHO Kl Zellen, die den humanen muskarinergen M2 Rezeptor exprimieren, werden nach Erreichen von 80 % Konfluenz in 10 ml Bindungspuffer (20 mM 4-(2-Hydroxyethyl)- 1-piperazinethansulfonsäure, 5 mM Magnesiumchlorid, pH 7,4) pro 175 cm2 Zellkulturflasche suspendiert und mittels eines Ultra-Turrax-Gerätes homogenisiert. Die Homogenate werden 10 Minuten lang bei 1000 g und 4°C zentrifugiert. Der Überstand wird abgenommen und 30 min lang bei 20000 g und 4°C zentrifugiert. Das Membransediment mit den M2-Rezeptoren wird in 10 ml Bindungspuffer aufgenommen und bei -70°C gelagert.
Für den Bindungsversuch werden 2 nM 3H-Oxotremorin M (3200 GBq/mmol, PerkinElmer) 60 Minuten lang mit 100-1000 μg/ml M2-Membranen pro Ansatz (0,2ml) in Gegenwart der Test- Substanzen bei Raumtemperatur inkubiert. Die Inkubation wird durch eine 10 minütige Zentrifu- gation bei 10000 g und anschließendem Waschen mit 0.1% Rinderserumalbumin in Bindungspuffer bei 4°C abgestoppt. Es wird nochmals 10 Minuten lang bei 10000 x g und 4°C zentrifugiert. Das Sediment wird in 0.1 ml 1 N Natronlauge resuspendiert und in Szintillationsröhrchen überführt. Nach Zugabe von 4 ml Ultima Gold Szintillator wird die an den Membranen gebundene Radioaktivität mittels eines LS6000 IC Szintillationszählers der Firma BeckmanCoulter quantifi- ziert. Die nicht-spezifische Bindung wird als Radioaktivität in Gegenwart von 10 μM Oxotremorin M definiert und beträgt in der Regel weniger als 5 % der gebundenen Gesamt-Radioaktivität. Die Bindungsdaten (IC50 und Dissoziationskonstante Ki) werden mittels des Programrnes GraphPad Prism Version 3.02 bestimmt.
2. in vivo-Test zum Nachweis der kardiovaskulären Wirkung
a) Langendorff-Herz des Meerschweinchens
Narkotisierten Meerschweinchen wird nach Eröffnung des Brustkorbes das Herz entnommen und in eine konventionelle Langendorff-Apparatur eingeführt. Die Koronararterien werden volumenkonstant (10 ml/min) perfundiert und der dabei auftretende Perfusionsdruck wird über einen ent- sprechenden Druckaufhehmer registriert. Eine Abnahme des Perfusionsdrucks in dieser Anordnung entspricht einer Relaxation der Koronararterien. Gleichzeitig wird über einen in die linke Herzkammer eingeführten Ballon und einen weiteren Druckaufnehmer der Druck gemessen, der vom Herzen während jeder Kontraktion entwickelt wird. Die Frequenz des isoliert schlagenden Herzens wird rechnerisch aus der Anzahl der Kontraktionen pro Zeiteinheit ermittelt.
b) Blutdruckmessungen an narkotisierten Ratten
Männliche Wistar-Ratten mit einem Körpergewicht von 300 - 350 g werden mit Thiopental (100 mg/kg i.p.) anästhesiert. Nach Tracheotomie wird in die Femoralarterie ein Katheter zur Blutdruckmessung eingeführt. Die zu prüfenden Substanzen werden in Transcutol, Cremophor EL, H20 (10%/20%/70%) in einem Volumen von 1 ml/kg oral verabreicht.
c) Wirkung auf den mittleren Blutdruck von wachen, spontan hypertensiven Ratten
Kontinuierliche Blutdruckmessungen über 24 Stunden werden an spontan hypertonen 200-250g schweren sich frei bewegenden weiblichen Ratten (MOL:SPRD) durchgeführt. Dazu werden den Tieren chronisch Druckaufnehmer (Data Sciences Inc., St. Paul, MN, USA) in die absteigende Bauchaorta unterhalb der Nierenarterie implantiert und der damit verbundene Sender in der Bauchhöhle fixiert. Die Tiere werden einzeln in Typ m Käfigen, die auf den individuellen Empfängerstationen positioniert sind, gehalten und werden an einem 12-Stunden Hell/Dunkel- Rhythmus angepasst. Wasser und Futter stehen frei zur Verfügung. Zur Datenerfassung wird der Blutdruck jeder Ratte alle 5 Minuten für 10 Sekunden registriert. Die Messpunkte werden jeweils für eine Periode von 15 Minuten zusammengefasst und der Mittelwert aus diesen Werten berech- net. Die Prüfverbindungen werden in einer Mischung aus Transcutol (10%), Cremophor (20%), H20 (70%) gelöst und mittels Schlundsonde in einem Volumen von 2 ml/kg Körpergewicht oral verabreicht. Die Prüfdosen liegen zwischen 0,3 -30 mg/kg Körpergewicht. d) Blutdruck- und Herzfrequenzmessungen an narkotisierten Hunden
Die Experimente werden in Hunden (Mongrel) beiderlei Geschlechts mit einem Körpergewicht zwischen 20 und 30 kg durchgeführt. Die Narkose wird durch eine langsame i.v. Injektion von 25 mg/kg Thiopental (Trapanal®) eingeleitet und während des Experiments durch eine kontinuier- liehe Infusion von 0.08 mg/kg/h Fentanyl (Fentanyl®) und 0.25 mg/kg/h Droperidol (Dehydro- benzperidol®) fortgeführt. Alloferin (0.02 mg/kg/h) wird als Muskelrelaxans hinzugefügt. Die Hunde werden künstlich mit 1 Teil Lachgas und 3 Teilen Sauerstoff beatmet. Die Prüfsubstanzen werden intravenös über die Femoralvene appliziert.
Ein MillarTip-catheter zur Aufnahme des linksventrikulären Drucks bzw. Berechnung der Kontraktilität wird über die A. carotis in den linken Ventrikel geführt. Ein Hohlkatheter wird über die A. femoralis in die Aorta eingeführt und zur Messung des peripheren Blutdrucks mit einem Druckaufnehmer verbunden. Nach einer linksseitigen Thorakotomie wird der Ramus circumflexus (LCX) oder der Ramus interventricularis (LAD) der linken Koronararterie freipräpariert und ein elektromagnetischer Flußkopf zur Messung des Koronarflusses angelegt. Das EKG wird über eine Extremitätenableitung und einen EKG- Verstärker aufgenommen, die Herzfrequenz und EKG- Parameter werden über das gemessene EKG ermittelt. Die Sauerstoffsättigung am Koronarsinus wird über einen Swan-Gantz Oximetrie TD Katheter bestimmt.
B. Ausführungsbeispiele für pharmazeutische Zusammensetzungen
Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:
Tablette:
Zusammensetzung:
100 mg der Verbindung von Beispiel 1, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magne- siumstearat.
Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.
Herstellung:
Die Mischung aus Wirkstoff, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat für 5 min. gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.
Oral applizierbare Suspension:
Zusammensetzung:
1000 mg der Verbindung von Beispiel 1, 1000 mg Ethanol (96%), 400 mg Rhodigel (Xanthan gum der Fa. FMC, Pennsylvania, USA) und 99 g Wasser.
Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Sus- pension.
Herstellung:
Das Rhodigel wird in Ethanol suspendiert, der Wirkstoff wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluss der Quellung des Rhodigels wird ca. 6h gerührt.

Claims

Patentansprüche
Verbindung der Formel
Figure imgf000062_0001
in welcher
A für (C C6)-Alkandiyl steht, das gegebenenfalls ein- oder zweifach durch Hydroxy substituiert ist,
X für CH oder N steht,
R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Hydroxycarbonyl, Amino, Trifluormethyl, Trifluormefhoxy, Nitro, Cyano, Alkyl, Alkoxy, Alkylamino, Alkoxycarbonyl, Arninocarbonyl und Alkylaminocarbonyl,
R2 für Cycloalkyl steht, das gegebenenfalls substituiert ist durch 1 bis 3 Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Alkyl, Alkoxy und Alkylamino,
R3 für Alkyl oder Cycloalkyl steht, wobei Alkyl und Cycloalkyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Trifluormethyl, Alkoxy, Alkylamino, Hydroxycarbonyl, Alkoxycarbonyl, Arninocarbonyl und Alkylaminocarbonyl, und Cycloalkyl auch noch durch Alkyl, substituiert sein kann,
R4 für Wasserstoff oder (C C4)-Alkyl steht,
Rs für Wasserstoff oder (C C4)-Alkyl steht und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
2. Verbindung nach Anspruch 1 , in welcher
A für (C Cδ)-Alkandiyl steht,
X für CH oder N steht, R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl gegebenenfalls substituiert sind durch einen Substituenten, unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Amino, Alkyl, Alkoxy, Alkylamino, Alkoxycarbonyl, Arninocarbonyl und Alkylaminocarbonyl,
R2 für (C3-C6)-Cycloalkyl steht, R3 für (d-C6)-Alkyl oder (C3-C6)-Cycloalkyl steht, wobei Alkyl und Cycloalkyl gegebenenfalls substituiert sind durch 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, Trifluormethyl und (Cr C )-Alkoxy,
R4 für Wasserstoff oder Methyl steht, R5 für Wasserstoff oder Methyl steht, und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
3. Verbindung nach einem der Ansprüche 1 oder 2, in welcher
A für Ethan- 1 , 1 -diyl oder Pentan- 1 , 1 -diyl steht, X für CH oder N steht,
R1 für Phenyl oder Pyridyl steht, wobei Phenyl und Pyridyl durch eine Methoxy- Gruppe substituiert sind,
R2 für Cyclopropyl steht,
R3 für (C3-C6)-Alkyl steht, R4 für Wasserstoff steht, R für Wasserstoff oder Methyl steht, und ihre Salze, ihre Solvate und die Solvate ihrer Salze.
4. Verfahren zur Herstellung einer Verbindung der Formel (I) wie in Anspruch 1 definiert, dadurch gekennzeichnet, dass man entweder
[A] eine Verbindung der Formel
Figure imgf000064_0001
in welcher
R , R , R und R die in Anspruch 1 angegebene Bedeutung aufweisen, mit einer Verbindung der Formel
R ^ NH„ (HT), in welcher
A und R1 die in Anspruch 1 angegebene Bedeutung aufweisen, oder
[B] eine Verbindung der Formel
Figure imgf000065_0001
in welcher
R1, R2, R4und R5 die in Anspruch 1 angegebene Bedeutung aufweisen und
Y1 für Halogen steht, mit einer Verbindung der Formel
,R° H2N' (V), in welcher
R3 die in Anspruch 1 angegebene Bedeutung aufweist, umsetzt.
5. Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert, zur Behandlung und/oder Prophylaxe von Krankheiten.
6. Arzneimittel enthaltend eine Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert, in Kombination mit einem pharmakologisch unbedenklichen Hilfs- oder Trä- gerstoff.
7. Arzneimittel enthaltend eine Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert, und mindestens einen weiteren Wirkstoff.
8. Verwendung einer Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert, zur Herstellung eines Arzneimittels.
9. Verwendung einer Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von kardiovaskulären Erkrankungen.
10. Verfahren zur Bekämpfung von kardiovaskulären Erkrankungen in Menschen und Tieren > durch Verabreichung einer wirksamen Menge einer Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 3 definiert.
PCT/EP2004/009934 2003-09-18 2004-09-07 Tetrahydrochinoxaline und ihre verwendung als m2 acetylcholinrezeptor agonisten WO2005028451A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343098.9 2003-09-18
DE10343098A DE10343098A1 (de) 2003-09-18 2003-09-18 Tetrahydrochinoxaline und ihre Verwendung

Publications (1)

Publication Number Publication Date
WO2005028451A1 true WO2005028451A1 (de) 2005-03-31

Family

ID=34305862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009934 WO2005028451A1 (de) 2003-09-18 2004-09-07 Tetrahydrochinoxaline und ihre verwendung als m2 acetylcholinrezeptor agonisten

Country Status (2)

Country Link
DE (1) DE10343098A1 (de)
WO (1) WO2005028451A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438133B2 (en) 2003-02-26 2008-10-21 Enventure Global Technology, Llc Apparatus and method for radially expanding and plastically deforming a tubular member
WO2009109258A1 (en) 2008-03-05 2009-09-11 Merck Patent Gmbh Quinoxalinone derivatives as insulin secretion stimulators, methods for obtaining them and use thereof for the treatment of diabetes
US7601716B2 (en) 2006-05-01 2009-10-13 Cephalon, Inc. Pyridopyrazines and derivatives thereof as ALK and c-Met inhibitors
EP2433937A1 (de) 2007-08-31 2012-03-28 Purdue Pharma LP Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
WO2012085648A1 (en) 2010-12-22 2012-06-28 Purdue Pharma L.P. Phosphorus-substituted quinoxaline-type piperidine compounds and uses thereof
EP2537844A1 (de) 2008-07-21 2012-12-26 Purdue Pharma L.P. Verbrückte Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
WO2013080036A1 (en) 2011-12-01 2013-06-06 Purdue Pharma L.P. Azetidine-substituted quinoxaline-type piperidine compounds and uses thereof
WO2014020405A1 (en) 2012-07-30 2014-02-06 Purdue Pharma L.P. Cyclic urea- or lactam-substituted quinoxaline-type piperidine compounds and the uses thereof
KR101361341B1 (ko) 2009-08-25 2014-02-10 애플 인크. 통합 터치 스크린
WO2014102588A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Indole and indoline-type piperidine compounds and uses thereof
WO2014102589A1 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Quinazolin-4(3h)-one-type piperidine compounds and uses thereof
WO2014102592A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Oxime/substituted quinoxaline-type piperidine compounds and uses thereof
WO2014102594A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Substituted benzimidazole-type piperidine compounds and uses thereof
US9422281B2 (en) 2013-11-18 2016-08-23 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
WO2016198342A1 (de) * 2015-06-09 2016-12-15 Bayer Pharma Aktiengesellschaft Positiv allosterische modulatoren des muskarinergen m2 rezeptors
US10336722B2 (en) 2013-11-18 2019-07-02 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
US10519154B2 (en) 2016-07-11 2019-12-31 Bayer Pharma Aktiengesellschaft 7-substituted 1-pyridyl-naphthyridine-3-carboxylic acid amides and use thereof
US10927109B2 (en) 2016-09-14 2021-02-23 Bayer Aktiengesellschaft 7-substituted 1-aryl-naphthyridine-3-carboxylic acid amides and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066057A1 (de) * 2002-02-08 2003-08-14 Bayer Healthcare Ag Chinoxalinone und ihre verwendung insbesondere in der behandlung von cardiovaskularen erkraunkungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066057A1 (de) * 2002-02-08 2003-08-14 Bayer Healthcare Ag Chinoxalinone und ihre verwendung insbesondere in der behandlung von cardiovaskularen erkraunkungen

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438133B2 (en) 2003-02-26 2008-10-21 Enventure Global Technology, Llc Apparatus and method for radially expanding and plastically deforming a tubular member
US8080561B2 (en) 2006-05-01 2011-12-20 Cephalon, Inc. Pyridopyrazines and derivatives thereof as ALK and c-Met inhibitors
US7601716B2 (en) 2006-05-01 2009-10-13 Cephalon, Inc. Pyridopyrazines and derivatives thereof as ALK and c-Met inhibitors
US7919502B2 (en) 2006-05-01 2011-04-05 Cephalon, Inc. Pyridopyrazines and derivatives thereof as ALK and c-MET inhibitors
EP2433937A1 (de) 2007-08-31 2012-03-28 Purdue Pharma LP Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
EP3564240A1 (de) 2007-08-31 2019-11-06 Purdue Pharma L.P. Piperidinverbindungen als zwischenprodukte
EP2433936A1 (de) 2007-08-31 2012-03-28 Purdue Pharma LP Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
EP2433935A1 (de) 2007-08-31 2012-03-28 Purdue Pharma LP Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
EP3101018A1 (de) 2007-08-31 2016-12-07 Purdue Pharma L.P. Piperidinverbindungen vom substituierten chinoxalintyp und anwendungen davon
JP2011513343A (ja) * 2008-03-05 2011-04-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング インスリン分泌刺激剤としてのキノキサリノン誘導体、それらを得る方法および糖尿病を治療するためのそれらの使用
EA021904B1 (ru) * 2008-03-05 2015-09-30 Мерк Патент Гмбх Производные хиноксалинона в качестве стимуляторов секреции инсулина, способы их получения и их применение для лечения диабета
WO2009109258A1 (en) 2008-03-05 2009-09-11 Merck Patent Gmbh Quinoxalinone derivatives as insulin secretion stimulators, methods for obtaining them and use thereof for the treatment of diabetes
US8415352B2 (en) 2008-03-05 2013-04-09 MERCK Patent Gesellschaft mit beschränkter Haftung Quinoxalinone derivatives as insulin secretion stimulators, methods for obtaining them and use thereof for the treatment of diabetes
US8835634B2 (en) 2008-03-05 2014-09-16 Merck Patent Gmbh Quinoxalinone derivatives as insulin secretion stimulators, methods for obtaining them and use thereof for the treatment of diabetes
EP2537844A1 (de) 2008-07-21 2012-12-26 Purdue Pharma L.P. Verbrückte Piperidinverbindungen vom substituierten Chinoxalintyp und Anwendungen davon
US10519156B2 (en) 2008-07-21 2019-12-31 Purdue Pharma L.P. 9′-Aza[3,9′-bi(bicyclo[3.3.1]nonan)]-3′-one and preparation thereof
US9890164B2 (en) 2008-07-21 2018-02-13 Purdue Pharma, L.P. Substituted-quinoxaline-type bridged-piperidine compounds as ORL-1 modulators
US8476271B2 (en) 2008-07-21 2013-07-02 Purdue Pharma, L.P. Substituted-quinoxaline-type bridged-piperidine compounds as ORL-1 modulators
US11111246B2 (en) 2008-07-21 2021-09-07 Purdue Pharma L.P. Pharmaceutical salts of substituted-quinoxaline-type bridged-piperidine compounds
US9145408B2 (en) 2008-07-21 2015-09-29 Purdue Pharma L.P. Substituted-quinoxaline-type bridged-piperidine compounds as ORL-1 modulators
KR101361341B1 (ko) 2009-08-25 2014-02-10 애플 인크. 통합 터치 스크린
US9598447B2 (en) 2010-12-22 2017-03-21 Purdue Pharma L.P. Phosphorus-substituted quinoxaline-type piperidine compounds and uses thereof
WO2012085648A1 (en) 2010-12-22 2012-06-28 Purdue Pharma L.P. Phosphorus-substituted quinoxaline-type piperidine compounds and uses thereof
US9290488B2 (en) 2011-12-01 2016-03-22 Purdue Pharma L.P. Azetidine-substituted quinoxalines as opioid receptor like-1 modulators
WO2013080036A1 (en) 2011-12-01 2013-06-06 Purdue Pharma L.P. Azetidine-substituted quinoxaline-type piperidine compounds and uses thereof
US9085561B2 (en) 2012-07-30 2015-07-21 Purdue Pharma L.P. Cyclic urea- or lactam-substituted quinoxaline-type piperidines as ORL-1 modulators
WO2014020405A1 (en) 2012-07-30 2014-02-06 Purdue Pharma L.P. Cyclic urea- or lactam-substituted quinoxaline-type piperidine compounds and the uses thereof
WO2014102589A1 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Quinazolin-4(3h)-one-type piperidine compounds and uses thereof
US9951038B2 (en) 2012-12-27 2018-04-24 Purdue Pharma L.P. Quinazolin-4(3H)-one-type piperidine compounds and uses thereof
US9040533B2 (en) 2012-12-27 2015-05-26 Purdue Pharma L.P. Oxime-substituted-quinoxaline-type piperidine compounds as ORL-1 modulators
US9598411B2 (en) 2012-12-27 2017-03-21 Purdue Pharma L.P. Substituted benzimidazole-type piperidine compounds and uses thereof
WO2014102592A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Oxime/substituted quinoxaline-type piperidine compounds and uses thereof
WO2014102588A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Indole and indoline-type piperidine compounds and uses thereof
US9090618B2 (en) 2012-12-27 2015-07-28 Purdue Pharma L.P. Substituted benzimidazole-type piperidine compounds and uses thereof
WO2014102594A2 (en) 2012-12-27 2014-07-03 Purdue Pharma L.P. Substituted benzimidazole-type piperidine compounds and uses thereof
US9963458B2 (en) 2012-12-27 2018-05-08 Purdue Pharma L.P. Indole and indoline-type piperidine compounds and uses thereof
US10336722B2 (en) 2013-11-18 2019-07-02 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
US10377769B2 (en) 2013-11-18 2019-08-13 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US9422281B2 (en) 2013-11-18 2016-08-23 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US10703764B2 (en) 2013-11-18 2020-07-07 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US11084831B1 (en) 2013-11-18 2021-08-10 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US11111229B2 (en) 2013-11-18 2021-09-07 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
US10611750B2 (en) 2013-11-18 2020-04-07 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as bet bromodomain inhibitors
US10435403B2 (en) 2015-06-09 2019-10-08 Bayer Pharma Aktiengesellschaft Positive allosteric modulators of muscarinic M2 receptor
EA035465B1 (ru) * 2015-06-09 2020-06-22 Байер Фарма Акциенгезельшафт 7-замещенные 1-арил-нафтиридин-3-амиды карбоновой кислоты в качестве положительных аллостерических модуляторов мускаринового рецептора m2, способ их получения, их применение для лечения и/или профилактики заболеваний и лекарственное средство, содержащее эти соединения
AU2016274433B2 (en) * 2015-06-09 2020-07-16 Bayer Pharma Aktiengesellschaft Positive allosteric modulators of muscarinic M2 receptor
CN107949562B (zh) * 2015-06-09 2021-07-23 拜耳制药股份公司 毒蕈碱性m2受体的正性变构调节剂
CN107949562A (zh) * 2015-06-09 2018-04-20 拜耳制药股份公司 毒蕈碱性m2受体的正性变构调节剂
WO2016198342A1 (de) * 2015-06-09 2016-12-15 Bayer Pharma Aktiengesellschaft Positiv allosterische modulatoren des muskarinergen m2 rezeptors
US10519154B2 (en) 2016-07-11 2019-12-31 Bayer Pharma Aktiengesellschaft 7-substituted 1-pyridyl-naphthyridine-3-carboxylic acid amides and use thereof
US10927109B2 (en) 2016-09-14 2021-02-23 Bayer Aktiengesellschaft 7-substituted 1-aryl-naphthyridine-3-carboxylic acid amides and use thereof
US11472803B2 (en) 2016-09-14 2022-10-18 Bayer Aktiengesellschaft 7-substituted 1-aryl-naphthyridine-3-carboxylic acid amides and use thereof

Also Published As

Publication number Publication date
DE10343098A1 (de) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2005028451A1 (de) Tetrahydrochinoxaline und ihre verwendung als m2 acetylcholinrezeptor agonisten
EP1853582B1 (de) Heterocyclylamid-substituierte imidazole
DE10312969A1 (de) Benzofuro-1,4-diazepin-2-on-Derivate
WO2004052852A1 (de) 3-pyrrolyl-harnstoff-derivate und ihre verwendung als antivirale mittel
EP1529041B1 (de) Neue prodrugs von 1-methyl-2-(4-amidinophenylaminomethyl)-benzimidazol-5-yl-carbonsäure-(n -2-pyridil-n-2-hydroxycarbonylethyl)-amid, ihre herstellung und ihre verwendung als arzneimittel
EP3512849B1 (de) 7-substituierte 1-aryl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2006063811A2 (de) Substituierte 1,2,4-triazin-5(2h)-one
DE102004061008A1 (de) 3-Arylalkyl- und 3-Heteroarylalkyl-substituierte 1,2,4-Triazin-5(2H)-one
EP1432415B1 (de) Substituierte 2,5-diamidoindole als ece-inhibitoren zur behandlung von kardiovaskulären erkrankungen
DE10208256A1 (de) Piperidinouracile
EP1467975A1 (de) Substituierte alkyluracile und ihre verwendung
DD282457A5 (de) Verfahren zur herstellung neuer heterocyclischer derivate
DE10133277A1 (de) ß-Alanin-Derivate
DE102004061006A1 (de) 3-Benzylthio-1,2,4-triazin-5(2H)-one
EP1476164B1 (de) Chinoxalinone und ihre verwendung insbesondere in der behandlung von cardiovaskularen erkraunkungen
DE102004012365A1 (de) Substituierte Dihydropyridine
WO2005047278A2 (de) Substituierte dihydrochinazoline ii
WO2017005711A1 (de) Phosphor- und schwefel-substituierte benzodiazepin-derivate
WO2002040455A1 (de) Substituierte amidoalkyluracile und ihre verwendung als inhibitoren der poly (adp-ribose)-synthetase (pars)
EP1303497A1 (de) Substituierte amidoalkyl-uracile als parp-inhibitoren
EP1732901B1 (de) 4-aminocarbonylamino-substitutierte imidazolverbindungen mit antiviraler wirkung
WO2006063812A1 (de) 3-cycloalkyl-1,2,4-triazin-5(2h)-one
WO2007009578A1 (de) Heterocyclylamid-substituierte thiazole, pyrrole und thiophene
WO2003064394A1 (de) 5-ring heterozyklen zur verwendung als antiviral mittel
WO2003053959A1 (de) Heterocyclylaminocarbo nyluracile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase