[go: up one dir, main page]

WO2005003343A1 - 新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法 - Google Patents

新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法 Download PDF

Info

Publication number
WO2005003343A1
WO2005003343A1 PCT/JP2004/009606 JP2004009606W WO2005003343A1 WO 2005003343 A1 WO2005003343 A1 WO 2005003343A1 JP 2004009606 W JP2004009606 W JP 2004009606W WO 2005003343 A1 WO2005003343 A1 WO 2005003343A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorylase
maltose
trehalose
amino acid
acid sequence
Prior art date
Application number
PCT/JP2004/009606
Other languages
English (en)
French (fr)
Inventor
Yuko Hidaka
Yuji Hatada
Susumu Ito
Koki Horikoshi
Masahiro Yoshida
Nobuyuki Nakamura
Masayasu Takada
Teruo Nakakuki
Original Assignee
Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology
Nihon Shokuhin Kako Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology, Nihon Shokuhin Kako Co., Ltd. filed Critical Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology
Priority to JP2005511388A priority Critical patent/JP4336897B2/ja
Priority to CN2004800191060A priority patent/CN1816623B/zh
Publication of WO2005003343A1 publication Critical patent/WO2005003343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Definitions

  • the present invention relates to a novel microorganism, a novel enzyme, and a method for producing a novel enzyme. More specifically, a novel microorganism belonging to the genus Paenibacillus (Paeni bad 11 us) having the ability to produce maltose phosphorylase and trehalose phosphorylase necessary for enzymatic production of treoctylose, The present invention relates to novel maltose phosphorylase and trehalose phosphorylase obtained from E. coli, genes encoding the amino acid sequences of these enzymes, and methods for producing these enzymes.
  • Trehalose is expected to have a wide range of uses in medicines, bffi products, foods, etc., and many attempts have been made for industrial production.
  • These technologies can be broadly divided into the following three types.
  • One of them is a method of extracting and purifying the substance from microorganisms having the property of accumulating treoctylose in cells (for example, see J. Am. Chem. Soc. 72, 0.259, 1 950, German Patent No. 2 660 584, Japanese Patent Application Laid-Open No. 3-130804, Japanese Patent Application Laid-Open No. 5-9-1890, Japanese Patent Application Laid-Open No. 5-1843 No. 53 and ⁇ ⁇ Keihei 5—292 9 896).
  • This method involves the steps of culturing microorganisms, separating them, and treating trehalose from microorganisms.
  • the process consists of an extraction process and a purification and crystallization process of the extracted trehalose, and the trehalose production process is very complicated.
  • the amount of microbial extraction residue that is not only low in the properties of Torehachiloose is generated as waste, it was not an efficient method.
  • Brevipacterium is a microorganism that produces trehalose extracellularly.
  • a fermentation method has been developed in which a microorganism of the genus (Brevibacterium) genus Corynebacterium or the like is cultured to produce trehalose (see, for example, Japanese Patent Application Laid-Open No. 5-218182).
  • the accumulation rate of trehalose in the culture medium is as low as about 3% (w / v) .
  • a large-capacity fermenter and a purification scale suitable for it are required.
  • Equipment is necessary and there is an economic problem.
  • in order to obtain purified trehalose not only is it necessary to remove bacteria, but also complicated steps are required to remove contaminants or medium components produced by the used strain at the time of culture. is necessary. ,
  • an enzymatic method has been developed as a method for solving various problems of these fermentation methods. That is, a microorganism-derived maltose phosphorylase (maltose: orthophosphate ⁇ -D-glucosyl transferase) and an algae-derived trehalose phosphorylase ( ⁇ , -treha! Ose: orthophosphate 3 -D-glucosyl transferase) are converted in the presence of phosphoric acid.
  • a method for producing trehalose by reacting with maltose see, for example, Patent No. 1513517, Agric. Biol.
  • trehalose can be produced from maltose or sucrose with a high yield of 60 to 70%.
  • the obtained treoctylose phosphorylase which is used in combination with the cyanose phosphorylase, and maltose phosphorylase, differ greatly in the optimal pH region of each enzyme, and also have very high temperature stability.
  • the reaction for the production of trehalose was only possible at low temperatures of about 25 to 37 ° C. This suggests that PH control when using two enzymes in combination is extremely difficult, but also low, and that bacterial contamination may occur during the enzymatic reaction performed using an open-type reactor.
  • problems such as the necessity of strict hygiene management in order to prevent side reactions caused by this.
  • these known enzymes were used in combination, high raw materials could not be used due to the substrate separation dependence of these enzymes. Therefore, these methods were not economically efficient either.
  • a first object of the present invention is to solve the various problems of the conventional techniques as described above and to provide a novel enzyme maltose phosphorylase and trehalose phosphorylase which satisfy these various requirements. It is an object of the present invention to provide a novel microorganism which can produce E. coli with high production efficiency.
  • the second object of the present TO is to provide a new maltose phosphorylase and a pure octylose phosphorylase that are easy to produce and purify, have high thermostability, and are independent of substrate concentration. .
  • a third object of the present invention is to provide a method for producing maltose phosphorylase and / or treoctylose phosphorylase which can easily obtain the above two enzymes in high yield using the above microorganism.
  • the idea is to provide Disclosure of the invention
  • the inventors of the present invention have developed a broad spectrum of microorganisms capable of producing enzymes having the above-mentioned properties, which should be possessed by maltose phosphorylase and trehalose phosphorylase for use in industrial production. Searched. As a result, no ⁇ enibacillus (Paen i bac ill us) It has been found that a microorganism belonging to the group described above produces a significant amount of both enzymes satisfying the above requirements, thereby completing the present invention.
  • the present invention is an invention having the following contents as its gist.
  • the present invention provides a microorganism of the genus Rhizobium genus having the ability to produce masoleose phosphorylase and trehalose phosphorylase. Specifically, for example, the present invention provides a microorganism having a deposit number of FER BP-8420. It provides Paenib acillus sp. SH-55.
  • the present invention also provides maltose phosphorylase having the following physicochemical properties.
  • (C) Range of action pH, optimum pH and stable pH range The range of action pH is 4.5 to 9.5.
  • the optimal pH for the degradation J3 ⁇ 4S is 7.0 to 8.0, and the optimal pH for the synthesis reaction is 5.5 to 6.5. Under heating conditions at 50 ° C for 10 minutes, the pH is stable within the range of 5.5 to 7.5.
  • the action range is 20-60 ° C.
  • the optimum temperature for the decomposition reaction is around 45 to 55 ° C, and the optimum temperature for the synthesis reaction is 50 to 55 ° C.
  • (H) Inhibitors copper, mercury, N-prosuccinimide, ⁇ -chloromerkiuribenzoic acid (1 mM each), inhibited by sodium dodecylbenzenesulfonate (1%).
  • the present invention has the amino acid sequence represented by SEQ ID NO: i, or an amino acid sequence in which one or more amino acids in the sequence are deleted, substituted, inverted, added or inserted. 2) A maltose phosphorylase according to 2).
  • the present invention has the amino acid sequence shown in SEQ ID NO: 1 having an amino acid sequence having a homology of 52% or more, preferably 70% or more, more preferably 90% or more. And a maltose phosphorylase.
  • the present invention relates to a polynucleotide encoding the amino acid sequence of the mas- terolose phosphorylase described in (2) above, which comprises a group consisting of the following (a) to (c):
  • the present invention also provides a recombinant vector having the polynucleotide of (5) and a microorganism transformed by the recombinant vector. (7) Further, the present invention provides treoctylose phosphorylase having the following physicochemical properties.
  • (C) Range of action pH, optimum pH and stable pH range The range of action pH is 4.5-9.5.
  • the optimal pH of the decomposition J3 ⁇ 4S is 7.0 ⁇ 8.0, and the optimal pH of the synthesis reaction is 5.8 ⁇ 7.8. Under heating conditions of 50 ° C for 10 minutes, it is stable within the range of ⁇ 5.5 to 9.5.
  • the action range is 25 to 0. C.
  • the optimum temperature for the decomposition reaction is around 50-65 ° C, and the optimum temperature for the synthesis reaction is 45-60 ° C.
  • the molecular weight determined by SDS-polyacrylamide electrophoresis is about 89,000 to 900,000 taletons, and the molecular weight obtained by removal is about 190,000 taletones, and is composed of homodimers. .
  • the present invention relates to the amino acid sequence represented by SEQ ID NO: 3 or one or more amino acid deletion, substitution, inversion, addition or insertion in this sequence. 6
  • the present invention provides the trehalose phosphorylase according to (7).
  • the present invention also relates to a polynucleotide encoding the amino acid sequence of trehalose phosphorylase according to (7), wherein the polynucleotide comprises the following groups (d) to (f):
  • the present invention also relates to a recombinant vector having the polynucleotide according to the above (10) and a microorganism transformed with the recombinant vector. .
  • the present invention further provides a maltose phosphorylase according to the above (2) or (3), comprising culturing a microorganism belonging to the genus Baenibacillus having maltose phosphorylase and treoctylose phosphorylase-producing ability. , And Z or at least one of the trehalose phosphorylases according to (7) or (8) above, which is collected and collected.
  • the present invention provides a method for producing octylose phosphorylase or a mixture of both.
  • the present invention provides that the culturing is performed in the presence of a carbon source containing maltose, 4009606
  • the present invention provides the method according to (12), wherein the culturing is performed in the presence of a carbon source containing trehalose, and trehalose phosphorylase is preferentially produced and accumulated.
  • An object of the present invention is to provide a method for producing a ribose phosphorylase or a mixture of maltose phosphorylase and trenopenulose phosphorylase.
  • the present invention is a method for producing a crude enzyme of maltose phosphorylase and / or trehalose phosphorylase selected from any one of the following methods (i) to (iii).
  • phase capable of producing malt phosphorylase and trehalose phosphorylase z
  • a microorganism of the genus Bacillus is cultured, the cells are separated from the resulting culture, and the culture supernatant is collected. .
  • the present invention further provides a maltose phosphorylase according to the above (2) or (3), and a treoctylose phosphorylase according to the above (7) or (8) in the presence of phosphoric acid.
  • Another object of the present invention is to provide a method for producing trehalose, which is characterized by allowing zeto act on maltose.
  • FIG. 1 is a diagram showing the taxonomic position of the microorganism producing the enzyme of the present invention, Baenibacillus sp. SH-55.
  • FIG. 2 is a diagram showing the results of analysis of malt phosphorylase and tolactose phosphorylase of the present invention by SDS-polyacrylamide electrophoresis.
  • FIG. 3 is a diagram showing the pH and the action pH range of the decomposition reaction (open circles) of maltose phosphorylase and trehalose phosphorylase of the present invention (open circles) and the synthesis J3 ⁇ 43 ⁇ 4 (closed circles).
  • FIG. 4 is a diagram showing the relationship between the enzyme activity and pH of maltose phosphorylase (open circles) and trehalose phosphorylase (black circles) of the present invention.
  • FIG. 5 shows the relationship between the maleose phosphorylase (A) and the trehalose phosphorylase of the present invention.
  • FIG. 6 is a diagram showing the heat resistance of malt phosphorylase (open circles) and toreohose phosphorylase (solid circles) of the present invention. JP2004 / 009606
  • the present inventors have proposed that, for the purpose of being usable for industrial production, it is easy to produce and purify, has a high working temperature of ⁇ , has high thermal stability, and has no substrate dependence.
  • the novel strain of the present invention was obtained by the present inventors using a purple submarine ⁇ Deep Sea 2000 '', which is owned by the Japan Agency for Marine-Earth Science and Technology, from a southern offshore Hatsushima, Sagami Bay, at a depth of 7 l at a depth of 117 m. It is newly isolated.
  • Paenibacillus sp. SH-55 An example of such a novel microorganism belonging to Paenibacillus of the present invention is Paenibacillus sp. SH-55.
  • the bacteriological properties of Paenibacillus SP H-55 are shown below.
  • Flagella Yes (extreme flagella)
  • Growth temperature Growing at 15-45 ° C. Does not grow at 50 ° C.
  • Salt concentration grows on 5% salt. Does not grow on more than 7% salt.
  • Oxidase test positive.
  • Orditin decarboxylase production P-type.
  • Lysine decarboxylase production negative.
  • Nitrification reducing ability negative.
  • Casein production Assimilation: glycerol, L-arabinose, ribose, D-xylose, galactose, glucose, fruc I ⁇ -is, mannose, mannii! ⁇ -L, arbutin, esculin, salicin, N-acetyldarcosamine , Lactose, melibio X, trehalose, sucrose, cellobiose, marille! ⁇ There is a lifetime of capital, laffinose, starch, and glycogen.
  • FIG. 1 shows a phylogenetic tree describing the results of analysis based on neighbor-joining. From these results, it was found that the fungus of the present invention is ⁇ 1 close to (Eenibacillus glucanolyticus), but clearly present at a different branch in the phylogenetic tree.
  • PaenibaciNus was determined to be a new species. This was named PaenibaciNus sp. SH-55, and on June 27, 2003, the Independent Research Institute for Past and Future Technology ⁇ Licensed Biological Deposit Center (Postal Service) International Deposit No. 305-8566, Deposit No. FERM BP-8420, at 1-1, Higashi 1-chome, Tsukuba, Ibaraki, Japan
  • the new strain of the present invention was screened as follows. First, the collected seabed mud was suspended in physiological saline, and a drop of the suspension was applied to an agar medium having the following composition.
  • the agar plate medium used was agar 2% (w / v), trehalose or maltose 1%, polypeptone 0.5%, yeast extract 0.5%, diammonium phosphate 0.1%, magnesium sulfate. Seven 7jd 0. It contains 0 2% and has a pH of 7.
  • the agar plate medium was cultured aerobically at 37 ° C to obtain each colony that appeared on the plate, and each colony was placed in a liquid medium having the same composition as that used for the above agar medium ( The cells were cultured with shaking at 180 rpm at 37 ° C for 24 to 72 hours at pH 7). Next, each culture was centrifuged at 12, 00 and 10 minutes at 4 ° C to separate cells and supernatant.
  • the cells thus obtained were suspended in a small amount of 0.1 M phosphate buffered night (pH 7.0), and the activity was measured by a key method. As a result, the strain having the above-mentioned mycological characteristics was able to be isolated.
  • microorganisms belonging to the genus Lactobacillus which are the novel microorganisms of the present invention thus found, are new microorganisms that produce malt phosphorylase and treoctylose phosphorylase.
  • the microorganism is inoculated into an appropriate medium according to a conventional method, cultured, and then cultured. What is necessary is just to collect
  • Culture conditions are preferably in the range of ⁇ J of 25 to 42 ° C from the viewpoint of the growth ⁇ J of the microorganism itself, and it is 'preferable' that the aerobic culture is carried out for 8 to 70 hours.
  • the culture medium used for culturing the microorganism for obtaining the enzyme of the present invention is not particularly limited to the following, and may be a nutrient medium capable of growing the microorganism and producing the enzyme of the present invention. Any of isolated ground and natural medium may be used.
  • the medium may be any carbon source as long as the microorganism can assimilate it.
  • examples of such a medium include sugars such as glycerose, fruc I-I-is, mannose, trehalose, sucrose, mannitol, sorbitol, and molasses.
  • organic acids such as citric acid and co-octanoic acid can be used, but using trehalose, maltose, and saccharides containing these.
  • treoctylose or a saccharide containing the substance is used as a carbon source
  • the microorganism of the present invention preferentially produces treoctylose phosphorylase.
  • the microorganism of the present invention When maltose or a saccharide containing the substance is used as a carbon source, the microorganism of the present invention simultaneously produces maltose phosphorylase and tolactose phosphorylase. Furthermore, when both trehalose and maltose or a saccharide containing these substances are used as the carbon source, trehalose phosphorylase and maltose phosphorylase can be produced simultaneously, and trenoperose and By controlling the amount of maltose, the production ratio of trehalose phosphorylase and maltose phosphorylase can also be controlled.
  • the nitrogen source various kinds of organic and inorganic nitrogen can be used. Further, the medium may contain various kinds of nitrogen. Examples of the nitrogen source include organic nitrogen sources such as corn starch, soybean meal, and various peptones, and inorganic nitrogen sources such as ammonium sulfate, ammonium nitrate, phosphorous ammonium, and urea. Can be used. It goes without saying that urea and organic nitrogen sources can also be carbon sources.
  • the inorganic component for example, calcium salt, magnesium salt, potassium salt, sodium salt, phosphorus, manganese salt, Sift salt, iron salt, the same salt, molybdenum salt, conoreto salt and the like are appropriately used. Furthermore, amino acids, vitamins, and the like are appropriately used as needed.
  • a medium suitable for culturing microorganisms to obtain the enzyme of the present invention specifically, for example, when preferentially producing trehalose phosphorylase, 0.5 to 3% of trehalose is used. (w / v), yeast extract 0.5-2%, ammonium phosphate 0.15%, urea 0.1-0.2%, salt 0.5-1.5%, dipotassium phosphate 0 0 5 to 0.3%, sulfuric acid It is 'suitable' to use a humid site with a pH of 7.0-7.5, containing 0.01% to 0.05% of calcium carbonate and 0.1% to 0.3% of calcium carbonate.
  • maltose phosphorylase and treoctylose phosphorylase are produced simultaneously, maltose 0.5 to 3% (w / v), polypeptone S (Nippon Pharmaceutical) 1-3%, ammonium phosphate 0% 1-0.3%, urea 0.05-0.3%, salt 0.5-1.5%, dipotassium phosphate 0.05-0.25%, magnesium sulfate-77K1 ⁇ 0.01.
  • a liquid containing 0.05% and 0.1-0.3% potassium carbonate can be used.
  • These mediums U can be appropriately changed depending on the type of fiber such as carbon source or nitrogen source without limitation.
  • maltose When maltose is used as a carbon source, not only maltose phosphorylase but also some amount of trehalose phosphorylase is produced. Therefore, it is more economical to use maltose as a carbon source in order to produce a crude enzyme (a mixture of maltose phosphorylase and torachirose phosphorylase) for production of toreja mouth. It is.
  • the cultivation is performed aerobically at a temperature of 20 to 45 ° C, preferably 25 to 42 ° C, and a pH of 5 to 9, preferably 6 to 8.
  • the fermentation time may be any time longer than the time when the microorganisms start to proliferate, and is preferably 8 hours to 70 hours.
  • the ventilation rate may be adjusted, agitated, or added to the ventilation.
  • the culture method may be either batch culture or continuous culture.
  • the produced enzymes of the present invention After culturing the microorganism of the present invention in this way, the produced enzymes of the present invention, maltophosphorylase and treoctylose phosphorylase, are recovered. Most of the enzymes produced are accumulated inside the cells, and some are accumulated outside the cells. Therefore, maltose phosphorylase and / or trerose enzyme produced and accumulated inside or outside the cells. 4 009606
  • the enzyme recovery method of the present invention can be carried out according to general means for collecting enzymes.
  • the method shown below is not particularly limited, but for example, a crushed cell obtained by a cell crushing method such as an ultrasonic crushing method, a French press method, a glass bead crushing method, a dynomill crushing method, or a cultured product may be used.
  • the culture supernatant obtained by separating cells and culture supernatant by operations such as centrifugation and filtration can be used as a crude enzyme solution.
  • This crude enzyme solution can be used as it is, but if necessary, separation methods such as salting-out, sedimentation, and ultrafiltration; 1® removal, for example, ion-exchange chromatography, isoelectric chromatography Chromatography, hydrophobic chromatography, gel filtration chromatography,
  • a gene encoding the enzyme of the present invention is extracted from the above-described strain of the present invention, and then a recombinant microorganism is transformed using genetic engineering techniques. And a method of culturing the recombinant microorganism.
  • nucleotide sequence encoding the amino acid sequence of the enzyme of the present invention is obtained from the above strain, then this nucleotide sequence is inserted into an appropriate vector, and the vector is used to transform a host such as Escherichia coli or Bacillus subtilis.
  • the enzyme may be produced by transforming and culturing the enzyme, and the enzyme of the present invention may be searched for from the culture.
  • Both enzymes of the present invention ie, maltose phosphorylase and trehalose phosphorylase, have the amino acid sequences represented by SEQ ID NOs: 1 and 3 in the sequence listing, respectively. Since one or more amino acids in the sequence of the above are deleted, substituted, inverted, added or inserted amino acid sequences, it is necessary to use nucleotide sequences corresponding to these. is necessary.
  • nucleotide sequence encoding the amino acid sequence of the enzyme of the present invention examples include, in the case of maltose phosphorylase, a polynucleotide selected from the group consisting of the following (a) to (c). Can be
  • the two corresponding enzyme genes are obtained from Shota cloning, PCR amplification using a specific primer, etc., from Baenibacillus sp. 5 1 "1-55. These genes are transformed into EK Escherichia coli. Recombinants are obtained by introducing them into gram-negative bacteria such as (Escherichia coli) or gram-positive bacteria such as BS-based Bacillus subtilis. For the transformation, a method in which extranuclear genes such as plasmids are used all at once, or a method in which the ability of the host bacterium to originally take up DNA or the like can be used can also be used.
  • the present invention is obtained by culturing a microorganism belonging to the genus Baenibacillus of the present invention or a recombinant microorganism into which a gene encoding the amino acid sequence of the enzyme of the present invention has been incorporated, and recovering it from the culture medium.
  • Enzyme can be obtained.
  • the above-mentioned maltose phosphorylase and trehalose phosphorylase which are enzymes of the present invention, accumulate in the culture supernatant of these cultured orchids or extracellular cells, so that they are usually used. It can be obtained by isolation according to the method. First, the enzymes in the cells can be used as crude enzymes together with the cells.
  • the crude enzyme can be recovered by extracting the enzyme from the cells. Further, the enzyme is also contained in the culture supernatant outside the cells, and the remaining culture solution obtained by separating the cells can be used as a crude enzyme-containing solution.
  • these The crude enzyme can be purified using a conventional method such as solvent precipitation with ethanol, acetone or isopropano, ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography and the like. Further, the separation of maltose phosphorylase and treoctylose phosphorylase can be performed by, for example, anion exchange chromatography using the difference in isoelectric point between both enzymes.
  • the enzyme of the present invention obtained in this manner is, as will be described in detail in Examples below, a type 1 enzyme having physicochemical properties as described above, namely, malrethose phosphorylase and Trehalose phosphorylase.
  • the amount of enzyme that produces AtmoIe glucose was defined as one unit of enzyme activity.
  • the novel enzymes maltose phosphorylase and trehalose-phosphorylase of the present invention are the novel microorganisms of the genus Paenibacillus of the present invention (for example, Paenibacil sp SH-55 (Paenibaci Ilus). sp.S H-55)) or a recombinant microorganism into which a gene encoding the amino acid sequence of the enzyme of the present invention has been incorporated, and the culture product can be easily recovered. .
  • these two enzymes of the present invention reversibly phosphorylate the ⁇ -1,4-darcopyranoside bond in maltose and the ⁇ -1,1,1-darcoviranoside bond in trehalose, respectively. It has the characteristic of producing 3-D-glucose 1-phosphate with glucose. Therefore, by combining maltose with these two enzymes in the presence of phosphoric acid, trehalose can be produced extremely efficiently. Moreover, the action ⁇ range of these two enzymes is as wide as 4.5 to 9.5, and the optimal ⁇ range of the two enzymes overlaps, making it very easy to handle in the enzyme reaction.
  • the cells obtained here were suspended in a small amount of 20 mM phosphoric acid at night (pH 7.0) and then disrupted by ultrasonication. Ammonium sulfate was added to the crushed cell suspension to make it 30% saturated, and placed at 4 ° C. Subsequently, the supernatant liquid obtained by removing the precipitate by centrifugation was further added with ammonium sulfate to 70% saturation. The resulting precipitate was left overnight at 4 ° C., collected by centrifugation, dissolved in 20 mM phosphate (pH 7), and dialyzed thoroughly in the same buffer overnight.
  • the enzyme was adsorbed on a DEAE-fract gel (manufactured by Merck) force ram equilibrated with 20 mM phosphoric acid (pH 7).
  • the adsorbed enzyme was eluted by a gradient method from 0 M to 0.5 M salt contained in the above buffer night, and then concentrated by a UF membrane (YM-30, manufactured by Amicon).
  • the enzymatic enzyme was gel-purified on a Cefacryl S-300 (Pharmacia) column containing 0.2 M salt and equilibrated at night as described above.
  • the obtained maltose phosphorylase-active fractions were collected, dialyzed against the same buffer containing 1.5 M ammonium sulfate, and dialyzed in the same buffer containing 1.5 M ammonium sulfate. Enzyme was adsorbed to the column. After the adsorbed enzyme was eluted in the same buffer with a concentration gradient of 1.5 M to 0 M ammonium sulfate, the obtained maltose phosphorylase-active fractions were collected, and the same buffer containing 0.2 M salt was added to the buffer. I prayed.
  • the active fraction is a fraction obtained by separation by gel chromatography or the like, and is a fraction that has been found to have an activity when the activity is measured using maltose or treoctylose as a substrate.
  • Ari means a maltose phosphorylase activity fraction and a trehalose phosphorylase activity fraction, respectively.
  • the plant was planted in a PH 7.0 solution containing 0.1% of magnesium, 0.02% of magnesium sulfate, and 0.2% of calcium carbonate.
  • This liquid medium was cultured in the same manner as in Example 1 and post-treated to obtain a cell lysate and an upper night.
  • the obtained cell lysate and purified night were purified in the same manner as in Example 1, respectively.
  • the purified solution obtained from the cell lysate and the supernatant was subjected to polyacrylamide gel slab electrophoresis and SDS-polyacrylamide gel separation, respectively. 2004/009606
  • Cloning of the maltose phosphorylase gene was performed by the following method.
  • the N-terminal amino acid sequence of the purified enzyme obtained in Example 1 was determined by a conventional method, it had a sequence of MKQYLK L DEW.
  • the purified enzyme was digested in a gel with V8 (Sigma), a kind of protease. In-gel digestion was performed by subjecting 5 ⁇ g of the purified enzyme to an SDS PAGE gel, simultaneously overlaying 1 tg of the V8 protease solution on the purified enzyme solution, and performing electrophoresis to decompose the target enzyme in the gel.
  • Two types of N-terminal amino acid sequences of the obtained protein fragment were determined by a conventional method.
  • PCR was performed using Ex Taq (Takara Bio) using the 3 ⁇ 4fe DNA as a template, and the DNA fragment was amplified.
  • the reaction conditions were as follows: After heating at 96 ° C for 2 minutes, a cycle of 96 ° C for 20 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute was repeated 30 times, and finally 10 ° C at 72 ° C. Incubated for minutes. When J3 ⁇ 4 & solution was electrophoresed on agarose gel. * A DNA fragment of about 0.8 kb base pair was detected.
  • the DNA fragment amplified from the reaction solution was cloned using TACl in Kit (Invitrogen) to prepare a plasmid for nucleotide sequence determination.
  • a fluorescent label RiS was performed using d Rod amine Dye Terminator Cycling Sequencing Reac- tion Reac- tion Kit (PerkinElmer I), and the DNA sequencer 377 (Applied B) was used. iosystems), and the nucleotide sequence at positions 477 to 1304 of the nucleotide sequence shown in SEQ ID NO: 5 was determined.
  • primer MF 1 represented by 5'-CAGTTGGTGCTGTTCAACACTTTG-3 ', and 5'-ATGGCGATGTAAAGAAT Primer MR 1 represented by AAAG-3 ′ was prepared.
  • ligation was carried out at 16 ° C for 1 hour using Ligation Height (Toyobo), and this DNA was used as a template and as a primer.
  • Inverse PCR was performed using LA Taq (Takara Bio) using MF1 and MR1. When the reaction mixture was subjected to agarose gel electrophoresis, a DNA fragment of about 7 kb base pair was detected.
  • the amplified DNA fragment was purified from the reaction solution to prepare DNA for nucleotide sequence determination.
  • a fluorescent label J3 ⁇ 45 using dR 0 d amine Dye Terminator Cle c ue seq u enci nng Rea d y Reac tion Kit (PerkinElmer I) was performed, and DNA sequencer 377 was performed. (Applied Biosystems), and a maltose hoflylase gene represented by the amino acid sequence represented by SEQ ID NO: 1 and the nucleotide sequence represented by SEQ ID NO: 2 was obtained.
  • Primer 1 5 '-ATGACNTGGATGATHAGCAAYC-3'
  • Primer 2 5 '-CCAYAAYTAYTGNCCRTCYTANCC-3' T / JP2004 / 009606
  • PCR was performed by ExTaq (Yu-Kara-Bai) using the above-mentioned primers 1 and 2 with the 3 ⁇ 4fe-form DNA as a template, and the DNA fragment was amplified.
  • the reaction conditions were as follows: After heating at 96 ° C for 2 minutes, a cycle of 96 ° C for 20 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute was repeated 30 times, and finally at 72 ° C for 1 second. It was kept warm for 0 minutes. When the reaction solution was subjected to agarose gel electrophoresis, a DNA fragment of about 1.0 kb base pair was detected.
  • the DNA fragment amplified from the reaction solution was cloned using TA Cloning Kit (Invitrogen) to prepare a plasmid for nucleotide sequence determination.
  • TA Cloning Kit Invitrogen
  • a fluorescent labeling reaction was carried out using dRodamineDineTeterminatorCycleSequencInngReadyReactionKit (Non-Kjelmer), and DNA sequencing was carried out. Analysis was performed using AppI ied B ios ystems), and the nucleotide sequence from the 113th to the 2168th nucleotide in the nucleotide sequence shown in SEQ ID NO: 7 was determined.
  • a primer TF 1 represented by 5'-ACGATGACCAGCTCCAGGAAG-3 'and a primer TR 1 represented by 5, -TCAGATAGGTACCGCGAATGG-3' were prepared.
  • chromosomal DNA was cut with restriction enzyme Xh0I
  • ligation was performed using Ligation on high (Toyobo), and this DNA was used as a template, and TF1 and TR1 were used as primers.
  • inverse PCR was performed using LA Taq (Takara Bay). When the reaction solution was subjected to agarose gel electrophoresis, a DNA fragment of about 6 kb base pair was detected.
  • the amplified DNA fragment was purified from the reaction solution to prepare DNA for nucleotide sequencing. Using this DNA fragment as a template, dRod amine Dye Term inator Cycle Seq ue nc ing Ready Reac ti on Kit (PerkinElmer) PT / JP2004 / 009606
  • the fluorescent labeling reaction was performed and analyzed by DNA Sequencer 377 (Applied Biosystems), and the amino acid sequence represented by SEQ ID NO: 3 and the nucleotide sequence represented by 12 We obtained the gene for Torrehachi-Rose Hofholylase.
  • the molecular weight (by SDS-polyacrylamide electrophoresis) and isoelectric point estimated from SEQ ID NO: 1 and SEQ ID NO: 3 were as follows: maltose phos-tree lyase was '87, 762 tareton and pH 4.98, ⁇ Loose tree sporylase was 87,151 daltons and pH 5.13.
  • Example 4
  • the primer represented by 3 is MF2, and the antisense sequence from the 2649th base that is the termination codon 5 '— TTATTTTGAAGCTGCTGTG-The restriction enzyme Kpn I cleavage site is added to the 3' end of the lignonucleotide represented by 3 '
  • the 5'-TTATTTTGAA GCTGCTGTGGGTACCCCG—3 primer was MR2, MRfe DNA was used as template, and PCR was performed using Pyr0 vest (Takara Bay). A DNA fragment of about 2.3 kbp containing DNA was obtained.
  • the reaction conditions were as follows: After heating at 96 ° C for 2 minutes, a cycle of 96 at 20 seconds, 55 at 30 seconds, and 72 ° C for 2 minutes was repeated 30 times, and finally incubated at 72 ° C for 10 minutes. . Obtained DN After purifying the A fragment, it was digested with restriction enzymes XhoI and KpnI. This was obtained by digesting the plasmid vector pRSETA (Invitrogen) with restriction enzymes Xh0I and KpnI, using 5 ng and Ligationhgh (Toyobo) at 16 ° C.
  • Primer represented by 5'-CGCGGATTCATGACGTGGATGATAAGC AATC-3 'with I cleavage site is TF2, antisense sequence from 3rd base 341 which is a stop codon 5'-TTTTTTGAAGCTGCTGTG-3 5'-TTAT with a restriction enzyme Eco RI cleavage site at the 3 'end of the primer, TR 2 as primer, chromosome DNA as a template, PCR using Pyrobest An approximately 2.3 kbp DNA fragment containing lyase was obtained.
  • J3 ⁇ 45 conditions are as follows: after heating at 96 ° C for 2 minutes, repeat the cycle at 96 ° C for 20 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes 30 times, and finally at 72 ° C. Incubated for 10 minutes. After purifying the obtained DNA fragment, the restriction enzymes BamHI and Ec
  • RSTP l was created. This was introduced into the E. coli BL 21 (DE 3) p Lys S (F-'ompT hsdS (rB--) gal dcm (OE3) pLysS (Cam R )) strain using the competent cell method. Transformed S. cerevisiae R STP1 was obtained.
  • a single colony of RSMP1 or RSTP1 of the obtained transformant was placed in an Erlenmeyer flask having a capacity of 30 OmL in an LB medium (1% bactopeptone, 0,5% yeast extract, 0,5% sodium chloride). ) With ampicillin solution The chloramphenicol solution was inoculated into 3 OmL of a solution added to a final volume of 34 g / mL, and incubated at 37 C, 180 rpm T16 for 6 hours to obtain SMP1 or RSTP1. A seed culture was prepared.
  • the transformant was cultured as follows. That is, for each of the transformants RSM P1 or R STP1, 0.5 L of LB medium (1% of bactopeptone, 0.5% of yeast extract, 1% of sodium chloride) was placed in a 2 L Erlenmeyer flask. After sterilization, add the ampicillin solution to a final concentration of 50 tg / m, add the chloramphenicol solution to a final concentration of 34 g / ml, and transfer the seed culture using RSMP1 or RSTP1. Inoculate each to 1%; C, OD 60 at 180 rpm. (Turbidity at 600 nm) was 0.5.
  • IPTG isopropylthiogalacto viranoside
  • Bacillus subtilis was performed by the following method. That is, the DNA sequences of maltose phosphorylase and trehalose phosphorylase obtained in Example 3 were ligated into PHY300 PLK (Yukara Co., Ltd.), an expression vector for Bacillus subtilis, respectively. was IS W1224 (/ e "A8 me hsm) to obtain transformants BSMP1 and BSTP1.
  • a Syndal colony of BSMP1 or B STP1 of the obtained transformant was placed in a test tube in a PM medium (polypeptone S4%, maltose 4%, yeast mash 0. 1%, LAB L EMCO POWDER (Oxoid) 0.2%, potassium dihydrogen phosphate 0.1%, magnesium sulfate 0.02%, calcium chloride 0,02%, tetracycline 15 tg / mL ) was planted in 5 mL, and cultured at 30 C and 120 rpm for 24 hours to prepare a seed culture solution of BSMP1 or BSTP1.
  • PM medium polypeptone S4%, maltose 4%, yeast mash 0. 1%, LAB L EMCO POWDER (Oxoid) 0.2%, potassium dihydrogen phosphate 0.1%, magnesium sulfate 0.02%, calcium chloride 0,02%, tetracycline 15 tg / mL
  • a PM medium polypeptone S 4%, maltose 4%, yeast extract 0.1%, LAB LEMCO POWDER (Oxo id) 0.2 30%, 0.1% rhodium dihydrogen phosphate, 0.02% magnesium sulfate, 0.02% calcium chloride, 15 tg / mL tetracycline
  • inoculate 1% of the above seed culture with 30% Culture was performed at 120 ° C. for 64 hours at 120 ° C. After completion of the culture, the culture solution was centrifuged at 10,000 ⁇ 10 minutes for 10 minutes to obtain a culture supernatant and cells of BSMPMP and BSTP1.
  • the cells were ultrasonically disrupted and centrifuged at ⁇ 2000 ⁇ for 15 minutes to prepare a crude extract. When the respective activities were measured, it was 0.2 single & / mg for malt phosphorylase and 0.1 0.1 ii / mg for the bacterial cells, and 0.1 ha ii / mg for trehalose phosphorylase. 0.4 single & / mg, 0.2 single i / m g.
  • Example 6 Example 6:
  • the phosphorylase of the present invention includes Bacillus sp. RK-1 (Bacillus sp. RK-1, AB 0084460), Entelococcus hirae (Enterococcus hirae, E21769), and Lactobacillus brevis.
  • the trehalose phosphorylase of the present invention may be a Bacillus stearosa morphophilus S K1
  • a 1% (w / v) solution of malIs and trehalose in 1 OmM phosphate buffer (pH 7.0) was added to the solution of mal! ⁇ -Phosphorylase and trehalose phosphorylase as substrates. After adding 5 units (decomposition reaction activity) to 1 g each and reacting at 50 ° C for 5 hours, the enzyme was inactivated by heating in a boiling water bath for 3 minutes. The sugar in the obtained saccharified solution was measured by high performance liquid chromatography, and as a result, glucose and glucose monophosphate were respectively detected.
  • the synthesis reaction was confirmed by No synthesis reaction of disaccharide from glucose and a-D-glucose 1-phosphate was detected, and the production was analyzed by the following method.
  • the insolubles in the saccharified solution obtained by heat inactivation were separated by filtration through a 0.45 ⁇ pore size membrane filter.
  • the obtained filtrate was used as a test sugar solution, and measurement was performed by a high performance liquid chromatography method using a YMC-Pack, ODS-AQ (AQ-304, manufactured by YMC) column. Water was used for the mobile phase, the column temperature was 30 ° C, and a differential refractometer was used for detection.
  • the substrate to be used is torehose, isomale! ⁇ -Isose, neotrehalose, sucrose, lactose, or cellobiose. Degradation activity of these substrates was examined, but no enzymatic activity was observed for these substrates.
  • the substrate to be used is replaced with maltose, isoma! Instead of trehalose, neat trehalose, sucrose, lactose, or cellobiose. Degradation activities of these substrates as substrates were examined, but no enzymatic activity was observed for these substrates.
  • the optimum PH is ⁇ 7.0-8.0 for the degradation of Torehachirose phosphorylase J3 ⁇ 45 (open circles), and the synthesis reaction (black circle) is ⁇ 5.8-7.8. Was optimal.
  • the effect range was 4.5 to 9.5 for both the decomposition reaction and the synthetic J ⁇ ⁇ &.
  • the decomposition temperature of trehalose phosphorylase (open circle) has an optimum working temperature around 50 to 65 ° C (50 mM phosphoric acid, pH 7.0, pH 7.0), and the working temperature range is 25 to 70 ° C.
  • the optimum working temperature was around 45-60 ° C, and the working temperature range was 25-70 ° C.
  • Degradation activity of maltose tree sporolase and trehalose phosphorylase was measured in the presence of various inorganic ions and inhibitors. As a result, the activities of both enzymes were strongly inhibited by copper, 7k silver, N-prosuccinimide, and chloromethyluribenzoic acid (1 mM each). Maltose phosphorylase was strongly inhibited by SDS (1%), but trehalose phosphorylase was not.
  • the isoelectric point of maltos-phosphorylase and trehalose phosphorylase was measured by iso-elect mouth focusing gel (manufactured by FMC BioProducto). As a result, maltose phosphorylase was ⁇ 4.8-5.0 (calculated value, ⁇ 4 98), and the value of trehalose phosphorylase was ⁇ 4.8-5.2 (calculated value, ⁇ 5.13).
  • H Molecular weight by gel filtration
  • the molecular weights of malt phosphorylase and tolactose phosphorylase were measured by gel filtration using Cefacryl S-200. As a result, the amount of both enzymes was about 190,000 daltons in the gel filtration method, but about 89,000 to 90,000 tariles of mal! Phosphorylase in the SDS-polyacrylamide electrophoresis method. Tons (calculated, 92,233 tallileton) and trenodulose phosphorylase were approximately 89,000 to 90,000 tallileton (calculated, 91,280 tallileton). It was expected to be composed of homodimers. The molecular weight of both recombinases is slightly larger than that of the wild type because the His tag and the 23 amino acid sequence of the spacer are added at the N-terminus. Because it is.
  • Example 8 The molecular weight of both recombinases is slightly larger than that of the wild type because the His tag and the 23 amino acid sequence of the spacer are added at the N-
  • the supernatant was concentrated on a UF membrane (YM-30) manufactured by Amicon to obtain about 50 OmL of extracellular concentrated crude enzyme.
  • the activity was about 25% of the total activity (about 14 ⁇ 10 3 units).
  • the cells were thoroughly washed with a 10 mM phosphoric acid solution (pH 7), suspended in 240 mL of the same buffer overnight, and disrupted with an ultrasonic cell disrupter.
  • trehalose phosphorylase activity by a conventional method, about 75% of the total activity was contained in the cells.
  • toretoose can be preferentially produced, in which case about 75% of the enzyme is contained in the cells, and 25-
  • Example 2 In the medium components used in Example 2, the amount of trehalose was replaced with maltose, and the amount of yeast extract 2% was replaced with Polypeptone FC (manufactured by Nippon Pharmaceutical Co., Ltd.) 4.5% (w / v). Other than that, Baenibacillus sp. SH-55 was cultured under the same conditions and method. As a result of measuring the activity of maltose phosphorylase and trehalose phosphorylase in this culture, 0.8 units of maltose phosphorylase and 0.5 units of trehalose phosphorylase were detected per mL of culture. Was producing.
  • Example 8 Centrifugation was carried out in the same manner as in Example 8 to obtain about 50 g of cells (wet amount) and 7 L (liter) of supernatant. Maltose phos in the obtained cells and supernatant As a result of measuring the holyrase activity, it was found that about 80% of the total activity of malt phosphorylase was contained in the simplicity (culture supernatant). In addition, about 80% of the total activity of trehalose phosphorylase is contained in the cells, and about 20% is contained outside the cells (culture supernatant). The culture supernatant was concentrated in the same manner as in Example 1 to obtain about 33 OmL of the concentrated enzyme. The enriched enzyme contained approximately 550 units of malus phosphorylase and 500 units of trehalose phosphorylase.
  • Example 11 After heating in a boiling water bath at 100 ° C for 5 minutes to inactivate dalcoamylase, the insoluble protein produced is removed with a 0.45 membrane filter, and the filtrate obtained contains trehalose. The amount was measured by a liquid chromatography method (HPLC method) using a YMC-Pack ODS-AQ (AQ-304, YMC) column. The measurement was performed using water as the mobile phase, the column temperature was set at 30 ° C, and a differential refractometer was used for detection.
  • HPLC method liquid chromatography method
  • YMC-Pack ODS-AQ AQ-304, YMC
  • the present invention there is provided a novel microorganism capable of producing maltose phosphorylase and trehalose phosphorylase necessary for enzymatic production of trehalose in and out of cells. Since the microorganism of the present invention is a bacterium, In addition to green algae and basidiomycetes, which are known as sources of i-ze, the method for obtaining the enzyme is not only very easy, but also the cultivation time can be greatly reduced and it is economical. Furthermore, the microorganism of the present invention has practically remarkable advantages also in that it can simultaneously produce two kinds of enzymes required for the enzymatic production of trehalose using only one kind of microorganism.
  • the two enzymes of the present invention satisfy all of the requirements required for enzymatic production of trehalose, so that the effective use of the obtained trehalose is remarkably facilitated, and economically. Can also achieve significant improvements. That is, the maltose phosphorylase and trehalose phosphorylase of the present invention have high ⁇ stability and can be used only at high temperature of the enzyme J3 ⁇ 4s, so that they can be free from bacterial contamination during the reaction. Furthermore, since both enzymes have almost the same optimum pH range, there is an advantage that complicated pH control during the reaction is not required.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ生産能を有する新規なパエニバチルス属微生物、およびマルトースのみに作用し、マルトース中のα−1,4−グルコピラノシド結合を可逆的に加リン酸分解する新規なマルトースホスホリラーゼ、並びにトレハロースのみに作用し、トレハロース中のα−1,4−グルコピラノシド結合を可逆的に加リン酸分解する新規なトレハロースホスホリラーゼ、並びにこれらの酵素の製造方法を提供する。 この酵素は、従来の方法に比較し酵素の取得が容易であり、培養時間も大幅に短縮することができ、かつ、高い温度安定性を有し、両者がほぼ同じ最適pH範囲を有している。

Description

明 細 書 ifi見微生物、 マル卜ースホスホリラーゼおよび卜レ八ロースホスホリラーゼ並びに その製造方法 技術分野
本発明は、新ΐよ微生物、新規な酵素及び新規な酵素の製造方法に関する。更に詳し くは、 トレ八ロースを酵素的に生産する場合に必要なマル卜ースホスホリラーゼおよび 卜レハロースホスホリラーゼの生産能を有するパェニバチルス(Paen i bad 1 1 us) 属に 属する新規微生物、この微生物から得られる新規なマル卜ースホスホリラーゼおよび卜 レハロースホスホリラーゼ、 これらの酵素のアミノ酸配列をコードする遺伝子、並びに これら酵素の製造方法に関するものである。
背景技術
卜レハロースは、 医薬品、 ィ bffi品、 食品などに広い用途が期待され、 従来から工業生 産するための多くの試みがなされてきた。これらの技術は大別して次の三つに する ことができる。その一つはトレ八ロースを菌体内に蓄積する性質を有する微生物から該 物質を抽出精製する方法である (例えば、 J. Am. Chem. Soc. 7 2巻, .2 0 5 9頁, 1 9 5 0年、 ドイツ特許第 2 6 6 5 8 4号公報、特開平 3— 1 3 0 0 8 4号公報、特開平 5 — 9 1 8 9 0号公報、特開平 5— 1 8 4 3 5 3号公報およ ζ ^寺開平 5— 2 9 2 9 8 6号 公報を参照)。 この方法は、 微生物の培養工程、 分離工程、 微生物からの卜レハロース の抽出工程、抽出したトレ八ロースの精製結晶化工程から構成されており、 トレハロー スの製造工程が非常に複雑である。しかも、 トレ八ロースの 性が低いばかりでなぐ 多量の微生物抽出残査が廃難として発生するため、経 効率の良い方法とは言えなか つた。
また、 卜レハロースを菌体外に生産する微生物として、 ブレビパクテリゥ厶
(Brevibacterium)属ゃコリネバクテリウ厶 (Corynebacterium) 属等の微生物を培養し てトレ八ロースを生産させる発酵法が開発されている(例えば、特開平 5— 2 1 1 88 2号公報参照)。 しかしながら、 この方法においても卜レハロースの培地中の蓄積率は 約 3% (w/v) と低いため、 卜レハロースを工業的に大量生産するためには大容量の 発酵槽とそれに見合う規模の精製設備が必要であり経済的に問題がある。 しかも、 この 方法においても精製した卜レハロースを得るためには除菌操作が必要とされるばかリ でなく、 ±咅養時に使用菌株が生産する夾雑物あるいは培地成分等の除去に煩雑な工程が 必要である。 、
—方、 これら発酵法の種々の問題点を解決する方法として酵素法が開発されている。 即ち、 微生物由来のマル卜一スホスホリラーゼ(maltose:orthophosphate β -D-glucosyl transferase) と藻類由来の卜レハロースホスホリラーゼ( α, -treha!ose:orthophosphate 3 -D-glucosyl transferase) をリン酸存在下でマル I— スに作用させてトレハロースを生産する方法 (例えば、 特許第 1 51 351 7号公報、 Agric. Biol. Chem,, 49巻, 2 1 1 3頁, 1 985年を参照) 、 および細菌由来のシュ 一クローズホスホリラーセ (sucrose: orthophosphate α-D-glucosy I transferase;と担 子囷由来の卜レノヽロースホスホリラ一ゼ ( α, a -treha!ose:orthophosphate a -D-glucosyl transferase) をリン酸存在下で蔗糖に作用させて卜レ八ロースを得る方 法 (例えば、 平成 6年度日本農芸化学会大会講演要旨集 3 R a 1 4を参照) とが報告 されている。これらの方法によればマル! ^一スあるいは蔗糖から 6 0〜 7 0 %の高い収 率でトレ八ロースが生成することができる。 また、原料として精製された高縮の糖質 を使用することから、酵素反応により得られるトレ八ロースの精製も容易であり、他の 方法に i:tlSして工業的に有利な方法であると考えられている。 しかしながら、 これらの 方法においても使用される酵素、特に、 卜レハロースホスホリラ一ゼの供給源がユーグ レナやマイタケなどのように藻類や担子菌と tゝう非常に限られたものであリ、安定して 酵素を生産するためには経済的な問題ばかりでなく技術的にも困難な点があった。 しか も、得られるトレ八ロースホスホリラーゼゃこれに組み合わせて用いられるシユークロ —ズホスホリラーゼゃマル卜ースホスホリラーゼはそれぞれの酵素の至適 p H領域が 大きく異なっており、 また、温度に対する安定性も非常に低く、 卜レハロースの生成反 応は 2 5〜3 7 °C程度の低温下でしか行えなかった。 このことは、 2種類の酵素を組み 合わせて使用する際の P H管理が非常に困難であるばかりでなぐ が低いため 解放型の反応槽を用いて行われる酵素反応時に雑菌汚染が起こることを示唆しておリ、 これによる副次的な反応を防止するために厳密な衛生管理を必要とする等の問題点を 有している。 さらには、 これら公知の酵素を組み合わせて用いる場合、 これらの酵素の 有する基質離依存性の為に高 の原料が使用出来なかった。 この為、 これらの方法 も経済的に効率の良い方法とは言えなかった。
更に ¾^解物を基質として、 トレハロースを得る方法が報告されている。 この方法 によれば、 嫩分解物に末端にトレハロース構造を有する非還元性糖質を生成させるマ ル卜オリゴシル卜レハロース生成酵素と、この非還元性糖質から特異的に卜レハロース を遊離する卜レハロース遊離酵素を作用させ、 ^^から 8 0 %の高い収率で卜レハロー スが生成する (例えば、特開平 7— 1 4 3 8 7 6号公報、 欧州特許出願 6 2 8 6 3 0 A 2号明細書、 日本農芸化学会講演要旨集、 p 3 1 ( 1 9 9 5 ) 参照) 。 しかしながら、 本方法では;屏漱を基質としているため、当該酵素を固定ィ匕して基質を通液することが困 難であり、 リアクタ一などの更なる製造の簡 匕及び効率化が困難であった。更に、 卜 レハロースを結晶化した後に得られる分蜜液の再糖ィ匕プロセスの構築も困難であった。 以上のことから、 その製造および精製が容易で、 かつ高い熱安定性を有し、 依存性が無い新たなマル卜ースホスホリラーゼおよび卜レ八ロースホスホリラーゼを 見出すことができれば、容易に且つ大量に入手できるマル卜一スを原料として高収率で しかも容易に且つ効率よく卜レ八ロースを製造することが期待できる。
そこで、 本発明の第一の目的は、 上記のような従来の技術の種々の問題点を解決し、 これらの種々の要求を満足する新規な酵素であるマル卜ースホスホリラーゼおよび卜 レハロースホスホリラーゼを高い生産効率で生成し得る新規微生物を提供することに ある。本発 TO第二の目的は、製造および精製が容易で、 高い熱安定性を有し、基質濃 度依存性が無い新たなマル卜ースホスホリラーゼおよび卜レ八ロースホスホリラーゼ を提供することにある。 さらに本発明の第三の目的は、 上記微生物を用いて、 上記の 2 種類の酵素を容易に且つ高い収率で得ることができるマルトースホスホリラーゼおよ び/または卜レ八ロースホスホリラーゼの製造方去を提 ί共することにある。 発明の開示
本発明者らは、工業的生産に使用するためのマル卜ースホスホリラ一ゼおよび卜レ八 ロースホスホリラーゼが具備すべき、上述の諸性質を有する酵素を生産する能力を持つ 微生物を得るべく広く天觸を検索した。 その結果、ノ \°ェニバチルス (Paen i bac i l l us) に属する微生物が上記要件を備えた両酵素を著量生産することを見出し、本発明を完成 せしめたものである。
即ち、 本発明は、 以下に記載した内容をその要旨とする発明である。
(1)本発明は、 マソレ卜ースホスホリラーゼぉよびトレハロースホスホリラ一ゼ生 産能を有するノ \°ェニバチルス属微生物を提供するものであり、 具体的には、 例えば、 寄託番号 F E R BP— 8420のパェニバチルスエスピー S H— 55 (Paenib acillus sp. SH-55) を提供するものである。
(2) また、 本発明は、以下に示す理化学的性質を有するマルトースホスホリラ一ゼを 提供するものである。
(ィ)作用:マル卜一ス中の a— 1, 4—ダルコビラノシド結合を可逆的に加リン酸分 解し、 グルコースと i8-D—グルコース 1—リン酸を生成する。
(口)基質特異性(分解反応):マル卜—スに作用し、 卜レ八ロース、 シユークロース、 ラク卜ース、 セロビオースなどには作用しない。
(ハ) 作用 PHの範囲、 最適 pHおよび安定 pH範囲:作用 pHの範囲は 4. 5〜9. 5である。 分解 J¾Sの最適 pHは 7. 0〜8. 0であり、 合成反応の最適 pHは 5. 5 〜6. 5である。 50°C、 1 0分間の加熱条件下では pH5. 5〜7. 5の範囲内で安 定である。
(二)作用 の範囲と最 :作用 範囲は 20〜60°Cである。 45〜55°C 近傍に分解反応の最適温度を有し、 合成反応の最適显度は 50〜55°Cである。
(ホ) 安定性: pH 6. 0、 1 5分間の加熱条件下では 50 °Cまで極めて安定で ある。 また、 70°Cで完全に失活する。
(へ) 阻害剤:銅、 水銀、 N—プロモサクシニイミド、卫—クロロマーキユリ安息香酸 (各々 1 mM)、 ドデシルベンゼンスルホン酸ナトリウム (1 %) で阻害される。 (卜) 等電, : pH4. 8〜5. 0の範囲にある。
(チ) SDS—ポリアクリソレアミド電気泳動法による分子量は約 89, 000〜90, 000ダル卜ン、 ゲル 法による分子量は約 1 90, 000夕つレ卜ンであリ、 ホモ 2量体から構成されている。
(3) また、 本発明は、 配列番号 "iで示されるアミノ酸配列、 またはこの配列中の 1 個もしくは複数アミノ酸が欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列 を有する、 前記( 2 )に記載のマルトースホスホリラーゼを提供するものである。
(4) また、 本発明は、 配列番号 1で示されるアミノ酸配列と 52%以上、 好ましく は 70%以上、 更に好ましくは 90%以上の相同性を有するアミノ酸配列を有する、 前記(2)に記載のマル卜ースホスホリラーゼを提供するものである。
(5) また、 本発明は、 前言己 (2) に記載のマソレ卜一スホスホリラーゼのアミノ酸配 列をコードするポリヌクレオチドであって、 下記の (a)〜 (c) からなる群、
( a )配列表の配列番号 1に示すァミノ酸配列を有するポリぺプチドをコードするポリ ヌクレオチド、
(b) 配列表の配列番号 1に示すアミノ酸配列中の Ί個もしくは複数個のアミノ^^ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ —ドするポリヌクレオチド、 および
( c ) 配列表の配列番号 2に示すヌクレ才チド配列を有するポリヌクレ才チド、 より選ばれたポリヌクレオチドのいずれかを提供するものである。
(6) また、 本発明は、 前記 (5) に記載のポリヌクレオチドを有する組換えべクタ 一および該組換えべクタ一によリ形質転換された微生物を樹共するものである。 (7) 更に、 本発明は、 以下に示す理化学的性質を有するトレ八ロースホスホリラー ゼを提供するものである。
(ィ)作用: 卜レハロース中の (¾— 1, 1—ダルコビラノシド結合を可逆的に加リン酸 分解し、 グルコースおよび /8 - D—ダルコース 1ーリン酸を生成する。
(口)基質特異性(分解反応): 卜レハロースに作用し、マルトース、シユークロース, ラク卜ース、 セロビオースなどに作用しない。
(ハ) 作用 pHの範囲、 最適 pHおよび安定 pH範囲:作用 pHの範囲は 4· 5〜9. 5である。 分解 J¾Sの最適 p Hは 7 · 0-8. 0であり、 合成反応の最適 p Hは 5 · 8 〜7. 8である。 50°C、 1 0分間の加熱条件下では ρΗ5. 5〜9· 5の範囲内で安 定である。
(二)作用 の範囲と最 :作用 範囲は 25〜了 0。Cである。 50〜 65 °C 近傍に分解反応の最適温度を有し、 合成反応の最適温度は 45〜60°Cである。
(ホ)温度に対する安定性: H7. 0、 1 5分間の加熱条件下では 60°Cまで極めて 安定である。 また、 70°Cで完全に失活する。
(へ) P且害剤:銅、 7k銀、 N—プロモサクシニイミド、 卫—クロロマーキユリ安息香 酸で阻害される。 ドデシルベンゼンスルホン酸ナトリウム (1 %) で阻害されない。
(卜) 等電点 ρΗ4· 8〜5· 2の範囲にある。
(チ) S D S—ポリアクリルアミド電気泳動法による分子量は約 89000〜 900 00タレ卜ンであり、ゲ 去による分子量は約 1 90, 000タリレ卜ンであり、ホ モ 2量体から構成されている。
(8) また、 本発明は、 配列番号 3で示されるアミノ酸配列またはこの配列中の 1個 もしくは複数アミノ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を 6
8
有する、 前記( 7 )に記載の卜レ八ロースホスホリラーゼを提供するものである。
(9) また、 本発明は、 配列番号 3で示されるアミノ酸配列と 63%以上、 更には 7 5%以上、 好ましくは 90%以上の相同性を有するアミノ酸配列を有する、 前記(7) に記載の卜レ八ロースホスホリラーゼを提供するものである。
(1 0) また、 本発明は、 前記 (7) に記載のトレハロースホスホリラーゼのァミノ 酸配列をコードするポリヌクレオチドであって、 下記 (d) 〜 (f) からなる群、
( d ) 配列表の配列番号 3に示すァミノ酸配列を有するポリぺプチドをコ一ドするポ リヌクレオチド、
(e) 配列表の配列番号 3に示すアミノ酸配列中の 1個もしくは複数個のァミノ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ ードするポリヌクレオチド、 および
( f ) 配列表の配列番号 4に示すヌクレ才チド配列を有するポリヌクレ才チド、 から選ばれるポリヌクレ才チドのいずれかを提供するものである。
(1 1) また、 本発明は、 前記 (10) 記載のポリヌクレオチドを有する組換えべク 夕一および該$且換えべク夕一によリ形質転換された微生物を撤共するものである。
(1 2) 更に、 本発明は、 マル卜一スホスホリラ一ゼおよびトレ八ロースホスホリラ —ゼ生産能を有するバエ二バチルス属微生物を培養し、 前記 (2)若しくは (3) に 記載のマルトースホスホリラーゼ、 および Zまたは前記 (7) 若しくは (8) に記載 のトレ八ロースホスホリラ一ゼの少なくとも一つを生成 ·蓄積させ、 これを採取する ことを特徴とする、 マル卜一スホスホリラ一ゼ若しくはトレ八ロースホスホリラーゼ または両者の混合物の製造方法を提供するものである。
(1 3) また、 本発明は、 前記培養を、 マルトースを含む炭素源の存在下で行い、 マ 4009606
9 ル卜ースホスホリラーゼおよび卜レ八ロースホスホリラーゼを生成 ·蓄積させること を特徴とする、 前記 (1 2) に記載のマルトースホスホリラーゼまたはマルトースホ スホリラーゼと卜レ八ロースホスホリラーゼの混合物の製造方法を提供するものであ る。
(14) また、 本発明は、 前記培養を、 トレハロースを含む炭素源の存在下で行い、 トレ八ロースホスホリラ-ゼを優先的に生成 '蓄積させる、 前記 (1 2) に記載の卜 レハロースホスホリラーゼまたはマルトースホスホリラーゼと卜レノヽロースホスホリ ラーゼの混合物の製造方法を提供するものである。
(1 5) また、 本発明は、 次の(i)乃至 (iii)のいずれかの方法から選ばれるマルトー スホスホリラ一ゼおよび/または卜レ八ロースホスホリラーゼの粗酵素の製造方法で あ 。
(i) マル I スホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する バエ二バチルス属微生物を培養し、得られた培養液から分離した菌体をそのままの採取 する、
(ii) マル I ^一スホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する パェニバチルス属微生物を培養し、得られた培養液から分離した菌体からマルトースホ スホリラーゼおよび/または卜レ八ロースホスホリラーゼ粗酵素を抽出する、 または、
(iii) マル卜一スホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する パェ: zバチルス属微生物を培養し、得られた培養後の培養液から菌体を分離し、培養上 清液を採取する。
(1 6)更に、 本発明は、 燐酸の存在下で、 前記(2) または (3) に記載のマルトー スホスホリラーゼ、 および前記(7) または(8) に記載のトレ八ロースホスホリラ一 ゼをマルト一スに作用させることを特徴とするトレハロースの製造方法を提供するも のである。 図面の簡単な説明
図 1は、 本発明の酵素を生産する微生物であるバエ二バチルスエスピー S H— 5 5の分類学的位置を示す図である。
図 2は、 本発明のマル卜一スホスホリラ一ゼと卜レ八ロースホスホリラーゼの S D S一ポリアクリルアミド電気泳動法による分析の結果を示す図である。
図 3は、 本発明のマル卜ースホスホリラーゼと卜レ八ロースホスホリラーゼの分解 反応(白丸) と合成 J¾¾ (黒丸) の廳 p Hと作用 p H範囲を示す図である。
図 4は、 本発明のマルトースホスホリラ一ゼ (白丸) と卜レハロースホスホリラー ゼ(黒丸) の酵素活性と p Hの関係を示す図である。
図 5は、 本発明のマリレ卜一スホスホリラーゼ (A) と卜レハロースホスホリラ一ゼ
( B) の分解 J¾5 (白丸) と合成反応(黒丸) の酵素活性と作用 の関係を示す図 'あ 。
図 6は、 本発明のマル卜一スホスホリラ一ゼ (白丸) とトレ八ロースホスホリラー ゼ(黒丸) の耐熱性を示す図である。 JP2004/009606
11
発明を実施するための最良の形態
以下、 本発明について更に詳しく説明する。
本発明者らは、 工業的生産に使用可能なことを目的として、 その製造と精製が容易 で、 作用温度が ]±¾的高ぐ 高い熱安定性を有し、 かつ基質 依存性のないマル卜 ースホスホリラーゼおよび卜レ八ロースホスホリラーゼを生産する能力を持つ微生物 を得るべく広く天然界を検索し、その結果、パェニバチルス (Paeni bacillus)に属す る新規微生物が上記要件を備えた二つの酵素を著量生産することを見出した。
即ち、 本発明の新規菌株は、 本発明者等により、 海洋研究開発機構が保有する紫毎 探査潜水艇「深海 2000」 を用いて、 相模湾初島南東沖、 7l深 1 1 74mの海底泥 から新たに単離されたものである。
このような本発明のパェニバチルスに属する新規な微生物の一例として、バエニバチ ルスエスピー SH-55 (Paenibacillus sp. SH-55) が挙げられる。 以下にパ ェニバチルスエスピー S H— 55の菌学的諸性質を以下に示す。
<形態的性質 >
細胞の形態:桿菌
細胞の大きさ:(0, 7〜0. 9 x2. 0〜4· 0 tm)
運動性:有り
鞭毛:有り (極鞭毛)
胞子形成:有り
<生育状態 >
コロニーの形態:不規則で周辺はやや波状である。 光沢があリクリ一厶色 (無均一) をしている。
生育温度: 1 5〜4 5 °Cで生育する。 5 0 °Cで生育しない。
食塩濃度: 5 %の食塩で生育する。 7 %以上の食塩で生育しない。
嫌気での生育性:生育しない。
理学的性質 >
グラム ¾fe性:陰性
O - Fテスト (グルコース): P倉性。 グルコースから酸とガスを生成しない。 カタラーゼテス卜:陽性。
ォキシダーゼテス卜:陽性。
ゼラチン分解能:陰!^
カゼイン分解能:陽性。
デンプン分解能:腸性。
馬尿酸塩分解能;陰性
O N P Gテス卜:陽性。
ゥレアーゼ産生:陽性。
オル二チンデカルポキシラーゼ産生: P倉性。
リシンデカルボキシラーゼ産生:陰性。
硫ィ Μ素生産:陰性。
インドーリ 産:陰性。
硝離還元能:陰性。
硫ィ 素産生:陰性。
ァセ卜イン産生 (V Pテス卜): P倉性。 資化性:グリセロール、 L—ァラビノース、 リボース、 D—キシロース、 ガラク卜 ース、 グルコース、 フラク I ^一ス、 マンノース、 マンニ! ^一ル、 アルブチン、 エスクリ ン、サリシン、 N—ァセチルダルコサミン、ラク卜ース、メリビオー X、 卜レハロース、 シユークロース、 セロビオース、 マリレ! ^一ス、 ラフイノース、 デンプン、 グリコーゲン の資ィヒ 1生が有る。 また、 この本発明菌の 1 6 S r DNA配列を CLUSTAL X Mu i t i p I e Seq u e n c e A I i g nme n t P r og r am (ve r s i o n 1.81 ) 用いて 学的位置を解析した。解析した結果を n e i g h b o r - j o i n i n g¾ に基づき記載した系統樹を図 1に示す。 この結果から、 本発明菌は、 ^1的に ( ェニ バチルスダルカノリテイクス(Paenibacillusglucanolyticus)に近い位置にあるが、 明らかに系統樹において異なった分岐に存在する。 従って、 パェニバチルス
(PaenibaciNus) 属の新種であると判断した。 そして、 これをパェニバチルス エス ピー SH-55 (PaenibaciNus sp. SH-55) と命名し、 平成 1 5年 (2003 年) 6月 27日に、 独立行 去 業技術総合研究鹏許生物寄託センター(郵便番号 305-8566、 日本国茨城県つくば市東 1丁目 1番地 1 中央第 6) に寄託番号 FERM BP— 8420として国際寄託した。 本発明の新菌株は次のようにしてスクリーニングした。 まず、採取した海底泥を生理 食塩水に懸濁し、該懸濁液 Ί滴を以下の組成の寒天培地に塗沬した。使用した寒天平板 培地は、 寒天 2% (w/v), 卜レハロースまたはマルトース 1 %、 ポリペプトン 0. 5 %、酵母エキス 0. 5 %、 リン酸ニ力リウ厶 0. 1 %,硫酸マグネシウム■七 7jd 0. 0 2 %を含有し、 p Hは 7である。かくして、 寒天平板培地を 3 7 °Cにて好気的に培養 し、平板上に現れた各コロニーを得、各々のコロニーを上記の寒天培地に用いたものと 同一の組成の液体培地中( p H 7 )で 3 7 °Cにて 2 4〜 7 2時間、 1 8 0 r p mで振盪 培養した。次いで、 各培養液を 1 2 , 0 0 0 且にて1 0分間、 4 °Cで遠心分離し菌体 と上澄液に分離した。 かくして得られた菌体を少量の 0 , 1 Mリン酸緩衝夜 ( p H 7. 0 ) に懸濁させ、 鍵する方法で活性を測定した。 その結果、 上記の菌学的識寺性を有 する菌株を分離することができた。
このようにして見出された本発明の新規な微生物であるノ \°工ニバチルス属に属する 微生物は、マル卜一スホスホリラーゼおよびトレ八ロースホスホリラーゼを生産する新 ま ¾菌である。
この本発明の新規な微生物から本発明の酵素である前記のマル卜ースホスホリラー ゼおよび卜レ八ロースホスホリラーゼを得るには、 例えばこの微生物を常法に従って 適当な培地に接種して培養し、 次いで培養物中から回収すればよい。 培養条件は、 微 生物自体の生育^ J の観点から 2 5〜4 2 °Cの^ J 範囲が好ましく、 8〜7 0時間好 気的に培養することが'好ましい。
本発明の酵素を得るための微生物の培養に用いる培地は、 以下に示すものに特に制 限されるものではなく、 微生物が生育でき、 本発明の酵素を産生しうる栄養培地であ ればよく、 合離地および天然培地のいずれでもよい。
培地は、 その炭素源としては、 この微生物が資化しうる物であればよく、 例えば、 グリレコース、 フラク I ^一ス、 マンノース、 卜レハロース、 シュクロース、 マンニ卜一 ル、 ソルビトール、 糖蜜などの糖質、 また、 クェン酸、 コ八ク酸などの有機酸も することができるが、 卜レハロースやマルトースおよびこれらを含有する糖質を用い ることが好ましい。 炭素源として卜レ八ロースもしくは該物質を含有する糖質を用い ると、 本発明の微生物はトレ八ロースホスホリラ一ゼを優先的に生産する。 また、 マ ル卜ースもしくは該物質を含有する糖質を炭素源として用いると、 本発明の微生物は マル卜一スホスホリラーゼおよび卜レ八ロースホスホリラ一ゼを同時に生産する。 さ らに、 炭素源として卜レハロースとマルトースの両者又はこれらの物質を含有する糖 質を用いると、 卜レハロースホスホリラ一ゼとマルトースホスホリラーゼとを同時に 生産させることができ、 卜レノヽロースとマルトースの量を制御することによって、 卜 レハロースホスホリラーゼとマル卜ースホスホリラーゼの生成割合をコン卜ロールす ることもできる。
窒素源としては、各種有機および無機の窒素化 勿、 さらに培地は各種の無 を含 むことができる。 窒素源としては、 例えば、 コーンスチ一プリカ一、大豆粕、 あるいは 各種ペプトン類等の有機窒素源、 そして硫安、硝安、 燐安、 尿素等の無機窒素源などの 一般に微生物の培養に用 、られている化合物が使用可能である。尿素や有機窒素源が炭 素源にもなることはいうまでもない。
また、 無機成分としては、 例えば、 カルシウム塩、 マグネシウム塩、 カリウム塩、 ナ トリウム塩、 リン艦、 マンガン塩、 Sift塩、 鉄塩、 同塩、 モリブデン塩、 コノ レト塩 などが適宜用いられる。更に、 必要に応じて、 アミノ酸、 ビタミンなども適宜用いられ る。
本発明の酵素を得るための微生物の培養に適した培地としては、具体的には、例えば、 卜レハロースホスホリラ一ゼを優先的に生産したい場合には、 卜レハロース 0. 5〜 3 % (w/v ), 酵母エキス 0. 5 ~ 2 %、 リン酸アンモニゥ厶 0. 1 5 %、 尿素 0 · 1〜0. 2 %、 食塩 0. 5 ~ 1 . 5 %、 リン酸二カリウム 0. 0 5 ~ 0. 3 %、 硫酸マ グネシゥ厶■ 77]d^0. 01〜0. 05%および炭酸カルシウム 0. 1〜0. 3%を含 む pH7. 0〜7. 5の液術咅地を用いることが'適当である。 また、 マルトースホスホ リラ一ゼとトレ八ロースホスホリラーゼを同時に生産する場合には、マルトース 0. 5 〜3% (w/v), ポリペプトン S (日本製薬製) 1 -3%, リン酸アンモニゥ厶 0. 1〜0. 3%、尿素 0. 05〜0. 3%、食塩 0. 5〜1. 5%, リン酸二カリウム 0. 05〜0. 25%、 硫酸マグネシウム- 77K1^0. 01〜0. 05%および炭酸カレシ ゥ厶 0. 1〜0. 3%を含む液 ^±咅地を用いることができる。 これらの培地U は限定 されるものでは無ぐ炭素源や窒素源などの種類ゃ纖によって適当に変更できる。マ ルトースを炭素源として用いるとマル卜一スホスホリラ一ゼばかりでなく、 卜レハロー スホスホリラーゼもある の量が生産される。従って、 卜レハ口一ス生産用の粗酵素 (マルトースホスホリラ一ゼとトレ八ロースホスホリラ一ゼとの混合物)を生産するた めには、 マルト一スを炭素源として用いる方が経済的である。
培養は、 通常、 温度 20乃至 45°C、 好ましくは 25乃至 42°C、 pH5乃至 9、 好ましくは 6乃至 8から選ばれる条件で好気的に行われる。 ±咅養時間は微生物が増殖 し始める時間以上の時間であればよく、 好ましくは 8時間乃至 70時間である。 また 、 培養液の雜瞧離には特に制限はないが、 通常は、 0· 5乃至 2 O p pmが好 ましい。 そのために、 通気量を調節したり、 撹拌したり、 通気に,を追加したりす ればよい。 また、 培養方式は、 回分培養または連続培養のいずれでもよい。
このようにして、 本発明の微生物を培養した後、 生成した本発明の酵素であるマル 卜一スホスホリラ一ゼとトレ八ロースホスホリラ一ゼを回収する。 生成する酵素の大 部分は菌体内に蓄積され、 一部分は菌体外に蓄積される。 そこで、 菌体内あるいは菌 体外に生成蓄積されたマル卜ースホスホリラ一ゼおよび/または卜レ八ロースホスホ 4 009606
1 7 リラーゼを採取する。 本発明の酵素の回収法は、 一般の酵素の採取の手段に準じて行うことができる。 以 下に示す方法に特に限定はされないが、 例えば超音波破砕法、 フレンチプレス法、 ガ ラスビーズ破砕法、 ダイノミリ 砕法等の菌体破砕法で得られた菌体破砕物、 あるい は培養物を遠心分離、 ろ過等の操作によつて菌体と培養上清に分離することで得られ た培養上 ί青を、 粗酵素液として用いることができる。
この粗酵素液は、 そのままで使用することもできるが、 必要に応じて、 例えば塩析 法、 沈驟去、 限外 ;1®去等の分離手段、 例えばイオン交換クロマトグラフィー、 等電 点クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過クロマトグラフィー、
P及着クロマトグラフィー、 ァフィ二ティークロマトグラフィー、 逆相クロマ卜グラフ ィ一等の公知の方法を組み合わせて、更に分離精製したものも使用することができる。 また、 本発明の酵素を得るための別の方法としては、 上記の本発明の菌株から本発 明の酵素をコ一ドする遺伝子を取り出した後、 遺伝子工学技術を用 、て組換え微生物 を作製し、 当該組換え微生物を培養する方法が挙げられる。 具体的には、 本発明の酵 素のアミノ酸配列コードするヌクレオチド配列を上記菌株より取得し、 次いでこのヌ クレオチド配列を適当なベクターに組込み、 更に、 このベクターにより大腸菌ゃ枯草 菌等の宿主を形質転換し、 これを培養して本発明の酵素を産生させ、 培養物より本発 明の酵素を探取すれば'よい。
以下に具体的な遺伝子工学技術を用いた本発明の酵素の製造方法について説明する。 本発明の両酵素、 即ちマル卜ースホスホリラーゼと卜レハロースホスホリラーゼは、 それぞれ配列表の配列番号 1と 3で示されるアミノ酸配列、 または、 それぞれこれら の配列中の 1個もしくは複数個のアミノ酸が欠失、 置換、 逆位、 付加もしくは挿入さ れたアミノ酸配列を有するポリべプチドであるから、 これらに対応したヌクレ才チド 配列を使用することが必要である。
本発明の酵素のアミノ酸配列をコードするヌクレオチド配列の例としては、 マル卜 ースホスホリラーゼの場合には、 具体的に下記 (a)〜(c ) からなる群より選ばれ るポリヌクレ才チドが挙げられる。
( a) 配列表の配列番号 1に示すアミノ酸配列を有するポリペプチドをコードするポ リヌクレオチド、
( b) 配列表の配列番号 Ίに示すアミノ酸配列中の 1個もしくは複数個のアミノ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ —ドするポリヌクレオチド、
( c ) 配列表の配列番号 2に示すヌクレオチド配列を有するポリヌクレオチド。 また、 本翻の酵素のアミノ酸配列をコードするヌクレオチド配列の例として、 卜 レハロースホスホリラーゼの場合には、 具体的に下記 (d )〜 ( f ) からなる群より 選ばれるポリヌクレ才チドが挙げられる。
( d ) 配列表の配列番号 3に示すアミノ酸配列を有するポリべプチドをコ一ドするポ リヌクレオチド、
( e ) 配列表の配列番号 3に示すアミノ酸配列中の 1個もしくは複数個のアミノ^^ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ ードするポリヌクレオチド、
( f ) 配列表の配列番号 4に示すヌクレ才チド配列を有するポリヌクレオチド。 本発明の酵素を生産する組換え微生物の作製は、 公知の手段を組み合わせることに P T/JP2004/009606
19 より行うことができる。すなわち、例えば、上言 ェニバチルス エスピー S H— 5 5から本発明の酵素をコードするヌクレ才チド配列の取得やその増幅、 ベクターへの ヌクレオチド配列の挿入、 当 l¾S伝子による宿主の形質転換等は、 この分野の成書に 記載された方法を適宜利用することにより行われる。 このうち、 組換え微生物の製去 の一例としては、 特に限定はされないが、 次に示す方法を用いることができる。 即ち
、バエ二バチルス エスピー 5 1"1—5 5から、ショットガンクローニング、あるいは 特定のプライマ一を用いた P C R増幅等によって、 該当する 2つの酵素遺伝子を取得 する。 これらの遺伝子を、 E K系の大腸菌 (Escher i ch i a co l i ) 等に代表されるグラ 厶陰性菌、あるいは B S系の枯草菌 (Bac i l l us subt i l i s)等に代表されるグラム陽性 菌に導入して、 組換え体を取得する。 形質転換にはプラスミド等の核外遺伝子をべク 夕一にして利用、 あるいは宿主菌本来有している D N A取り込み能力等を利用するす る方法も用いることができる。
以上に述べたように 本発明のバエ二バチルス属微生物または本発明の酵素のアミ ノ酸配列をコードする遺伝子を組み込んだ組換え微生物を培養し、 その培諭から回 収することによって、 本発明の酵素を得ることができる。 本発明の酵素である前述のマル卜ースホスホリラーゼと卜レ八ロースホスホリラー ゼは、 既に述べたように、 これらの培養蘭体内又は菌体外の培養上清中に蓄積するの で、 常法にょリ単離して取得することができる。 まず、 菌体内の酵素は、 菌体ごと粗 酵素として用いることができる。 さらに、 菌体から酵素を抽出することで粗酵素を回 収することもできる。 また、 菌体外の培養上清中にも酵素は含まれており、 菌体を分 離した残りの培養液を粗酵素含有液として利用することもできる。 さらに、 これらの 粗酵素は、 エタノール、 アセトン、 イソプロパノ による溶媒沈殿去、 硫安分画 法、 イオン交換クロマトグラフィー、 疎水クロマトグラフィー、 ゲル濾過クロマトグ ラフィ一等の通常の方法を用いて精製することができる。 さらに、 マル卜一スホスホ リラーゼとトレ八ロースホスホリラーゼとの分離は、 例えば、 両酵素の等電点の違い を禾リ用して陰イオン交換クロマトグラフィーなどによって可能である。
このようにして得られる本発明の酵素は、後述の実施例にお tゝて詳細に説明するよう に既に述べたような理化学的性質を有する亲形1よ酵素であるマリレ卜ースホスホリラ一 ゼ及び卜レハロースホスホリラーゼである。
これらの酵素の活性の測定は、 本発明のパェニバチルス エスピー S H— 5 5がマ ル I ^一スゃ卜レ八ロースを加水分解する α—ダルコシダーゼ (マルターゼ)、 ダルコア ミラ一ゼ、 卜レノヽラーゼ等を生産しないので、加リン酸分解 の場合の活性の測定に は、それぞれマル卜一スあるいはトレ八ロースを基質とし、 リン赚存在下で酵素 J¾S させて生成するダルコースをダルコース才キシダーゼ法で測定するという簡便法を使 うことができる。 また、 合成反応の場合には、 j8— D—グリレコース 1 -リン酸とグレコ -スの混 夜を基質とし、酵素 によリ生成する無機リン酸を常法によリ測定するこ とによって求めることができる。
以下に、 本発明の酵素の活性測定法について説明する。
(0 分解反応の場合: 5 0 m Mのリン醮 夜( P H 7 ) に溶解させた 2 0 m Mのマ ル卜一スまたはトレ八ロース溶液 0. 5 m Lに、 酵素液 0 . O l m Lを添加し、 5 0 °C で 1 5分間反応させた後、沸騰水浴中で 3分間加熱して酵素反応を止める。氷水中で冷 却した後、 生成したグルコースをグルコース才キシダ―ゼ法 (和光纏工業 (株) 製、 グルコース C— I Iテスト 'ヮコ一)で測定する。 ここで、 この測定条件下で 1分間に 1 4009606
21
Atmo I eのグルコースを生成する酵素量を 1単位の酵素活性と定義した。
(ii)合成 J¾¾の場合: 70mMのへぺス (HE PES) ί 夜(ρΗ 7, 0) に溶 解させた 27mMの) 3— D—グルコース 1 -リン酸 N a塩と同 ^J のグルコースとの 混合溶液 0. 1 5mLに、 0. 05mLの酵素液を添カ卩し、 50 °Cで 1 5分間反応さ せた後、 沸騰水浴中で 2分間加熱して酵素活性を止める。 ラ 中で冷却後、 生成した 無機リン酸を和光聽工業 (株) 製ピ一テストヮコ一を用いて測定する。 ここで、 こ の測定条件下で 1分間に Ί m 0 I eの無機リン酸を生成する酵素量を Ί単位の酵素 活性と定義した。
以上のように、 本発明の新規な酵素であるマルトースホスホリラーゼ及びトレ八ロ —スホスホリラーゼは、新規な微生物である本発明のパェニバチルス属微生物 (例えば 、パェニバチルスエスピー SH-55 (Paenibaci I lus sp. S H-55) )または本 発明の酵素のァミノ酸配列をコ一ドする遺伝子を組み込んだ組換え微生物を培養し、 その培養生産物を回収することによって、 容易に製造することができる。 そして、 こ の二つの本発明の酵素は、 それぞれマル卜ース中の α- 1 , 4—ダルコピラノシド結 合および卜レハロース中の α— 1, 1一ダルコビラノシド結合を可逆的に加リン^^ 解し、 グルコースと) 3— D—グルコース 1—リン酸を生成するという特徴を有する。 従って、 リン酸の存在下に、 マル卜一スにこれらのニゥの酵素を組み合わせて作用さ せることによって、 極めて効率よく卜レハロースを生産することができる。 しかも、 これらの二つの酵素の作用 ρΗ範囲が 4. 5〜9. 5と広く、 かつ二つの酵素の最適 ρΗ範囲が重複しているため酵素反応において非常に取り扱いやすく、 また、 作用温 度範囲が 20-60°Cと比較的高い での使用が可能であるため、 高い での酵 素反応が可能となり、 従来の方法に見られたような雑菌汚染の恐れがなくトレ八ロー スを生産することができる。 そして、 原料としてマルトースという容易にかつ大量に 入手することができ、 さらに精製した高純度のものも使用することができるため、 酵 素 J¾¾後の生成物中への不純物の混入が少なく、 従って生成物の精製が容易で、 かつ 極めて効率よく卜レハロースを生産することができるという禾リ点も有する。
本発明のこれらの酵素は、 それそ' ma酵素又は精製酵素として利用することができ る。 さらに、 両酵素の活性を有する菌体および該菌体を適当な担体に包括、 吸着ある いは化学的に結合させた固定化菌体などを卜レ八口一スの製造に使用することができ る。 さらには、 本発明の両酵素は、 夫々公知の方法で固定ィ匕させた固定化酵素として 使用することもできる。 実施例 以下、 実施例により本発明をさらに詳細に説明する。 実施例 1 :
菌体内及び菌体外マルト一スホスホリラーゼの製造及び精製
ノヽ。ェニバチルス エスピー S H— 55 (Paenibacillus sp. SH-55) (FERM BP— 8420)を、 マル卜一ス 1 % (w/v), ポリペプトン S (日本製薬製) 2. 5%, リン酸アンモニゥ厶 0. 1 5%、 尿素 0. 1 5%、 食塩 1 %、 リン酸二カリウム 0. 1 %、 硫酸マグネシウム · 77]塩 0. 02%および炭酸カルシウム 0. 2%を含む p H7. 0の液術咅地に植菌した。 次に、 この液 咅地を 37 °Cで 24時間好気的に培 養した。 得られた培養液を 4°Cで 1 2, 000 呈にて1 5分間遠心分離して菌体と 上漓夜とに分けた。 T/JP2004/009606
23
ここで得られた菌体は、少量の 20 m Mリン酸誦夜 (pH7. 0 )に懸濁させた後、 超音波破壊した。該破砕菌体懸濁液に硫安を加えて 30%飽和とし、 4°Cで一雄置し た。 次いで、 遠心分離をして沈澱物を除いて得られる上清液にさらに硫安を加えて 7 0%飽和とした。更に 4 °Cで一夜放置して生成する沈澱物を遠心分離で集め、 20mM リン酸 « (pH7) に溶解させた後、 同緩衝夜で充分に透析した。
次いで、 20mMリン酸謹夜 (pH7)で平衡化した D E A E—フラク卜ゲル(メ ルク社製)力ラムに酵素を吸着させた。吸着酵素を上記の緩衝夜に含まれる 0 Mから 0. 5 Mの食塩の離勾配法で溶出させた後、 UF膜(アミコン社製、 YM-30)で濃縮 した。翥縮酵素を 0. 2 M食塩含有の上述の謹夜で平衡化したセフアクリル S— 30 0 (フアルマシア社製)カラムでゲル 精製した。得られたマルト一スホスホリラ一 ゼ活性画分を集め、 1 · 5 M硫安を含む同上緩衝夜で透析した後、 1 · 5 M硫安を含む 同上灘腋で平衡化したフヱニル' トヨパール(東ソ一社製)カラムに酵素を吸着させ た。 吸着酵素を同上緩衝液中で 1. 5 Mから 0 Mの硫安の濃度勾配法で溶出させた後、 得られたマル卜ースホスホリラーゼ活性画分を集め 0. 2 M食塩を含む同上緩衝夜で透 祈した。 前述の UF膜を用いて濃縮後、 0. 2 M食塩を含む同上緩衝夜で平衡化したス 一パーデックス 200 (フアルマシア社製)を用いて再度ゲル濾過クロマトグラフィー を い、 得られたマル卜一スホスホリラーゼ活性画分を前述の方法で濃縮した。
ここで、活性画分とは、ゲル麵クロマトグラフィー等により分離して得た画分であ つて、マルトースまたはトレ八ロースを基質にして活性測定を行った場合に活性が認め られた画分であリ、それぞれマル卜ースホスホリラーゼ活性画分および卜レハロースホ スホリラ一ゼ活性画分のことを意味する。即ち、マル卜一スまたはトレ八ロースに対す る活性が'みとめられるときは、 DEAE—フラク卜ゲルカラムを用いた場合、食塩濃度 P T/JP2004/009606
24
0. 3 M付近にマルトースホスホリラ一ゼ活性画分があり、 0. 35 M付 に卜レズ、口 ースホスホリラーゼ活性画分がある。
その結果、蘭体内酵素として、ポリアクリルアミドゲルスラブ電気泳動法並びに SD S—ポリァクリルアミド電気泳動法において均一なマル卜ースホスホリラーゼ(活性収 率約 30%) を得た。 また、菌体外酵素についても培養上清を出発原料として、 上記の 方法と同様の方法で精製し、活性収率約 25%でマルトースホスホリラーゼの精製酵素 を得た。 S D S-ポリアクリルアミド電気泳動法により得られた精製酵素の分子量を測 定したところ、 分子量は 89, 000〜90, 000タリレ卜ン近傍にあり、 後述の実施 例 3で決定した推定アミノ酸配列から計算された 87, 762ダル卜ンとよく一致して いた。 精製酵素の分子量をセフアクリル S— 200ゲル ¾ti 法により測定したところ、 その^?量は約 200, 000ダルトンであったので、本酵素はホモ 2量体で構成され ていると思われた。 実施例 2 :
菌体内および菌体外卜レハロースホスホリラーゼの製造及び精製
パェニバチルス エスピー 31~1—55を、 卜レハロース 1 % (w/v)、 酵母ェキ ス 2%、 リン酸アンモニゥ厶 0. 15%、 尿素 0. 1 5%. 食塩 1 %、 リン酸二カリ ゥ厶 0. 1 %、 硫酸マグネシウム■ 77 0. 02%および炭酸カルシウム 0. 2% を含む PH7. 0の液 咅地に植蘭した。 この液 咅地を実施例 1と同様に培養し、 後処理して菌体破砕液と上'; 夜を得た。 得られた菌体破碎液と上意夜について、 それ ぞれ 例 1と同様な方法で精製した。 更に、 菌体破砕液と上清液から得た上記の精 製液を、 それぞれポリアクリルアミドゲルスラブ電気泳動法ならびに S D S一ポリア 2004/009606
25
クリルアミド電節永動法において精製し、 均一な菌体内トレ八ロースホスホリラーゼ および菌体外トレ八ロースホスホリラーゼを得た。 それぞれの活性収率は 30%およ び 35%であった。 SDS—ポリアクリルアミド電気泳動法にょリ両方の精製酵素の 分子量を測定したところ、分子量はいずれも 89, 000〜90, 000ダルトン近傍 にあり、 後述の実施例 3で決定した推定アミノ翻己列から計算された値 87, 1 51 ダルトンとよく一致していた。 精製酵素の 量をセフアクリル S— 200ゲル麵 法により測定したところ、 分子量は約 1 90, 000ダル卜ンであったので本酵素は ホモ 2量体で構成されて t \ると思われた。 実施例 3 :
マル卜ースホスホリラーゼと卜レハロースホスホリラーゼの遺伝子のクローニングと シーゲンス
マルトースホスホリラ一ゼの遺伝子のクロ一ニングは以下の方法で行った。実施例 1 で得られた精製酵素の N末端アミノ酸配列を常法により決定したところ、 MKQYLK L DEWの配列を有していた。 さらに精製酵素をプロテアーゼの一種である V 8 (シグ マ製) によりゲル内消化を行った。 ゲル内消化は、 精製酵素 5^gを SDS PAGE ゲルに供し、同時に V 8プロテアーゼ溶液 1 t gを精製酵素溶液に重層して泳動を行い、 ゲル中で目的酵素を分解する方法で行った。得られた蛋白質断片の 2種類の N末端アミ ノ酸配列を常法により決定した。その結果、断片 1から A I a-Ty r-S e r-G I y— S e r— S e r— L e u-G I n— G I y— S e r -Ty r— Me t -A I a― G I y— Va l — Ty r—Ty r— P r o— As p— Ly s、断片 2から G l y-As p- V a I -A I a-A I a— G l n -G I n - A I a- I I e - A r gの配列を得 ることができた。 1種類のアミノ酸をコードする DNA配列は】〜 6種類存在する。そ こで、断片 1の 1〜9番目のアミノ酸配列のおよび断片 2の 1〜9番目アミノ酸配列か ら D N A配列に基づく下記で表わされる混合プライマーおよびアンチセンス混合ブラ イマ一を調製した。
断片 1のアミノ酸配列に基づくプライマー:
5' -CNTARAGRGGNTCNTCNCTNCAYG-3'
断片 2のアミノ酸配列に基づくアンチセンスプライマ一:
5' -ATNGCYTGYTGNGCNGCNACYTCG-3'
上記混合プライマーを用い、 ¾fe体 DN Aをテンプレー卜にして Ex Taq (タカ ラバイオ)を用いて P C Rを行い、 D N A断片の増幅を行った。 反応条件は、 96でで 2分間加熱した後、 96 °Cで 20秒、 55 °Cで 30秒、 72 °Cで 1分のサイクルを 30 回繰り返してから、最後に 72°Cで 1 0分間保温した。 J¾&液をァガロースゲル電 永 動したところ *約 0. 8 k b塩基対の DN A断片が検出された。反応液から増幅された DNA断片を TA C l o n i n K i t (インビ卜ロジェン)を用いてクローニン グし、塩基配列決定用プラスミドを調製した。 このプラスミドをテンプレー卜として d Rod am i n e Dy e Te rm i n a t o r Cyc l e S e q u e n c i n g Re ad y Re ac t i o n K i t (パーキンエルマ一)を用いた蛍光ラベ ル RiSを行い、 D N Aシークェンサ一 377 (Ap p l i e d B i o s y s t ems) で分析し、配列番号 5に示されるヌクレオチド配列のうち 477番目〜 1 304番目の 塩基配列を決定した。
上言 基配列を基に、 5' -CAGTTGGTGCTGTTCAACACTTTG- 3' で示されるプライマー MF 1、 及び 5' -ATGGCGATGTAAAGAAT AAAG-3' で示されるプライマ一 MR 1を調製した。 一方、 体 DNAを制限 酵素 X h 0 Iで切断した後、 L i ga t i o n h i gh (東洋紡)を用いて 1 6°Cで 1時間ライゲ一シヨンを行い、 この DN Aをテンプレートとし、 プライマ一として MF 1及び MR 1を用い、 LA Taq (タカラバイオ) を用いてインバース P C Rを行つ た。反応液をァガ口一スゲル電気泳動したところ、約 7 k b塩基対の DNA断片が検出 された。反応液から増幅された D N A断片を精製し、塩基配列決定用 D N Aを調製した。 この DN A断片をテンプレー卜として d R 0 d am i n e Dye Te rm i n a t o r C c l e Seq u e n c i ng Re ad y Re ac t i o n K i t (パーキンエルマ一) を用いた蛍光ラベル J¾5を行い、 DN Aシークェンサ一 377 (App l i ed B i o s y s t ems)で分析し、配列番号 1で示されるアミノ酸 配列および配列番号 2で示されるヌクレオチド配列によって表されるマル卜ースホフ ホリラーゼの遺伝子を取得した。
次に、 卜レハロースホスホリラーゼの遺伝子のクローニングは以下の方法で行った。 実施例 2で得られた精製酵素の N末端アミノ酸配列を常法により決定したところ、 M e t— Th r— Ly s— Me t— I I e— Se r— As n— P r o— As p— Le uで あった。 ここから、 下記のプライマ一 1で表される配列の混合プライマーを設計した。 さらに、既知のトレハロースホスホリラ一ゼのアミノ酸配列から相同性の高い配列を検 索し G I y-T y r -G I u -G I y-H i s— Ty r— Ph e— T r p— As pの アミノ酸配列を見出した。 ここから、下記のプライマー 2で表される配列のアンチセン ス昆合プライマ一を設計した。
プライマー 1 : 5' -ATGACNTGGATGATHAGCAAYC-3' プライマー 2: 5' -CCAYAAYTAYTGNCCRTCYTANCC-3' T/JP2004/009606
28 上記混合プライマーを用い、 ¾fe体 D N Aをテンプレー卜にして上記プライマー 1及 び 2を用いて Ex Ta q (夕カラバィ才) により P C Rを行い、 DNA断片の増幅を 行った。 反応条件は、 96 °Cで 2分間加熱した後、 96°Cで 20秒、 55°Cで 30秒、 72 °Cで 1分のサイクルを 30回繰り返してから、 最後に 72°Cで 1 0分間保温した。 反応液をァガロースゲル電気泳動したところ、約 1. 0 k b塩基対の DNA断片が検出 された。反応液から増幅された DN A断片を T A C l on i ng K i t (インビ卜 ロジェン)を用いてクローニングし、塩基配列決定用プラスミドを調製した。 このブラ スミドをテンプレー卜として d R o d am i n e Dy e Te rm i n a t o r Cyc l e Seq ue nc i ng Read y Reac t i o n K i t ノ ーキ ンェルマー)を用いた蛍光ラベル反応を行い、 DN Aシークェンサ一 377 (App I i ed B i o s ys t ems)で分析し、配列番号 7に示されるヌクレオチド配列の うち Ί 1 1 3番目〜 21 68番目の塩基配列を決定した。
上言 £1 ^基配列を基に、 5'— ACGATGACCAGCTCCAGGAAG— 3' で 示されるプライマー TF 1、及び 5, -TCAGATAGGTACCGCGAATGG -3' で示されるプライマー TR 1を調製した。一方、染色体 DNAを制限酵素 Xh 0 Iで切断した後、 L i ga t i on h i gh (東洋紡)を用いてライゲ一シヨンを行 い、 この DN Aをテンプレー卜とし、 プライマーとして TF 1及び TR 1を用い、 LA Taq (タカラバィ才)を用いてインバース P C Rを行った。反応液をァガロースゲル 電気泳動したところ、約 6 k b塩基対の DNA断片が検出された。反応液から増幅され た DNA断片を精製し、塩基配列決定用 DN Aを調製した。 この DNA断片をテンプレ —卜として dRod am i n e Dye Te rm i n a t o r Cyc l e S e q ue nc i ng Re ady Reac t i on K i t (パーキンエルマ一)を用 P T/JP2004/009606
29 いた蛍光ラベル反応を行い、 DN Aシークェンサ一377 (App l i ed B i o s y s t erns)で分析し、配列番号 3で示されるアミノ豳己列および 12列番号 4で示さ れるヌクレ才チド配列によって表される卜レ八ロースホフホリラーゼの遺伝子を取得 した。
配列番号 1と配列番号 3から推定される分子量 (SDS—ポリアクリルアミド電気泳 動法による)と等電点は、マル卜ースホス木リラ一ゼが' 87, 762タレトンと p H 4. 98、 トレノヽロース木スホリラーゼが 87, 1 51ダルトンと pH5. 1 3であった。 実施例 4 :
菌の形質転換、 形質転換体の培養および、精製
実施例 3で得た配列番号 5のマル I ^一スホスホリラーゼをコ一ドする D N A配列の 開女台コドンである 343塩基目からの 5' -GTGAAACAATATTTAAAGC TTG-3'で表される才リゴヌクレ才チドの 5 '末端に制限酵素 X h 0 I切断部位を
3,で表されるプライマーを M F 2、終止コドンである 2649塩基目からのアンチセ ンス配列 5' — TTATTTTGAAGCTGCTGTG— 3'で表される才リゴヌク レオチドの 3 '末端に制限酵素 Kpn I切断部位を付けた 5' -TTATTTTGAA GCTGCTGTGGGTACCCCG— 3, で表されるをプライマーを M R 2とし、 ¾fe体 DNAをテンプレー卜とし Py r 0 be s t (タカラバィ才)を用い PC Rを行 い、 マル! ^一スホスホリラーゼを含む約 2. 3 k塩基対の DN A断片を取得した。反応 条件は、 96 °Cで 2分間加熱した後、 96でで 20秒、 55 で 30秒、 72 °Cで 2分 のサイクルを 30回繰り返してから、最後に 72°Cで 10分間保温した。得られた DN A断片を精製した後、制限酵素 X h 0 I及び K p n Iで切断した。 これをプラスミドべ クタ一 p R S E T A (インビ卜ロジェン社)を制限酵素 X h 0 I及び K p n Iで切断し たもの 5 O ngと L i g a t i o n h i gh (東洋紡)を用いて、 1 6°Cで 2時間ラ ィゲ一シヨンして、組換えプラスミド p R S M P 1を創製し、 ^iiMB L 21 (DE3) pLy s S ( οπιρϊ oSB(rB— mB-) / dcm(DE3) pLysS (CamR)) 株へコンビテン卜セル 法を用いて導入を行い、 形質転換された大腸菌 R S M P 1を得た。
同様に、実施例 3で得た配列番号 7の卜レ八ロースホスホリラ一ゼをコードする D N A配列の開始コドンである 1 1 1 3塩基目からの 5' -ATGACGTGGATGAT AAGCAATC— 3'で表されるオリゴヌクレオチドの 5 '末端に制限酵素 BamH
I切断部位をつけた 5' - CGCGGATTCATGACGTGGATGATAAGC AATC-3'で表されるプライマーを TF 2、終止コドンである 341 3塩基目から のアンチセンス配列 5' — TTATTTTGAAGCTGCTGTG - 3,で表される 才リゴヌクレオチドの 3'末端に制限酵素 Ec o R I切断部位を付けた 5' -TTAT れるをプライマーを TR 2とし、 染色体 DN Aをテンプレートとし P y r o b e s t (タカラバィ才)を用い PC Rを行い、 トレ八ロースホスホリラ一ゼを含む約 2. 3 k 塩基対の DN A断片を取得した。 J¾5条件は、 96 °Cで 2分間加熱した後、 96°Cで 2 0秒、 55°Cで 30秒、 72°Cで 2分のサイクルを 30回繰り返してから、最後に 72°C で 1 0分間保温した。得られた DN A断片を精製した後、制限酵素 BamH I及び Ec
0 R Iで切断した。 これをプラスミドベクター pR SETA (インビ卜ロジェン社)を 制限酵素 B amH I及び E c o Iで切断したもの 5 O ngと L i ga t i o n h
1 gh (東洋紡) を用いて、 1 6 °Cで 2時間ライゲーシヨンして、 組換えプラスミド p 6
31
R S T P lを創製した。 これを大腸菌 B L 2 1 (D E 3) p L y s S (F—'ompT hsdS (rB- -) gal dcm(OE3) pLysS (CamR)) 株へコンビテン卜セル法を用いて導入を行 い、 形質転換された §菌 R STP1を得た。
次に、形質転^ i菌 R S M P 1及び R S T P Ίをそれぞ tli咅養し、組換え酵素の調 製を行った。
まず、得られた形質転換体の R SMP 1または R S T P 1のシングルコロニーを、容 量 30 OmLの三角フラスコに LB培地 (バク卜ペプトン 1 %、 酵母エキス 0、 5 %、 塩化ナトリウム 0、 5%) にアンピシリン溶液を終 で 5
Figure imgf000032_0001
し クロラ厶フ ェニコール溶液を終離で 34 g/mLになるように添カ卩した溶液 3 OmLに植菌し、 37 C、 1 80 r p mT 1 6時間培養して、 SMP 1または R S T P 1の種培養液を 調製した。
次いで、 形質転換体の培養を以下のようにして行なった。即ち、 形質転換体の RSM P 1または R STP 1のそれぞれについて、容量 2 Lの三角フラスコに L B培地 (バク 卜ペプトン 1 %、 酵母エキス 0. 5%、塩化ナトリウム 1 %) 0. 5 Lを入れて滅菌し た後、 アンピシリン溶液を終 で 50 t g/mし クロラムフエ二コール溶液を終濃 度で 34 g/m Lになるように添加し、 RSMP 1または R S T P 1を用いた種培養 液を 1 %になるようにそれぞれ接種して、 ;¾37。C、 1 80 r pmで、 OD60。 (6 O O nmでの濁度)が 0. 5になるまで培養した。 その後、 イソプロピルチ才ガラク卜 ビラノシド (I PTG)を終^ J で 1 mMになるように添加し、 さらに 3時間培養を行 つた。 ±咅養終了後、 培養液を 5000 X旦、 1 0分間遠心分離を行い菌体を得た。 得 られた Mi蘭を超音波破壊し、 1 2000 X直、 1 5分間遠心分離を行った。 得られ た粗抽出液をァフィ二ティーカラム (TALON Resin, クロンテック社製) で 2度クロマ 卜グラフィ一を行 t \ (洗浄、 5 m Mイミダゾール;溶出、 1 00 m Mイミダゾール)、 均一なまでに精製したマルトースホスホリラーゼ(MP) と卜レ八ロースホスホリラ一 ゼ (TP) を得た。 両酵素のァフィ二ティーカラムによる精製の結果を表 1に示す。 表 1
Figure imgf000033_0001
表 1に示すように、精製したマル卜一スホスホリラーゼ(MP) と卜レハロースホス ホリラ一ゼ (TP) の比活性はそれぞれ約 50および 42単位/ mgであった。 これら 組換えマル卜一スホスホリラーゼとトレハロースホスホリラーゼの S D S-ポリアクリ ルアミド電気泳動法によって求めた分子量は、 図 2の Aおよび Bに示すように、夫々約 90, 000〜92, 000ダル卜ン(計算値、 92, 233ダル卜ン) (図 2A) と約 89, 000〜91 , 000タリレ卜ン (計算値、 91, 280タリレ卜ン) であった (図 2 B)o これらは推定アミノ酸配列から計算された夫々の分子量 92, 233ダルトン および 91 , 280ダルトンとよく一致していた。 実施例 5 枯草菌の形質転換、 形質転換体の培養および精製
枯草菌での発現は以下の方法で行った。即ち、実施例 3で得たマルトースホスホリラ ーゼ及び卜レハロースホスホリラ一ゼの D N A配列をそれぞれ枯草菌用発現べクタ一 PHY300 PLK (夕カラ社) にライゲ一シヨンし、 枯草菌 Bacillus subtil is I S W1 21 4 (/e"A8 me hsm) に形質転換し、 形質転換体 B S M P 1及び B S T P 1を得た。
また、実施例 4と同様に、得られた形質転換体の B S M P 1または B STP1のシン ダルコロニ一を、 試験管に PM培地 (ポリペプトン S4%、 マル卜ース 4%、 酵母工キ ス 0. 1 %、 LAB L EMCO POWDER (Ox o i d) 0. 2%、 リン酸二水 素カリウム 0. 1 %、硫酸マグネシウム 0. 02%、 塩化カルシゥ 0, 02 %、 テ卜ラ サイクリン 1 5 tg/mL)の 5mLに植蘭し、 30C、 1 20 r p mで 24時間培養し て、 B S M P 1または B STP 1の種培養液を調製した。
次に、得られた形質転換体 B S M P 1及び B S T P 1のそれぞれについて、 P M培地 (ポリペプトン S 4%、マル! ス 4%、酵母エキス 0. 1 %、 LAB LEMCO P OWDER (Oxo i d) 0. 2 %、 リン酸ニ水素力リウ厶 0. 1 %、 硫酸マグネシゥ 厶 0. 02%、 塩化カルシウム 0, 02%、 テトラサイクリン 1 5 tg/mL) に上記 の種培養液 1 %をそれぞれ接種し、 30°C、 1 20 r pm、 64時間培養を行った。培 養終了後、 ±咅養液を 10000 X旦、 10分間遠心分離を行い、 B S M P Ί及び B S T P 1の培養上清及び菌体を得た。 菌体は超音波破壊し、 Ί 2000 X 、 1 5分間 遠心分離を行い、粗抽出液を調製した。 それぞれの活性を測定したこところ、 マルト一 スホスホリラーゼでは、 培養上清で 0. 2単 &/mg、 菌体で 0· 1単 ii/mgであり、 卜レハロースホスホリラーゼでは、培養上清で 0. 4単 &/mg、 菌体で 0. 2単ィ i/m gであった。 実施例 6: .
マル卜一スホスホリラーゼとトレ八ロースホスホリラ一ゼの推定アミノ酸配列と他酵 素のアミノ酸配列の相同性
実施例 3で得たマル卜一スホスホリラーゼ遺伝子と卜レハロースホスホリラーゼ遺 伝子について、これらの遺伝子がコードしている夫々のアミノ酸配列の FAS T A相同 性検索 (http://ddbj.nig. ac.jp) を行った。 本発明のマル! ^一スホスホリラ一ゼは、 バチルス エスピー RK— 1 (Bacillus sp. RK— 1, A B 0084460)、 ェン テロコッカス ヒラエ (Enterococcus hirae, E21769)、 ラク卜バチルス ブレビス
(Lactobaci 1 lus brevis. 1 H 54 A)、ラク卜バチリレス ラクテイス (Lactobaci I lus lactis, E 86834)、 ラク卜バチルス サンフラウンシセンシス (Lactobacillus sanfranciscensis, L S J A 4340)、 ネイセリア メニンギティギス (Neiisseria meningitides, F81 203)と全アミノ酸を通じてそれぞれ 5 1. 4%、 5 1. 4%、 48. 3%、 48. 9%、 45. 1 %、 48. 4%しか一致しなかった。 また、 本発明 のトレ八ロースホスホリラーゼは、 バチルス ステアロサ一モフィラス S K 1
(Bad I lus stearothermophilus SK- 1, AB 0796 1 0)、 サ一モアエロビゥ厶 ブロッキ ATCC35047 (Thertnoanaerobium brocki i ATCC35047, A B073930) と全アミノ酸を通じてそれぞれ 62. Ί %、 44. 2%しか一致しな 力、つた。 実施例 7 T/JP2004/009606
35 パェニバチリレス エスピー S H— 55の生産するマレ I スホスホリラーゼぉよび 卜レ八ロースホスホリラーゼの酵素化学的諸'性質
パェニバチリレス エスピー S H— 55が生産する本発明の新規マル卜一スホスホリ ラーゼおよびトレ八ロースホスホリラ一ゼの一般的な酵素化学的特性に関し、実施例 1、 2、 4および 5と同様な方法で精製して得た精製酵素を用いて検討した。なお、 実 験の結果、マル卜ースホスホリラーゼおよび卜レハロースホスホリラ一ゼのいずれにつ いても、 パェニバチルス エスピー SH— 55の菌体内および菌体外の両酵素と、 こ れらの組換え酵素は共にほぼ同様な理化学的、酵素学的諸性質を有していたので、 ここ では実施例 4で得た; §菌で発現させた組換え酵素についての諸性質を示す。
(ィ) 作用
1 OmMリン酸锾衝夜 (pH7. 0) に溶解させた 1 % (w/v) のマル I ス及び トレ八ロース溶液に、マル! ^一スホスホリラーゼとトレ八ロースホスホリラ一ゼを基質 1 gに対して、それぞれ 5単位(分解反応活性) 添加し、 50°Cで 5時間反応させた後、 沸騰水浴中で 3分間加熱して酵素を失活させた。得られた糖化液中の糖を高速液体クロ マ卜グラフィ一法で測定した結果、グルコース及びグルコース 1一リン酸がそれぞれ検 出された。 また、 1 OmMの卜リス—塩酸锾衝夜 (pH7. 0) に溶解させた 1 % (w /v) のグルコースおよび ]8— D—グルコース 1 -リン酸 N a塩もしくは en— D—ダル コース 1 -リン酸 N a塩との混 溶液を基質とし、 マルトースホスホリラーゼおよび卜 レハロースホスホリラーゼを基質 1 gに対してそれぞれ 5単位添加し 50でで 5時間 反応させた。上述のように処理して生成した糖誠を測定した結果、 グルコースとの— D—グルコース 1 -リン酸からはマル卜一スおよび卜レハロースが検出され、 マルトー スホスホリラ一ゼおよび卜レ八ロースホスホリラーゼによる合成反応が確認されたが、 グルコースと a一 D—グルコース 1 -リン酸からの二糖類の合成反応は検出されなかつ 生 ¾の分析は以下の方法で行った。先ず、加熱失活させて得られる糖化液中の不溶 物を 0. 45 μπιポアサイズのメンブレンフィルターで濾別した。得られた濾液を供試 糖液とし、 YMC— Pac k、 ODS-AQ (AQ-304, YMC社製) カラムを用 いる高速液体クロマトグラフィー法で測定した。なお、移動相には水を用い、 カラム温 度を 30°Cとし、 検出には示差屈折計を用いた。
(口) 基質特異性 (分解
(i)マルト一スホスホリラーゼの場合:
先に記載した酵素の活性測定法(分解反応) において、使用する基質をマルトースの 代わりに、 トレ八ロース、 イソマレ! ^一ス、 ネオ卜レハロース、 シユークロース、 ラク 卜ース、 またはセロビオースを基質としてこれらの基質の分解活性を調べたが、 これら の基質では酵素活性は全く認められなかった。
(ii)卜レハロースホスホリラ一ゼの場合:
同様に酵素の活性測定法(分解反応) において、使用する基質を卜レハロースの代わ りにマル!—ス、イソマル! ^一ス、ネ才卜レハロース、シユークロース、ラク I ^一ス、 またはセロビオースを基質としてこれらの基質の分解活性を調べたが、これらに基質で は酵素活性は全く認められなかった。
(ハ)作用 P H範囲、 最適 p Hおよび安定 p H範囲
実施例 4で得た精製酵素を用いて分解および合成反応の最適 p Hを測定した。その結 果を図 3に示す。 図 3の Aに示したように、 マルトースホスホリラ一ゼの分解反応(白 丸) の最適 pHは 7. 0〜8. 0であり、作用 pH範囲は 4. 5〜9. 5であった。 同 9606
37
じくマルトースホスホリラーゼの合成反応(黒丸)の最適 pHは 5· 5〜6· 5であり、 作用 ρΗ範囲は 4. 5〜9. 5であった。
また、図 3の Βに示すように、 トレ八ロースホスホリラーゼの分解 J¾5 (白丸)では、 最適 PHは ρΗ7· 0〜8. 0であり、 同じく合成反応(黒丸) は ρΗ5· 8〜7. 8 が最適であった。作用 Ρ Η範囲は、 分解反応と合成 J¾&の何れの場合も 4. 5〜 9 · 5 であった。
なお、 分解反応の場合は 5 OmMリン酸一クェン酸锾種 ¾夜(ρΗ4. 5〜8· 0)、 リン ^~¾ΒΙ酸锾衝液 (ρΗ8· 0〜9. 5) とグリシン一 NaOH緩衝液(ρΗ9. 0 〜1 2.0)に 25 mMリン酸カリウムを添加した溶液を用いた。合成反応の場合には、 MES (p H 5. 5〜6. 5)、 MOPS (pH6. 5〜7. 0)、 HEPES (p H 7. 0〜8. 0)、 卜リス一塩酸(pH7. 5-9. 0) の各^夜を用いた。
精製した両酵素を 薩中で 1 0分間、 50°Cで処理し、それらの残存酵素活性を 分解反応で測定した。図 4に示すように、マル卜ースホスホリラーゼ(白丸)は p H 5 · 5〜7. 5の範囲で、 また、 卜レハロースホスホリラーゼ (黒丸) は pH5. 5〜9. 5まで安定であった。 なお、 pH調節は 5 OmMのリン酸一クェン酸麵夜 (pH4. 5〜8. 0)、 リン酸 ~ii酸緩衝夜 (ρΗ8. 0〜9· 5) とグリシン一 NaOH緩衝 液(PH9. 0-1 2. 0)の各 夜を用いた。
(二) 作用 範囲と最^¾
図 5の Aに示すように、 マル! ^一スホスホリラーゼの分解反応の場合 (白丸) は 4 5〜55。C近傍に最適作用 Sitを有し (50mMリン酸 ¾確、 pH7. 0)、 作用温 度範囲は 20〜60°Cであり、 合成反応の場合(黒丸) は 50〜55°C近傍に最適作 用温度を有し、作用温度範囲は 20〜 60 °Cであつた。また、図 5の Bに示すように、 JP2004/009606
38
トレハロースホスホリラーゼの分解 の (白丸) は 50〜65°C近傍に最適作 用温度を有し (50mMリン酸锾衝夜、 pH7. 0)、 作用温度範囲は 25〜70°Cで あり、 合成反応の場合(黒丸) は 45〜 60°C近傍に最適作用温度を有し、 作用温度 範囲は 25〜 70 °Cであつた。
(ホ) 安定性
マル I ^一スホスホリラ一ゼおよび卜レハロースホスホリラ一ゼの耐熱性を、それぞれ PH6. 0および 7. 0 (50mMリン酸 Hffij夜中)の条件下で、 種々の^^で 1 5分 間処理してその残存活性を常法によリ求めることによリ測定した。その結果を図 6に示 す。 図 6からわかるように、 マル卜一スホスホリラーゼ(白丸)は 50°Cまで極めて安 定であり、 70°Cで完全に失活した。 また、 トレ八ロースホスホリラ一ゼ(黒丸) は 6 0 °Cまで極めて安定であリ、 70 °Cで完全に失活した。
(へ) 阻害剤
マルトース木スホリラーゼおよび卜レハロースホスホリラーゼの分解活性を各種無 機イオンと阻害剤存在下で測定した。 その結果両酵素活性は、 銅、 7k銀、 N—プロモサ クシニイミド、且—クロロマ一キユリ安息香酸 (各々 1 mM)によって強く阻害された。 マルトースホスホリラ一ゼは SDS (1 %)で強く阻害されたが、 卜レハロースホスホ リラーゼは阻害されなかった。
(卜) 等電点
イソエレクト口フォーカシング法ァイソゲル (FMC BioProducto社製)により、 マル卜 —スホスホリラーゼおよび卜レハロースホスホリラーゼの等電点を測定した結果、マル 卜ースホスホリラーゼは ρΗ4· 8〜5. 0 (計算値、 ρΗ4. 98)、 卜レハロースホ スホリラーゼは ρΗ 4· 8-5. 2 (計算値、 ρΗ5. 1 3) であった。 (チ) ゲルろ週丟による分子量
セフアクリル S— 200を用いるゲル濾過法によりマル! スホスホリラ一ゼおよ びトレ八ロースホスホリラーゼの分子量を測定した。 その結果、 ゲル濾過法では両酵 素の 量はいずれも約 1 90, 000ダルトンであつたが、 S D S—ポリアクリル アミド電詠動法ではマル! スホスホリラーゼは約 89, 000〜 90, 000タリレ トン(計算値、 92, 233タリレトン)、 卜レノヽロースホスホリラーゼは約 89, 00 0〜90, 000タリレ卜ン(計算値、 91 , 280タリレトン)であったことから、 これ らの酵素はそれぞれホモ 2量体から構成されていることが予想された。 両組換え酵素 の分子量が野性型に較べて若干大きいのは、 N末端に H i sタグとスぺーサ一部分の 23アミノ酸配列が付加されている為に、 量が野生型に比べて約 3500大きく なっている為である。 実施例 8: 、
菌体内および菌体外卜レハロースホスホリラーゼの製造
卜レハロース 1 % (w/v)、酵母エキス(D i f c o社製) 2%、 リン酸アンモニゥ 厶 0. 25%、 尿素 0. 1 5%、 食塩1 %、 リン酸二カリウム 0. 1 %、 硫酸マグネシ ゥ厶■七 7jdg 0. 02 %および炭酸カルシウム 0. Ί 5 %を含む p H 7. 5の液 咅地 1 0 L (リットル) に、 予め同じ培地で一夜培養したパェニバチルス エスピー SH —55の種菌 50 OmLを無菌的に添加し、 35°C、 300 r pm、通気量 1 vvm [通 気量 (L)/培地 (L)/m in]の条件下で 24時間通気攪拌咅養した。 き養液のトレハロー スホスホリラーゼ活性を測定した結果、培養液 1 mL当たり 1 · 8単位であった。 また 同様にマルト一スホスホリラ一ゼ活性も測定したが、 活性は微量であった。 次いで、 こ の培養液を、 1 2, 000 X呈、 4°Cで 1 0分間遠心分離し、約 75 gの菌体(湿潤量) および約 1 0 L (リツ卜ル)の上清液を得た。 この上潔夜をアミコン (Ami con) 社製 U F膜(YM— 30)で濃縮し、約 50 OmLの菌体外濃縮粗酵素が得られた。 上意夜中 の酵素活性を測定した結果、全活性(約 1 4 X 1 03単位)の約 25 %の活性があった。 菌体部分につ ゝては 1 0 m Mのリン酸 液( p H 7 )で充分洗浄し、 240mLの同 上緩衝夜に懸濁させ、超音波菌体破砕機で菌体を破碎した。常法によりトレハロースホ スホリラーゼ活性を測定した結果、 全活性の約 75 %が菌体内に含まれていた。
従って、炭素源としてトレ八ロースを用いてパェニバチルス エスピー SH— 55 を培養することにより、 卜レ八ロースホスホリラーゼを優先的に生産することができ 、 その際酵素は菌体内に約 75%、 蘭対外に約 25%の割合で食まれることが分かつ †-
実施例 9 :
マル卜ースホスホリラーゼおよび卜レハロースホスホリラーゼ含有菌体内および蘭 体外酵素の製造
実施例 2で用いた培地成分中の卜レ八ロースをマル卜一スに、酵母エキス 2 %をポリ ペプトン FC (日本製薬(株)製) 4. 5% (w/v) にそれぞれ代え、 その他は同様 な条件と方法でバエ二バチルス エスピー SH-55を培養した。この培養液のマ Jレ卜 -スホスホリラーゼ活性とトレ八ロースホスホリラ一ゼ活性を測定した結果、培養液 1 mL当たり 0. 8単位のマルトースホスホリラーゼ活性と 0. 5単位のトレハロースホ スホリラ一ゼを生産していた。実施例 8と同様に遠心分離して約 50 gの菌体 (湿潤量) および 7 L (リットル)の上清液を得た。得られた菌体および上清中のマルトースホス ホリラ一ゼ活性を測定したところ、マル卜一スホスホリラーゼの全活性の約 80%カ簡 体内に、 約 20%が難外 (培養上清) に含まれていた。 また、 卜レハロースホスホリ ラーゼの全活性の約 80 %が菌体内に、約 20 %が菌体外 (培養上清)に含まれて t、す:。 実施例 1と同様な方法で培養上清を濃縮し、約 33 OmLの濃縮酵素を得た。濃縮酵素 中には約 550単位のマル! スホスホリラーゼと 500単位の卜レハロースホスホ リラーゼが含まれていた。
従って、炭素源としてマル I スを用 t、てパェニバチルス エスピー S H— 55を 培養することにより、 マルトースホスホリラーゼを生産するが、 同時に、 トレハロー スホスホリラーゼも生産することができ、 その際いずれの酵素とも菌体内に約 80% 、 菌対外に約 20%の割合で含まれることが分かった。 実施例 1 0 :
マル I ^一スからの卜レ八ロースの製造
1 OmLの 1 OmM燐酸 fjj夜 (pH 6) に溶解させた 1 0%、 20%、 30%、 および 40% (W/V) の各マル卜ース溶液に本発明の卜レハロースホスホリラーゼ およびマル卜ースホスホリラ一ゼを各々基質重量 1 g当たり 5単位(分解活性)添加 し、 55 °Cで 70時間反応させた。 反応終了後、 J¾¾夜を 1 00°Cで 5分間加熱して 酵素を失活させて得られる糖化液中のトレ八口一ス含有量を測定した。 その結果、 前 記 4種類のマルトース溶液のそれぞれについて、 基質重量に対してそれぞれ 58. 2 %、 58. 1 %、 58. 6%、 ぉょび57. 9 %の卜レハロースが生成していた。 なお、 トレ八ロースの定量は以下の方法で行った。 即ち、 加熱失活させた糖化液に 水を加え、 約 1 % (W/V) とした後、 該糖化液 0. 5m lにダルコアミラーゼ(生 化学工業製、 ピュアグレード 3 OUZmg) を 0· 01単ィ 加し、 50°C、 pH5 . 0で 1時間 J¾Sさせて未反応のマル! ^一スをグルコースに完全に分解させた。 次い で 1 00°Cの沸騰水浴中で 5分間加熱してダルコアミラーゼを失活させた後、 生成す る不溶性蛋白質を 0. 45 のメンブレンフィルターで除去して得られる濾液中の 卜レハロース含有量を YMC— P a c k ODS— AQ (AQ— 304、 YMC社製 ) カラムを用いる液体クロマ卜グラフ法 (HPLC法) で測定した。 なお、 測定は移 動相に水を用い、 カラム温度を 30°Cとして、 検出には示差屈折計を用いた。 実施例 1 1 :
マル! ^一スシラップからのトレ八ロースの製造
1 0|711_の5 1\1燐酸藤夜 (pH6) に溶解させた 20% (W/V) のハイマル 卜ースシラップ (日本食品化工製、 商品名 MC— 95、 糖滅:グルコース 2. 5% 、 マル I ^一ス 95. 2%、 マル卜卜リオ一ス 0. 8%、 マル卜テ卜ラオース 1 · 5% ) に、 本発明の卜レ八ロースホスホリラーゼおよびマソレ卜ースホスホリラ一ゼを基質 重量 1 g当たり各々 5単 忝加し、 以下実施例 1 0と同様に反応させた。 生成した卜 レハロースを H P L C法で測定した結果、 使用した基質重量に対して 54 · 3 %の卜 レハロースが生成した。 産業上の利用可能性
本発明によれば、 トレハロースを酵素的に製造する際に必要なマルトースホスホリ ラーゼおよび卜レ八ロースホスホリラーゼを菌体内及び菌体外に生産し得る新規な微 生物が提供される。 本発明の微生物は細菌であるので、 従来トレ八ロースホスホリラ 一ゼの供 v給源として知られていた緑藻や担子菌に]; して、 酵素の取得方法が非常に 容易であるばかりでなく、 培養時間も大幅に短縮することができ経済的である。 さら に、 本発明の微生物は、 一種類の微生物のみを用いて、 トレ八ロースの酵素的生産に 必要な二種類の酵素を同時に生産し得るという点でも実用的に著し ヽ利点を有する。 また、 本発明の 2つの酵素は、 トレ八ロースを酵素的に生産する際に要求される諸要 件をいずれも満足するので、 得られる卜レハロースの有効利用を著しく容易にし、 経 済的にも大幅な改善を達成し得るものである。 即ち、 本発明のマルトースホスホリラ ーゼおよび卜レハロースホスホリラーゼは高い ^安定性を有し、 高温での酵素 J¾s か可能であるので反応中の雑菌汚染から免れることができる。 さらには、 両方の酵素 がほぼ同じ最適 p H範囲を有しているので反応中の煩雑な p H管理が不要であると tゝ う利点も有する。 更に、 本発明の酵素を得るための別の方法として、 上記蘭株から本 発明の酵素をコードする遺伝子を取り出した後、 遺伝子工学技術を用いて組換え微生 物を作製し、 当該組換え微生物を培養することによって卜レハロースを酵素的に製造 する際に必要なマル I ^一スホスホリラーゼと卜レハロースホスホリラーゼの生産、 両 酵素の夕ンパク質工学的な改良が可能になった。

Claims

請 求 の 範 囲
1. マル卜一スホスホリラーゼおよびトレ八ロースホスホリラ一ゼ生産能を有するパ ェニバチルス属微生物。
2. 微生物が、 パェニバチルスエスピー S H - 55 (Paenibacillus sp. SH-5 _5) (寄託番号 FERM BP— 8420)である、請求の範囲第 1項言 S載のマル卜一 スホス木リラーゼおよび卜レ八ロースホスホリラーゼ生産能を有する微生物。
3. 以下に示す理化学的性質を有するマルトースホスホリラーゼ。
(ィ)作用:マルトース中の α— 1, 4—ダルコピラノシド結合を可逆的に加リン酸分 解し、 ダルコ、ースと ー D—グルコース 1一リン酸を生成する。
(口)基質特異性(分解反応):マルトースに作用し、 トレハロース、 シユークロース、 ラク卜ース、 セロビオースなどには作用しない。
(八)最適 ρΗおよび安定 ρΗ範囲:分解 J¾Sの最適 ρΗは 7. 0〜8. 0であり、 合 成 J¾5の最適 ρΗは 5. 5-6. 5である。 50°C、 1 0分間のカロ熱条件下では p H 5 · 5〜7. 5の範囲内で安定である。
(二)作用 の範囲と最 i SJt:作用 範囲は 20〜60°Cである。分解反応の最 適温度は 45 ~ 55 °Cであリ、 合成反応の最 は 50〜 55 °Cである。
(ホ) 温度安定性: pH 6. 0、 1 5分間の加熱条件下では 50 °Cまで極めて安定で ある。 また、 70°Cで完全に失活する。 (へ) S D S—ポリアクリルアミド電気泳動法による 量は約 8 9 , 0 0 0- 9 0 , 0 0 0ダル卜ン、 ゲル 去による分子量は約 1 9 0, 0 0 0ダル卜ンであり、 ホモ 2量体から構成されている。
4. 配列番号 1で示されるアミノ酸配列、 またはこの配列中の 1個もしくは複数アミ ノ酸が欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有する、 請求の範 囲第 3項記載のマルトースホスホリラーゼ。
5. 配列番号 1で示されるアミノ酸配列と 5 2 %以上の相同性を有するアミノ酸配列 を有する、 請求の範囲第 3項記載のマルトースホスホリラーゼ。
6. 請求の範囲第 3項記載のマルトースホスホリラーゼのアミノ酸配列をコードする ポリヌクレオチドであって、 下記の (a)〜 ( c ) からなる群、
( a) 配列表の配列番号 1に示すアミノ酸配列を有するポリペプチドをコードするポ リヌクレオチド、
( b) 配列表の配列番号 1に示すアミノ酸配列中の 1個もしくは複数個のアミノ^^ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ —ドするポリヌクレオチド、 および
( c ) 配列表の配列番号 2に示すヌクレオチド配列を有するポリヌクレオチド、 より 選ばれるポリヌクレオチド。
7. 請求の範囲第 6項記載のポリヌクレ才チドを有する組換えべク夕一。
8. 請求の範囲第 7項記載の組換えべクターにより形質転換された微生物。
9. 以下に示す理化学的性質を有する卜レ八ロースホスホリラーゼ。
(ィ)作用: トレ八口一ス中の α— 1, 1—ダルコビラノシド結合を可逆的に加リン酸 分解し、 グルコースおよび i8— D—グルコース 1一リン酸を生成する。
(口)基質特異性(分解反応): 卜レハロースに作用し、マル卜一ス、 シユークロース、 ラク卜一ス、 セロビオースなどに作用しない。
(八) ¾ϋρΗおよび安定 pH範囲:分解反応の最適 pHは 7. 0〜8. 0であり、 合 成 J¾5の最適 pHは 5· 8〜7. 8である。 50 °C、 1 0分間の力 Π熱条件下では pH5. 5〜9. 5の範囲内で安定である。
(二) 作用 の範囲と最 :作用^^範囲は 25〜70°Cである。 分解 J¾Sの 最適温度は 5、0〜 65 °Cであリ、 合成反応の最適温度は 45 ~ 60 °Cである。
(ホ)温度安定性: pH7. 0、 1 5分間の加熱条件下でほ 60 °Cまで極めて安定であ る。 また、 70°Cで完全に失活する。
(へ) S D S—ポリアクリルァミド電気泳動法による分子量は約 89, 000〜 90, 000タリレ卜ンであリ、ゲル ¾1ϋ法による分子量は約 1 90, 000ダル卜ンであリ、 ホモ 2量体から構成されている。
1 0. 配列番号 3で示されるアミノ酸配列またはこの配列中の 1個もしくは複数アミ ノ^^ '欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有する、 請求の範 囲第 9項記載の卜レ八ロースホスホリラーゼ。
1 1 . 配列番号 3で示されるアミノ酸配列と 6 3 %以上の相同性を有するァミノ MIB 列を有する、 請求の範囲第 9項記載の卜レハロースホスホリラーゼ。
1 2. 請求の範囲第 9項記載のトレ八ロースホスホリラーゼのアミノ酸配列をコード するポリヌクレオチドであって、 下記 (d ) 〜 (f ) からなる群、
( d ) 配列表の配列番号 3に示すァミノ酸配列を有するポリぺプチドをコードするポ リヌクレオチド、
( e ) 配列表の配列番号 3に示すアミノ酸配列中の 1個もしくは複数個のアミノ^^ 欠失、 置換、 逆位、 付加もしくは挿入されたアミノ酸配列を有するポリペプチドをコ ードするポリヌクレオチド、 および
( f ) 配列表の配列番号 4に示すヌクレ才チド配列を有するポリヌクレ才チド、 よリ選ばれるポリヌクレ才チド。
1 3. 請求の範囲第 1 2項記載のポリヌクレオチドを有する組換えベクター。
1 4. 請求の範囲第 1 3項記載の組換えベクターにより形質転換された微生物。
1 5. マル卜一スホスホリラ一ゼおよびトレ八ロースホスホリラーゼ生産能を有する パェニバチルス属微生物を培養し、 請求の範囲第 3項若しくは第 4項に記載のマル卜 ースホスホリラーゼぉよび/または請求の範囲第 9項若しくは第 1 0項に記載の卜レ 八ロースホスホリラーゼの少なくとも一つを生成'蓄積させ、これを採取することを特 徴とする、 マル卜ースホスホリラーゼ若しくは卜レハロースホスホリラーゼまたは両 者の混^の製造方法。
1 6. 前記培養を、 マルトースを含む炭素源の存在下で行い、 マルトースホスホリラ ーゼおよびトレハロースホスホリラーゼを生成■蓄積させることを特徴とする、 請求 の範囲第 1 5項に記載のマルトースホスホリラ一ゼ、 またはマル卜一スホスホリラー ゼと卜レ八ロースホスホリラーゼの混合物の製造方法。
1 7 . 前記培養を、 トレハロースを含む炭素源の存在下で行い、 卜レハロースホスホ リラ一ゼを優先的に生成'蓄積させる、 請求の範囲第 1 5項に記載のトレ八ロースホ スホリラーゼ、 またはマル卜ースホスホリラーゼと卜レ八ロースホスホリラーゼの混 の製造方法。
1 8.次の L、ずれかの方法から選ばれるマル卜ースホスホリラーゼおよび Zまたは卜レ 八ロースホスホリラ一ゼの粗酵素の製造方法;
( マル卜一スホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する バエ二バチルス属微生物を培養し、得られた培養液から分離した菌体をそのままの採取 する、
(i i) マル卜ースホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する バエ二バチルス属微生物を培養し、得られた培養液から分離した菌体からマルトースホ スホリラーゼおよび/または卜レハロースホスホリラーゼ粗酵素を抽出する、 または、 (i i i) マル卜ースホスホリラーゼおよび卜レハロースホスホリラーゼ生産能を有する パェコチルス属微生物を培養し、得られた培養液から菌体を分離し、培養上意夜を 採取する。 9. 燐酸の存在下で、請求の範囲第 3項または第 4項に記載のマルトースホスホリラ —ゼ、および請求の範囲第 9項または第 1 0項に記載の卜レハロースホスホリラーゼ を、 マリレトースに作用させることを特徴とする卜レハロースの製造方法。
PCT/JP2004/009606 2003-07-04 2004-06-30 新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法 WO2005003343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005511388A JP4336897B2 (ja) 2003-07-04 2004-06-30 新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法
CN2004800191060A CN1816623B (zh) 2003-07-04 2004-06-30 新型微生物、麦芽糖磷酸化酶和海藻糖磷酸化酶及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003192199 2003-07-04
JP2003-192199 2003-07-04

Publications (1)

Publication Number Publication Date
WO2005003343A1 true WO2005003343A1 (ja) 2005-01-13

Family

ID=33562391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009606 WO2005003343A1 (ja) 2003-07-04 2004-06-30 新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法

Country Status (3)

Country Link
JP (1) JP4336897B2 (ja)
CN (1) CN1816623B (ja)
WO (1) WO2005003343A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301720A (ja) * 2007-06-05 2008-12-18 Japan Agengy For Marine-Earth Science & Technology 新規なマルトースホスホリラーゼ、その製造方法、およびその利用方法
JP2011125263A (ja) * 2009-12-17 2011-06-30 Nissui Pharm Co Ltd 血液寒天培地及びその保存方法
CN103074279A (zh) * 2013-01-14 2013-05-01 南京工业大学 一株类芽胞杆菌及其在降解微囊藻毒素中的应用
WO2019165060A1 (en) 2018-02-23 2019-08-29 Danisco Us Inc Synthesis of glucan comprising alpha-1,3 glycosidic linkages with phosphorylase enzymes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841899A (zh) * 2018-07-13 2018-11-20 安徽民祯生物工程有限公司 一种酶转化生产海藻糖的方法
CN114854807B (zh) * 2022-05-23 2024-05-17 中国科学院微生物研究所 一种生产海藻糖六磷酸的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937780A (ja) * 1995-07-31 1997-02-10 Showa Sangyo Co Ltd 耐熱性マルトースホスホリラーゼ、その製造方法、その製造に使用する菌、および該酵素の使用方法
JPH10262683A (ja) * 1997-03-25 1998-10-06 Showa Sangyo Co Ltd 組換え耐熱性マルトースホスホリラーゼをコードする 遺伝子、該遺伝子を含む組換えベクター及び該ベクタ ーを含む形質転換体とその産生物
JPH10304881A (ja) * 1996-11-08 1998-11-17 Hayashibara Biochem Lab Inc トレハロースホスホリラーゼとその製造方法並びに用途
JPH10327887A (ja) * 1997-03-31 1998-12-15 Showa Sangyo Co Ltd 組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む組換えベクター及び該ベクターを含む形質転換体とその産生物
JPH11103885A (ja) * 1994-09-16 1999-04-20 Nippon Shokuhin Kako Co Ltd トレハロースを含有する糖化液の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103885A (ja) * 1994-09-16 1999-04-20 Nippon Shokuhin Kako Co Ltd トレハロースを含有する糖化液の製造方法
JPH0937780A (ja) * 1995-07-31 1997-02-10 Showa Sangyo Co Ltd 耐熱性マルトースホスホリラーゼ、その製造方法、その製造に使用する菌、および該酵素の使用方法
JPH10304881A (ja) * 1996-11-08 1998-11-17 Hayashibara Biochem Lab Inc トレハロースホスホリラーゼとその製造方法並びに用途
JPH10262683A (ja) * 1997-03-25 1998-10-06 Showa Sangyo Co Ltd 組換え耐熱性マルトースホスホリラーゼをコードする 遺伝子、該遺伝子を含む組換えベクター及び該ベクタ ーを含む形質転換体とその産生物
JPH10327887A (ja) * 1997-03-31 1998-12-15 Showa Sangyo Co Ltd 組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む組換えベクター及び該ベクターを含む形質転換体とその産生物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDAKA, Y. ET AL.: "Shinkai kara Bunri shita Paenibacillus sp.SH-55 Kabu Yurai Trehalose Phosphorylase no Idenshi no Cloning to Kumikae Koso no Shoseishitsu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2004, 2004, pages 257, XP002984947 *
NOLLING, J. ET AL.: "Genome sequence and comparative analysis of the solvent -producing bacterium Clostridium acetobutylicum", J. BACTERIOL, vol. 183, no. 16, 2001, pages 4823 - 4838, XP002984946 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301720A (ja) * 2007-06-05 2008-12-18 Japan Agengy For Marine-Earth Science & Technology 新規なマルトースホスホリラーゼ、その製造方法、およびその利用方法
JP2011125263A (ja) * 2009-12-17 2011-06-30 Nissui Pharm Co Ltd 血液寒天培地及びその保存方法
CN103074279A (zh) * 2013-01-14 2013-05-01 南京工业大学 一株类芽胞杆菌及其在降解微囊藻毒素中的应用
WO2019165060A1 (en) 2018-02-23 2019-08-29 Danisco Us Inc Synthesis of glucan comprising alpha-1,3 glycosidic linkages with phosphorylase enzymes
US11473116B2 (en) 2018-02-23 2022-10-18 Nutrition & Biosciences USA 4, Inc. Synthesis of glucan comprising alpha-1,3 glycosidic linkages with phosphorylase enzymes

Also Published As

Publication number Publication date
CN1816623B (zh) 2010-05-12
JP4336897B2 (ja) 2009-09-30
JPWO2005003343A1 (ja) 2006-08-17
CN1816623A (zh) 2006-08-09

Similar Documents

Publication Publication Date Title
CN101657544B (zh) 新型α-半乳糖苷酶
US5935827A (en) Maltose phosphorylase, trehalose phosphorylase, novel strain of genus plesiomonas capable of producing these enzymes and process for producing trehalose
KR100427529B1 (ko) 말토오스를 트레할로오스로 변환하는 재조합형 열안정성 효소
JP3557288B2 (ja) 還元性澱粉糖から末端にトレハロース構造を有する非還元性糖質を生成する組換え型耐熱性酵素
KR102044957B1 (ko) 사이코스의 제조방법
EP1257638A1 (en) Bacterial isolates of the genus klebsiella, and an isomaltulose synthase gene isolated therefrom
WO2005003343A1 (ja) 新規微生物、マルトースホスホリラーゼおよびトレハロースホスホリラーゼ並びにその製造方法
JP3559609B2 (ja) 組換え型酵素とその製造方法並びに用途
CN102732456A (zh) 耐有机溶剂糖苷酶Fru6及其突变体和应用
JP4259169B2 (ja) 新規α−1,2−マンノシダーゼおよびその遺伝子、ならびに該酵素を用いたα−マンノシル糖化合物の製造方法
JP3557272B2 (ja) 組換え型酵素とその製造方法並びに用途
JP3650632B2 (ja) マルトースをトレハロースに変換する組換え型酵素
US5281527A (en) Process for producing pullalanase
CN112921025B (zh) 一种差向异构酶的突变体,其编码基因、氨基酸序列及其应用
Hidaka et al. Maltose phosphorylase from a deep-sea Paenibacillus sp.: Enzymatic properties and nucleotide and amino-acid sequences
Chi et al. Characterization of two thermostable β-agarases from a newly isolated marine agarolytic bacterium, Vibrio sp. S1
WO2004090127A1 (ja) 寒天分解酵素およびその利用
Ahmadi et al. Purification of α-amylase from Bacillus sp. GHA1 and its partial characterization
JP3557276B2 (ja) 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体
KR100821377B1 (ko) 내열성 아라비노오스 이성화효소 활성을 갖는 신규한지오바실러스 더모디니트리피컨스 CBG-Al 균주, 그 효소 및타가토오스의 생산방법
JP3557271B2 (ja) 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体
JP2970932B2 (ja) 新規耐熱性β―ガラクトシル基転移酵素、その製造法及びその用途
JP3959439B2 (ja) 耐熱性トレハラーゼと、その製造法
KR100319539B1 (ko) 신규한 트레할로스 생합성효소 융합유전자와 융합효소단백질 및 이를 이용한 트레할로스의 생산방법
JPH10327887A (ja) 組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む組換えベクター及び該ベクターを含む形質転換体とその産生物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019106.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511388

Country of ref document: JP

122 Ep: pct application non-entry in european phase