JPH02237559A - Implant member for living body and preparation thereof - Google Patents
Implant member for living body and preparation thereofInfo
- Publication number
- JPH02237559A JPH02237559A JP1058216A JP5821689A JPH02237559A JP H02237559 A JPH02237559 A JP H02237559A JP 1058216 A JP1058216 A JP 1058216A JP 5821689 A JP5821689 A JP 5821689A JP H02237559 A JPH02237559 A JP H02237559A
- Authority
- JP
- Japan
- Prior art keywords
- mesh
- base material
- metal
- powder
- implant member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007943 implant Substances 0.000 title claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 6
- 210000000988 bone and bone Anatomy 0.000 description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 15
- 239000010936 titanium Substances 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007750 plasma spraying Methods 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000029578 entry into host Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Dental Prosthetics (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は生体内へ埋設する人工骨や人工歯根等のインプ
ラント部材及びその製造方法に関し、詳細には生体組織
に対して強固に接合できる様に構成された生体用インプ
ラント部材及びその製造方法に関するものである。以下
の説明においては純チタン又はチタン合金製の生体用イ
ンプラント部材について説明するが、本発明はインプラ
ント部材の材質を限定するものではない。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an implant member such as an artificial bone or an artificial tooth root to be implanted in a living body, and a method for manufacturing the same, and in particular, it relates to an implant member that can be firmly bonded to living tissue. The present invention relates to a living body implant member configured as described above and a method for manufacturing the same. In the following description, a biological implant member made of pure titanium or a titanium alloy will be described, but the present invention does not limit the material of the implant member.
[従来の技術]
損傷或は欠損した人骨.関節,歯等を補綴するに当たっ
ては、金属製又はセラミックス製の人工骨,人工関節,
人工歯根等の生体用インプラント部材が使用される.特
に軽量性及び耐腐食性の面で優れた純チタン製又はチタ
ン合金製(以下単にチタン製という)のインプラント部
材が多く用いられる様になってきた。[Prior art] Damaged or missing human bones. When prosthetizing joints, teeth, etc., metal or ceramic artificial bones, artificial joints,
Biological implant components such as artificial tooth roots are used. In particular, implant members made of pure titanium or titanium alloy (hereinafter simply referred to as titanium), which are excellent in light weight and corrosion resistance, have come to be used frequently.
第3図は大腿骨用チタン製人工骨1の例を示す説明図で
あり、ヘッド部1a及びステム部1bから構成される。FIG. 3 is an explanatory view showing an example of a titanium artificial bone 1 for femur, which is composed of a head portion 1a and a stem portion 1b.
該人工骨lの表面、特にステム部1bの表面が平滑に形
成されていると、生体組織との接合力が弱く、せっかく
残存骨の骨髄中に埋込んで固定しても、簡単に抜け出し
たり、或は位置ずれを引き起こすことがある。そこで人
工骨1における基材2の表面に微細な凹凸を形成する目
的で、基材2の表面にチタン製メッシュ3を貼り付けた
り、或は基材2の表面にチタン製ワイヤ4を巻き付ける
ことが行なわれている。こうして基材2の表面に凹凸が
形成されると、凹部内に生体新組織が進入して根を張る
様に成長し、人工骨1と生体がアンカー効果によって強
固に接合される。If the surface of the artificial bone l, especially the surface of the stem portion 1b, is formed smooth, the bonding force with the living tissue is weak, and even if it is embedded and fixed in the bone marrow of the remaining bone, it may easily come out. , or may cause misalignment. Therefore, in order to form fine irregularities on the surface of the base material 2 in the artificial bone 1, a titanium mesh 3 is attached to the surface of the base material 2, or a titanium wire 4 is wound around the surface of the base material 2. is being carried out. When the irregularities are thus formed on the surface of the base material 2, the new living tissue enters the recesses and grows to take root, and the artificial bone 1 and the living body are firmly joined by the anchor effect.
[発明が解決しようとする課題]
上記メッシュ3を基材2上に接合するに当たっては、加
熱して拡散接合する方法が汎用されているが、第4図に
示す如く基材2の表面とメッシュ3の接合部はP.,P
2における点接触のみであり、その接合面積は基材2の
単位面積当たり2〜3%に過ぎず、メッシュ3は基材2
に対して強固に接合されているとは言えなかった。従っ
てメッシュ3によって形成される凹部内に生体新組織が
入り込んだ後であっても、大きな負荷が作用すると基材
2からメッシュ3そのものが剥離し、人工骨1が位置ず
れを引き起こす恐れがあった。即ちアンカー効果を発揮
するためのベースとなるべきアンダーカット形成部材自
身の付着力が弱かったのである。尚点接触の数を増やす
為に細目のメッシュを使用するということも工夫されて
いるが、骨組織の侵入成長を図るという観点からの制約
(後述)もあり、細目メッシュの選定にも限界がある。[Problems to be Solved by the Invention] In bonding the mesh 3 onto the base material 2, a method of heating and diffusion bonding is commonly used, but as shown in FIG. 3 joint is P. ,P
2, the bonding area is only 2 to 3% per unit area of the base material 2, and the mesh 3 is connected to the base material 2.
It could not be said that it was firmly bonded to the surface. Therefore, even after the new biological tissue has entered the recess formed by the mesh 3, if a large load is applied, the mesh 3 itself may peel off from the base material 2, causing the artificial bone 1 to become misaligned. . That is, the adhesion force of the undercut forming member itself, which should serve as a base for exerting the anchor effect, was weak. Although it has been devised to use a fine mesh to increase the number of point contacts, there are also restrictions from the perspective of achieving invasive growth of bone tissue (described later), and there are limits to the selection of a fine mesh. be.
そこで本発明者らは表面粗化用のメッシュ自身が基材表
面に対して強固に接合された生体用インプラント部材及
びその製造方法を提供する目的で研究を重ね、本発明を
完成した。Therefore, the present inventors conducted extensive research and completed the present invention with the aim of providing a biomedical implant member in which the surface roughening mesh itself is firmly bonded to the base material surface, and a method for manufacturing the same.
[課題を解決するための手段]
上記目的を達成し得た本発明の生体用インプラント部材
は、金属製インプラント部材の基材層表面に同種の金属
製メッシュを添設してなる生体用インプラント部材にお
いて、同種の金属製粉末が散布接合されて前記基材層と
金属製メッシュとの接合力を高めている点に要旨を有す
るものであり、この様なインプラント部材を製造する為
の手段として2つの方法が開示される。[Means for Solving the Problems] The living body implant member of the present invention that has achieved the above object is a living body implant member in which a metal mesh of the same type is attached to the surface of the base layer of a metal implant member. The gist lies in that the same kind of metal powder is dispersed and bonded to increase the bonding force between the base material layer and the metal mesh, and as a means for manufacturing such an implant member. Two methods are disclosed.
まず第1の製造方法は、金属製インプラント部材の基材
層表面に同種の金属製粉末を散布し、該散布された粉末
層上に同種の金属製メッシュを添えて加熱し拡散接合さ
せる方法であり、第2の製造方法は、金属製インプラン
ト部材の基材層表面に同種の金属製メッシュを添設し、
次いでその上から同種の金属製粉末を散布した後、加熱
して拡散接合する方法である。The first manufacturing method is to scatter the same type of metal powder on the surface of the base material layer of a metal implant member, place a metal mesh of the same type on the sprinkled powder layer, and heat it to perform diffusion bonding. Yes, and the second manufacturing method is to attach a metal mesh of the same type to the surface of the base material layer of a metal implant member,
Next, metal powder of the same type is sprinkled on top of it, and then heated and diffusion bonded.
[作用及び実施例]
第l図(a)〜(C)は本発明の生体用インプラント部
材の製造過程の一例を示す説明図であり、この例は第1
の製造方法を示す。まず第1図(a)ではチタン製人工
骨や人工歯根等の基材2の表面にチタン製粉末5(以下
単に粉末5という)を散布し、粉末層5Aを形成する。[Operations and Examples] FIGS. 1(a) to 1(C) are explanatory diagrams showing an example of the manufacturing process of the biological implant member of the present invention, and this example is
The manufacturing method is shown below. First, in FIG. 1(a), titanium powder 5 (hereinafter simply referred to as powder 5) is sprinkled on the surface of a base material 2 such as a titanium artificial bone or an artificial tooth root to form a powder layer 5A.
該粉末5の粒径は特に限定されるものではないが、一般
的には150μ一以下程度のものを使用するのが好まし
く、プラズマ溶射法や焼結法等によって基材2の表面に
添着させ、好ましくは厚さ100μm〜200μ鵬程度
の粉末層5Aを形成する.
次いで第1図(b)に示す様に前記粉末層5A上にチタ
ン製メッシュ3を添え、さらにメッシュ3を上から荷重
をかける様に押圧しつつ加熱処理して拡散接合する。こ
の拡散接合においては基材2及びメッシュ3が粉末5を
介して相互に溶看接合される。この時の熱処理温度は特
に限定されないが、使用するチタン材料に応じて750
〜1300℃の範囲内から適正温度を選択する。なおこ
の加熱処理の時間は確実な接合を得るため30分以上と
することが好ましい。The particle size of the powder 5 is not particularly limited, but it is generally preferable to use a particle size of about 150 μm or less, and it is attached to the surface of the base material 2 by a plasma spraying method, a sintering method, etc. A powder layer 5A having a thickness of preferably about 100 μm to 200 μm is formed. Next, as shown in FIG. 1(b), a titanium mesh 3 is placed on the powder layer 5A, and the mesh 3 is heat-treated while being pressed so as to apply a load from above to perform diffusion bonding. In this diffusion bonding, the base material 2 and the mesh 3 are welded together with the powder 5 interposed therebetween. The heat treatment temperature at this time is not particularly limited, but depends on the titanium material used.
Select an appropriate temperature within the range of ~1300°C. Note that the time for this heat treatment is preferably 30 minutes or more in order to obtain reliable bonding.
この結果第1図(C)に示す様にメッシュ3は粉末5を
介して基材2上に接合されることになり、メッシュ3と
基材2の接合面積は粉末層5Aを介する様になった分だ
け増加し、実施例では単位面積当たり約10〜15%に
も達することが確肥され、メッシュ3と基材2の接合は
極めて強固なものとなった。As a result, as shown in FIG. 1(C), the mesh 3 is bonded to the base material 2 through the powder 5, and the bonding area between the mesh 3 and the base material 2 is now through the powder layer 5A. It was confirmed that the amount increased by about 10 to 15% per unit area in the example, and the bond between the mesh 3 and the base material 2 became extremely strong.
この様にメッシュ3を基材2の表面へ強固に接合できる
様になったので、メッシュの網目間隔を可及的に狭いも
のにするという方向の努力から開放されることとなり、
生体組織の侵入成長にとって最適の網目間隔を選定する
という観点からの選択幅が拡大されることとなった。In this way, it has become possible to firmly bond the mesh 3 to the surface of the base material 2, which frees us from the effort to make the mesh spacing as narrow as possible.
The range of choices from the viewpoint of selecting the optimal mesh spacing for the invasive growth of biological tissue has been expanded.
即ち人間の骨組織は100〜500μmの単位組織から
なると言われているので、人工骨の表面凹部内に新しい
骨組織を入り込ませ易くするためには、上記メッシュ3
の網目間隔は100〜1000μmとすることが望まし
く、より好ましいのは200〜500μmであり、この
ような比較的大きい網目サイズのメッシュ3を使用した
場合であっても、本発明の通用によりメッシュと基材の
接合強度を高く保持することが可能となったのである。That is, human bone tissue is said to consist of unit tissues of 100 to 500 μm, so in order to make it easier for new bone tissue to enter into the recesses on the surface of the artificial bone, the mesh 3
The mesh spacing is preferably 100 to 1000 μm, more preferably 200 to 500 μm, and even when using the mesh 3 with such a relatively large mesh size, the mesh and This made it possible to maintain high bonding strength between the base materials.
尚メッシ23の形成素材は特に限定されないが、例えば
断面丸形の線条を利用したときには、線条間の凹部空間
においてメッシュ厚さ方向の半分は基材2側へ向かって
末広がり形状となっており、生体新組織が進入した後ア
ンカー作用により人工骨を強固に固着することができる
様になる。The material from which the mesh 23 is formed is not particularly limited, but for example, when a filament with a round cross section is used, half of the mesh in the thickness direction in the concave space between the filaments becomes a shape that widens toward the base material 2 side. After the new biological tissue has entered, the artificial bone can be firmly fixed by the anchoring action.
従ってこの様な観点から色々な素材を選定することは本
発明を実施する者の自由である。Therefore, it is at the discretion of the person implementing the present invention to select various materials from this point of view.
第2図(a)〜(c)は本発明における第2の製造方法
を例示する説明図である。第2図(a)に示す様に基材
2の表面にメッシュ3を点溶接によって仮付けし、そし
て従来方法と同様にメッシュ3の上から押圧しつつ加熱
して拡散接合する。次いで第2図(b)の如くメッシュ
3及び基材2の上方から粉末5を散布し、さらに加熱処
理を行なって、基材2の表面に対するメッシュ3の接合
を粉末5の溶着によって補助する。上記粉末5の塗着は
プラズマ溶射法で行なっても良いし、或はメッシュ3と
基材2の間の空間や網目の隅部に該粉末5を行ぎ渡たら
せる様に塗着し、次いで加熱処理することによってメッ
シュ3や基材2に溶着する方法であっても良い。これら
の結果第2図(C)に示す様にメッシュ3は基材2の表
面に粉末5を介して強固に接合することができる。なお
第1図及び第2図に示す製造方法を併用し、粉末5の散
布をメッシュ5の配置前後に行なう様に実施しても良い
。FIGS. 2(a) to 2(c) are explanatory diagrams illustrating the second manufacturing method of the present invention. As shown in FIG. 2(a), the mesh 3 is temporarily attached to the surface of the base material 2 by spot welding, and the mesh 3 is heated while being pressed from above to perform diffusion bonding as in the conventional method. Next, as shown in FIG. 2(b), the powder 5 is sprinkled from above the mesh 3 and the base material 2, and further heat treatment is performed to assist the bonding of the mesh 3 to the surface of the base material 2 by welding of the powder 5. The powder 5 may be applied by a plasma spraying method, or the powder 5 may be applied so as to be spread over the space between the mesh 3 and the base material 2 or the corners of the mesh, It may also be a method of welding it to the mesh 3 or the base material 2 by then heat-treating it. As a result, the mesh 3 can be firmly bonded to the surface of the base material 2 via the powder 5, as shown in FIG. 2(C). Note that the manufacturing method shown in FIGS. 1 and 2 may be used in combination, and the powder 5 may be spread before and after the mesh 5 is arranged.
上記第1図及び第2図に示した様な製造方法によって製
造されたインプラント部材は、粉末5を介して基材2と
メッシュ3が強固に接合され、メッシュ3の基材2から
の剥離事故はほぼ完全に防止できる様になる。In the implant member manufactured by the manufacturing method as shown in FIGS. 1 and 2 above, the base material 2 and the mesh 3 are firmly bonded via the powder 5, and there is no risk of peeling of the mesh 3 from the base material 2. can be almost completely prevented.
上記の実施例においては基材2の外側にメッシュ3を拡
散接合する例を示したが、この他メッシュに替えてワイ
ヤ4を用いる場合にも同様の製造方法を適用することに
より、該ワイヤ4を基材2外面に強固に接合することが
できる。従ってワイヤの場合も接合性能において制約を
受けることがなくなるので、ワイヤ4の線径を任意に選
定しても何ら不都合を生じることはない。In the above embodiment, an example was shown in which the mesh 3 is diffusion bonded to the outside of the base material 2, but when using the wire 4 instead of the mesh, the same manufacturing method can be applied to the wire 4. can be firmly bonded to the outer surface of the base material 2. Therefore, in the case of a wire, there are no restrictions on bonding performance, and therefore no problem will arise even if the wire diameter of the wire 4 is arbitrarily selected.
また基材2、粉末5及びメッシュ3の材料は、同種の金
属材料であればどの様な組合せであっても良く、例えば
次に説明する実施例の如く純チタン及びチタン合金をど
の様に組合わせても良く、上記チタン材料の他、ステン
レス鋼やコバルト合金等を使用したものであっても良い
.
(実験例1)
Ti−6AI−4V合金製の基材に粒径44μ履以下の
純チタン(JIS2種)製わ〕末をプラズマ溶射し、そ
の上に線径が0.3mmでメッシュ間隔が350μlの
純チタン(J I S 1種)製メッシュを被覆して下
記の条件で拡散接合を行なった。Furthermore, the materials of the base material 2, powder 5, and mesh 3 may be any combination as long as they are the same kind of metal materials. For example, as in the example described below, pure titanium and titanium alloy may be combined In addition to the titanium material mentioned above, stainless steel, cobalt alloy, etc. may also be used. (Experimental Example 1) Pure titanium powder (JIS Class 2) with a grain size of 44 μm or less was plasma sprayed onto a base material made of Ti-6AI-4V alloy, and a wire with a wire diameter of 0.3 mm and a mesh spacing was A 350 μl pure titanium (JIS type 1) mesh was coated and diffusion bonding was performed under the following conditions.
[拡散接合条件]
4 X 10−’Torrの真空下で、メッシュ外側か
ら1 kg/cm2の圧力で押圧し、950℃の温度で
3時間の処理を行なった。[Diffusion bonding conditions] Under a vacuum of 4 x 10-'Torr, pressing was applied from the outside of the mesh at a pressure of 1 kg/cm2, and treatment was performed at a temperature of 950°C for 3 hours.
尚上記プラズマ溶射は真空チャンバ内を1×10−3T
orr以下に減圧し、希薄アルゴンガス雰囲気下で行な
った。In addition, the plasma spraying described above is carried out at 1×10-3T inside the vacuum chamber.
The pressure was reduced to or below and the test was carried out under a dilute argon gas atmosphere.
(実験例2)
実験例1と同様の材料を用い、同一条件で先にメッシュ
を基材表面に拡散接合し、その上から純チタン製粉末を
プラズマ溶射した後、再度加熱処理を行なった。(Experimental Example 2) Using the same materials as in Experimental Example 1, a mesh was first diffusion bonded to the surface of the base material under the same conditions, and after plasma spraying pure titanium powder thereon, heat treatment was performed again.
上記実験例1.2で得られたインプラント部材において
は、メッシュは基材に対して強固に接合される様になり
、従来方法によって製造したものに比較して接合強度を
約5倍程度向上することができた.
[発明の効果]
以上の様に構成された本発明の生体用インプラント部材
においては、基材表面とメッシュは金属製粉末を介して
広い接合面積で強固に接合でぎる様になり、生体組織が
侵入成長してアンカー効果を発揮するに際して簡単に剥
離することがなくなった。しかもこの様なインプラント
部材がメッシュやワイヤの活用によって簡単に製造でき
る様になった。In the implant member obtained in Experimental Example 1.2 above, the mesh becomes firmly bonded to the base material, and the bonding strength is improved by about 5 times compared to that manufactured by the conventional method. I was able to do that. [Effects of the Invention] In the biological implant member of the present invention configured as described above, the base material surface and the mesh are firmly bonded via the metal powder over a wide bonding area, and the biological tissue is It no longer peels off easily when it grows intrusively and exerts an anchor effect. Furthermore, it has become possible to easily manufacture such implant members by utilizing mesh and wire.
第1図(a)〜(c)は本発明における第1の製造方法
の手順を示す説明図、第2図(a)〜(C)は本発明の
第2の製造方法の手順を示す説明図、第3図はインプラ
ント部材の例を示す説明図、第4図はメッシュと基材の
従来の接合例を示す断面説明図である。
l・・・人工骨 2・・・基材3・・・メッシ
ュ 4・・・ワイヤ5・・・金属製粉末FIGS. 1(a) to (c) are explanatory diagrams showing the steps of the first manufacturing method of the present invention, and FIGS. 2(a) to (C) are explanatory diagrams showing the steps of the second manufacturing method of the present invention. FIG. 3 is an explanatory view showing an example of an implant member, and FIG. 4 is an explanatory cross-sectional view showing an example of conventional joining of a mesh and a base material. l...Artificial bone 2...Base material 3...Mesh 4...Wire 5...Metal powder
Claims (3)
金属製メッシュを添設してなる生体用インプラント部材
において、同種の金属製粉末が散布接合されて前記基材
層と金属製メッシュとの接合力を高めてなることを特徴
とする生体用インプラント部材。(1) In a biological implant member in which a metal mesh of the same type is attached to the surface of a base layer of a metal implant member, metal powder of the same type is spread and bonded to bond the base layer and the metal mesh. A living body implant member characterized by having increased bonding strength.
金属製粉末を散布し、該散布された粉末層上に同種の金
属製メッシュを添えて加熱し拡散接合させることを特徴
とする生体用インプラント部材の製造方法。(2) For biological use, characterized in that metal powder of the same type is sprinkled on the surface of the base material layer of a metal implant member, and a metal mesh of the same type is placed on the sprinkled powder layer and heated and diffusion bonded. Method for manufacturing implant components.
金属製メッシュを添設し、次いでその上から同種の金属
製粉末を散布した後、加熱して拡散接合することを特徴
とする生体用インプラント部材の製造方法。(3) For biological use, which is characterized in that a metal mesh of the same type is attached to the surface of the base material layer of a metal implant member, and then metal powder of the same type is sprinkled on top of the mesh, followed by heating and diffusion bonding. Method for manufacturing implant components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058216A JPH02237559A (en) | 1989-03-10 | 1989-03-10 | Implant member for living body and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058216A JPH02237559A (en) | 1989-03-10 | 1989-03-10 | Implant member for living body and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02237559A true JPH02237559A (en) | 1990-09-20 |
Family
ID=13077868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1058216A Pending JPH02237559A (en) | 1989-03-10 | 1989-03-10 | Implant member for living body and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02237559A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009507647A (en) * | 2005-09-08 | 2009-02-26 | メディカル・リサーチ・プロダクツ−ビィ・インコーポレイテッド | Method for bonding a titanium-based mesh to a titanium-based substrate |
US7655047B2 (en) | 2003-04-16 | 2010-02-02 | Porex Surgical, Inc. | Craniofacial implant |
JP2016000151A (en) * | 2014-06-12 | 2016-01-07 | 富士フィルター工業株式会社 | Dental abutment and manufacturing method |
-
1989
- 1989-03-10 JP JP1058216A patent/JPH02237559A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655047B2 (en) | 2003-04-16 | 2010-02-02 | Porex Surgical, Inc. | Craniofacial implant |
JP2009507647A (en) * | 2005-09-08 | 2009-02-26 | メディカル・リサーチ・プロダクツ−ビィ・インコーポレイテッド | Method for bonding a titanium-based mesh to a titanium-based substrate |
JP2016000151A (en) * | 2014-06-12 | 2016-01-07 | 富士フィルター工業株式会社 | Dental abutment and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8297974B1 (en) | Dental implant with porous body | |
US9656358B2 (en) | Method for attaching a porous metal layer to a metal substrate | |
EP0211676B1 (en) | Method for producing endosseous implants | |
US5198308A (en) | Titanium porous surface bonded to a cobalt-based alloy substrate in an orthopaedic implant device | |
US9956014B2 (en) | Method for joining two or more segments of a surgical implant | |
KR101736751B1 (en) | A medical implant device | |
JP2883214B2 (en) | Biological implant material and its manufacturing method | |
JPH02237559A (en) | Implant member for living body and preparation thereof | |
JPH0349766A (en) | Production of porous body having excellent osteoaffinity | |
JP3752332B2 (en) | Artificial hip joint | |
JPS63160662A (en) | Surface treatment of metal material excellent in bone compatibility | |
JP3166352B2 (en) | Implant components | |
JP3214969B2 (en) | Prosthetic components | |
JPH06105899A (en) | Composite implant member and manufacturing method thereof | |
JPS63160666A (en) | Ceramic coated implant | |
JPH1147173A (en) | Hip prosthesis | |
JPH072170B2 (en) | Composite implant member and manufacturing method thereof | |
JPS6340547A (en) | Artificial bone implant and its production | |
JPH0622576B2 (en) | Ceramic coated implant | |
JPH02203853A (en) | Manufacture of implant member | |
JPH0341962A (en) | Intra-bone implant | |
JPH072171B2 (en) | Method for manufacturing implant member | |
JP2003220128A (en) | Biological implant material and method for producing the same | |
JPH0730365B2 (en) | Method for manufacturing member having porous layer | |
JP3318407B2 (en) | Titanium sprayed biological implant material |