明細書 マイク口レンズ及びマイク口レンズァレイ Description Microphone lens and microphone lens array
技術分野 Technical field
本発明は、 マイクロレンズ及ぴマイクロレンズアレイ、 特に光通信分野にお いて使用されるマイクロレンズ及びマイクロレンズアレイに関するものである。 背景技術 The present invention relates to a microlens and a microlens array, particularly to a microlens and a microlens array used in the optical communication field. Background art
マイクロレンズは、 一般に直径 2 mm以下の微小なレンズ部を有するレンズ の総称であり、 光記録において微小スポットを形成する機能や半導体レーザか らの出力光線を光ファイバに結合させる機能を有し、 光ピックアップ、 液晶プ ロジェクタ、 光通信デバイス (例えば、 光スィッチ、 合波分波器等) 等に使用 されている。 特に、 光通信分野において使用するマイクロレンズは、 レンズ部 の直径が、 約 1 0 μ ΐηの光ファイバのコア径に合わせて、 できるだけ小さくす ることが必要とされ、 DWDM及び並列光通信においては、 このような微細な マイクロレンズを二次元的に複数配列したマイクロレンズアレイが使用され る。 A microlens is a general term for a lens having a minute lens part with a diameter of 2 mm or less, and has a function of forming a minute spot in optical recording and a function of coupling an output light beam from a semiconductor laser to an optical fiber. It is used for optical pickups, liquid crystal projectors, optical communication devices (eg, optical switches, multiplexers / demultiplexers, etc.). In particular, microlenses used in the field of optical communications require the lens diameter to be as small as possible in accordance with the core diameter of the optical fiber of about 10 μΐη, and in DWDM and parallel optical communications, A microlens array in which a plurality of such fine microlenses are two-dimensionally arranged is used.
このようなマイクロレンズとして、 露光された部分にのみ結晶を析出するガ ラス (いわゆる感光性結晶化ガラス) を用いたマイクロレンズが提案されてい る {例えば、 特公平 5— 8 4 4 8 1号公報 (以下、 「特許文献 1」 という。 ) 参 照 } 。 すなわち、 このマイクロレンズは、 レンズ部に相当する大きさの C r膜 を形成したシリカガラス板からなるマスキング材によって、 原ガラス基材の表 面のレンズ部に相当する領域をマスクし、 紫外線で露光した後、 熱処理するこ とによって、 露光した部分 (レンズ部を包囲する部分) にのみ結晶を析出させ た結果として、 露光していない部分の上面及ぴ下面を湾曲かつ隆起させて非晶 質ガラスからなるレンズ部を形成したものである。
また、 他のマイクロレンズとしては、 高密度化石英ガラスの表面の微小領域 に炭酸ガスレーザを照射することによって、 照射部を熱構造緩和させ、 隆起構 造を微小領域に形成させたマイクロレンズ (アレイ) が提案されている {例え ば、 北村直之, 外 2名, 「レーザー光照射によって形成されたガラス表面の隆 起構造」 , 第 5 0回応用物理学関係連合講演会予稿集, 2 0 0 3年 3月, p 9 8 3 , 2 8 p -M- l (以下、 「非特許文献 1」 という。 ) 参照 } 。 As such a microlens, a microlens using a glass (a so-called photosensitive crystallized glass) that precipitates a crystal only in an exposed portion has been proposed (for example, Japanese Patent Publication No. 5-848481). Gazette (hereinafter referred to as “Patent Document 1”)}. In other words, this microlens masks a region corresponding to the lens portion on the surface of the original glass substrate with a masking material made of a silica glass plate on which a Cr film having a size corresponding to the lens portion is formed. After the exposure, heat treatment is performed to precipitate crystals only in the exposed portion (the portion surrounding the lens portion). As a result, the upper surface and the lower surface of the unexposed portion are curved and raised to be amorphous. A lens portion made of glass is formed. As another microlens, a microlens (array) in which a microstructure on the surface of a densified silica glass is irradiated with a carbon dioxide laser to relax the thermal structure of the irradiated part and form a raised structure in the microdomain. [For example, Naoyuki Kitamura, et al., “Uplift structure of glass surface formed by laser irradiation”, Proceedings of the 50th Federation of Applied Physics, 2002 March 3rd, p983, 28p-M-l (hereinafter referred to as "Non-Patent Document 1")}.
しかしながら、 特許文献 1に記載のマイクロレンズは、 レンズ部の直径ゃレ ンズ部の間隔が異なるマイクロレンズアレイを作製する場合には、 その種類毎 にマスキング材を用意する必要があるため、 製造コストが高くなる。 However, the microlens described in Patent Document 1 requires a masking material for each type when manufacturing a microlens array in which the distance between the lens portion and the lens portion is different from each other. Will be higher.
また、 非特許文献 1に記載のマイクロレンズ (アレイ) は、 炭酸ガスレーザ として波長が 1 0 . 6 μ πιの赤外線レーザを照射してレンズ部を形成するが、 石英ガラスはこの赤外線を透過しないため、 赤外線レーザを全肉厚部分に亘っ て照射することができず、 表面に近い部分しかレンズ部が形成されない。 さら に、 高価な製造設備が必要で、 連続生産が困難な H I P処理によって高密度化 した石英ガラスを使用するため、 製造コストが高くなる。 発明の開示 The microlens (array) described in Non-Patent Document 1 irradiates an infrared laser having a wavelength of 10.6 μππ as a carbon dioxide gas laser to form a lens portion, but quartz glass does not transmit this infrared light. However, the infrared laser cannot be irradiated over the entire thickness portion, and the lens portion is formed only in the portion near the surface. In addition, expensive manufacturing equipment is required, and the use of quartz glass densified by HIP processing, which makes continuous production difficult, increases the manufacturing cost. Disclosure of the invention
したがって、 本発明の目的は、 安価なマイクロレンズ及びマイクロレンズァ レイを提供することにある。 Therefore, an object of the present invention is to provide an inexpensive microlens and microlens array.
上記目的を達成するため、 本発明は、 凸状のレンズ表面を有するレンズ部と、 レンズ部の周囲を包囲する結晶化ガラスからなる基質部とを備え、 レンズ部は、 前記基質部を構成する結晶化ガラス基質がレーザの照射によって非晶質ガラス 化した非晶質部を含んでいるマイクロレンズ、 及び、 このマイクロレンズが二 次元的に複数配列されたマイク口レンズァレイを提供する。 In order to achieve the above object, the present invention comprises: a lens portion having a convex lens surface; and a substrate portion made of crystallized glass surrounding the lens portion, wherein the lens portion constitutes the substrate portion. Provided are a microlens in which a crystallized glass substrate includes an amorphous portion that has been amorphously vitrified by laser irradiation, and a microphone aperture lens array in which a plurality of the microlenses are two-dimensionally arranged.
結晶化ガラスからなる基材の所定領域にレーザを照射すると、 レーザが照射 された基材の所定領域は、 該所定領域を構成する結晶化ガラス基質の一部又は 全部がレーザの照射エネルギーによって溶融し、 非晶質ガラス化して非晶質部
となる。 この非晶質ガラス化した非晶質部は、 その周囲を包囲する結晶化ガラ ス基質の基質部に比べて密度が相対的に小さく、 そのために非晶質部の体積は 基質部に比べて相対的に増加する。 その結果、 非晶質部は周囲の基質部から圧 迫力を受け、 その表面が湾曲状に隆起して凸状のレンズ表面が形成される。 し たがって、 レーザが照射された基材の所定領域は凸曲面状のレンズ表面を有す るレンズ部となり、 レーザが照射されなかった基材の他の領域はレンズ部の周 囲を包囲する結晶化ガラスからなる基質部となる。 When a predetermined region of the substrate made of crystallized glass is irradiated with a laser, the predetermined region of the substrate irradiated with the laser is partially or entirely melted by the irradiation energy of the laser. And amorphous vitrification It becomes. The density of the amorphous vitrified amorphous part is relatively smaller than that of the crystallized glass substrate surrounding the amorphous part, and the volume of the amorphous part is smaller than that of the substrate part. Increase relatively. As a result, the amorphous portion receives a compressive force from the surrounding substrate portion, and its surface protrudes in a curved shape to form a convex lens surface. Therefore, a predetermined region of the substrate irradiated with the laser becomes a lens portion having a convex curved lens surface, and the other region of the substrate not irradiated with the laser surrounds the periphery of the lens portion. It becomes a substrate part made of crystallized glass.
例えば、 レーザを基板の片面側から所定領域に照射する場合において、 レー ザの照射エネルギーによって上記所定領域の表面に近い部分のみが溶融する場 合は、 該表面に近い部分のみが非晶質化して、 基板の片面側にのみレンズ表面 が形成される。 レーザを基板の両面側からそれぞれ所定領域に照射する場合は、 レーザの照射エネルギーによって溶融する範囲の如何にかかわらず、 基板の両 面側にそれぞれレンズ表面が形成される。 特にレーザが紫外線レーザであると、 紫外線のガラスに対する透過率が高いため、 例えばレーザを基板の片面側から 照射して、 レーザの照射エネルギーによつて上記所定領域の全肉厚部分を溶融 することができ、 これにより、上記所定領域の全肉厚部分を非晶質化して、 基板 の両面側にそれぞれレンズ表面を形成することができる。 For example, when irradiating a laser to a predetermined area from one side of the substrate and only the portion near the surface of the predetermined area is melted by the irradiation energy of the laser, only the portion near the surface becomes amorphous. Thus, the lens surface is formed only on one side of the substrate. When irradiating a predetermined region with laser from both sides of the substrate, lens surfaces are formed on both sides of the substrate regardless of the range of melting by the irradiation energy of the laser. In particular, if the laser is an ultraviolet laser, the transmittance of the ultraviolet light to the glass is high.For example, the laser is irradiated from one side of the substrate, and the entire thickness of the predetermined area is melted by the irradiation energy of the laser. Thereby, the entire thickness portion of the predetermined region can be made amorphous to form the lens surfaces on both sides of the substrate.
また、 レーザを基板の複数の所定領域に間隔をあけて照射すると、 上記のよ うなマイク口レンズが二次元的に複数配列されたマイク口レンズァレイが形成 される。 When the laser is applied to a plurality of predetermined regions of the substrate at intervals, a microphone aperture lens array in which a plurality of microphone aperture lenses are two-dimensionally arranged as described above is formed.
上記構成において、 前記基質部 (基材) を構成する結晶化ガラスが、結晶化前 の原ガラスの密度 (D a ) と結晶化後の結晶化ガラスの密度 (D b ) との密度 差 (AD = (D b— D a ) /D b ) が 1 °/0以上である結晶化ガラスであると、 レンズ効果を得るために必要な凸曲面が得られるため好ましい。 △ Dのより好 ましい範囲は 2〜 6 %である。 In the above configuration, the crystallized glass constituting the substrate portion (substrate) has a density difference (D a) between the density of the original glass before crystallization (D a) and the density of the crystallized glass after crystallization (D b). It is preferable that the crystallized glass has AD = (Db−Da) / Db) of 1 ° / 0 or more because a convex curved surface necessary for obtaining a lens effect is obtained. A more preferable range of ΔD is 2 to 6%.
また、 レンズ部の非晶質部が一 4 0〜8 0 °Cの温度範囲において 3 0〜 1 3 0 X 1 0一7 の熱膨張係数を有していると、温度に対する焦点距離変化率(d
f /dT) が小さくなり (例えば、 絶対値で 2 nm/^C以内) 、 環境温度が変 動しても光損失が少ないため好ましい。 Further, when the amorphous part of the lens portion has a 3 0-1 3 0 thermal expansion coefficient of X 1 0 one 7 in the temperature range one 4 0 to 8 0 ° C, the focal length change rate with respect to temperature (D f / dT) is small (for example, within 2 nm / ^ C in absolute value), and light loss is small even when the environmental temperature fluctuates.
レンズ部の非晶質部の熱膨張係数は一 40〜 80°Cの温度範囲において 30 〜95 X 1 O— 7/^^であるのがより好ましく、 特に、 レンズ部の非晶質部の熱 膨張係数が 60X 10一7 /°Cよりも小さいと、 基質部との熱膨張差が小さくな り、 クラックが入りにくいためさらに好ましい。 The thermal expansion coefficient of the amorphous part of the lens part is more preferably 30 to 95 X 1 O- 7 / ^^ in the temperature range of 140 to 80 ° C. When the coefficient of thermal expansion is less than 60 × 10 17 / ° C, the difference in thermal expansion from the substrate portion is small, and cracks are less likely to occur.
また、 一般にマイクロレンズ (アレイ) は、 光ファイバ一アレイ用基材に固 定した光ファィバーから赤外光を出入射させて使用することがあるが、 この光 ファイバーアレイ用基材は、 熱膨張係数が光ファイバ一と近く、 また V溝加工 性に優れるという理由から一 10〜+ 1 OX 10一7 /°cの熱膨張係数を有する L i 20-A 1203— S i 02系結晶化ガラスを基材材料として使用することが 多い。 従って、 基質部が一 40〜80°Cの温度範囲において一 30〜+ 50 X 10一7 Z°Cの熱膨張係数を有すると、 マイクロレンズと光ファイバ一アレイ用 基材との熱膨張係数が近いため、 マイクロレンズァレイとして使用した場合、 温度変化に伴う軸ずれが小さくなり、 環境温度が変動しても光損失が少なくな るため好ましい。 尚、 基質部の熱膨張係数の好ましい範囲は、 一 30〜十 20 X 10一7/。 Cであり、 さらに好ましい範囲は、 — 25〜十 15 X 10 -7/。 Cで ある。 また、 レンズ部の非晶質部が一 1〜+ 8 X 10—6/°C (好ましくは 5〜 7X 10_6/°C) の屈折率の温度依存性を有していると、 温度に対する焦点距 離変化率が小さくなるため好ましい。 In general, microlenses (arrays) are sometimes used by transmitting and receiving infrared light from an optical fiber fixed to a base material for an optical fiber array. L i 2 0-A 1 2 0 3 — S i 0 having a coefficient of thermal expansion of 10 to +1 OX 10 17 / ° c because the coefficient is close to that of the optical fiber and the V groove processability is excellent. In many cases, 2 type crystallized glass is used as a base material. Therefore, if the substrate part has a thermal expansion coefficient of 130 to + 50 × 10 17 Z ° C in a temperature range of 140 to 80 ° C, the thermal expansion coefficient between the microlens and the base material for an optical fiber array Therefore, when used as a microlens array, it is preferable because the axial deviation due to a temperature change is small and light loss is small even if the environmental temperature fluctuates. The preferred range of the coefficient of thermal expansion of the substrate portion is from 130 to 20 × 10 17 /. Is C, still more preferably in the range of - 25 to ten 15 X 10 - 7 /. C. Further, when the amorphous part of the lens portion is one 1~ + 8 X 10- 6 / ° C ( preferably 5~ 7X 10_ 6 / ° C) has a temperature dependence of the refractive index of, with respect to temperature This is preferable because the focal length change rate is small.
また、 レンズ部の非晶質部が L i 20-A 12〇3— S i 02系非晶質ガラスか らなると、 一 40〜80°Cの温度範囲において、 30〜1 30 X 10— 7 °(の 熱膨張係数を有しやすく、 基質部が L i 20-A 1203— S i 02系結晶化ガラ ス、 具体的には β一石英固溶体及び 又は ;3—スポジユーメン固溶体を主結晶 相として析出してなる L i 20-A 1203— S i 02系結晶化ガラスからなる と、 一 40〜80°Cの温度範囲において一 30〜+5 OX 10一7 /^Cの熱膨張 係数を有しやすくなるため好ましい。
また、 基質部が、 200〜400 nmの波長の紫外線を吸収する元素を含有 すると、 紫外線レーザが照射された基材の所定領域に存在する元素が紫外線を 吸収し、 そのエネルギーにより、 該所定領域を構成する結晶化ガラス基質の一 部又は全部の結晶が溶融し、 短時間で効率よく非晶質ガラス化して非晶質部と なる。 紫外線を吸収する元素としては、 T i、 Nb、 B i、 Pb、 F e、 Cr、 V、 C e、 Au、 A g及び C uからなる群から選択された 1種以上の元素が使 用でき、 特に、 T iに加えて微量の F e (F e 203で 50〜: L 000 p pm) を含むと、より紫外線を吸収しやすくなる。 また、紫外線を吸収する元素が T i であると可視光城の波長の光を透過しゃすいため好ましい。 Further, the amorphous portion of the lens portion L i 2 0-A 1 2 〇 3 - and S i 0 2 based amorphous glass or Ranaru, in the temperature range one 40~80 ° C, 30~1 30 X 10- 7 ° (easily have a coefficient of thermal expansion, the substrate portions L i 2 0-a 1 2 0 3 - S i 0 2 based crystallized glass, in particular β one-quartz solid solution and or; 3 - the Supojiyumen solid solution comprising precipitated as a main crystal phase L i 2 0-a 1 2 0 3 - to consist of S i 0 2 based crystallized glass, single 30 + 5 in the temperature range one 40 to 80 ° C OX10-17 / ^ C is preferable because it tends to have a thermal expansion coefficient of 17 / ^ C. Further, when the substrate portion contains an element that absorbs ultraviolet light having a wavelength of 200 to 400 nm, the element present in a predetermined region of the substrate irradiated with the ultraviolet laser absorbs the ultraviolet light, and its energy causes the element to absorb the ultraviolet light. Some or all of the crystals of the crystallized glass substrate constituting the glass melt and become amorphous vitrified efficiently in a short time to become an amorphous portion. One or more elements selected from the group consisting of Ti, Nb, Bi, Pb, Fe, Cr, V, Ce, Au, Ag, and Cu are used as the elements that absorb ultraviolet light. can, in particular, in addition to T i (50 to at F e 2 0 3: L 000 p pm) F e traces to include, tends to absorb more ultraviolet radiation. In addition, it is preferable that the element that absorbs ultraviolet light is T i because light having a wavelength of visible light can be transmitted and absorbed.
また、 レンズ部及び基質部が、 質量0 /0で、 S i 02 55〜75%、 A 1203 14〜35%、 L i 2〇 2~8%、 T i 02+Z r 02 0. 7〜8%を含有し てなり、 特に好ましくは、 質量%で、 S i 02 55〜75%、 A 1203 14 — 35%, L i 20 2〜8%、 T i 02+Z r 02 0. 7〜5%、 MgO 0 〜40/0、 ZnO 0〜4o/o、 T i〇2 0〜4%、 Z r〇2 0〜4%、 Sn02 0〜40/0、 P2〇5 0〜4%、 N a 20 0〜 7 %、 K20 0〜7%、 B a OThe lens portion and the substrate portion, the mass 0/0, S i 0 2 55~75%, A 1 2 0 3 14~35%, L i 2 〇 2 ~ 8%, T i 0 2 + Z r 0 2 0. and also contains 7-8%, particularly preferably, in mass%, S i 0 2 55~75% , a 1 2 0 3 14 - 35%, L i 2 0 2~8%, T i 0 2 + Z r 0 2 0. 7~5%, MgO 0 ~4 0/0, ZnO 0~4 o / o, T I_〇 2 0~4%, Z R_〇 2 0-4%, Sn0 2 0~4 0/0, P 2 〇 5 0~4%, N a 2 0 0~ 7%, K 2 0 0~7%, B a O
0〜7%を含有してなると、 一 40〜80°Cの温度範囲において、 レンズ部 の非晶質部が 30〜 130 X 10— 7/°Cの熱膨張係数を有する非晶質ガラスに なりやすく、 基質部が一 30〜+ 50 X 10—7/°Cの熱膨張係数を有する結晶 化ガラスになりやすい。 When comprising 0-7% in the temperature range one 40 to 80 ° C, the amorphous glass amorphous portion of the lens portion has a thermal expansion coefficient of 30~ 130 X 10- 7 / ° C likely prone to crystallized glass substrate portion has a thermal expansion coefficient one 30~ + 50 X 10- 7 / ° C.
結晶化ガラスからなる基材が、 ー40〜80°Cの温度範囲において、 一30 〜十 50 X 10— 7/。Cの熱膨張係数を有し、 P—石英固溶体及び/又は ]3—ス ポジュメン固溶体を主結晶相として析出してなる L i 20-A 1203-S i 02 系結晶化ガラスからなると、 レーザの照射によって形成されたレンズ部の非晶 質部が一 40〜80°Cの温度範囲において 30〜13 OX 10— 7Z°Cの熱膨張 係数を有する非晶質ガラスになりやすく、 基質部が一 30 ~+ 50 X 10一7 /°Cの熱膨張係数を有する結晶化ガラスになりやすい。 Substrate made of crystallized glass is in the temperature range of over 40 to 80 ° C, one 30 to ten 50 X 10- 7 /. Has a thermal expansion coefficient of the C, P- quartz solid solution and / or 3- scan Pojumen solid solution comprising precipitated as a main crystal phase L i 2 0-A 1 2 0 3 -S i 0 2 based crystallized glass When made of, becomes amorphous glass having a thermal expansion coefficient of 30~13 OX 10- 7 Z ° C in the temperature range of amorphous portion is one 40 to 80 ° C of lens portions formed by irradiation of a laser It is easy to become a crystallized glass having a substrate part having a thermal expansion coefficient of 30 to + 50 × 10 17 / ° C.
基材は、 質量%で、 S ί O 2 55〜 75 %、 A 12 Ο 3 14〜 35 %、 L i
2〇 2~8%, T i 02+Z r 02 0. 7〜8%を含有し、 より好ましくは、 質量%で、 S i〇2 55 ~ 75 %s A 12 O a 14〜35%、 L i 20 2〜 8%、 T i 02+Z r 02 0. 7〜5%、MgO 0〜4%、 ZnO 0〜4%、 T i 02 0~4%、 Z r〇2 0〜4%、 Sn〇2 0〜4%、 P205 0~ 4%、 Na 20 0〜7%、 K20 0〜7%、 B aO 0~70/oを含有してい るのが好ましい。 The substrate, in mass%, S ί O 2 55~ 75 %, A 1 2 Ο 3 14~ 35%, L i 2 〇 2 ~ 8%, T i 0 2 + Z r 0 2 0. containing 7-8%, more preferably, by mass% S I_〇 2 55 ~ 75% s A 1 2 O a 14~ 35%, L i 2 0 2~ 8%, T i 0 2 + Z r 0 2 0. 7~5%, 0~4% MgO, 0~4% ZnO, T i 0 2 0 ~ 4%, Z R_〇 2 0-4%, Sn_〇 2 0~4%, P 2 0 5 0 ~ 4%, Na 2 0 0~7%, K 2 0 0~7%, the B aO 0 ~ 7 0 / o It is preferred that it be contained.
レーザは、 波長が 400 nm以下、 好ましくは 266〜 355 nmの紫外線 レーザ、 具体的には YAGレーザであると、 レ^"ザ出力を高くでき、 照射スポ Vト径を小さく、 またスポッ トの真円度を高くできるため、 短時間で寸法精度 が高い小径のレンズ部を形成できる。 また、 紫外線レーザの出力が 0. 5〜5 Wであると、 結晶化ガラスからなる基材の一部が短時間で溶融して、 容易に非 晶質部を形成できる。 特に結晶化ガラスからなる基材が、 400 nm以下の波 長を有する光の吸収が大きいと、 レーザによる基材の溶融が容易になるため好 ましい。 If the laser is an ultraviolet laser having a wavelength of 400 nm or less, preferably 266 to 355 nm, specifically a YAG laser, the laser output can be increased, the irradiation spot diameter can be reduced, and the spot diameter can be reduced. Since the roundness can be increased, a small-diameter lens part with high dimensional accuracy can be formed in a short time, and when the output of the ultraviolet laser is 0.5 to 5 W, a part of the substrate made of crystallized glass Melts in a short time and easily forms an amorphous part Especially when the base material made of crystallized glass has a large absorption of light having a wavelength of 400 nm or less, the base material is melted by the laser. It is preferable because it becomes easy.
本発明のマイク口レンズ及びマイク口レンズァレイは、 高価な製造設備が必 要で連続生産が困難な H I P処理によって基材を高密度化する必要がなく、 ま たマスキング材を作製する必要がない。 したがって、 本発明によれば、 安価な マイクロレンズ及びマイク口レンズァレイを提供することができる。 図面の簡単な説明 The microphone opening lens and the microphone opening lens array of the present invention do not require high-density base materials by HIP processing, which requires expensive manufacturing equipment and difficult to produce continuously, and does not require the production of a masking material. Therefore, according to the present invention, inexpensive microlenses and microphone aperture lens arrays can be provided. Brief Description of Drawings
図 1は、実施の形態に係るマイク口レンズァレイを概念的に示す断面図であ る。 FIG. 1 is a sectional view conceptually showing a microphone aperture lens array according to an embodiment.
図 2は、他の実施の形態に係るマイク口レンズァレイを概念的に示す断面図 である。 発明を実施するための最良の形態 FIG. 2 is a sectional view conceptually showing a microphone aperture lens array according to another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
図 1、 図 2は、 本発明の実施の形態に係るマイクロレンズアレイ 10、 20
をそれぞれ概念的に示している。 1 and 2 show microlens arrays 10 and 20 according to an embodiment of the present invention. Are conceptually shown.
図 1に示すマイク口レンズァレイ 1 0は、 レンズ部 1と基質部 2とを備えた マイクロレンズ 3が二次元的に複数配列されて構成され、 全体として平板状の 外観を呈している。 レンズ部 1は、 それぞれ、 所定径の円柱状形態をなし、 マ イク口レンズアレイ 1 0の一方の表面側に位置する非晶質ガラスからなる非晶 質部 1 aと、 他方の表面側に位置する結晶化ガラスからなる結晶質部 1 bとで 構成される。 非晶質部 l aの表面は、 基質部 2の表面の位置よりも湾曲状に隆 起して、 凸曲面状、 例えば 1つの曲率半径を有する凸球面状のレンズ表面 1 a 1を形成している。 基質部 2は、 レンズ部 1の結晶質部 1 bと同じ結晶化ガラ スからなり、 レンズ部 1の周囲を包囲している。 尚、 図 1では、 基質部 2とレ ンズ部 1の結晶質部 1 bとを概念的に区分して示しているが、 実際には、 両者 の間に組織構造上の違!ヽは存在しない。 The microphone aperture lens array 10 shown in FIG. 1 is configured by two-dimensionally arranging a plurality of microlenses 3 having a lens portion 1 and a substrate portion 2, and has a flat appearance as a whole. Each of the lens portions 1 has a cylindrical shape with a predetermined diameter, and includes an amorphous portion 1a made of amorphous glass located on one surface side of the micro-aperture lens array 10 and a second portion on the other surface side. And a crystalline part 1b made of crystallized glass. The surface of the amorphous portion la rises in a curved shape from the position of the surface of the substrate portion 2 to form a convex curved surface, for example, a convex spherical lens surface 1 a 1 having one radius of curvature. I have. The substrate portion 2 is made of the same crystallized glass as the crystalline portion 1 b of the lens portion 1 and surrounds the lens portion 1. In FIG. 1, the substrate part 2 and the crystalline part 1b of the lens part 1 are conceptually divided, but in reality, there is a difference in the structure between the two. do not do.
マイクロレンズアレイ 1 0は、 例えば、 結晶化ガラスからなる基材の複数の 所定領域に一方の表面側からレーザを照射することによって製造することがで きる。 すなわち、 レーザが照射された基材の所定領域は、 レーザの照射エネル ギ一によつて、 一方の表面に近い部分が溶融し、 非晶質ガラス化して非晶質部 l aとなる。 この非晶質ガラス化した非晶質部 1 aは、 その周囲を包囲する結 晶化ガラス基質の基質部 2に比べて密度が相対的に小さく、 そのために非晶質 部 1 aの体積は基質部 2に比べて相対的に増加する。 その結果、 非晶質部 1 a は周囲の基質部 2から圧迫力を受け、 その表面が湾曲状に隆起して凸曲面状の レンズ表面 1 a 1が形成される。 したがって、 レーザが照射された基材の所定 領域は凸曲面状のレンズ表面 1 a 1を有するレンズ部 1となり、 レーザが照射 されなかった基材の他の領域はレンズ部 1の周囲を包囲する結晶化ガラスから なる基質部 2となる。 レンズ部 1の直径は、 照射するレーザビームのスポット 径と略等しくなり、 レーザビームのスポット径を調整することによって、 所望 の直径を有するレンズ部 1を精度良く形成することができる。 The microlens array 10 can be manufactured, for example, by irradiating a plurality of predetermined regions of a substrate made of crystallized glass with laser from one surface side. In other words, a predetermined area of the substrate irradiated with the laser is melted at a portion close to one surface by laser irradiation energy and becomes amorphous vitrified to form an amorphous portion la. The amorphous portion 1a that has been vitrified has a relatively lower density than the substrate portion 2 of the crystallized glass substrate surrounding the amorphous portion 1a, and therefore, the volume of the amorphous portion 1a is small. It increases relatively compared to the substrate part 2. As a result, the amorphous portion 1a receives a compressive force from the surrounding substrate portion 2, and its surface rises in a curved shape to form a convexly curved lens surface 1a1. Therefore, the predetermined region of the substrate irradiated with the laser becomes the lens portion 1 having the convexly curved lens surface 1a1, and the other region of the substrate not irradiated with the laser surrounds the lens portion 1. The substrate part 2 is made of crystallized glass. The diameter of the lens portion 1 is substantially equal to the spot diameter of the laser beam to be irradiated. By adjusting the spot diameter of the laser beam, the lens portion 1 having a desired diameter can be formed accurately.
図 2に示すマイク口レンズァレイ 2 0は、 レンズ部 1 1と基質部 1 2とを備
えたマイクロレンズ 1 3が二次元的に複数配列されて構成され、 全体として平 板状の外観を呈している。 レンズ部 1 1は、 それぞれ、 所定径の円柱状形態を なし、 非晶質ガラスからなる非晶質部 1 1 aで構成される。 非晶質部 1 1 aの 両表面は、 それぞれ、 基質部 1 2の表面の位置よりも湾曲状に隆起して、 凸曲 面状、 例えば 1つの曲率半径を有する凸球面状のレンズ表面 1 1 a 1を形成し ている。 基質部 1 2は、 結晶化ガラスからなり、 レンズ部 1 1の周囲を包囲し ている。 The microphone aperture lens array 20 shown in FIG. 2 has a lens section 11 and a substrate section 12. The obtained microlenses 13 are two-dimensionally arranged in a plurality, and have a flat plate-like appearance as a whole. Each of the lens portions 11 has a cylindrical shape with a predetermined diameter, and is formed of an amorphous portion 11a made of amorphous glass. Both surfaces of the amorphous portion 1 1 a are respectively protruded in a curved shape from the position of the surface of the substrate portion 12 to form a convex curved surface, for example, a convex spherical lens surface 1 having one radius of curvature. 1 a 1 is formed. The substrate portion 12 is made of crystallized glass and surrounds the lens portion 11.
このマイクロレンズァレイ 2 0も、 図 1に示すマイクロレンズアレイ 1 0と 同様に、 結晶化ガラスからなる基材の複数の所定領域に一方の表面側からレー ザを照射することによって製造することができるが、 レーザの照射によってレ ンズ部 1 1の全肉厚部分が溶融して非晶質化され、 基板の両面側にそれぞれレ ンズ表面 1 1 a 1が形成される点が異なる。
Like the microlens array 10 shown in FIG. 1, this microlens array 20 is also manufactured by irradiating a plurality of predetermined regions of a substrate made of crystallized glass with a laser from one surface side. However, the difference is that the entire thickness of the lens portion 11 is melted and amorphous by laser irradiation, and the lens surfaces 11a1 are formed on both sides of the substrate.
【実施例】 【Example】
表 1は実施例 1〜 5を、表 2は実施例 6〜 9を、表 3は比較例 1、 2を示す。 実施例 1〜3、 5、 7のマイクロレンズアレイは図 1に示す構成に対応し、 実 施例 4、 6、 8、 9のマイクロレンズアレイは図 2に示す構成に対応する。 まず、 表 1、 2に示す組成となるように調合した原料を白金坩堝中に入れ、 1 550°Cで 1 0時間溶融したガラスをカーボン型枠内に流し出し、 室温まで 徐冷して原ガラス板を作製した。その後、表 1に示す結晶化条件で結晶化させ、 β一石英固溶体又は ]3—スポジュメン固溶体を析出した結晶化ガラスからな る原板を得た。尚、実施例 1 ~ 9は、不純物として F e 203を 50〜400 ρ ρ m含有していた。 Table 1 shows Examples 1 to 5, Table 2 shows Examples 6 to 9, and Table 3 shows Comparative Examples 1 and 2. The microlens arrays of Examples 1 to 3, 5, and 7 correspond to the configuration shown in FIG. 1, and the microlens arrays of Examples 4, 6, 8, and 9 correspond to the configuration shown in FIG. First, the raw materials prepared so as to have the compositions shown in Tables 1 and 2 were placed in a platinum crucible, and the glass melted at 1550 ° C for 10 hours was poured out into a carbon mold, and gradually cooled to room temperature. A glass plate was produced. Thereafter, crystallization was performed under the crystallization conditions shown in Table 1 to obtain an original plate composed of crystallized glass on which β-quartz solid solution or] 3-spodumene solid solution was precipitated. In Examples 1-9, the F e 2 0 3 as an impurity contained 50~400 ρ ρ m.
次に、 この原板を 3 X 4 X0. 5 t mmの大きさに切断加工して、 両面を鏡 面研磨することによって基材を作製し、 0. 2 mm間隔で 8箇所の基材表面近 傍に、 パルス幅 10 n s、 周波数 1 kHzで波長 35 5 nmの YAGレーザを 出力 0. 5〜2. 5Wで 1箇所あたり 2秒間照射することによって、 図 1に示 すように、 レンズ部 1 (紫外線レーザが照射された領域) と基質部 2 (紫外線 レーザが照射されなかった領域) とを備えた 8個のマイクロレンズ 3が二次元 的に配列されたマイクロレンズアレイ 10を作製した(実施例 1〜3、 5、 7)。 また、 原板を 3 X4 X 0. 2 t mmの大きさに切断加工して、 両面を鏡面研 磨することによって基材を作製し、 0. 2 mm間隔で 8箇所において、 基材の 全厚み方向にわたって、 パルス幅 1 0 n s、 周波数 1 kHzで波長 355 n m の YAGレーザを出力 0. 5〜2. 5Wで 1箇所あたり 2秒間照射することに よって、 図 2に示すように、 レンズ部 1 1 (紫外線レーザが照射された領域) と基質部 1 2 (紫外線レーザが照射されなかった領域) とを備えた 8個のマイ ク口レンズ 1 3が二次元的に配列されたマイク口レンズァレイ 20を作製し た (実施例 4、 6、 8、 9) 。 尚、 レンズ部 1、 1 1のうち、 紫外線レーザが 照射され基材が溶融した部分は、 非晶質ガラスからなる非晶質部 1 a、 1 1 a となっていた。 また、 実施例 1〜3、 5、 7において、 レンズ部 1のうち、 基 材が溶融しなかった部分は基材のままの結晶が析出した結晶質部 1 bであつ た。 また、 この結晶質部 l bは、 一石英固溶体を析出しているものの、 析出
結晶サイズが 0. 05 m以下であるため、 1000〜 1 650 nmの波長域 における赤外線の透過率が 60%以上であり、 光通信用途に十分使用できるも のであった。 Next, the base plate was cut into a size of 3 x 4 x 0.5 tmm, and the base material was prepared by mirror-polishing both sides. A YAG laser with a pulse width of 10 ns, a frequency of 1 kHz, and a wavelength of 355 nm is radiated from 0.5 to 2.5 W for 2 seconds at each location. A microlens array 10 in which eight microlenses 3 each having a (region irradiated with an ultraviolet laser) and a substrate portion 2 (region not irradiated with an ultraviolet laser) were formed two-dimensionally was prepared (implemented). Examples 1-3, 5, 7). In addition, the base plate is cut into a size of 3 X 4 X 0.2 t mm, and the base material is manufactured by mirror-polishing both sides. The total thickness of the base material is obtained at eight locations at 0.2 mm intervals. By irradiating a YAG laser with a pulse width of 10 ns, a frequency of 1 kHz, and a wavelength of 355 nm in each direction at 0.5 to 2.5 W for 2 seconds per location, as shown in Fig. 2, the lens section 1 A microphone aperture lens array in which eight microphone aperture lenses 13 each having 1 (area irradiated with ultraviolet laser) and substrate section 1 2 (area not irradiated with ultraviolet laser) are arranged two-dimensionally. (Examples 4, 6, 8, and 9). The portions of the lens portions 1 and 11 where the substrate was melted by the irradiation of the ultraviolet laser were amorphous portions 1 a and 11 a made of amorphous glass. In Examples 1 to 3, 5, and 7, a portion of the lens portion 1 where the base material was not melted was a crystalline portion 1b in which crystals of the base material were precipitated. In addition, although this crystalline part lb has precipitated a quartz solid solution, Since the crystal size was less than 0.05 m, the transmittance of infrared light in the wavelength range of 1000 to 1650 nm was 60% or more, and it was sufficient for optical communication applications.
比較例 1では、 原板として、 l GP a、 1 200°Cで H I P処理して密度を 4%上昇させた高密度化シリカガラスを用い、 波長 10. 6 μπιの炭酸ガスレ 一ザを出力 0. 5 Wで 1 20秒間照射した点以外は、 実施例 1と同様にしてマ イク口レンズアレイを作製した。 尚、 この場合、 レーザが照射され低密度化さ れた部分がレンズ部の非晶質部となり、原板のままの高密度化されている部分 が基質部となる。 In Comparative Example 1, a carbon dioxide laser having a wavelength of 10.6 μπι was output as a master plate using lGPa, a densified silica glass whose density was increased by 4% by HIP treatment at 1200 ° C. A micro lens array was produced in the same manner as in Example 1 except that irradiation was performed at 5 W for 120 seconds. In this case, the portion of the lens portion where the density has been reduced by the laser irradiation becomes the amorphous portion of the lens portion, and the portion of the original plate which has been increased in density becomes the substrate portion.
比較例 2では、 表 2の組成になるように調合した原料を白金坩堝中に入れ、 1450°Cで 4時間溶融したガラスをカーボン型枠内に流し出し、室温まで徐 冷して、 原板を作製した。 次に、 この原板を 3 X 4 X 0. 5 t mmの大きさに 切断加工して、 両面を鏡面研磨することによって基材を作製し、 レンズ部に相 当する大きさの C r膜を形成したシリカガラス板によって、 基材の表面のレン ズ部に相当する領域をマスクし、 100 OWの水銀一キセノンランプを用いて 紫外線を 100秒間照射した。 その後、 基材を 540°Cで 1時間、 580°Cで 1時間熱処理し、基材の紫外線を照射した部分に L i 20■ S i 02結晶を析出 させて、基材の両面側に凸曲面状のレンズ表面を有する 8個のマイク口レンズ を備えたマイクロレンズァレイを作製した。 In Comparative Example 2, the raw materials prepared so as to have the composition shown in Table 2 were placed in a platinum crucible, and the glass melted at 1450 ° C for 4 hours was poured into a carbon mold, and gradually cooled to room temperature. Produced. Next, this base plate was cut into a size of 3 x 4 x 0.5 t mm, and both sides were mirror-polished to produce a base material, and a Cr film with a size corresponding to the lens part was formed. Using the formed silica glass plate, a region corresponding to the lens portion on the surface of the substrate was masked, and ultraviolet rays were irradiated for 100 seconds using a 100 OW mercury-xenon lamp. Then, 1 hour a substrate with 540 ° C, and heat-treated for 1 hour at 580 ° C, the portion irradiated with ultraviolet rays of the base material by precipitating L i 2 0 ■ S i 0 2 crystals, both surfaces of the base material A microlens array equipped with eight microphone aperture lenses having a convex curved lens surface was fabricated.
尚、 実施例 1〜 9及び比較例 1、 2において、 レンズ部の直径はレンズ表面 の曲率半径に略等しく、 50〜 300 mであった。 また、 表 1、 表 2の 「レ ンズ形状」 の欄において、 「凸平」 の表示は図 1に示すような片面側にのみレ ンズ表面を有するレンズ形状であることを表し、 「両凸」 は図 2に示すような 両面側にレンズ表面を有するレンズ形状であることを表している。 In Examples 1 to 9 and Comparative Examples 1 and 2, the diameter of the lens portion was substantially equal to the radius of curvature of the lens surface, and was 50 to 300 m. In the columns of “lens shape” in Tables 1 and 2, “convex flat” indicates a lens shape having a lens surface only on one side as shown in FIG. Indicates that the lens has a lens shape having lens surfaces on both sides as shown in FIG.
析出結晶相は、 X線回折装置を用いて同定した。 The precipitated crystal phase was identified using an X-ray diffractometer.
結晶化前の原ガラスの密度 (D a) 及び結晶化後の結晶化ガラス (基板) の 密度 (Db) は、 アルキメデス法を用いて測定した。 The density (D a) of the raw glass before crystallization and the density (Db) of the crystallized glass (substrate) after crystallization were measured using the Archimedes method.
非晶質部の熱膨張係数は、 実施例 1〜5では原ガラス板の熱膨張係数で、 比
較例 1、 2では原板の熱膨張係数で評価した。 また、 基質部の熱膨張係数は、 実施例 1〜 5と比較例 1では原板の熱膨張係数で、 比較例 2では原板の熱処 理後の熱膨張係数で評価した。 これらの熱膨張係数は、 ディラトメータ (マツ クサイエンス社製 TD— 5000 S) を用いて、 ー40〜80°Cの温度範囲で 測定した。 In Examples 1 to 5, the thermal expansion coefficient of the amorphous portion is the thermal expansion coefficient of the original glass plate. In Comparative Examples 1 and 2, the evaluation was made based on the coefficient of thermal expansion of the original plate. The coefficient of thermal expansion of the substrate portion was evaluated in Examples 1 to 5 and Comparative Example 1 by the coefficient of thermal expansion of the original plate, and in Comparative Example 2, the coefficient of thermal expansion of the original plate after heat treatment was evaluated. These thermal expansion coefficients were measured using a dilatometer (TD-5000S, manufactured by Matsuku Science Co., Ltd.) in a temperature range of -40 to 80 ° C.
レンズ部の曲率半径は、 レーザ顕微鏡を用いて測定した。 The radius of curvature of the lens was measured using a laser microscope.
レンズ部の屈折率及び屈折率の温度依存性(d n/d T)は、一 40〜80°C の温度範囲において、 ォプティプローブ法により屈折率を測定することによつ て求めた。 The refractive index of the lens portion and the temperature dependence of the refractive index (dn / dT) were determined by measuring the refractive index by an optical probe method in a temperature range of 140 to 80 ° C.
温度に対する焦点距離変化率 (d f /dT) は以下のようにして算出した。 焦点距離 f は数式 1にて表され、数式 1を温度 Tで微分することより数式 2 に示す温度に対する焦点距離変化率 (d f ZdT) が導出される。 The focal length change rate with respect to temperature (df / dT) was calculated as follows. The focal length f is represented by Equation 1, and by differentiating Equation 1 with the temperature T, the focal length change rate (d f ZdT) with respect to temperature shown in Equation 2 is derived.
f = (r , · r 2) / { (r 2- r x) - (n- 1) } · . ■数式 1 f = (r, r 2 ) / {(r 2 -r x )-(n-1)}
d f /d T= f - [a- { 1/ (n- 1) - d n / d T } ] · · ·数式 2 ここで、 rい r 2はレンズ部のレンズ表面の曲率半径 (μπι) 、 aは熱膨張 係数 (X 1 0— 7 ° 、 nは波長 1 550 nmにおける室温での屈折率、 d n Zd Tは温度に対する屈折率変化率 (X I O— 6/°C) である。 尚、 レンズ形状 が凸平の場合は、 2が∞となる。 df / d T = f-[a- {1 / (n-1)-dn / d T}] ... Equation 2 where r or r 2 is the radius of curvature (μπι) of the lens surface of the lens section, a thermal expansion coefficient (X 1 0- 7 °, n is the refractive index at room temperature at a wavelength of 1 550 nm, dn Zd T is the refractive index change rate with respect to temperature (XIO- 6 / ° C). the lens When the shape is convex flat, 2 becomes ∞.
温度変化に伴う焦点距離の変化及び軸ずれは、 温度変化に対する揷入損失に よって評価し、 その挿入損失は、 レーザダイオード (LD) より出射した 1. 5 5 μ mの赤外光をマイク口レンズを通してシングノレモード光ファイバに入 射し、パワーメータを用いて、一 5°C、 25°C及び 65 °Cにおける光損失量(d B) を 8個のマイクロレンズについて測定し、 それら全ての光損失量の平均値 とした。 The focal length change and axis shift due to temperature change are evaluated by the input loss with respect to the temperature change, and the insertion loss is calculated by converting 1.55 μm infrared light emitted from a laser diode (LD) into the microphone port. The light was incident on the single mode optical fiber through the lens, and the optical loss (dB) at 15 ° C, 25 ° C and 65 ° C was measured for eight microlenses using a power meter. The average value of the light loss of each was used.
実施例 1〜9は、 H I P処理や、 マスキング材を必要とすることなくマイク 口レンズアレイを作製でき、 さらに温度変化に対する揷入損失が小さかった。 —方、 比較例 1は、 原板を作製するために H I P処理しなければならず、 さら に温度に対する焦点距離変化率 (d f /dT) が大きいため、 温度変化に対す
る挿入損失が大きかった。 また、 比較例 2は、 マスキング材を用意しなければ ならず、さらに、温度に対する焦点距離変化率(d ί / ά Ύ )が小さいものの、 温度変化に対する揷入損失が大きかった。 これは、 基質部の熱膨張係数が大き いために、マイクロレンズアレイの温度に対する軸ずれが大きくなったことに 起因しているものと推察される。 産業上の利用可能性 In Examples 1 to 9, the microphone aperture lens array could be manufactured without the need for the HIP processing or the masking material, and the insertion loss with respect to the temperature change was small. On the other hand, in Comparative Example 1, HIP processing had to be performed in order to produce the original plate, and the focal length change rate (df / dT) with respect to temperature was large. Insertion loss was large. In Comparative Example 2, a masking material had to be prepared, and the rate of change in focal length with respect to temperature (dί / άά) was small, but the input loss with respect to temperature change was large. This is presumed to be due to the fact that the axis deviation with respect to the temperature of the microlens array increased due to the large thermal expansion coefficient of the substrate. Industrial applicability
本発明のマイクロレンズ及びマイクロレンズアレイは、 光スィッチ、 合波分 波器等等の光通信デバイスに好適であり、 特に厳密な焦点距離の精度や高い化 学的耐久性が要求される D WD M及び並列光通信に好適である。
INDUSTRIAL APPLICABILITY The microlens and microlens array of the present invention are suitable for optical communication devices such as optical switches and multiplexing / demultiplexing devices, and in particular, DWD which requires strict focal length accuracy and high chemical durability. Suitable for M and parallel optical communication.