WO2004093743A1 - Craniofacial implant - Google Patents
Craniofacial implant Download PDFInfo
- Publication number
- WO2004093743A1 WO2004093743A1 PCT/US2004/011903 US2004011903W WO2004093743A1 WO 2004093743 A1 WO2004093743 A1 WO 2004093743A1 US 2004011903 W US2004011903 W US 2004011903W WO 2004093743 A1 WO2004093743 A1 WO 2004093743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- implant
- recited
- mesh
- reconstruction
- defect
- Prior art date
Links
- 239000007943 implant Substances 0.000 title claims abstract description 128
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims abstract description 3
- -1 polyethylene Polymers 0.000 claims description 36
- 239000004698 Polyethylene Substances 0.000 claims description 35
- 229920000573 polyethylene Polymers 0.000 claims description 35
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 32
- 230000004888 barrier function Effects 0.000 claims description 30
- 230000007547 defect Effects 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 210000000988 bone and bone Anatomy 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 230000001497 fibrovascular Effects 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000011800 void material Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims 1
- 229920001903 high density polyethylene Polymers 0.000 claims 1
- 239000004700 high-density polyethylene Substances 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 9
- 230000008439 repair process Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 208000014674 injury Diseases 0.000 description 5
- 210000004872 soft tissue Anatomy 0.000 description 5
- 206010017076 Fracture Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 208000032170 Congenital Abnormalities Diseases 0.000 description 3
- 208000010392 Bone Fractures Diseases 0.000 description 2
- 208000007825 Orbital Fractures Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002278 reconstructive surgery Methods 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910000771 Vitallium Inorganic materials 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000001621 ilium bone Anatomy 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000001595 mastoid Anatomy 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GPTONYMQFTZPKC-UHFFFAOYSA-N sulfamethoxydiazine Chemical compound N1=CC(OC)=CN=C1NS(=O)(=O)C1=CC=C(N)C=C1 GPTONYMQFTZPKC-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000000602 vitallium Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8085—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2875—Skull or cranium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/446—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2875—Skull or cranium
- A61F2002/2878—Skull or cranium for orbital repair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
Definitions
- Craniofacial and especially orbital wall and floor defects may result from trauma, cancer, resection, or congenital defects. Such defects are typically treated surgically using bone grafts or synthetic implants. Congenital defects or fractures of the complex and relatively thin bone structures surrounding and supporting the human eye present difficult internal bone repair and fixation problems. In instances when the eye is subject to trauma, the margin or rim of the orbit may diffuse the force of the impact. However, compression of the orbital contents sometimes may occur and fracture the relatively fragile orbit floor and/or the lateral and medial orbital walls. Also injury at the lateral orbital rim may produce a fracture within the orbit. When the orbit is fractured standard bone-grafting techniques for orbital reconstruction may not result in predictable eye function and positioning.
- the support of the globe is deficient as a result of under correction of the defect, over correction, or inadequate reconstruction of the orbital volume.
- the bone graph may be subject to resorption that may result in result in a less than optimal support.
- the accurate anatomical reconstruction of the bony orbit is essential to maintain normal function and appearance of the eye following orbital fractures. Because most of the bone of the internal orbit surfaces is thin, it is difficult to adequately stabilize the fractured bone fragments without the use of autogenous or alloplastic materials.
- Bone may be harvested from the calvarium and other autogenous materials including iliac bone, split rib bone. Cartilage has also been used as a bone graft material.
- autogenous bones sometimes result in an unacceptable amount of resorption.
- a variety of alloplastic materials have been used for orbital reconstruction and craniofacial applications including, silicone rubber, Teflon, Supramid, tantalum mesh, Vitallium mesh, titanium mesh, polyethylene, and methyl methacrylate
- Perforated biocompatible metallic strips and metallic panels may be used for rigid internal fixation of fractures in trauma surgery and as a plate material for bone immobilization and stabilization.
- Metal implants can be used for bone graft support material in reconstructive surgery.
- Synthetic implant materials have the advantage of no donor site morbidity, ease of use, relative low cost and ready availability. While there are advantages of synthetic implants, some characteristics may be regarded as disadvantages.
- Silicone rubber has a smooth surface, but does not allow fibrovascular ingrowth into the implant. Further, although it is flexible, it does not readily conform to the profile of the region where it is required or maintain a new shape when shaped to fit a particular location. For example, in connection with the reconstruction of the orbit, a silicone rubber implant is not an attractive option because upon shaping it to the desired profile, it will tend to be biased back to its original shape. While a silicone rubber implant does not maintain its shape, in a case where the soft tissues of the orbit have been traumatized, an implant with a smooth superior surface is desirable to prevent attachment of the tissues to the implant upon healing. Attachment of these tissues to the wall of the implant may result in restriction of movement of the eye, causing diplopia, dizziness, and headaches, as well as a cosmetic anomaly on upgaze, downgaze or lateral gaze.
- Implants having a porous structure such as porous polyethylene with predetermined pore sizes allow for fibrovascular ingrowth.
- fibrovascular ingrowth is desirable because it integrates the implant within the tissues, and reduces the possibility that that the synthetic material will be rejected.
- fibrovascular ingrowth on the inferior or sinus side of the implant allows for mucosalization of the implant surface, and, since the opposite side of the implant may be a barrier, the sinus is effectively isolated from the soft tissues of the orbit. This arrangement is considered desirable because it increases the ability of the implant to ward off infection and mimmizes the chance of a sinus infection from entering through the orbit. Fibrovascular ingrowth is also thought to minimize the chance of implant migration or displacement.
- Porous polyethylene is somewhat flexible and thin sheets appropriate for orbital floor and wall reconstruction can be bent to an appropriate shape. However, this material tends to return to its original shape. Further, porous polyethylene does not have a smooth superior surface, so it may result in restriction of the orbital tissues due to fibrous ingrowth when used for orbital reconstruction.
- Pure titanium is the material of choice in craniofacial reconstructive surgery, especially when the implant is intended to be permanent.
- pure titanium is preferred because its low density and elastic modules are less than some of the stainless steel or cobalt-chromium alloys that have been used as implant materials.
- Titanium is corrosion resistant and, when provided in thin sheets, is pliable. Titanium implants many be cut and shaped to the appropriate configuration at the time of surgery. Titanium mesh is easily moldable in situ and easily fixed to bone, but does not have smooth surfaces, nor does it allow for fibrovascular ingrowth. An easily molded material is desirable so that the surgeon can create the correct shape to properly reconstruct the orbital walls or orbital floor. Titanium mesh can be molded to the desired shape by hand and it will retain the shape due to the malleability and strength of the titanium material.
- an implant material for orbital reconstruction While there are a number of options for an implant material for orbital reconstruction, there remains a need for a material that is easily moldable by hand and will retain its shape after molding, has a smooth impenetrable surface on one side, and a porous surface on the opposite side, and is made from highly biocompatible materials.
- the present invention is directed to an improved implant and method of reconstruction of craniofacial defects, and in particular for orbital defects.
- the implant is a composite structure comprised of a surgical grade metal provided in a planar sheet form that is encased within a thermoplastic resin.
- one surface of the implant is smooth and impervious so that when the implant is placed within the body, it may form a barrier.
- the opposite side of the implant is comprised of porous polyethylene that allows for fibrous tissue ingrowth.
- the implant that is described herein is cut and then shaped to conform to the profile of a defect to be treated. The implant is then secured to bony tissue using surgical screws or an alternative mechanical fastener. Because the implant contains a mesh it will maintain its shape.
- Fig. 1 is a top plan view of a first embodiment of an implant according to the invention wherein top side of the implant is a barrier surface.
- Fig. 2 is a side view in elevation of the first embodiment of the invention showing the barrier surface and the bottom porous surface.
- Fig. 3 is a bottom view of the first embodiment of the invention. .
- Fig. 4 is a perspective view of the first embodiment of the invention.
- Fig. 5 is a side sectional view of an implant within a mold used to assemble the invention.
- Fig. 6. is a top view of a mold depicted in Fig. 5 with the top cover removed.
- Fig. 7 is a top view of an alternative mold that can be used to create the invention with the top cover removed.
- Fig. 8 is a side sectional view of the mold depicted in Fig. 7
- Fig. 9 is a top view of titanium mesh that may be employed with any of the embodiments of the invention.
- Fig. 10 is an enlarged view of a section of the titanium mesh depicted in Fig. 9.
- Fig. 11 is a side sectional view of an implant having opposite barrier surfaces that a center section.
- Fig. 12 is a side view in elevation of the implant depicted in Fig. 11.
- Fig. 13 is a side sectional view of the implant depicted in Figs 1-3.
- Fig. 14 depicts a sectional view of a cranial defect.
- Fig. 15 is a side sectional view of the implant shown in Figs 1-3 within a cranial defect.
- Fig. 16 is yet another embodiment of the invention wherein the implant has opposite barrier surfaces.
- Fig. 17 is a side view in elevation of the implant depicted in Fig. 16.
- Fig. 18 is a side sectional view of a further embodiment of the invention wherein the metal mesh is formed with an implant with opposite porous surfaces.
- Fig. 19 is an exploded view of an implant having three layers.
- Fig. 20 is a perspective illustration of an implant according to the invention shown in an orbital reconstruction application.
- the present invention is directed to novel implants for craniofacial surgery, methods for making said implant and a method of reconstructing orbital and cranial defects with the implants described.
- a preferred application for the implant is for the reconstruction of orbital defects that may have resulted from trauma or disease or birth defects.
- Other craniofacial applications are also contemplated.
- a first embodiment of the invention comprises a sheet of titanium mesh 20, with porous polyethylene formed in the interstices of the mesh and completely covering the bottom surface 27 of the implant.
- a solid sheet of polyethylene film 23 covers the top side of the implant.
- the mesh 20 provides for strength and serves to retain the shape of the implant in a rigid and fixed position.
- a mesh as used herein encompass any flat sheet of surgical grade metal that has perforations or passages formed through the sheet. The passages in the sheet help enable the sheet to be shaped or bent in more than one dimension and then retain the desired shape.
- the mesh could be formed in a variety of manners including woven screens, or be etched from plates, or be formed from sold plates that are cut and then expanded to form a substrate having passages.
- a smooth barrier material 23 lies on top of the titanium mesh material 20 with porous polyethylene 25 formed in the interstices and under the titanium mesh 20.
- the top surface 23 of the implant has some transparency so that the mesh 20 may be seen through the polyethylene film layer 23.
- the mesh 105 may not extend to the edge of the implant structure. In yet other embodiments, the mesh may extend from the implant structure. In this later regard, it may be advantageous to extend the mesh from the implant structure to provide for a metal projection to be employed for the attachment of the implant during the surgical procedure. While in the embodiments depicted herein, the mesh is depicted in the center of the implant structure, it is contemplated that the mesh may be positioned adjacent to the top thin sheet layer or other locations within the implant depending on the respective application.
- a mesh 40 is selected and positioned on tabs 50 that project form the sidewalls 45 and 48 of the bottom of the mold section 42.
- polyethylene fines are introduced into the mold so that they fill the void below the mesh 40, the spaces between the titanium mesh 40 and cover the top surface of mesh 40.
- a thin sheet or continuous film of solid polyethylene 55 is placed on the top of a suitable mold. The solid barrier sheet 55 extends beyond the edges of the cavity section of the mold and extends to the mold surface 63 thereby maintaining the sheet on one side of the mold.
- Fig. 7 depicts an alternative arrangement for a mold wherein the mesh may be received on a shelf 70 that is suspended over the cavity using a shelf 70 around the mold cavity that holds the mesh sheet in position.
- shelf region 70 that extend into the void area 78 of mold 75 supports the edges of the mesh.
- a polyethylene sheet 90 is positioned above polyethylene fines 92 that fill the cavity 78.
- the passages through the mesh are identified by reference number 52. It should be understood that the dimensions, including the depth of the cavity from top surface 85 of bottom mold section 75, and the length and width of the mold may be altered depending on the particular application intended for the implant.
- the fines 92 come into contact with both the smooth polyethylene sheet 90 and the mesh 80.
- the top section 98 is placed over the components and the materials are subjected to heat and pressure, as is known in the current art, to form a porous polyethylene material.
- the heat and pressure causes the fines to be sintered together and to be affix the polyethylene sheet and titanium mesh.
- the resulting structure has titanium mesh embedded within a porous matrix and a solid smooth polyethylene film that is attached both to the titanium mesh and/or to the porous polyethylene structure.
- the sheet or film of polyethylene is impervious to water and serves as a barrier.
- the polyethylene film is approximately 0.1 mm thick
- the titanium mesh is approximately .35 mm thick
- the porous polyethylene is approximately .9 mm thick, inclusive of the imbedded titanium mesh.
- the overall thickness of the material is approximately 1 mm.
- the titanium mesh consists of a series of annular rings 107 that are attached to adjacent annular rings by bridges 110 also made of titanium. As best seen in Fig. 9, in a preferred embodiment of the invention, the titanium mesh consists of a series of annular rings 107 that are attached to adjacent annular rings by bridges 110 also made of titanium. As best seen in Fig. 9, in a preferred embodiment of the invention, the titanium mesh consists of a series of annular rings 107 that are attached to adjacent annular rings by bridges 110 also made of titanium. As best seen in Fig.
- the annular rings have countersunk holes 115 that will receive the head of surgical screw.
- This structure allows for flexibility of the titanium component within the implant and the countersunk holes allow for easy fixation of the implant to the bone using appropriately sized surgical screws.
- the titanium is of sufficient strength in relation to the thickness of the polyethylene components (the solid sheet and the porous matrix) so that the implant will hold its shape after being bent by the surgeon. It is therefore contemplated that during a surgical procedure the surgeon may bend the implant to conform to the shape of the defect that is being treated. In a preferred embodiment the surgeon can bend the implant by hand during the procedure.
- the implant as described above can also be cut with conventional plate cutters that are routinely used for cutting titanium surgical plates or mesh. While preferred embodiments of the titanium mesh are illustrated by
- Figs.9 and 10 other titanium mesh products that can be used in connection with the invention are commercially available from sources that include Stryker Instruments, Synthes Maxillofacial, Leibinger, KLS-Martin, L.P. and Walter- Lorenz Surgical.
- Figs. 11 depicts yet another embodiment of the invention in which the titanium 150 is placed between two opposite polyethylene barrier sheets 153 and 155. A porous matrix 160 is sandwiched between the barrier sheets 153 and 155. use.
- the configuration of this implant provides a bendable sheet that has a smooth polyethylene surface on both the top and bottom surface. The implant will retain its shape after it has been bent to conform to the contours of defect to be treated.
- the implant has strength properties that are inherent to titanium, and it has a non-porous barrier surface that is not amenable to tissue attachment to the implant.
- the thickness of the sheets of polyethylene may be selected to result in an implant having the desired thickness.
- the thickness of the implant may be adjusted by variation of the porous matrix layer 160.
- the implant may be bent by the surgeon and it will maintain its shape.
- a side sectional view of the implant depicted in Figs 1-4 shows the mesh 20 formed along the interface 175 between the porous layer and the sold polyethylene layer 23.
- a defect in the cranium 178 has a floor 180 and a wall 182.
- the implant is bent to conform to the contour of the defect and cut to the shape of the defect.
- the implant is placed within the defect and the bottom porous layer is brought into contact with the bone on the floor and sidewalls.
- the implant may be secured into place with screw or sutures. Because the bottom surface and the sidewalls of the implant are porous, fibrovascular ingrowth into the implant is encouraged and this ingrowth serves to further stabilize the implant and diminish the possibility of rejection.
- the smooth barrier surface prevents the dermis from attachment and thereby allows the skin to slide over the implant area.
- the structure involves the providing of a titanium mesh plate within a porous polyethylene matrix wherein all sides have porous surfaces.
- Fig. 18 depicts a sectional view wherein the mesh 300 is formed with a porous polyethylene matrix.
- This implant may be suitable for those applications where a smooth barrier surface is not indicated.
- an implant having porous surfaces that allow for fibrovascular ingrowth on opposite sides may be indicated in cranial applications and for temporal implants for soft tissue replacement.
- the pore size of the porous polyethylene is sized large enough to allow for fibrovascular ingrowth. This pore size range would preferably be in the range of 100-250 microns, but could vary in the range of 20-500 microns.
- polyethylene sheets and high density porous polyethylene matrix are preferred, it is also contemplated that other synthetic resins and combinations can be used in connection with the invention.
- PETE, PTFE and/or nylon may be selected as the thermoplastic resin.
- Figures depicted herein are not necessarily drawn to scale.
- the barrier in Figs. 1 -4 may be formed with a sheet having a much smaller width than the drawings may suggest.
- Figs. 1-4 is approximately 5 mm wide by 10 mm in length and has a thickness of approximately 1 mm. However, other dimensions are contemplated.
- Fig. 5 is a sectional view of the implant according to the invention located within a mold. As depicted therein, the mesh is located adjacent to the barrier layer on the top of the mold.
- the barrier layer is formed of a solid sheet of polyethylene and the porous section is made by sintering together polyethylene fines under heat and pressure.
- the sold sheet may be made by introducing polyethylene fines to a press having opposite smooth metal sheets and heating the surfaces causing the fines to completely fuse together.
- the structure may be removed from the mold because both the tabs 50 and the implant material have some flexibility.
- a contemplated arrangement depicting a plurality of tabs 50 provided on the lower section of mold 61 is shown.
- the titanium sheet will rest on or is supported by the tabs 50 provided around the periphery of the mold.
- the tabs are placed a distance from the top surface of the mold that is slightly less than the width of the mesh, so that when the top of the mold that retains the barrier sheet is placed over the mold bottom, the thin barrier sheet may come into contact with the mesh.
- Fig. 7 depicts an alternative arrangement wherein the mold is provided with a shelf to retain the titanium mesh in position near the top of the mold.
- Fig. 16 depicts yet a further embodiment of the implant wherein the top surface 214 and bottom surface 126 are polyethylene sheets.
- the mesh 220 is contiguous with the internal surfaces of both the top sheet 214 and the lower sheet
- FIG. 19 shows an exploded perspective schematic view of the embodiment according to the invention.
- Top layer 400 may comprise a barrier surface or porous surface.
- the mesh 405 may be any metallic material suitable for surgical applications that and that is malleable and will retain its shape.
- Bottom layer 410 may be a barrier surface or a porous surface. This embodiment depicts mesh 405 at the interface between the layers 400 and 410.
- Fig. 20 depicts an implant 500 made according to the invention in position on the orbit floor of an orbit 507.
- the implants according to the invention may be advantageously employed with other surgery such as the repair of lost bone flaps resulting from neurological procedures, repair of the mastoid area after a mastoidectomy, fixation for LeFort procedures, fixation for sliding genioplasty.
- the planar sheets may be bent into tubular shapes and used for orthopedic applications. A planar sheet bent in a U shaped configuration may be useful in connection with spinal fixation procedures or the repair of herniated disks.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Surgery (AREA)
- Dermatology (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Neurology (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Manufacturing & Machinery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0409487-5A BRPI0409487A (en) | 2003-04-16 | 2004-04-16 | surgical implant, process for its preparation and method of reconstruction of a bone defect |
US10/517,843 US7655047B2 (en) | 2003-04-16 | 2004-04-16 | Craniofacial implant |
EP04759969.1A EP1613240B1 (en) | 2003-04-16 | 2004-04-16 | Craniofacial implant |
US11/445,560 US8298292B2 (en) | 2003-04-16 | 2006-06-02 | Craniofacial implant |
HK06112177.4A HK1090278A1 (en) | 2003-04-16 | 2006-11-06 | Craniofacial implant |
US12/652,896 US8398720B2 (en) | 2003-04-16 | 2010-01-06 | Craniofacial implant |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46303603P | 2003-04-16 | 2003-04-16 | |
US60/463,036 | 2003-04-16 | ||
US49668403P | 2003-08-21 | 2003-08-21 | |
US60/496,684 | 2003-08-21 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10517843 A-371-Of-International | 2004-04-16 | ||
US11/445,560 Continuation-In-Part US8298292B2 (en) | 2003-04-16 | 2006-06-02 | Craniofacial implant |
US12/652,896 Continuation US8398720B2 (en) | 2003-04-16 | 2010-01-06 | Craniofacial implant |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004093743A1 true WO2004093743A1 (en) | 2004-11-04 |
Family
ID=33313431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/011903 WO2004093743A1 (en) | 2003-04-16 | 2004-04-16 | Craniofacial implant |
Country Status (7)
Country | Link |
---|---|
US (2) | US7655047B2 (en) |
EP (2) | EP2308423A1 (en) |
KR (2) | KR20100102753A (en) |
CN (1) | CN100586401C (en) |
BR (1) | BRPI0409487A (en) |
HK (1) | HK1090278A1 (en) |
WO (1) | WO2004093743A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007142743A2 (en) * | 2006-06-02 | 2007-12-13 | Porex Surgical, Inc. | Craniofacial implant |
WO2009006313A1 (en) * | 2007-06-29 | 2009-01-08 | Synthes (U.S.A.) | Improved orthopedic implants for use with precision bone resurfacing instrumentation |
US7655047B2 (en) | 2003-04-16 | 2010-02-02 | Porex Surgical, Inc. | Craniofacial implant |
WO2012116401A1 (en) * | 2011-02-28 | 2012-09-07 | Anatomics Pty Ltd | Surgical implant and method |
WO2016011369A1 (en) * | 2014-07-17 | 2016-01-21 | Poriferous, LLC | Orbital floor sheet |
WO2017100531A1 (en) * | 2015-12-11 | 2017-06-15 | DePuy Synthes Products, Inc. | Composite implant trial |
WO2017210411A1 (en) * | 2016-06-03 | 2017-12-07 | DePuy Synthes Products, Inc. | Surgical templates with radio-opaque markings |
WO2018140706A1 (en) * | 2017-01-26 | 2018-08-02 | Poriferous, LLC | Channel implant |
USD884898S1 (en) | 2017-09-29 | 2020-05-19 | Matrix Surgical Holdings, LLC | Orbital implant for human ocular support |
WO2020223641A1 (en) * | 2019-05-02 | 2020-11-05 | Aaron Noble | Orbital floor implant |
RU2743108C1 (en) * | 2019-12-25 | 2021-02-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Hybrid plate for cranioplasty |
RU2807505C2 (en) * | 2023-01-19 | 2023-11-15 | Федеральное Государственное Автономное учреждение Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко Министерства Здравоохранения Российской Федерации | Customized implant for reconstruction of defects in cranio-orbital region |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7537664B2 (en) | 2002-11-08 | 2009-05-26 | Howmedica Osteonics Corp. | Laser-produced porous surface |
WO2005041812A2 (en) * | 2003-10-22 | 2005-05-12 | Implant Brace, Inc. | Implantable brace for a fracture and methods |
US7887587B2 (en) * | 2004-06-04 | 2011-02-15 | Synthes Usa, Llc | Soft tissue spacer |
US20060116682A1 (en) * | 2004-11-18 | 2006-06-01 | Longo Marc N | Surgical implant and methods of making and using the same |
US20060217813A1 (en) * | 2005-03-22 | 2006-09-28 | Posnick Jeffrey C | Facial implant |
US8728387B2 (en) | 2005-12-06 | 2014-05-20 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US9119677B2 (en) * | 2005-12-09 | 2015-09-01 | DePuy Synthes Products, Inc. | Spinal plate and drill guide |
BRPI0621542B8 (en) * | 2006-04-05 | 2021-06-22 | Synthes Gmbh | process and device for producing a flat, pre-shaped implant corresponding to a desired anatomical shape for a human or animal body |
CN100384383C (en) * | 2006-07-17 | 2008-04-30 | 中国人民解放军第二炮兵总医院 | Medical equipment for reposition and fixation of orbit inferior wall fracture |
US20060287654A1 (en) * | 2006-08-11 | 2006-12-21 | Jeffrey Posnick | Implant securing device and method |
US8114080B2 (en) * | 2006-09-27 | 2012-02-14 | Depuy Products, Inc. | Flexible bone fixation device |
US9993337B1 (en) * | 2007-07-19 | 2018-06-12 | Osteosymbionics, Llc | Orthopaedic implant and method of making same |
US8114156B2 (en) * | 2008-05-30 | 2012-02-14 | Edwin Burton Hatch | Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints |
US9107712B2 (en) | 2008-09-15 | 2015-08-18 | Biomet C.V. | Bone plate system for hand fractures and other small bones |
WO2010099333A2 (en) | 2009-02-25 | 2010-09-02 | Porex Surgical, Inc. | Bone graft material containment structures |
IT1398443B1 (en) * | 2010-02-26 | 2013-02-22 | Lima Lto S P A Ora Limacorporate Spa | INTEGRATED PROSTHETIC ELEMENT |
AU2011224893B2 (en) | 2010-03-10 | 2015-01-22 | Ossdsign Ab | Implants and methods for correcting tissue defects |
US8974535B2 (en) | 2010-06-11 | 2015-03-10 | Sunnybrook Health Sciences Centre | Method of forming patient-specific implant |
WO2012016200A1 (en) * | 2010-07-30 | 2012-02-02 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Systems and methds for cranial implant assembly adapted for insertion during craniectomy procedure |
US9023085B2 (en) | 2010-12-22 | 2015-05-05 | Walter E. Strippgen | Dynamic surgical implant |
US8231624B1 (en) | 2010-12-22 | 2012-07-31 | Strippgen Walter E | Dynamic surgical implant |
US9034048B2 (en) * | 2011-01-26 | 2015-05-19 | John A. Choren | Orthopaedic implants and methods of forming implant structures |
US20120203227A1 (en) * | 2011-02-08 | 2012-08-09 | Christopher Harris Martin | Low profile dorsal plate |
US9510940B2 (en) | 2011-02-17 | 2016-12-06 | Ethicon, Inc. | Bioabsorbable multilayer nasal valve spreader graft |
US8579990B2 (en) * | 2011-03-30 | 2013-11-12 | Ethicon, Inc. | Tissue repair devices of rapid therapeutic absorbency |
US8673014B2 (en) * | 2011-04-01 | 2014-03-18 | Kls-Martin, L.P. | Method of cranial repair and cranial repair implant molding device |
US9463046B2 (en) | 2011-08-22 | 2016-10-11 | Ossdsign Ab | Implants and methods for using such implants to fill holes in bone tissue |
US9381112B1 (en) | 2011-10-06 | 2016-07-05 | William Eric Sponsell | Bleb drainage device, ophthalmological product and methods |
US8632489B1 (en) | 2011-12-22 | 2014-01-21 | A. Mateen Ahmed | Implantable medical assembly and methods |
US9414873B2 (en) | 2012-01-05 | 2016-08-16 | The Cleveland Clinic Foundation | Modular bone fixation system |
CA2860718C (en) | 2012-01-09 | 2020-11-10 | Matthew E. MONAGHAN | Porous metal implants with bone cement |
WO2013119458A1 (en) | 2012-02-10 | 2013-08-15 | DePuy Synthes Products, LLC | Porous implant materials and related methods |
US9180010B2 (en) | 2012-04-06 | 2015-11-10 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US9135374B2 (en) | 2012-04-06 | 2015-09-15 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
WO2013155043A1 (en) * | 2012-04-09 | 2013-10-17 | The Johns Hopkins University | Universal cranioplasty mesh |
US20130317540A1 (en) | 2012-05-22 | 2013-11-28 | Krasimira Hristov | Universal bioabsorbable nasal implant kit |
KR20150015532A (en) * | 2012-05-30 | 2015-02-10 | 뉴욕 유니버시티 | Tissue repair devices and scaffolds |
WO2014019083A1 (en) * | 2012-07-30 | 2014-02-06 | Sunnybrook Health Sciences Centre | Bone stabilization device and method of production |
US9579133B2 (en) | 2013-02-01 | 2017-02-28 | James Guthlein | Internal fixation device |
US9220597B2 (en) * | 2013-02-12 | 2015-12-29 | Ossdsign Ab | Mosaic implants, kits and methods for correcting bone defects |
CN105120802B (en) | 2013-02-12 | 2018-01-12 | 奥斯设计公司 | Mosaic implant, kit and the method for correcting Cranial defect |
US9517097B2 (en) * | 2013-04-17 | 2016-12-13 | Stc.Unm | Low-profile, high tension mesh plate for subcutaneous fracture fixation |
US9044195B2 (en) | 2013-05-02 | 2015-06-02 | University Of South Florida | Implantable sonic windows |
KR101355598B1 (en) * | 2013-10-11 | 2014-02-04 | (주)이트리온홀딩스 | 3d implant for orbital wall and floor |
AT515384B1 (en) * | 2014-02-05 | 2016-04-15 | Dietmar Dr Sonnleitner | Preconnected multilayer film for covering a bone defect site |
US9549819B1 (en) | 2014-06-23 | 2017-01-24 | DePuy Synthes Products, Inc. | Preformed cranial implant |
ES2855009T3 (en) * | 2014-08-14 | 2021-09-23 | Ossdsign Ab | Bone implants to correct bone defects |
RU2579744C1 (en) * | 2014-11-14 | 2016-04-10 | Александр Ливиевич Ураков | Cranial implant-heat insulation material |
CN105105872A (en) * | 2015-09-08 | 2015-12-02 | 哈尔滨工业大学 | Skull replacing apparatus of 3D print and manufacturing method thereof |
US10130402B2 (en) | 2015-09-25 | 2018-11-20 | Globus Medical, Inc. | Bone fixation devices having a locking feature |
US9974581B2 (en) | 2015-11-20 | 2018-05-22 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US10898332B2 (en) | 2015-11-24 | 2021-01-26 | Ossdsign Ab | Bone implants and methods for correcting bone defects |
US10932834B2 (en) * | 2015-12-03 | 2021-03-02 | Howard D. Stupak | Oblique three-dimensional plate |
US10596660B2 (en) | 2015-12-15 | 2020-03-24 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
CN108601662B (en) | 2015-12-16 | 2021-01-12 | 纽文思公司 | Porous spinal fusion implant |
US9795411B2 (en) | 2016-03-02 | 2017-10-24 | Globus Medical, Inc. | Fixators for bone stabilization and associated systems and methods |
US10531905B2 (en) | 2016-04-19 | 2020-01-14 | Globus Medical, Inc. | Implantable compression screws |
KR101671150B1 (en) * | 2016-07-15 | 2016-10-31 | 가톨릭관동대학교산학협력단 | Implant for orbital wall |
US11197701B2 (en) | 2016-08-17 | 2021-12-14 | Globus Medical, Inc. | Stabilization systems |
US11432857B2 (en) | 2016-08-17 | 2022-09-06 | Globus Medical, Inc. | Stabilization systems |
US10299847B2 (en) | 2016-09-22 | 2019-05-28 | Globus Medical, Inc. | Systems and methods for intramedullary nail implantation |
US20190240374A1 (en) * | 2016-10-21 | 2019-08-08 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Degradable bulk metallic magnesium/polymer composite barrier membranes for dental, craniomaxillofacial and orthopedic applications and manufacturing methods |
KR101922966B1 (en) * | 2017-02-22 | 2018-11-28 | 가톨릭관동대학교산학협력단 | Manufacturing method of implant for orbital wall and implant for orbital wall |
AU2018203479B2 (en) | 2017-05-18 | 2024-04-18 | Howmedica Osteonics Corp. | High fatigue strength porous structure |
US11628517B2 (en) | 2017-06-15 | 2023-04-18 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US10603180B2 (en) * | 2017-07-17 | 2020-03-31 | Aaron MARLOW | Tapered fixation device for a knee replacement |
KR102024598B1 (en) | 2017-11-03 | 2019-09-24 | 울산대학교 산학협력단 | Method and apparatus for generating 3d model data for manufacturing of implant |
EP3479798B1 (en) | 2017-11-03 | 2023-06-21 | Howmedica Osteonics Corp. | Flexible construct for femoral reconstruction |
US11071570B2 (en) | 2018-03-02 | 2021-07-27 | Globus Medical, Inc. | Distal tibial plating system |
US11224468B2 (en) | 2018-03-02 | 2022-01-18 | Globus Medical, Inc. | Distal tibial plating system |
US11141172B2 (en) | 2018-04-11 | 2021-10-12 | Globus Medical, Inc. | Method and apparatus for locking a drill guide in a polyaxial hole |
EP3784176A4 (en) * | 2018-04-23 | 2022-01-26 | ECA Medical Instruments | FLEXIBLE ADJUSTABLE RADIOPACUACY TEST PLATE AND METHOD OF USE |
KR102183079B1 (en) | 2018-06-12 | 2020-11-26 | 경북대학교 산학협력단 | Method and device for modelling and producing implant for orbital wall |
DE102018121553A1 (en) * | 2018-09-04 | 2020-03-05 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Bone implant for the reconstruction of a bony defect and for guiding a marking and / or processing tool for transferring the necessary osteotomy situations |
US11090149B2 (en) | 2018-09-28 | 2021-08-17 | DePuy Synthes Products, Inc. | Inflatable orbital implant for repositioning an eyeball, and related methods |
US11173057B2 (en) * | 2018-11-30 | 2021-11-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Volume adjustable transtibial socket |
FR3089128B1 (en) | 2018-11-30 | 2020-12-18 | Carthera | ACOUSTIC WINDOW FOR IMAGING AND / OR TREATMENT OF CEREBRAL TISSUE |
US11771563B2 (en) * | 2019-01-03 | 2023-10-03 | University of Alaska Anchorage | Artificial tessellated implants, and systems and methods of making and using same |
US11202663B2 (en) | 2019-02-13 | 2021-12-21 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US20220257296A1 (en) * | 2019-03-19 | 2022-08-18 | Poriferous, LLC | Orbital floor template |
KR102250250B1 (en) | 2019-03-29 | 2021-05-12 | 경북대학교 산학협력단 | Method and device for modelling and producing implant for orbital wall of human body customication with patterns for implanting a screw |
USD909580S1 (en) | 2019-04-05 | 2021-02-02 | Sunnybrook Research Institute | Surgical mesh implant |
US11730582B2 (en) * | 2019-09-25 | 2023-08-22 | Washington University | Barbed mesh for incision closure and hernia repair |
US12185995B2 (en) | 2019-10-09 | 2025-01-07 | Globus Medical, Inc. | Bone stabilization systems |
US11129627B2 (en) | 2019-10-30 | 2021-09-28 | Globus Medical, Inc. | Method and apparatus for inserting a bone plate |
KR102287890B1 (en) | 2019-11-20 | 2021-08-09 | 윤설아 | Manufacturing method of implants for reconstruction of CMF and implants manufactured by the same |
US11723647B2 (en) | 2019-12-17 | 2023-08-15 | Globus Medical, Inc. | Syndesmosis fixation assembly |
US11643574B2 (en) | 2021-05-28 | 2023-05-09 | Cohesys Inc. | Adhesive devices and uses thereof |
KR102608168B1 (en) * | 2021-06-01 | 2023-12-04 | 전북대학교병원 | Carbon implant and Manufacturing method of the same |
US12064150B2 (en) | 2022-01-19 | 2024-08-20 | Globus Medical Inc. | System and method for treating bone fractures |
CN115446547B (en) * | 2022-09-16 | 2024-06-04 | 景德镇陶瓷大学 | Titanium mesh plate incremental forming method and preparation method of brain skull prosthesis |
US20240415555A1 (en) * | 2023-06-19 | 2024-12-19 | Karl Leibinger Asset Management Gmbh & Co. Kg | Implant and Method for Covering Large-Scale Bone Defects for Thorax |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0092260A1 (en) | 1979-04-11 | 1983-10-26 | Kanebo, Ltd. | A composition of restorative material |
US5139497A (en) | 1991-11-25 | 1992-08-18 | Timesh, Inc. | Orbital repair implant |
US5380328A (en) | 1993-08-09 | 1995-01-10 | Timesh, Inc. | Composite perforated implant structures |
US5489305A (en) | 1994-10-03 | 1996-02-06 | Timesh, Inc. | Mandibular prostheses |
WO1997041791A1 (en) | 1996-05-03 | 1997-11-13 | Sofamor Danek Properties, Inc. | Cranioplasty plates and method of installation |
WO1999037240A2 (en) | 1996-08-19 | 1999-07-29 | Marcopore, Inc. | Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration |
US6065197A (en) * | 1998-04-06 | 2000-05-23 | Aichi Co., Ltd. | Method of spreading a sheet on a frame member and method of manufacturing a chair by the sheet spreading method |
Family Cites Families (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2671444A (en) * | 1951-12-08 | 1954-03-09 | Jr Benjamin F Pease | Nonmetallic mesh surgical insert for hernia repair |
US3048537A (en) * | 1958-01-06 | 1962-08-07 | Pall Corp | Porous articles of polyethylene polymers and process of making the same |
US3178728A (en) * | 1962-10-22 | 1965-04-20 | Robert W Christensen | Surgical prosthesis for the temporomandibular joint |
US3579643A (en) * | 1968-12-12 | 1971-05-25 | Douglas H Morgan | Artificial articular eminence for the mandibular joint |
FR2215927B1 (en) | 1973-01-31 | 1976-05-14 | Louyot Comptoir Lyon Alemand | |
US4089071A (en) * | 1976-09-08 | 1978-05-16 | Kalnberz Viktor Konstantinovic | Material for making bone endoprosthesis and endoprosthesis made of said material |
US4164794A (en) * | 1977-04-14 | 1979-08-21 | Union Carbide Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
US4756862A (en) * | 1977-04-14 | 1988-07-12 | Amoco Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
NL7907231A (en) | 1979-09-28 | 1981-03-31 | Leuven Res & Dev Vzw | COMPOSITE MATERIAL FOR PROSTHESIS. |
US4502161A (en) * | 1981-09-21 | 1985-03-05 | Wall W H | Prosthetic meniscus for the repair of joints |
US4479271A (en) * | 1981-10-26 | 1984-10-30 | Zimmer, Inc. | Prosthetic device adapted to promote bone/tissue ingrowth |
CA1227002A (en) * | 1982-02-18 | 1987-09-22 | Robert V. Kenna | Bone prosthesis with porous coating |
US4535485A (en) * | 1982-03-12 | 1985-08-20 | Medical Biological Sciences, Inc. | Polymeric acrylic prothesis |
US4542539A (en) * | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
GB8318483D0 (en) * | 1983-07-08 | 1983-08-10 | Zimmer Deloro Surgical Ltd | Skeletal implants |
US4531916A (en) * | 1983-07-08 | 1985-07-30 | W. L. Gore & Associates, Inc. | Dental implant with expanded PTFE gingival interface |
US4636215A (en) * | 1984-01-11 | 1987-01-13 | Rei, Inc. | Combination tray and condylar prosthesis for mandibular reconstruction and the like |
US5030233A (en) * | 1984-10-17 | 1991-07-09 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
CA1264674A (en) * | 1984-10-17 | 1990-01-23 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
CH665348A5 (en) * | 1985-01-09 | 1988-05-13 | Sulzer Ag | IMPLANTS. |
CH665770A5 (en) * | 1985-01-25 | 1988-06-15 | Sulzer Ag | PLASTIC BONE IMPLANT. |
US4778472A (en) * | 1985-04-30 | 1988-10-18 | Vitek, Inc. | Implant for reconstruction of temporomanibular joint |
US4936852A (en) * | 1985-04-30 | 1990-06-26 | Vitek, Inc. | Temporomandibular mini condyle prosthesis |
US4790849A (en) * | 1985-08-23 | 1988-12-13 | Edward Terino | Malar implant and method of inserting the prothesis |
DE8706912U1 (en) * | 1987-05-14 | 1987-08-27 | Howmedica GmbH, 2314 Schönkirchen | Small bone plate and screws, particularly for the treatment of fractures of the skull and facial skeleton or similar. |
US4976737A (en) * | 1988-01-19 | 1990-12-11 | Research And Education Institute, Inc. | Bone reconstruction |
US4969901A (en) * | 1988-06-28 | 1990-11-13 | Binder William J | Plastic surgery implant |
US4917701A (en) * | 1988-09-12 | 1990-04-17 | Morgan Douglas H | Temporomandibular joint prostheses |
AU5154390A (en) * | 1989-02-15 | 1990-09-05 | Microtek Medical, Inc. | Biocompatible material and prosthesis |
JPH02237559A (en) | 1989-03-10 | 1990-09-20 | Kobe Steel Ltd | Implant member for living body and preparation thereof |
EP0388576B1 (en) * | 1989-03-23 | 1993-09-15 | Institut Straumann Ag | Metallic implant |
US4923471A (en) | 1989-10-17 | 1990-05-08 | Timesh, Inc. | Bone fracture reduction and fixation devices with identity tags |
DE4028021C1 (en) | 1989-12-22 | 1991-05-29 | Oswald Leibinger Gmbh, 7202 Muehlheim, De | Grid for osteosynthesis - has cross bars with bores at nodes to receive fixing screws |
CA2366361C (en) * | 1990-10-30 | 2003-01-14 | Bristol-Myers Squibb Company | Orthopaedic implant device |
WO1992010218A1 (en) * | 1990-12-06 | 1992-06-25 | W.L. Gore & Associates, Inc. | Implantable bioabsorbable article |
DE4102462C2 (en) | 1991-01-28 | 1994-02-17 | Gundolf Ferdinand | Stabilizing element for osteosynthesis of bone fragments, especially for the fixation of bone fractures |
US6008430A (en) * | 1991-01-30 | 1999-12-28 | Interpore Orthopaedics, Inc. | Three-dimensional prosthetic articles and methods for producing same |
US5192329A (en) * | 1991-03-07 | 1993-03-09 | Joint Medical Products Corporation | Oblong acetabular cup |
AU1696792A (en) * | 1991-03-21 | 1992-10-21 | Michael Nealis | Temporomandibular joint prosthesis |
DE4111856C1 (en) * | 1991-04-11 | 1992-07-16 | Oswald Leibinger Gmbh, 7202 Muehlheim, De | |
US5421831A (en) * | 1991-04-19 | 1995-06-06 | Giampapa; Vincent C. | Sub-malar facial implant |
CA2070586C (en) * | 1991-06-10 | 1995-11-28 | Barry Eppley | Prosthetic implant |
US5218975A (en) * | 1991-10-25 | 1993-06-15 | Prostkoff Melvin E | Cranial prosthesis |
US5383931A (en) * | 1992-01-03 | 1995-01-24 | Synthes (U.S.A.) | Resorbable implantable device for the reconstruction of the orbit of the human skull |
US5282861A (en) * | 1992-03-11 | 1994-02-01 | Ultramet | Open cell tantalum structures for cancellous bone implants and cell and tissue receptors |
US5346492A (en) * | 1992-03-30 | 1994-09-13 | Timesh, Inc. | Perforated metallic panels and strips for internal fixation of bone fractures and for reconstructive surgery |
US5496372A (en) * | 1992-04-17 | 1996-03-05 | Kyocera Corporation | Hard tissue prosthesis including porous thin metal sheets |
US5766246A (en) | 1992-05-20 | 1998-06-16 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
US5545226A (en) * | 1992-05-29 | 1996-08-13 | Porex Technologies Corp. | Implants for cranioplasty |
US5433996A (en) * | 1993-02-18 | 1995-07-18 | W. L. Gore & Associates, Inc. | Laminated patch tissue repair sheet material |
US5443519A (en) * | 1993-04-22 | 1995-08-22 | Implex Corporation | Prosthetic ellipsoidal acetabular cup |
US5397361A (en) * | 1993-06-23 | 1995-03-14 | Surgical Prosthetics Resource, Inc. | Cranioplasty surgical procedure and kit |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5468242A (en) | 1993-11-19 | 1995-11-21 | Leibinger Gmbh | Form-fitting mesh implant |
DE4414675C1 (en) * | 1994-04-27 | 1995-09-28 | Kirsch Axel | Covering device for bone defects and method for their production |
GB9420071D0 (en) * | 1994-10-05 | 1994-11-16 | Howmedica | Metal backing for inclusion in the manufacture of a prosthetic component |
JP3450920B2 (en) * | 1994-12-26 | 2003-09-29 | 京セラ株式会社 | Method for manufacturing bioprosthesis member |
US5782919A (en) * | 1995-03-27 | 1998-07-21 | Sdgi Holdings, Inc. | Interbody fusion device and method for restoration of normal spinal anatomy |
US5554194A (en) * | 1995-06-07 | 1996-09-10 | United States Surgical Corporation | Modular surgical implant |
WO1996039974A1 (en) * | 1995-06-07 | 1996-12-19 | Implex Corporation | Femoral head core channel filling prosthesis |
US5716413A (en) * | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US5876447A (en) * | 1996-02-14 | 1999-03-02 | Implantech Associates | Silicone implant for facial plastic surgery |
US6087553A (en) * | 1996-02-26 | 2000-07-11 | Implex Corporation | Implantable metallic open-celled lattice/polyethylene composite material and devices |
US5839899A (en) * | 1996-03-01 | 1998-11-24 | Robinson; Dane Q. | Method and apparatus for growing jaw bone utilizing a guided-tissue regeneration plate support and fixation system |
US5769637A (en) * | 1996-05-22 | 1998-06-23 | Sofamor Danek Properties, Inc. | Dental implant and alveolar process augmentation structures and method of installation |
US5766176A (en) * | 1996-09-11 | 1998-06-16 | Walter Lorenz Surgical, Inc. | Formable mesh |
US5690631A (en) * | 1996-09-11 | 1997-11-25 | Walter Lorenz Surgical, Inc. | Multi-configurable plating system |
US5743913A (en) * | 1997-04-02 | 1998-04-28 | Wellisz; Tadeusz Z. | Readily expansible bone fixation plate |
US5980540A (en) * | 1997-04-11 | 1999-11-09 | Kinamed, Inc. | Perforated cover for covering spaces in the cranium and conforming to the shape of the cranium |
US6120539A (en) | 1997-05-01 | 2000-09-19 | C. R. Bard Inc. | Prosthetic repair fabric |
US5989427A (en) * | 1997-07-17 | 1999-11-23 | Tetra Technologies, Inc. | Method of degassing biological filters |
GB9717433D0 (en) | 1997-08-19 | 1997-10-22 | Univ Nottingham | Biodegradable composites |
DE19746396A1 (en) * | 1997-10-21 | 1999-05-06 | Howmedica Leibinger Gmbh & Co | Grid for the fixation of bone parts or for bridging bone defects |
US6093188A (en) * | 1997-11-10 | 2000-07-25 | Murray; William M. | Adjustable bone fixation plate |
WO1999030632A1 (en) * | 1997-12-18 | 1999-06-24 | Comfort Biomedical, Inc. | Bone augmentation for prosthetic implants and the like |
US6325803B1 (en) * | 1998-02-18 | 2001-12-04 | Walter Lorenz Surgical, Inc. | Method and apparatus for mandibular osteosynthesis |
US6129728A (en) * | 1998-02-18 | 2000-10-10 | Walter Lorenz Surgical, Inc. | Method and apparatus for mandibular osteosynthesis |
US6221075B1 (en) * | 1998-03-06 | 2001-04-24 | Bionx Implants Oy | Bioabsorbable, deformable fixation plate |
AU761058B2 (en) | 1998-04-07 | 2003-05-29 | Macropore, Inc. | Membrane with tissue-guiding surface corrugations |
US6350284B1 (en) | 1998-09-14 | 2002-02-26 | Bionx Implants, Oy | Bioabsorbable, layered composite material for guided bone tissue regeneration |
US20040267349A1 (en) * | 2003-06-27 | 2004-12-30 | Kobi Richter | Amorphous metal alloy medical devices |
US6475094B1 (en) | 1998-12-28 | 2002-11-05 | Mark W. Bruns | Method for making product and product having ultra high molecular weight plastic parts |
US6187041B1 (en) | 1998-12-31 | 2001-02-13 | Scott N. Garonzik | Ocular replacement apparatus and method of coupling a prosthesis to an implant |
CN1148407C (en) | 1999-02-11 | 2004-05-05 | 上海超高工程塑料有限公司 | Polyethylene formation implant and method for making same |
DE10014616A1 (en) | 2000-03-24 | 2001-09-27 | Tutogen Medical Gmbh | Cranium implant for use in brain surgery consists of a plate of spongy, cortical or compact bone material of human or animal origin preferably obtained by dehydration |
US6530953B2 (en) | 2000-05-25 | 2003-03-11 | Scott N. Garonzik | Method of magnetically coupling a prosthesis with an ocular implant |
US6991652B2 (en) | 2000-06-13 | 2006-01-31 | Burg Karen J L | Tissue engineering composite |
JP4511696B2 (en) | 2000-07-21 | 2010-07-28 | 本田技研工業株式会社 | Radiator support structure for motorcycles and tricycles |
PL362473A1 (en) | 2000-09-22 | 2004-11-02 | Codman & Shurtleff, Inc. | Tray for surgical fastners |
US6692498B1 (en) * | 2000-11-27 | 2004-02-17 | Linvatec Corporation | Bioabsorbable, osteopromoting fixation plate |
US6852330B2 (en) | 2000-12-21 | 2005-02-08 | Depuy Mitek, Inc. | Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
US6599323B2 (en) * | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
US6620332B2 (en) * | 2001-01-25 | 2003-09-16 | Tecomet, Inc. | Method for making a mesh-and-plate surgical implant |
US6827743B2 (en) * | 2001-02-28 | 2004-12-07 | Sdgi Holdings, Inc. | Woven orthopedic implants |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
CN100337599C (en) | 2001-03-02 | 2007-09-19 | 伍德韦尔丁公司 | Implants, device and method for jointing tissue parts, particularly bones |
JP2003070816A (en) | 2001-08-30 | 2003-03-11 | Pentax Corp | Implant design method and implant |
US6645250B2 (en) * | 2001-10-30 | 2003-11-11 | Carl W. Schulter | Biocompatible form and method of fabrication |
CA2480875A1 (en) | 2002-04-01 | 2003-10-16 | Board Of Regents, The University Of Texas System | Composite material for wound repair |
RU2313370C2 (en) | 2002-04-09 | 2007-12-27 | Астра Тек АБ | Medicinal prostheses of improved biological compatibility |
US6942665B2 (en) * | 2002-05-01 | 2005-09-13 | Integra Signature Technologies, Inc. | Implantable device for covering and opening in a cranium |
US20030220696A1 (en) | 2002-05-23 | 2003-11-27 | Levine David Jerome | Implantable porous metal |
US20050146070A1 (en) * | 2002-06-21 | 2005-07-07 | Massachusetts General Hospital | Meta lback or mesh crosslinking |
ES2363319T3 (en) | 2002-07-17 | 2011-07-29 | Proxy Biomedical Limited | FILM FOR MEDICAL IMPLEMENTATION. |
US7066962B2 (en) | 2002-07-23 | 2006-06-27 | Porex Surgical, Inc. | Composite surgical implant made from macroporous synthetic resin and bioglass particles |
US7655047B2 (en) | 2003-04-16 | 2010-02-02 | Porex Surgical, Inc. | Craniofacial implant |
US8298292B2 (en) * | 2003-04-16 | 2012-10-30 | Howmedica Osteonics Corp. | Craniofacial implant |
JP2006528515A (en) | 2003-07-24 | 2006-12-21 | テコメット・インコーポレーテッド | Spongy structure |
US20050208095A1 (en) | 2003-11-20 | 2005-09-22 | Angiotech International Ag | Polymer compositions and methods for their use |
US20050192675A1 (en) | 2004-03-01 | 2005-09-01 | Robinson Dane Q. | Device for use in stimulating bone growth |
US20060116682A1 (en) * | 2004-11-18 | 2006-06-01 | Longo Marc N | Surgical implant and methods of making and using the same |
US20060217813A1 (en) * | 2005-03-22 | 2006-09-28 | Posnick Jeffrey C | Facial implant |
WO2007070141A1 (en) | 2005-09-12 | 2007-06-21 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
PL1965735T3 (en) | 2005-12-29 | 2010-01-29 | Synthes Gmbh | Implant for use as replacement of an orbita bottom |
US7614258B2 (en) | 2006-10-19 | 2009-11-10 | C.R. Bard, Inc. | Prosthetic repair fabric |
US8206450B2 (en) | 2008-01-18 | 2012-06-26 | Howmedica Osteonics Corp. | Composite implants and methods of making and using the same |
US8709080B2 (en) | 2008-09-19 | 2014-04-29 | E. Benson Hood Laboratories | Coated devices comprising a fiber mesh imbedded in the device walls |
-
2004
- 2004-04-16 US US10/517,843 patent/US7655047B2/en not_active Expired - Lifetime
- 2004-04-16 BR BRPI0409487-5A patent/BRPI0409487A/en not_active Application Discontinuation
- 2004-04-16 EP EP10183427A patent/EP2308423A1/en not_active Withdrawn
- 2004-04-16 EP EP04759969.1A patent/EP1613240B1/en not_active Expired - Lifetime
- 2004-04-16 WO PCT/US2004/011903 patent/WO2004093743A1/en active Application Filing
- 2004-04-16 CN CN200480009959A patent/CN100586401C/en not_active Expired - Lifetime
- 2004-04-16 KR KR1020107020396A patent/KR20100102753A/en not_active Withdrawn
- 2004-04-16 KR KR1020057019487A patent/KR101027252B1/en not_active Expired - Fee Related
-
2006
- 2006-11-06 HK HK06112177.4A patent/HK1090278A1/en not_active IP Right Cessation
-
2010
- 2010-01-06 US US12/652,896 patent/US8398720B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0092260A1 (en) | 1979-04-11 | 1983-10-26 | Kanebo, Ltd. | A composition of restorative material |
US5139497A (en) | 1991-11-25 | 1992-08-18 | Timesh, Inc. | Orbital repair implant |
US5380328A (en) | 1993-08-09 | 1995-01-10 | Timesh, Inc. | Composite perforated implant structures |
US5489305A (en) | 1994-10-03 | 1996-02-06 | Timesh, Inc. | Mandibular prostheses |
WO1997041791A1 (en) | 1996-05-03 | 1997-11-13 | Sofamor Danek Properties, Inc. | Cranioplasty plates and method of installation |
WO1999037240A2 (en) | 1996-08-19 | 1999-07-29 | Marcopore, Inc. | Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration |
US6065197A (en) * | 1998-04-06 | 2000-05-23 | Aichi Co., Ltd. | Method of spreading a sheet on a frame member and method of manufacturing a chair by the sheet spreading method |
Non-Patent Citations (1)
Title |
---|
See also references of EP1613240A4 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8398720B2 (en) | 2003-04-16 | 2013-03-19 | Orthovita, Inc. | Craniofacial implant |
US7655047B2 (en) | 2003-04-16 | 2010-02-02 | Porex Surgical, Inc. | Craniofacial implant |
US8298292B2 (en) | 2003-04-16 | 2012-10-30 | Howmedica Osteonics Corp. | Craniofacial implant |
WO2007142743A3 (en) * | 2006-06-02 | 2008-09-25 | Porex Surgical Inc | Craniofacial implant |
WO2007142743A2 (en) * | 2006-06-02 | 2007-12-13 | Porex Surgical, Inc. | Craniofacial implant |
WO2009006313A1 (en) * | 2007-06-29 | 2009-01-08 | Synthes (U.S.A.) | Improved orthopedic implants for use with precision bone resurfacing instrumentation |
US10603171B2 (en) | 2011-02-28 | 2020-03-31 | Scimotana Pty Ltd | Surgical implant and method |
WO2012116401A1 (en) * | 2011-02-28 | 2012-09-07 | Anatomics Pty Ltd | Surgical implant and method |
US9883944B2 (en) | 2011-02-28 | 2018-02-06 | Scimotana Pty Ltd | Surgical implant and method |
US9724198B2 (en) | 2014-07-17 | 2017-08-08 | Poriferous, LLC | Orbital floor sheet |
WO2016011369A1 (en) * | 2014-07-17 | 2016-01-21 | Poriferous, LLC | Orbital floor sheet |
US10758355B2 (en) | 2014-07-17 | 2020-09-01 | Poriferous, LLC | Orbital floor sheet |
EP3437589A1 (en) * | 2014-07-17 | 2019-02-06 | Poriferous, LLC | Orbital floor sheet |
WO2017100531A1 (en) * | 2015-12-11 | 2017-06-15 | DePuy Synthes Products, Inc. | Composite implant trial |
CN108366817A (en) * | 2015-12-11 | 2018-08-03 | 德普伊新特斯产品公司 | Composite implant trial target |
WO2017210411A1 (en) * | 2016-06-03 | 2017-12-07 | DePuy Synthes Products, Inc. | Surgical templates with radio-opaque markings |
US10687945B2 (en) | 2017-01-26 | 2020-06-23 | Poriferous, LLC | Channel implant |
WO2018140706A1 (en) * | 2017-01-26 | 2018-08-02 | Poriferous, LLC | Channel implant |
USD884898S1 (en) | 2017-09-29 | 2020-05-19 | Matrix Surgical Holdings, LLC | Orbital implant for human ocular support |
WO2020223641A1 (en) * | 2019-05-02 | 2020-11-05 | Aaron Noble | Orbital floor implant |
RU2743108C1 (en) * | 2019-12-25 | 2021-02-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Hybrid plate for cranioplasty |
RU2807505C2 (en) * | 2023-01-19 | 2023-11-15 | Федеральное Государственное Автономное учреждение Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко Министерства Здравоохранения Российской Федерации | Customized implant for reconstruction of defects in cranio-orbital region |
Also Published As
Publication number | Publication date |
---|---|
EP1613240A4 (en) | 2008-05-28 |
US8398720B2 (en) | 2013-03-19 |
CN1777400A (en) | 2006-05-24 |
US20050288790A1 (en) | 2005-12-29 |
US20100114316A1 (en) | 2010-05-06 |
KR20060033858A (en) | 2006-04-20 |
KR101027252B1 (en) | 2011-04-06 |
KR20100102753A (en) | 2010-09-24 |
US7655047B2 (en) | 2010-02-02 |
EP1613240B1 (en) | 2016-05-25 |
EP1613240A1 (en) | 2006-01-11 |
EP2308423A1 (en) | 2011-04-13 |
HK1090278A1 (en) | 2006-12-22 |
CN100586401C (en) | 2010-02-03 |
BRPI0409487A (en) | 2006-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8398720B2 (en) | Craniofacial implant | |
US8298292B2 (en) | Craniofacial implant | |
US9433707B2 (en) | Bone graft material containment structures | |
Shah et al. | Materials used in cranioplasty: a history and analysis | |
KR100974781B1 (en) | Complex surgical implants made from macroporous synthetic resin and bioactive glass particles | |
US5545226A (en) | Implants for cranioplasty | |
US6277150B1 (en) | Facial implant having one porous surface | |
CA2327789C (en) | Membrane with tissue-guiding surface corrugations | |
US7887587B2 (en) | Soft tissue spacer | |
CA2860718C (en) | Porous metal implants with bone cement | |
JP2002524199A (en) | Bioabsorbable layered composites for inductive bone tissue regeneration | |
CN105055058A (en) | Artificial vertebral lamina and vertebral canal expansion tool | |
EP3962383B1 (en) | Orbital floor implant | |
RU2281732C2 (en) | Vertebra's body implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10517843 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004759969 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048099596 Country of ref document: CN Ref document number: 1020057019487 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004759969 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057019487 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0409487 Country of ref document: BR |