[go: up one dir, main page]

WO2005018049A1 - 反射鏡アンテナ装置 - Google Patents

反射鏡アンテナ装置 Download PDF

Info

Publication number
WO2005018049A1
WO2005018049A1 PCT/JP2003/016776 JP0316776W WO2005018049A1 WO 2005018049 A1 WO2005018049 A1 WO 2005018049A1 JP 0316776 W JP0316776 W JP 0316776W WO 2005018049 A1 WO2005018049 A1 WO 2005018049A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
main
sub
radio wave
antenna
Prior art date
Application number
PCT/JP2003/016776
Other languages
English (en)
French (fr)
Inventor
Yoshio Inasawa
Shinji Kuroda
Yoshihiko Konishi
Shigeru Makino
Kenji Kusakabe
Izuru Naito
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/526,220 priority Critical patent/US7081863B2/en
Priority to EP03768260.6A priority patent/EP1538704B1/en
Priority to JP2005507772A priority patent/JP4468300B2/ja
Publication of WO2005018049A1 publication Critical patent/WO2005018049A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the present invention relates to an antenna device, and more particularly, to a reflector antenna device having two mirror surfaces. Akira Background technology
  • Fig. 12 shows an example.
  • the electromagnetic wave radiated from the primary radiator 3 is reflected by the sub-reflector 1 and further reflected by the main reflector 2, and radiates the electromagnetic wave to the space.
  • the shapes of the sub-reflector 1 and the main reflector 2 are determined so that the electromagnetic wave radiated from the phase center 4 of the primary radiator 3 takes a path of 41 P_Q_R and 4-UVW. Therefore, the radio wave does not reach the area A where the sub-reflector 1 is projected onto the main reflector 2 in parallel with the direction of emission of the radio wave by the main reflector 2 by geometric optics.
  • radio waves do not arrive in the area A in terms of geometrical optics, but radio waves actually arrive due to the wave dynamic properties of electromagnetic waves. This phenomenon is It becomes remarkable as the size of the reflector 1 becomes smaller in the wavelength ratio.
  • the electromagnetic wave radiated from the primary radiator 3 is reflected by the sub-reflector 1 and scattered by the primary radiator 3 or the main reflector 2 and the sub-reflector 1 Undesirable contributions such as multiple reflected waves between them occur, causing the antenna characteristics to deteriorate.
  • Non-Patent Document 2 the antenna is designed with mirror surface modification based on the physical optics method, but only the antenna performance is designed as an evaluation function, and it should not arrive in geometrical optics. There was a problem that the risk of performance degradation due to electromagnetic waves in the area was not considered. Disclosure of the invention
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a reflector antenna device that suppresses the influence of unnecessary electromagnetic waves and improves the performance of an antenna.
  • the present invention provides a primary reflector that receives a radio wave radiated from an opening, reflects the radio wave, receives the radio wave reflected by the sub-reflector, and receives the radio wave.
  • a main reflector that radiates into the space, and wherein the shape of the sub-reflector and the main reflector is such that the sub-reflector is projected onto the main reflector in parallel with the direction of radio wave emission by the main reflector.
  • the antenna is designed so that the power in the area of the main reflector is equal to or less than a predetermined first threshold value and the radiation pattern of the antenna determined by the area of the main mirror other than the above area has desired characteristics. Reflector antenna device.
  • FIG. 1 is an explanatory diagram showing (a) the configuration of the reflector antenna device according to Embodiment 1 of the present invention, and (b) an explanatory diagram showing an initial shape and a coordinate system.
  • FIG. 2 is a flowchart showing the flow of processing for determining the shapes of the sub-reflector and the main reflector in the reflector antenna device according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing a configuration of a reflector antenna device according to Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart showing the flow of processing for determining the shapes of the sub-reflector and the main reflector in the reflector antenna device according to Embodiment 2 of the present invention.
  • FIGS. 5A and 5B show a configuration of a reflector antenna device according to Embodiment 3 of the present invention, in which (a) is a projection view, (b) is a cross-sectional view at section G1, and (c) is a cross-sectional view at section G2.
  • FIGS. 6A and 6B are (a) an explanatory diagram showing an initial shape and a coordinate system of an XZ plane and (b) an explanatory diagram showing an initial shape and a coordinate system of a YZ plane of a reflector antenna device according to a third embodiment of the present invention. It is.
  • FIG. 7 is a cross-sectional view of (a) a cross-section G1 and (b) a cross-section G2 showing the configuration of the reflector antenna device according to the fourth embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a configuration of a reflector antenna device according to Embodiment 5 of the present invention.
  • FIG. 9 is an explanatory diagram showing a configuration of a reflector antenna device according to Embodiment 6 of the present invention.
  • FIG. 10 is an explanatory diagram showing a configuration of a reflector antenna device according to Embodiment 7 of the present invention.
  • FIG. 11 is an explanatory diagram showing a configuration of a reflector antenna device according to Embodiment 8 of the present invention.
  • FIG. 12 is an explanatory diagram showing the configuration of a conventional reflector antenna device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the configuration of the reflector antenna device according to the first embodiment of the present invention.
  • the reflector antenna according to the first embodiment includes a sub-reflector 1 that receives and reflects radio waves radiated from the primary radiator 3, and a radio wave reflected by the sub-reflector 1. It consists of a main reflector 2 that radiates radio waves into the receiving space. Further, a stay 5 for spatially supporting the sub-reflector 1 is provided on the main reflector 2.
  • the electromagnetic wave radiated from the primary radiator 3 is reflected by the sub-reflector 1 and further reflected by the main reflector 2 to radiate radio waves into space.
  • the main reflector 2 is formed by projecting the sub-reflector 1 onto the main reflector 2 in a direction parallel to the radio wave radiation direction of the main reflector 2.
  • the intensity and antenna characteristics of the electromagnetic wave arriving at region A need to be calculated not by geometrical optics but by a method that can take into account wave dynamic effects such as physical optics.
  • the intensity of the electromagnetic wave arriving at the region A is suppressed to a predetermined value or less by a method capable of taking into account the wave effect such as the physical optics method, and the main reflector other than the region A is used.
  • the shape of the sub-reflector and the main reflector should be optimized so that the desired gain and radiation pattern of the antenna characteristics specified by the electromagnetic wave arriving at the area B in 2 can be obtained, and design the antenna. did.
  • the above-mentioned predetermined value relating to the intensity of the electromagnetic wave and the desired characteristics relating to the gain and the radiation pattern of the antenna characteristic are both appropriately determined before the calculation of the optimization method is started. I do.
  • FIG. 2 shows a design procedure according to the present embodiment.
  • optimization is performed by iterative calculation using a nonlinear optimization method.
  • optimization based on a genetic algorithm Yahya Rahmat-Samii, Electromagnetic Optimization by Genetic Agorithm, John Wiley & Sons, Inc.
  • the shape of 1 is determined (step S 1). For example, a predetermined function Is given, and a numerical value is appropriately inserted in the parameter of the function to determine. By taking this function, it is possible to select various shapes such as a simple convex mirror as shown in FIG. 12 and a surface with uneven undulations as shown in FIG.
  • the shape of the main reflecting mirror 2 is determined by the same method (step S 2).
  • the power in the area A is evaluated by calculating the electromagnetic waves in the area A (step S3).
  • electromagnetic waves should not arrive in region A geometrically, electromagnetic waves actually arrive due to the wave dynamic properties of the electromagnetic waves, and the electromagnetic waves cause deterioration of antenna performance.
  • the shapes of the sub-reflecting mirror 1 and the main reflecting mirror 2 can be selected so as to suppress this electromagnetic wave, it is possible to suppress the performance deterioration of the antenna.
  • the gain and the radiation pattern of the antenna characteristic determined by the electromagnetic wave arriving at the area B of the main reflecting mirror 2 other than the area A are calculated (step S4). If the shapes of the sub-reflector 1 and the main reflector 2 can be selected so that the desired gain and radiation pattern of the antenna characteristics can be obtained, the performance of the antenna can be improved.
  • step S5 the power of the area A obtained in step S3 is equal to or less than a predetermined value, and the gain and the radiation pattern of the antenna characteristics obtained in step S4 satisfy the predetermined characteristics. It is determined whether or not it has been obtained (step S5). If the two conditions are not satisfied in step S5, return to the beginning of the processing in Fig. 2 and change the shapes of the sub-reflector 1 and the main reflector 2 in steps S1 and S2. Perform the same process. In this way, optimization is performed by iterative calculation using the nonlinear optimization method until the two conditions can be satisfied.
  • the coordinate system is used to determine the initial shape of the reflector antenna as shown in Fig. 1 (b).
  • the coordinates of the sub-reflection mirror 1 and the main reflection mirror 2 are defined in the polar coordinate system, and the expected angle of the end on the sub-reflection mirror 1 from the origin is 0.
  • the sub-mirror coordinate P Q S (0, ⁇ ) is the distance r from the origin. From ( ⁇ , ⁇ ) and the direction vector on the sub-reflection mirror 1 from the origin, e is given by the following equation.
  • P s 0 ( r o (0) e r ⁇ ⁇ 0 ⁇ , ⁇ ⁇ 2 ⁇ (1)
  • e r (sin ⁇ cos ⁇ , sin ⁇ sin ⁇ , cos ⁇ ) (2)
  • n s hat is a normal vector on the sub-reflector 1.
  • the coordinate P ° m ( ⁇ , ⁇ ) of the main reflector 2 is determined by the reflection direction e s hat at the sub-reflector 1 and the distance S Q (0, ⁇ ) and is given by the following equation.
  • the shape of the reflector is determined. Initially, the shape of the sub-reflector is a hyperboloid or elliptical surface, such as a Cassegrain antenna or a Dalegorian antenna, and the shape of the main reflector is So that is a paraboloid. ( ⁇ , ⁇ ) and S. ( ⁇ , ⁇ ) may be defined.
  • ⁇ 5 ( ⁇ , ⁇ ) ⁇ ° 3 ( ⁇ , ⁇ ) + ⁇ ( ⁇ , ⁇ ) ⁇ ⁇ (6)
  • step S5 an evaluation function is defined so that the gain and the radiation pattern are at desired values and within a difference when the power of the region A becomes equal to or less than the desired values.
  • E al is defined as follows.
  • E blocliin6 Secondary mirror shielding area (Evaluation function defined by the power of the area Here, define the following function
  • u (x) increases monotonically with E in the following regions x b, in a function that takes a fixed value 8 1 in say yes 15 above, V (x) takes a constant value in the following areas x b, x b or It is a function that decreases monotonically with the slope. Therefore, the function u (X) has a certain
  • X is used to realize a value below a certain value.
  • a function u (X) is used to make the gain equal to or more than a desired value
  • a function V (X) is used to make the radiation pattern equal to or less than a prescribed pattern and the power in the region A equal to or less than a desired value.
  • the value of the gain on the modified mirror surface determined by a certain parameter is g, and the target value of the gain is g t
  • the evaluation function E ga in can be defined as follows.
  • the evaluation function E pat can be defined as follows.
  • this target value may be set to the mask pattern itself or one that allows for some margin.
  • the power evaluation score of the sub-reflector shielding area is set to N bki ng
  • the target value is p bl . If cking , the evaluation function E b ,. ck i ng can be defined as follows.
  • the power in the region A is equal to or less than the predetermined value, and the gain and the radiation pattern of the antenna characteristics are set to the desired values. Calculations are repeated until the characteristics can be obtained, and the shapes of the sub-reflector 1 and the main reflector 2 are determined, so that the reflection has high-performance characteristics and minimizes antenna performance degradation.
  • a mirror antenna can be obtained. If the size of the reflector antenna becomes smaller, the size of the sub-reflector becomes smaller with respect to the wavelength ratio, so that it is easier for radio waves to reach region A under normal circumstances. Performing the antenna design in the setting procedure can suppress performance degradation. As described above, this embodiment is particularly effective for small reflector antennas that cause performance degradation.
  • Embodiment 2 is particularly effective for small reflector antennas that cause performance degradation.
  • FIG. 3 shows the configuration of the reflector antenna according to the first embodiment
  • FIG. 4 shows the design procedure.
  • the antenna is designed in consideration of the reduction of the power in the region C) or the reduction of the power in both the region A and the region C. In the following description, a case will be described in which power reduction in both the area A and the area C is considered.
  • the configuration of the reflector antenna according to the present embodiment is basically the same as that shown in FIG. 1 described above, and a description thereof will not be repeated.
  • step S11 the shape of the sub-reflector 1 is determined (step S11).
  • the determination method is the same as described above.
  • step S12 the shape of the main reflecting mirror 2 is determined by the same method (step S12).
  • step S13 the power in the area A and the area C is evaluated by measuring the electromagnetic waves in the area A and the area C (step S13). In region C, scattered waves generated by the primary radiator 3 generate undesirable contributions and cause deterioration of antenna characteristics, so that the generation of scattered waves should be suppressed as much as possible.
  • step S14 the gain and the radiation pattern of the antenna characteristics determined by the electromagnetic wave arriving at the area B of the main reflector 2 other than the area A are calculated. This is as described in the first embodiment.
  • the power of the area A and the area C obtained in step S13 is equal to or less than a predetermined value, and the gain and radiation pattern of the antenna characteristic obtained in step S14 are set in advance. It is determined whether the desired characteristics have been obtained (step S15). If the two conditions are not satisfied in step S15, the process returns to the beginning of the processing in FIG. 4, and the shapes of the sub-reflector 1 and the main reflector 2 are changed in steps SI1 and S12. Perform the same processing. In this way, optimization is performed by iterative calculation using the nonlinear optimization method until the two conditions can be satisfied.
  • the antenna design is optimized by the non-linear optimization method, so that the antenna has high-performance characteristics and deteriorates the antenna performance as in the first embodiment. It is possible to obtain a reflector antenna which is minimized.
  • performance degradation due to scattered waves due to the primary radiator 3 is taken into account, so that the reflector antenna becomes smaller, and the distance between the primary radiator 3 and the sub-reflector 1 becomes shorter. It is especially effective.
  • FIG. 5 (a) is a projection view of the antenna viewed from the Z-axis direction.
  • FIG. 5 (b) shows a cross section G1 in FIG. 5 (a)
  • FIG. 5 (c) shows a cross section G2 in FIG. 5 (a).
  • a coordinate system is used as shown in FIG. Determine the initial shape of 2.
  • the coordinates of the sub-reflector 1 and the main reflector 2 are defined in the polar coordinate system, and the expected angle of the end on the sub-reflector 1 from the origin is 0.
  • Secondary reflection Mirror coordinates P ° s ( ⁇ , ⁇ ) is the distance r from the origin. It is given by the following equation from ( ⁇ , ⁇ ) and the direction vector e on the sub-reflector 1 from the origin.
  • n s hat is a normal vector on the sub-reflector 1.
  • the coordinate P ° m ( ⁇ , ⁇ ) of the main reflecting mirror 2 is a reflection direction e s hat in the sub-reflecting mirror 1 and a distance S from a point on the sub-reflecting mirror 1 to a point on the main reflecting mirror 2. ( ⁇ ,) is given by the following equation.
  • the distances r ' 0 ( ⁇ , ⁇ ) and SO ( ⁇ , ⁇ ) differ depending on the value of ⁇ and are determined to realize an asymmetric mirror surface.
  • a mirror surface designed by the geometrical optics method in which the path "r '. ( ⁇ , ⁇ ) + S'. ( ⁇ , ⁇ ) + t.”
  • the reflector antenna having the initial shape may be designed according to the design procedure shown in FIG.
  • the evaluation function can be used as it is, and since it is an asymmetric reflector antenna in the initial shape of the mirror surface, an asymmetric reflector can be designed.
  • a high-performance reflector antenna that minimizes antenna performance degradation can be obtained as in the first embodiment even with an asymmetric reflector antenna. Further, the present embodiment is also particularly effective for a small reflector antenna, which easily causes performance degradation, as in the first embodiment.
  • a high-performance antenna is realized by using the same design method as in Embodiment 2 for an asymmetric reflector antenna device. That is, in consideration of reducing the power at the opening surface of the primary radiator 3 (or the opening, the region C in FIG. 7), or considering the reduction of the power in both the region A and the region C. It is characterized by performing antenna design.
  • FIG. 7A shows a cross-sectional view of the antenna at a cross section G1
  • FIG. 7B shows a cross-sectional view of the antenna at a cross section G2.
  • FIG. 5 (a) is referred to for a projection view of the antenna device of FIG. 7 viewed from the Z-axis direction.
  • the design procedure is the same as that described in FIG. 4 of the second embodiment, but in order to realize an asymmetrical reflector antenna device, the initial shapes of the sub-reflector 1 and the main reflector 2 are expressed by the above equation (1 9) To (2 1) and the above equations (2 2) to (2 3).
  • a high-performance reflector antenna that minimizes antenna performance degradation can be obtained as in the first embodiment even with an asymmetric reflector antenna. Also, this embodiment is particularly effective for a small-sized reflector antenna, which easily causes performance degradation, as in the first embodiment.
  • a reflector antenna device will be described with reference to FIG.
  • This embodiment is characterized in that a radio wave absorber 6A is loaded around the opening of the primary radiator 3. As a result, radio waves arriving at the opening surface of the primary radiator 3 are
  • the shapes of the sub-reflection mirror 1 and the main reflection mirror 2 are determined by the design procedure of any one of the first and second embodiments. Assume that it is determined.
  • the electric wave absorber 6A is provided around the opening of the primary radiator 3, so that the power scattered on the opening of the primary radiator 3 is suppressed. This has the effect of suppressing the performance degradation of the antenna.
  • the reflector antenna device according to the present embodiment is particularly effective when the device is small and the distance between primary radiator 3 and sub-reflector 1 is short.
  • the reflector antenna device will be described with reference to FIG.
  • This embodiment is characterized in that a radio wave absorber 6B is loaded on the side of the primary radiator 3. Thereby, the scattered wave generated by the radio wave arriving at the side surface of the primary radiator 3 can be absorbed by the radio wave absorber 6B, so that the performance deterioration due to the scattered wave can be suppressed.
  • the other configuration is the same as that of the first or second embodiment, and the description thereof is omitted here.
  • the shapes of the sub-reflector 1 and the main reflector 2 are the same as those of the first or second embodiment. It has been determined by one of the design procedures.
  • the radio wave absorber 6B is provided on the side surface of the primary radiator 3 to suppress the power scattered on the side surface of the primary radiator 3, so that the performance of the antenna is deteriorated. Can be obtained.
  • the reflector antenna device will be described with reference to FIG.
  • the present embodiment is characterized in that a radio wave absorber 6C is loaded in a region A where the sub-reflector 1 is projected onto the main reflector 2.
  • a radio wave absorber 6C is loaded in a region A where the sub-reflector 1 is projected onto the main reflector 2.
  • the multi-reflected wave between the main reflecting mirror 2 and the sub-reflecting mirror 1 in the area A can be absorbed by the radio wave absorber 6C, so that the performance deterioration due to the multi-reflected wave can be suppressed.
  • the other configuration is the same as that of the first or second embodiment, and the description thereof is omitted here. It is assumed that the shape of the mirror 2 is determined by the design procedure in any of the first and second embodiments.
  • the radio wave absorber 6C is provided in the area A to suppress the multiple reflection waves between the area A and the sub-reflector 1, so that the performance deterioration of the antenna is suppressed. The effect is obtained.
  • the reflector antenna device is particularly effective when the size of the device is small and the distance between the main reflector 2 and the sub-reflector 1 is short. An antenna can be realized.
  • the radio wave absorber 6C is described as a plate-shaped force.
  • the present invention is not limited to this case, and may be provided along the surface of the region A.
  • a metal for reflecting electromagnetic waves is provided by setting a predetermined inclination with respect to the direction of radio waves emitted by primary radiator 3 in region A where sub-reflector 1 is projected onto main reflector 2. It is characterized by being loaded with a reflection plate 7 composed of a plate or the like. Note that the predetermined inclination is, for example, as shown in FIG. 11, the angle between the radiation direction of the primary radiator 3 and the reflection plate 7 (or an extension of the reflection plate 7). And ⁇ are set appropriately so that the value of ⁇ is in the range of 90 ° ⁇ 1 ⁇ 180 °.
  • the electromagnetic wave arriving at region ⁇ can be reflected by reflector 7 in a direction other than the direction of sub-reflecting mirror 1, so that the area between region A and sub-reflecting mirror 1 can be reflected.
  • This has the effect of suppressing multiple reflections of the antenna and suppressing performance degradation of the antenna.
  • the reflector antenna device according to the present embodiment is particularly effective when the device is small and the distance between the main reflector 2 and the sub-reflector 1 is short. Can be realized.
  • Embodiment 9 is particularly effective when the device is small and the distance between the main reflector 2 and the sub-reflector 1 is short. Can be realized.
  • the shapes of the sub-reflector 1 and the main reflector 2 are determined in steps S 1 and S 2.
  • the shape of the main reflecting mirror 2 may be fixed, and only the shape of the sub-reflecting mirror 1 may be optimized by a non-linear optimization method.
  • the shape of the sub-reflector 1 may be fixed. In this case, the same effects as those of the first or second embodiment can be obtained, and the calculation load can be reduced because there is no need to determine the shape of either one of the reflecting mirrors.
  • the above-described embodiments 5, 6, and 7, or the embodiments 5, 6, and 8 may be combined as appropriate.
  • the electromagnetic wave can be further suppressed, so that the performance of the antenna is further improved. Can be.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

反射鏡アンテナ装置は、一次放射器3が開口部から放射する電波を受けて、当該電波を反射する副反射鏡1と、副反射鏡1が反射する当該電波を受けて、当該電波を空間に放射する主反射鏡2とを備えている。副反射鏡1および主反射鏡2の形状は、副反射鏡1を主反射鏡2による電波の放射方向と平行に主反射鏡2上に投影した主反射鏡2の領域における電力が所定の第1のしきい値以下で、かつ、上記領域以外の主反射鏡2の領域によって決定されるアンテナの放射パターンが所望の特性になるように設計されている。

Description

反射鏡アンテナ装置 技術分野
この発明はアンテナ装置に関し、 特に、 2枚の鏡面からなる反射鏡アンテナ装 置に関するものである。 明 背景技術
2枚の反射鏡からなる従来の反射鏡アンテナ装置としては、 例えば、 Tom illigan 着、 A Simple Procedure for the Design of Classical Displaced - Axis Dual-Reflector Antennas Using a Set o書f Geometric Parameters 、 IEEE Antennas and Propagation Magazine^ 1 9 9 9年 1 2月、 Vol.41', No.6, pp.64- 72に示されているものがある。 その一例を図 1 2に示す。 図 1 2に示す ように、 一次放射器 3から放射された電磁波は、 副反射鏡 1で反射され、 さらに 主反射鏡 2で反射されて、 空間に電磁波を放射する。 また、 幾何光学的には一次 放射器 3の位相中心 4から放射した電磁波は、 4一 P_Q_R、 4-U-V-W の経路をとるように、 副反射鏡 1および主反射鏡 2の形状が決定されているため、 副反射鏡 1を主反射鏡 2による電波の放射方向と平行に主反射鏡 2上に投影した 領域 Aには幾何光学的には電波は到達しない。
また、 他の従来の反射鏡アンテナとして、 例えば、 野本真一、 他 1名、 「小口 径オフセット双反射鏡アンテナの鏡面修整法」 、 電子情報通信学会論文誌、 1 9 8 8年 1 1月、 B V o l . J 7 1 -Bs N o. 1 1 p . 1 3 3 8— 1 34 4に示されるように、 幾何光学的な設計ではなく、 物理光学法に基づき、 波動的 な影響を考慮して設計した反射鏡も提案されている。 この反射鏡アンテナにおい ては、 物理光学法に基づいて、 波動的な影響を考慮して放射パターンを求め、 利 得とサイドローブ双方の性能を非線形最適化手法を用いて最適化している。
図 1 2に示す従来の反射鏡アンテナ装置では幾何光学的には領域 Aに電波が到 来しないが、 実際には電磁波の波動的性質により電波が到来する。 この現象は副 反射鏡 1の大きさが波長比で小さくなるにつれて顕著になる。 一次放射器 3から 放射された電磁波が副反射鏡 1で反射し、 領域 Aに到来する電磁波の影響によつ て、 一次放射器 3による散乱波、 あるいは、 主反射鏡 2と副反射鏡 1間の多重反 射波など望ましくない寄与を生じ、 アンテナの特性劣化を引き起こすという問題 点があった。
また、 上述の非特許文献 2では、 物理光学法に基づく鏡面修整でアンテナを設 計しているが、 アンテナの性能のみを評価関数にして設計しており、 幾何光学的 には到来しないはずの領域の電磁波の影響による性能劣化を引き起こすリスクに ついては考慮されていないという問題点があった。 発明の開示
この発明は、 かかる問題点を解決するためになされたものであり、 不要な電磁 波の影響を抑え、 アンテナの性能の向上を図る反射鏡アンテナ装置を得ることを 目的とする。
この発明は、 上記目的を鑑み、 一次放射器が開口部から放射する電波を受けて、 当該電波を反射する副反射鏡と、 上記副反射鏡が反射する上記電波を受けて、 当 該電波を空間に放射する主反射鏡とを備え、 上記副反射鏡および上記主反射鏡の 形状は、 上記副反射鏡を上記主反射鏡による電波の放射方向と平行に上記主反射 鏡上に投影した上記主反射鏡の領域における電力が所定の第 1のしきい値以下で、 かつ、 上記領域以外の上記主反射鏡の領域によって決定されるアンテナの放射パ ターンが所望の特性になるように設計されている反射鏡アンテナ装置である。 これにより、 この発明によれば、 上記副反射鏡おょぴ上記主反射鏡の形状を、 上記副反射鏡を上記主反射鏡による電波の放射方向と平行に上記主反射鏡上に投 影した上記主反射鏡の領域における電力が所定の第 1のしきい値以下で、 かつ、 上記領域以外の上記主反射鏡の領域によって決定されるァンテナの放射パターン が所望の特性になるように設計するようにしたので、 不要な電磁波の影響を抑え、 アンテナの性能の向上を図ることができる。 図面の簡単な説明 図 1は、 本発明の実施の形態 1に係る反射鏡アンテナ装置の (a ) 構成を示す 説明図および (b ) 初期形状と座標系を示す説明図である。
図 2は、 本発明の実施の形態 1に係る反射鏡アンテナ装置における副反射鏡お よび主反射鏡の形状を決定する処理の流れを示す流れ図である。
図 3は、 本発明の実施の形態 2に係る反射鏡アンテナ装置の構成を示す説明図 である。
図 4は、 本発明の実施の形態 2に係る反射鏡アンテナ装置における副反射鏡お よび主反射鏡の形状を決定する処理の流れを示す流れ図である。
図 5は、 本発明の実施の形態 3に係る反射鏡アンテナ装置の構成を示す (a ) 投影図、 (b ) 断面 G 1における断面図および (c ) 断面 G 2における断面図で
3D o
図 6は、 本発明の実施の形態 3に係る反射鏡アンテナ装置の (a ) X Z面の初 期形状と座標系を示す説明図および (b ) Y Z面の初期形状と座標系を示す説明 図である。
図 7は、 本発明の実施の形態 4に係る反射鏡アンテナ装置の構成を示す (a ) 断面 G 1における断面図おょぴ (b ) 断面 G 2における断面図である。
図 8は、 本発明の実施の形態 5に係る反射鏡アンテナ装置の構成を示す説明図 である。
図 9は、 本発明の実施の形態 6に係る反射鏡アンテナ装置の構成を示す説明図 である。
図 1 0は、 本発明の実施の形態 7に係る反射鏡アンテナ装置の構成を示す説明 図である。
図 1 1は、 本発明の実施の形態 8に係る反射鏡アンテナ装置の構成を示す説明 図である。
図 1 2は、 従来の反射鏡アンテナ装置の構成を示す説明図である。 発明を実施するための最良の形態
実施の形態 1 .
本発明の実施の形態 1に係わる反射鏡アンテナ装置の構成を図 1に示す。 図 1 ( a ) に示すように、 本実施の形態 1に係る反射鏡アンテナは、 一次放射器 3か ら放射される電波を受け反射する副反射鏡 1と、 副反射鏡 1で反射される電波を 受け空間に電波を放射する主反射鏡 2から構成されている。 また、 副反射鏡 1を 空間的に支えるためのステー 5が、 主反射鏡 2上に設けられている。
一次放射器 3から放射された電磁波は副反射鏡 1で反射され、 さらに主反射鏡 2で反射されて、 空間に電波を放射する。 この反射鏡アンテナ装置において、 ァ ンテナの性能劣化を引き起こすリスクを低減するためには、 副反射鏡 1を主反射 鏡 2による電波の放射方向と平行に主反射鏡 2上に投影した主反射鏡 2の領域 A に到来する電磁波の強度を抑え、 かつ、 領域 A以外の主反射鏡 2の領域である領 域 Bに到来する電磁波で規定されるァンテナ特性の利得および放射パターンが所 望の特性が得られるよう設計する必要がある。
また、 領域 Aに到来する電磁波の強度およびアンテナ特性は幾何光学的な手法 ではなく、 物理光学法などの波動的な影響を考慮できる手法で計算する必要があ る。
そのため、 本実施の形態においては、 物理光学法などの波動的な影響を考慮で きる手法で、 領域 Aに到来する電磁波の強度を所定の値以下に抑え、 かつ、 領域 A以外の主反射鏡 2の領域 Bに到来する電磁波で規定されるアンテナ特性の利得 および放射パターンが所望の特性が得られるように、 副反射鏡および主反射鏡の 形状の最適化を行い、 アンテナ設計をするようにした。 なお、 電磁波の強度に関 する上記所定の値と、 ァンテナ特性の利得および放射パターンに関する所望の特 性とについては、 いずれも、 最適化手法の計算を始める前に適宜决定しておくも のとする。
図 2に、 本実施の形態に係る設計手順を示す。 この設計手順において所望の特 性が得られるようアンテナ設計を行う際には、 非線形最適化手法で繰り返し計算 を行い最適化する。 最適化手法としては、 遺伝的アルゴリズム (Yahya Rahmat- Sami i, Electromagnetic Optimization by Genetic A丄 gorithm, John Wiley & Sons, Inc) に基づく最適化も有効である。
本実施の形態に係る設計手順においては、 図 2に示すように、 まず、 副反射鏡
1の形状を決定する (ステップ S 1 ) 。 決定方法としては、 例えば、 所定の関数 を与えて、 当該関数のパラメータに適宜数値を入れて、 決定する。 この関数の取 り方により、 図 1 2に示すような単なる凸面鏡や、 図 1に示すような表面形状に 凹凸のうねりがあるもの等様々な形状を選ぶことができる。 次に、 同様の方法に より、 主反射鏡 2の形状を決定する (ステップ S 2 ) 。 次に、 領域 Aの電磁波を 計算することにより、 領域 Aの電力について評価する (ステップ S 3 ) 。 領域 A には、 幾何学的には電磁波が到来しないはずであるが、 実際には電磁波の波動的 性質により電磁波が到来してしまい、 当該電磁波によりアンテナの性能劣化を引 き起こすため、 出来る限り、 この電磁波を抑えることができるように、 副反射鏡 1および主反射鏡 2の形状を選ぶことができれば、 ァンテナの性能劣化を抑制す ることができる。
次に、 領域 A以外の主反射鏡 2の領域 Bに到来する電磁波で決定されるァンテ ナ特性の利得および放射パターンを計算する (ステップ S 4 ) 。 このアンテナ特 性の利得および放射パターンが所望の特性が得られるように、 副反射鏡 1および 主反射鏡 2の形状を選ぶことができれば、 アンテナの性能の向上を図ることがで きる。
そのため、 次に、 ステップ S 3で求めた領域 Aの電力が予め設定された所定の 値以下で、 かつ、 ステップ S 4で求めたアンテナ特性の利得および放射パターン が予め設定された所望の特性を得ているか否かを判定する (ステップ S 5 ) 。 ス テツプ S 5で 2つの条件を満たしていない場合には、 図 2の.処理のはじめに戻り、 'ステップ S 1および S 2により、 副反射鏡 1および主反射鏡 2の形状を変更して、 同じ処理を行う。 このようにして、 2つの条件を満たすことができるまで、 非線 形最適化手法で繰り返し計算を行って、 最適化する。
以下では、 上述のステップ S 1およびステップ S 2で決定している鏡面形状の 例について説明する。 まず、 図 1 ( b ) に示すように座標系をとり反射鏡アンテ ナの初期形状を決定する。 副反射鏡 1および主反射鏡 2の座標を極座標系で定義 し、 原点から副反射鏡 1上の端部の見込み角を 0。とする。 副反射鏡座標 P Q S ( 0 , φ ) は原点からの距離 r。 (θ, φ ) と原点から副反射鏡 1上の方向べク トル eノ、ットとにより次式で与えられる。 Ps 0 ( = ro(0 )er {Ο≤ θ≤ 0ο,Ο < ≤ 2π} (1) er = (sin Θ cos φ, sin Θ sin φ, cos Θ) (2)
Figure imgf000008_0001
ここで、 nsハットは副反射鏡 1上の法線ベク トルである。 主反射鏡 2の座標 P°m ( θ , φ ) は、 副反射鏡 1における反射方向 esハットと副反射鏡 1上の点 から主反射鏡 2上の点までの距離 SQ (0, φ ) とにより次式で与えられる。
Figure imgf000008_0002
距離 r Q ( θ , φ ) と S。 (θ, ) を与えることにより反射鏡の形状が决定 されるが、 初期値としてはカセグレンアンテナあるいはダレゴリアンアンテナな どのように、 副反射鏡形状が双曲面あるいは楕円曲面で、 主反射鏡形状が放物面 になるように r。 (θ, φ ) および S。 ( θ , φ ) を定義すればよい。
次に、 様々な反射鏡の形状を表現するため、 この初期形状に以下の変位量を加 算した、 新たな副反射鏡座標 Ps ( θ , φ ) および主反射鏡 Pm ( θ , φ ) を次 式により規定する。
Ρ5(θ,φ) = Ρ°3(θ,φ) + τ(θ,φ)βτ (6)
M-l N-l
Τ{β,φ) = ∑^ 2^ !mn m{ mdl9Q) COS η (7)
m=0 η=0
Pm ( = P°m(0 ) + s(e^)es (8)
Figure imgf000008_0003
ここで、 Amは m次の第一種ベッセル関数の最初の根であり、 Ps ( θ 0, φ)
=Pm0. Φ) =0を満たし、 副反射鏡 1および主反射鏡 2の位置を拘束す ることを意味する。 副反射鏡形状および主反射鏡形状を規定する各関数の係数 ί
6 差替え 用 紙(規則 26) mn, gmnを変えることで、 様々な形状の反射鏡アンテナを表すことができる。 反射鏡ァンテナの形状が規定されれば物理光学法を用いることによってステツ プ S 3の領域 Aの電力、 ステップ S 4の利得および放射パターンを求めることが できる。 遺伝的アルゴリズムを用いた最適化を行う場合、 あるパラメータを決め たときにそれに対する評価関数が規定される場合、 この評価関数を最大にするパ ラメータを求めることができる。 従って、 ステップ S 5では、 利得および放射パ ターンが所望の値で、 かつ、 領域 Aの電力が所望の値以下になったときに差以内 になるよう評価関数を規定する。 このような評価関数として Ea l ,を次式のよう に規定する。
Eall = Egain + Epat + Ebiockiag
Egain = 利得で規定される評価関数
Epat = パターンで規定される評価関数
Eblocliin6 = 副鏡遮蔽領域 (領域 の電力で規定される評価関数 ここで、 以下の関数を定義する
=A (x -xb) + t (x≤xb) (A1 :正の値) (14) =B, (χ > xb) v ( x ) — 1 ( x≤ x b) (15)
=A1 (x - x b) + B J (x > x b) (A :正のィ直)
u (x) は x b以下の領域において ェで単調増加し、 乂15以上で一定値81を とる関数で、 V (x) は x b以下の領域で一定値 をとり、 x b以上で傾き で単調減少する関数である。 従って、 関数 u (X ) は引数が一定値以上、 関数 V
(X ) は一定値以下の値を実現するために用いる。 例えば利得を所望の値以上に するため関数 u ( X) を用い、 放射パターンを規定のパターン以下、 領域 Aの電 力を所望の値以下にするため、 関数 V (X ) を用いる。
あるパラメータで決定される修整鏡面での利得の値を g、 利得の目標値を g t a r g e tとするとき、 評価関数 E ga i nは以下のように規定できる。
Egain = u(g) (16)
(Aい B , :適切な値、 xb= g t a r g e t)
また、 放射パターンの評価点数を Np a tとし、 各評価点でのサイ ドロープレべ ルを S i ( i = 1 , ■ · ■, Np a t) 、 目標値を s t a r ge tとすると、 評価関数 E p a tは以下のように規定できる。
Epat = 2^ v{si) (17)
(A 適切な値、 xb= s t a r g e t)
この目標値は、 アンテナのサイドロープマスクが規定されている場合には、 そ のマスクパターンそのもの、 あるいは、 多少マージンを見込んだものを設定すれ ばよい。
また、 副反射鏡遮蔽領域の電力の評価点数を Nb k i ngとし、 各評価点での 電力を P i ( i = l , · · · , N 。 c k i n g) 、 目標値を p b lc k i n gとすると、 評価関数 E b ,。 c k i ngは以下のように規定できる。
Nblockina
Eblocking = L V(Pi) (18)
i=l
(Aい B 1 :適切な値、 x b = p b l。 k i n g. 以上において各評価関数で A 1 , B 1の値は各評価関数の重要度から適切に値 を決める必要がある。 この評価関数を遺伝的ァルゴリズムで最適化することによ り、 利得が所望の値以上、 放射パターンを規定のパターン以下、 領域 Aの電力を 所望の値以下にする鏡面パラメータ、 すなわち、 鏡面形状を決定することができ る。
8 拔 田 紙 (規則 26) 以上のように、 本実施の形態においては、 非線形最適化手法により、 領域 Aの 電力が予め設定された所定の値以下で、 かつ、 アンテナ特性の利得および放射パ ターンが予め設定された所望の特性を得ることができるまで計算を繰り返して、 副反射鏡 1および主反射鏡 2の形状を決定するようにしたので、 高性能な特性を 有し、 アンテナの性能劣化を最小限に抑えた反射鏡アンテナを得ることができる。 なお、 反射鏡アンテナが小型になると、 副反射鏡の大きさが波長比で小さくな つてしまうので、 通常であれば領域 Aへ電波が到来しやすくなるが、 本実施の形 態による図 2の設定手順でァンテナ設計を行えば、 性能劣化を抑えることができ る。 このように、 性能劣化を引き起こしゃすい、 小型反射鏡アンテナに特に本実 施の形態は有効である。 実施の形態 2 .
図 3に本実施の形態 1に係る反射鏡アンテナの構成を示し、 図 4にその設計手 順を示す。 上述の実施の形態 1では、 領域 Aの電力低減のみを考慮していたが、 本実施の形態においては、 それの代わりに、 一次放射器 3の開口面 (または、 開 口部という。 図 3の領域 C ) での電力を低減すること、 あるいは、 領域 Aおよび 領域 Cの双方の領域の電力の低減を考慮して、 アンテナ設計を行うことを特徴と する。 なお、 以下の説明においては、 領域 Aおよび領域 Cの双方の領域の電力の 低減を考慮した場合について説明する。
図 3に示すように、 本実施の形態に係る反射鏡アンテナの構成は、 上述の図 1 に示したものと基本的に同じであるため、 ここでは、 その説明を省略する。
次に、 本実施の形態に係る設計手順を図 4を用いて説明する。 本実施の形態に 係る設計手順においては、 図 4に示すように、 まず、 副反射鏡 1の形状を決定す る (ステップ S 1 1 ) 。 決定方法としては上述と同様である。 次に、 同様の方法 により、 主反射鏡 2の形状を決定する (ステップ S 1 2 ) 。 次に、 領域 Aおよび 領域 Cの電磁波を計測することにより、 領域 Aおよび領域 Cの電力について評価 する (ステップ S 1 3 ) 。 領域 Cにおいては、 一次放射器 3による散乱波が発生 するため、 これにより、 望ましくない寄与を生じ、 アンテナの特性劣化を引き起 こしてしまうので、 出来る限り、 この散乱波の発生を抑えることができるように、 副反射鏡 1および主反射鏡 2の形状を選ぶことができれば、 アンテナの性能劣化 を抑制することができる。 領域 Aについては、 上述の実施の形態 1で述べた通り である。 次に、 領域 A以外の主反射鏡 2の領域 Bに到来する電磁波で決定される アンテナ特性の利得および放射パターンを計算する (ステップ S 1 4 ) 。 これに ついては、 上述の実施の形態 1で述べた通りである。 次に、 ステップ S 1 3で求 めた領域 Aおよび領域 Cの電力が予め設定された所定の値以下で、 かつ、 ステツ プ S 1 4で求めたアンテナ特性の利得および放射パターンが予め設定された所望 の特性を得ているか否かを判定する (ステップ S 1 5 ) 。 ステップ S 1 5で 2つ の条件を満たしていない場合には、 図 4の処理のはじめに戻り、 ステップ S I 1 および S 1 2により、 副反射鏡 1および主反射鏡 2の形状を変更して、 同じ処理 を行う。 このようにして、 2つの条件を満たすことができるまで、 非線形最適化 手法で繰り返し計算を行って、 最適化する。
以上 ように、 本実施の形態においても、 非線形最適化手法でアンテナの設計 の最適化を行うようにしたので、 実施の形態 1と同様に、 高性能な特性を有し、 ァンテナの性能劣化を最小限に抑えた反射鏡ァンテナを得ることができる。 本実 施の形態においては、 一次放射器 3による散乱波による性能劣化を考慮するよう にしたので、 反射鏡アンテナが小型になり、 一次放射器 3と副反射鏡 1の距離が 近くなつたときに、 特に有効である。 実施の形態 3 .
本実施の形態 3に係る反射鏡アンテナ装置について説明する。 本実施の形態は、 非対称な反射鏡ァンテナ装置に関して実施の形態 1と同じ設計手法を用い高性能 なアンテナを実現するものである。 図 5 ( a ) はアンテナを Z軸方向からみた投 影図である。 図 5 ( b ) は図 5 ( a ) における断面 G 1を示し、 図 5 ( c ) は図 5 ( a ) の断面 G 2を示す。
設計手順は実施の形態 1の図 2で説明したものと同じである力 非対称な反射 鏡アンテナ装置を実現するため、 図 6に示すように座標系をとり、 副反射鏡 1お よび主反射鏡 2の初期形状を決定する。 副反射鏡 1および主反射鏡 2の座標を極 座標系で定義し、 原点から副反射鏡 1上の端部の見込み角を 0。とする。 副反射 鏡座標 P°s ( θ, φ) は原点からの距離 r。 (θ , φ) と原点から副反射鏡 1上 の方向べク トル e ハツ 卜とにより次式で与えられる。
P Φ) r' φ) {0≤θ<θΰ)0<φ<27τ} (19)
(sm Θ cos φ, sin Θ sm φ, cos θ) (20)
(21) δΡ°3(θ,φ) 8Ρ°5(θ,φ)
ここで、 nsハットは副反射鏡 1上の法線ベク トルである。 主反射鏡 2の座標 P°m (θ , φ) は、 副反射鏡 1における反射方向 e sハッ トと副反射鏡 1上の点 から主反射鏡 2上の点までの距離 S。 (θ , ) とにより次式で与えられる。
P
Figure imgf000013_0001
ここで距離 r'0 (θ , φ) と SO (θ , φ) は φの値によって異なり非対称な鏡 面を実現するように決定される。'
例えば非対称鏡面でかつ幾何光学的に決定される経路 " r'。 (θ , φ) +S'。 (θ , φ) + t。" が一定となる、 幾何光学的手法で設計された鏡面を用いるこ とができる。 この初期形状の反射鏡アンテナに対して図 2で示す設計手順に従つ て反射鏡アンテナを設計すればよい。 実施の形態 1で用いた式 (6) 〜 '(9) の 展開関数、 式 (1 0) 〜式 (1 3) 、 式 (1 6) 、 式 (1 7) および式 (1 8) の評価関数はそのまま用いることができ、 鏡面の初期形状において非対称な反射 鏡アンテナとなっているため、 非対称な反射鏡を設計することができる。
本実施の形態においては非対称な反射鏡アンテナにおいても実施の形態 1と同 様にアンテナの性能劣化を最小限に抑えた高性能な反射鏡アンテナを得ることが できる。 また、'本実施の形態も、 実施の形態 1と同様に、 性能劣化を引き起こし やすい、 小型反射鏡アンテナに特に有効である。 実施の形態 4 .
本実施の形態に係る反射鏡アンテナ装置について説明する。 本実施の形態は、 非対称な反射鏡アンテナ装置に関して、 実施の形態 2と同じ設計手法を用い高性 能なアンテナを実現するものである。 すなわち一次放射器 3の開口面 (または、 開口部という。 図 7の領域 C ) での電力を低減すること、 あるいは、 領域 Aおよ び領域 Cの双方の領域の電力の低減を考慮して、 アンテナ設計を行うことを特徴 とする。 図 7 ( a ) はアンテナの断面 G 1での断面図を示し、 図 7 ( b ) は断面 G 2での断面図を示す。 なお、 図 7のアンテナ装置の Z軸方向からみた投影図に ついては、 図 5 ( a ) を参照することとする。
なお、 設計手順は、 以下の説明において、 領域 Aおよび領域 Cの双方の領域の 電力の低減を考慮した場合について説明する。
設計手順は実施の形態 2の図 4で説明したもの同じであるが、 非対称な反射鏡 アンテナ装置を実現するため、 副反射鏡 1および主反射鏡 2の初期形状を、 上式 ( 1 9 ) 〜 (2 1 ) および上式 (2 2 ) 〜 (2 3 ) でそれぞれ与え、 距離 r,。
( θ , φ ) と S,0 ( θ , φ ) が φの値によって異なり非対称な鏡面を実現してい るようにしている点が異なる。
本実施の形態においては非対称な反射鏡アンテナにおいても実施の形態 1と同 様にアンテナの性能劣化を最小限に抑えた高性能な反射鏡アンテナを得ることが できる。 また、 本実施の形態も、 実施の形態 1と同様に、 性能劣化を引き起こし やすい、 小型反射鏡アンテナに特に有効である。 実施の形態 5 .
本実施の形態に係る反射鏡ァンテナ装置について図 8を用いて説明する。 本実 施の形態は、 一次放射器 3の開口面の周辺部に電波吸収体 6 Aを装荷したことを 特徴とする。 これにより、 一次放射器 3の開口面に到来する電波を電波吸収体 6
Aにより吸収することができるので、 一次反射器 3による散乱波の発生を抑え、 散乱波による性能劣化を抑制することができる。 他の構成は、 上記の実施の形態
1または 2と同じであり、 ここでは、 その説明を省略するが、 副反射鏡 1および 主反射鏡 2の形状は、 上記の実施の形態 1または 2のいずれかの設計手順により 決定されたものであるとする。
以上のように、 本実施の形態においては、 一次放射器 3の開口面の周辺部に電 波吸収体 6 Aを設けて、 一次放射器 3の開口面で散乱する電力を抑えるようにし たので、 ァンテナの性能劣化を抑制することができるという効果が得られる。 なお、 本実施の形態における反射鏡アンテナ装置は、 装置が小型になり、 一次 放射器 3と副反射鏡 1の距離が近くなつたときに特に有効である。 実施の形態 6 .
本実施の形態に係る反射鏡アンテナ装置について図 9を用いて説明する。 本実 施の形態は、 一次放射器 3の側面に電波吸収体 6 Bを装荷したことを特徴とする。 これにより、 一次放射器 3の側面に到来する電波により発生する散乱波を電波吸 収体 6 Bにより吸収することができるので、 散乱波による性能劣化を抑制するこ とができる。 他の構成は、 上記の実施の形態 1または 2と同じであり、 ここでは、 その説明を省略するが、 副反射鏡 1および主反射鏡 2の形状は、 上記の実施の形 態 1または 2のいずれかの設計手順により決定されたものであるとする。
以上のように、 本実施の形態においては、 一次放射器 3の側面に電波吸収体 6 Bを設けて、 一次放射器 3の側面で散乱する電力を抑えるようにしたので、 アン テナの性能劣化を抑制することができるという効果が得られる。
なお、 本実施の形態における反射鏡アンテナ装置は、 装置が小型になり、 一次 放射器 3と副反射鏡 1の距離が近くなつたときに、 一次放射器 3による散乱波に よる性能劣化を特に抑制できるという効果がある。 実施の形態 7 .
本実施の形態に係る反射鏡アンテナ装置について図 1 0を用いて説明する。 本 実施の形態は、 副反射鏡 1を主反射鏡 2に投影した領域 Aに電波吸収体 6 Cを装 荷したことを特徴とする。 これにより、 領域 Aにおける主反射鏡 2と副反射鏡 1 間の多重反射波を電波吸収体 6 Cにより吸収することができるので、 多重反射波 による性能劣化を抑制することができる。 他の構成は、 上記の実施の形態 1また は 2と同じであり、 ここでは、 その説明を省略するが、 副反射鏡 1および主反射 鏡 2の形状は、 上記の実施の形態 1または 2のいずれかの設計手順により決定さ れたものであるとする。
以上のように、 本実施の形態においては、 領域 Aに電波吸収体 6 Cを設けて、 領域 Aと副反射鏡 1間の多重反射波を抑制するようにしたので、 アンテナの性能 劣化を抑制することができるという効果が得られる。
なお、 本実施の形態における反射鏡アンテナ装置は、 装置が小型になり、 主反 射鏡 2と副反射鏡 1の距離が近くなつたときに特に有効であり、 その場合にも、 高性能なアンテナを実現することができる。
なお、 図 1 0の例においては、 電波吸収体 6 Cが板状のものが記載されている 力 この場合に限らず、 領域 Aの表面に沿うように設けるようにしてもよい。 実施の形態 8 .
本実施の形態に係る反射鏡アンテナ装匱について図 1 1を用いて説明する。 本 実施の形態は、 副反射鏡 1を主反射鏡 2に投影した領域 Aに、 一次放射器 3によ る電波の放射方向に対して所定の傾斜をつけて、 電磁波を反射させるための金属 板等から構成された反射板 7を装荷したことを特徴とする。 なお、 当該所定の傾 斜とは、 例えば、 図 1 1に示すように、 一次放射器 3による電波の放射方向と反 射板 7 (または反射板 7の延長線) とがなす角をひとすると、 αの値が 9 0 ° ≤ ひ≤ 1 8 0 ° の範囲になるように適宜設定する。 これにより、 本実施の形態にお ける反射鏡ァンテナでは、 領域 Αに到来する電磁波をこの反射板 7で副反射鏡 1 の方向以外に反射することができるため、 領域 Aと副反射鏡 1間の多重反射を抑 制し、 ァンテナの性能劣化を抑制できるという効果がある。
なお、 本実施の形態に係る反射鏡アンテナ装置は、 装置が小型になり、 主反射 鏡 2と副反射鏡 1の距離が近くなったときに特に有効であり、 その場合も高性能 なアンテナを実現することができる。 実施の形態 9 .
上述の実施の形態 1および 2においては、 ステップ S 1および S 2で、 副反射 鏡 1および主反射鏡 2の形状を決定する例について示したが、 その場合に限らず、 例えば、 主反射鏡 2の形状は固定としておき、 副反射鏡 1の形状のみを非線形最 適化手法で最適化するようにしてもよい。 また、 その逆で、 副反射鏡 1の形状を 固定としてもよい。 この場合には、 上述の実施の形態 1または 2と同様の効果が 得られるとともに、 さらに、 いずれか一方の反射鏡の形状についての決定処理が なくなるので、 計算負荷を減らすことができる。
また、 上述の実施の形態 5、 6および 7、 あるいは、 実施の形態 5、 6および 8は、 適宜組み合わせてよく、 その場合には、 電磁波をさらに抑制できるので、 アンテナの性能をより高くすることができる。

Claims

1 . 一次放射器が開口部から放射する電波を受けて、 当該電波を反射する副反 射鏡と、
上記副反射鏡が反射する上記電波を受けて、 当該電波を空間に放射する主反射 鏡と
を備え、
上記副反射鏡および上記主反射鏡の形状は、 上記副反射鏡を上記主反射鏡によ る電波の放射方向と平行に上記言主反射鏡上に投影した上記主反射鏡の領域におけ る電力が所定の第 1のしきい値以下で、 かつ、 上記領域以外の上記主反射鏡の領 域によって決定されるアンテナの放射パターンが所望の特性になるように設計さ れている
ことを特徴とする反射鏡ァンテナ装置。 囲
2 . 一次放射器が開口部から放射する電波を受けて、 当該電波を反射する副反 射鏡と、
上記副反射鏡が反射する上記電波を受けて、 当該電波を空間に放射する主反射 鏡と
を備え、
上記副反射鏡および上記主反射鏡の形状は、 上記一次放射器の開口部における 電力が所定の第 2のしきい値以下で、 かつ、 上記副反射鏡を上記主反射鏡による 電波の放射方向と平行に上記主反射鏡上に投影した上記主反射鏡の領域以外の他 の上記主反射鏡の領域によって決定されるアンテナの放射パターンが所望の特性 になるように設計されている
ことを特徴とする反射鏡ァンテナ装置。
3 . 一次放射器の開口部から放射される電波を受けて、 当該電波を反射する副 反射鏡と、
上記副反射鏡により反射される上記電波を受けて、 当該電波を空間に放射する 主反射鏡と
を備え、
上記副反射鏡および上記主反射鏡の形状は、 上記副反射鏡を上記主反射鏡によ る電波の放射方向と平行に上記主反射鏡上に投影した上記主反射鏡の領域におけ る電力が所定の第 1のしきい値以下で、 上記一次放射器の開口部における電力が 所定の第 2のしきい値以下で、 かつ、 上記領域以外の上記主反射鏡の領域によつ て決定されるアンテナの放射パターンが所望の特性になるように設計されている ことを特徴とする反射鏡アンテナ装置。
4 . 上記一次放射器の開口部の周辺部に、 電波を吸収するための電波吸収体を 設けたことを特徴とする請求項 1ないし 3のいずれか 1項に記載の反射鏡アンテ ナ装置。
5 . 上記一次放射器の側面に、 電波を吸収するための電波吸収体を設けたこと を特徴とする請求項 1ないし 4のいずれか 1項に記載の反射鏡アンテナ装置。
6 . 上記副反射鏡を上記主反射鏡による電波の放射方向と平行に上記主反射鏡 上に投影した上記主反射鏡の上記領域に、 電波を吸収するための電波吸収体を設 けたことを特徴とする請求項 1ないし 5のいずれか 1項に記載の反射鏡ァンテナ 装置。
7 . 上記副反射鏡を上記主反射鏡による電波の放射方向と平行に上記主反射鏡 上に投影した上記主反射鏡の領域に到来する電波を上記副反射鏡の方向以外に反 射するための金属板を、 上記主反射鏡による電波の放射方向に対して 9 0 ° 以上 かつ 1 8 0 ° 以下の角度をつけて上記領域に設けたことを特徴とする請求項 1な いし 5のいずれか 1項に記載のァンテナ装置。
PCT/JP2003/016776 2003-08-13 2003-12-25 反射鏡アンテナ装置 WO2005018049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,220 US7081863B2 (en) 2003-08-13 2003-12-25 Reflector antenna
EP03768260.6A EP1538704B1 (en) 2003-08-13 2003-12-25 Reflector antena
JP2005507772A JP4468300B2 (ja) 2003-08-13 2003-12-25 反射鏡アンテナ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-292760 2003-08-13
JP2003292760 2003-08-13

Publications (1)

Publication Number Publication Date
WO2005018049A1 true WO2005018049A1 (ja) 2005-02-24

Family

ID=34190962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016776 WO2005018049A1 (ja) 2003-08-13 2003-12-25 反射鏡アンテナ装置

Country Status (4)

Country Link
US (1) US7081863B2 (ja)
EP (2) EP1538704B1 (ja)
JP (1) JP4468300B2 (ja)
WO (1) WO2005018049A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150996A1 (ja) * 2012-04-02 2013-10-10 古野電気株式会社 アンテナ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049242B4 (de) * 2005-10-14 2008-01-24 Vega Grieshaber Kg Parabolantenne mit konischer Streuscheibe für Füllstandradar
US20080094298A1 (en) * 2006-10-23 2008-04-24 Harris Corporation Antenna with Shaped Asymmetric Main Reflector and Subreflector with Asymmetric Waveguide Feed
RU2380802C1 (ru) * 2008-11-17 2010-01-27 Джи-хо Ан Компактная многолучевая зеркальная антенна
US8914258B2 (en) * 2011-06-28 2014-12-16 Space Systems/Loral, Llc RF feed element design optimization using secondary pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284044A (ja) * 1996-04-16 1997-10-31 Mitsubishi Electric Corp 鏡面修整成形ビームアンテナ
JP2002512462A (ja) * 1998-04-21 2002-04-23 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 中央給電型アンテナシステム及びかかるアンテナシステムの最適化方法
JP2002330020A (ja) * 2001-05-02 2002-11-15 Omron Corp ホーンアンテナの設計方法、ホーンアンテナおよびカセグレンアンテナ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133284A (en) * 1959-03-02 1964-05-12 Rca Corp Paraboloidal antenna with compensating elements to reduce back radiation into feed
US3696436A (en) * 1969-09-16 1972-10-03 Kokusai Denshin Denwa Co Ltd Cassegrain antenna with absorber to reduce back radiation
DE2359870A1 (de) * 1973-11-30 1975-06-12 Rohde & Schwarz Richtstrahlantenne nach dem cassegrainprinzip
FR2445040A1 (fr) * 1978-12-22 1980-07-18 Thomson Csf Antenne a balayage conique pour radar, notamment radar de poursuite
JPS63169803A (ja) * 1987-01-07 1988-07-13 Mitsubishi Electric Corp アンテナ装置
US5182569A (en) * 1988-09-23 1993-01-26 Alcatel N.V. Antenna having a circularly symmetrical reflector
US5373302A (en) * 1992-06-24 1994-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna
FR2713404B1 (fr) * 1993-12-02 1996-01-05 Alcatel Espace Antenne orientale avec conservation des axes de polarisation.
US6522305B2 (en) * 2000-02-25 2003-02-18 Andrew Corporation Microwave antennas
WO2002071540A1 (fr) * 2001-03-02 2002-09-12 Mitsubishi Denki Kabushiki Kaisha Antenne a reflecteur
US6831613B1 (en) * 2003-06-20 2004-12-14 Harris Corporation Multi-band ring focus antenna system
US6982679B2 (en) * 2003-10-27 2006-01-03 Harris Corporation Coaxial horn antenna system
US6911953B2 (en) * 2003-11-07 2005-06-28 Harris Corporation Multi-band ring focus antenna system with co-located main reflectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284044A (ja) * 1996-04-16 1997-10-31 Mitsubishi Electric Corp 鏡面修整成形ビームアンテナ
JP2002512462A (ja) * 1998-04-21 2002-04-23 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 中央給電型アンテナシステム及びかかるアンテナシステムの最適化方法
JP2002330020A (ja) * 2001-05-02 2002-11-15 Omron Corp ホーンアンテナの設計方法、ホーンアンテナおよびカセグレンアンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1538704A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150996A1 (ja) * 2012-04-02 2013-10-10 古野電気株式会社 アンテナ
JPWO2013150996A1 (ja) * 2012-04-02 2015-12-17 古野電気株式会社 アンテナ
US9472856B2 (en) 2012-04-02 2016-10-18 Furuno Electric Co., Ltd. Antenna

Also Published As

Publication number Publication date
US7081863B2 (en) 2006-07-25
EP1538704A4 (en) 2005-10-19
EP1538704B1 (en) 2016-08-24
EP1538704A1 (en) 2005-06-08
JP4468300B2 (ja) 2010-05-26
EP2117076A1 (en) 2009-11-11
EP2117076B1 (en) 2016-06-01
US20060001588A1 (en) 2006-01-05
JPWO2005018049A1 (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
US9831561B2 (en) Reflective antenna apparatus and design method thereof
JP5014193B2 (ja) アレーアンテナの励振方法
WO2005018049A1 (ja) 反射鏡アンテナ装置
JP7005549B2 (ja) レーダ装置、及びレーダ装置の寸法決定方法
KR102418087B1 (ko) 반사형 안테나 장치 및 그 설계방법
JP3884042B2 (ja) 金属導体を4本用いたアンテナ
RU2580461C2 (ru) Антенное устройство
JP6362512B2 (ja) リフレクトアレーアンテナ
JP3314904B2 (ja) マルチビームアンテナ
JP2009038459A (ja) 反射鏡アンテナ
JP2003218630A (ja) アンテナ装置
JP6598727B2 (ja) リフレクトアレーアンテナ
JP4151593B2 (ja) 複反射鏡アンテナ装置
JPH07321544A (ja) 多周波数共用アンテナ
JP2885170B2 (ja) 反射鏡アンテナ
JP5305994B2 (ja) アンテナ装置
Stout-Grandy et al. Recent advances in Fresnel zone plate antenna technology
JP5554535B2 (ja) チョーク部材及び導波管
Karimkashi et al. Blockage minimization in symmetric dual-reflector antennas for different edge taper values
JPS58175302A (ja) アンテナ装置
JPH033504A (ja) 複反射鏡アンテナ
JPH05304410A (ja) 可変ビーム幅アンテナ
JPH0248804A (ja) カセグレンアンテナ
JPH04145702A (ja) 複反射鏡アンテナ
JP2001308633A (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005507772

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

REEP Request for entry into the european phase

Ref document number: 2003768260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003768260

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003768260

Country of ref document: EP