[go: up one dir, main page]

WO2004092620A1 - 往復動用密封装置 - Google Patents

往復動用密封装置 Download PDF

Info

Publication number
WO2004092620A1
WO2004092620A1 PCT/JP1996/001113 JP9601113W WO2004092620A1 WO 2004092620 A1 WO2004092620 A1 WO 2004092620A1 JP 9601113 W JP9601113 W JP 9601113W WO 2004092620 A1 WO2004092620 A1 WO 2004092620A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
sealed
projection
projections
oil
Prior art date
Application number
PCT/JP1996/001113
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Kanzaki
Original Assignee
Yoshiyuki Kanzaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshiyuki Kanzaki filed Critical Yoshiyuki Kanzaki
Priority to PCT/JP1996/001113 priority Critical patent/WO2004092620A1/ja
Priority to US08/981,009 priority patent/US6045138A/en
Publication of WO2004092620A1 publication Critical patent/WO2004092620A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/324Arrangements for lubrication or cooling of the sealing itself

Definitions

  • the present invention relates to a reciprocating sealing device, and more particularly to a sealing device provided with a plurality of projections on a sliding surface of a seal lip.
  • FIG. 9 (a) As this type of conventional reciprocating sealing device, for example, there is one as shown in FIG. 9 (a). That is, a seal is provided between the housing 100 and the shaft 101 which are provided so as to be relatively reciprocally movable in the axial direction, and an annular sealing device body fixed to the inner periphery of the shaft hole 102 of the housing 100. 103 and a seal lip 104 integrally attached to the sealing device body 103.
  • the main purpose is to stabilize the contact state of the first projection 105 due to pressure fluctuations, etc.
  • a projection 106 was provided.
  • 32 are the projections 105, 1 of each stage.
  • the hermeticity was improved as & 2> OL 2, / 3 1 ⁇ ] 32> ⁇ 1.
  • the seal lip 107 composed of such a conventional multi-stage fine projection group 108 also has oil protrusions formed by arranging the same-shaped fine projections 109.
  • the maximum contact pressure at the tip of the fine projection 109 (a in the figure) is considerably larger than that without the projection (b in the figure). Wearing is promoted under the use condition that the thickness becomes thin.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a reciprocating sealing device capable of reducing the frictional force of a seal lip and improving wear resistance. To provide. '' Disclosure of the Invention
  • the present invention seals between two members provided relatively movably in the axial direction, and includes an annular sealing device main body fixed to one member, and extending from the sealing device body toward the other member.
  • annular sealing device main body fixed to one member, and extending from the sealing device body toward the other member.
  • a pair of annular projections are provided on the contact surface of the seal lip with the mating member at a predetermined distance in the axial direction.
  • the contact structure of the protrusion on the fluid side to be sealed with the sliding surface of the mating fluid may be set such that when the partner moves from the fluid side to be sealed to the fluid side to be sealed, The structure is such that the thickness of the fluid film formed between the sliding surfaces is larger than the thickness of the fluid film formed between the projection on the anti-sealing target fluid side and the mating sliding surface.
  • the sealing of the fluid is mainly performed by the projection on the side of the fluid to be sealed, and the projection on the side of the fluid to be sealed actively introduces a fluid such as oil to be sealed into the space between the projections.
  • the lubrication of the pair of projections is improved by eliminating the fluid shortage, and the friction is reduced.
  • the contact structure of the protrusion on the fluid to be sealed set the contact angle on the fluid to be sealed to / 31 and the contact angle on the anti-sealing fluid to ⁇ 1, and set ⁇ 1 ⁇ ⁇ 1 .
  • the contact angle of the projection on the sealing target fluid side is] 3 1 ⁇ ⁇ 1, so the contact surface of the projection At, the fluid to be sealed flows into the valley space between the protrusions with a thick fluid film.
  • the contact angle of the projection on the anti-sealing target fluid side is
  • the fluid flowing into the valley space between the projections is only an extremely thin fluid film (or a thick fluid film). Does not leak outside.
  • the protrusion of the fluid to be sealed will The outflow as a thick fluid film to the fluid side is prevented, and the fluid to be sealed flows in and accumulates in the valley space between the protrusions as it reciprocates, filling the valley space and increasing the pressure in that portion. Become.
  • the pressure accumulated in the valley space between the projections acts in a direction to cancel the frictional force such as sealing pressure and tension, which reduces the frictional force.
  • the accumulated fluid exerts the effect of lifting the entire seal lip provided with the protrusion.
  • the opposing member is relatively opposed to the fluid to be sealed on the seal lip.
  • the protrusion on the fluid to be sealed side a fluid film thicker than the protrusion on the side of the fluid to be sealed is formed. Friction is reduced by improved lubrication by the body. Conversely, when the mating member relatively moves toward the fluid to be sealed, the lubricating properties of the oil introduced between the projections improve the friction of the projections on the fluid to be sealed.
  • a plurality of sets of a pair of protrusions are provided in the axial direction.
  • the plurality of sets of projections are lubricated by forming a fluid film by the relative reciprocating motion of the mating member.
  • the fluid film formed by the projections on the fluid to be sealed becomes thinner than the projections on the fluid to be sealed in each group.
  • the fluid film is wiped off by the fluid-side projections, and the fluid to be sealed flows into and accumulates in the valley spaces between the projections of each set. Since the fluid is positively accumulated between the two sets of projections, each set of projections always comes in contact with the fluid, providing good lubrication, low friction and low wear.
  • the height of the protrusion is preferably at least about 1 [m].
  • the fluid film generated by the reciprocating operation is positively accumulated between the projections of each set, and the pressure between the projections increases.
  • the rate at which the pressure rises between a set of projections depends greatly on the volume of the space formed by the projections.
  • the thickness of the film at the protrusion on the fluid to be sealed is reduced.
  • the protrusion becomes thicker than the protrusion on the side of the fluid to be sealed, and the fluid can flow and accumulate in the space between the protrusions. For this reason, the lubricity of both projections is improved, and the frictional force is reduced.
  • Another method for improving the sealing is to provide a group of microprojections consisting of a plurality of microprojections on the contact surface of the projection on the fluid to be sealed with the mating sliding surface, and to set the contact angle of each microprojection on the fluid to be sealed. It is also effective to set
  • the fluid such as oil to be sealed is transferred to the valley space between the projections due to the specific contact angle of the fine projections provided on the contact surface of the projection on the fluid to be sealed with the mating sliding surface.
  • the lubrication of the pair of projections is improved and friction is reduced.
  • the fluid is sealed mainly by the projection on the side of the fluid to be sealed.
  • the contact angle ⁇ 3 of each fine projection on the sealing target fluid side of the projection on the sealing target fluid side is anti-sealing. Since the contact angle of the projection on the target fluid side is smaller than ⁇ 3, that is,
  • the contact angle ⁇ 2 on the sealing target fluid side is larger than the contact angle ⁇ 2 on the anti-sealing target fluid side, that is, / 3 2> ⁇ 2
  • a thin fluid film is formed, and almost no leakage to the anti-sealing object fluid side is achieved, thereby achieving sealing. That is, the fluid is accumulated in the valley space between the protrusions by the thickness of the fluid film.
  • the fluid is surely accumulated in the valley space by the reciprocating motion.
  • the fluid that flows into and accumulates in the valley space is the same as the conventional product. Improve the lubricity of the space.
  • the lubricating property is improved by the sufficient fluid flowing into and accumulated in the valley space, and the fluid to be sealed is improved.
  • the frictional force of the group of fine protrusions of the side protrusions is reduced.
  • the height of the protrusions is preferably about 1 [jm].
  • the group of fine projections provided on the projection on the fluid to be sealed is provided on the contact surface with the sliding surface of the mating object.
  • the contact angle of the projection on the fluid to be sealed is) 31 with the contact angle on the fluid to be sealed. If the contact angle on the anti-sealing target fluid side is ⁇ 1, and if / 3 1> ⁇ 1, it is provided on the surface of the anti-sealing target fluid side of the sealing target fluid side projection, ] If 3 1 ⁇ ⁇ 1, it is provided on the surface of the protrusion to be sealed on the side of the fluid to be sealed.
  • FIG. 1A and 1B show a reciprocating sealing device according to a first embodiment of the present invention.
  • FIG. 1A is a sectional view of a main part
  • FIG. 1B is a diagram showing a contact state of a seal lip.
  • (C) is a diagram showing the pressure distribution
  • (d) is a diagram showing the accumulated pressure state.
  • Fig. 2 (a) is a diagram showing the experimental device of the device of Fig. 1, and Figs. 2 (b) and (c) are diagrams showing the experimental results.
  • FIG. 3 shows a reciprocating sealing device according to a second embodiment of the present invention.
  • FIG. 3 (a) is a sectional view of a main part
  • FIG. 3 (b) is a diagram showing a contact state of a seal lip.
  • (C) and (d) are enlarged views of the contact area.
  • FIG. 4 shows a reciprocating sealing device according to a third embodiment of the present invention.
  • FIG. 4 (a) is a sectional view of a main part
  • FIG. 4 (b) is a diagram showing a contact state of a seal lip.
  • FIG. 5 is a view showing the experimental results of the apparatus of FIG.
  • FIG. 6 shows a reciprocating sealing device according to a fourth embodiment of the present invention.
  • FIG. 6 (a) is a sectional view of a main part
  • FIG. 6 (b) is a diagram showing a contact state of a seal lip.
  • FIG. 7A and 7B show a sealing device for reciprocating motion according to a fifth embodiment of the present invention.
  • FIG. 7A is a sectional view of a main part
  • FIG. 7B is a diagram showing a contact state of a seal lip.
  • (C) is an enlarged view of the contact part.
  • FIG. 8A and 8B show a reciprocating sealing device according to a sixth embodiment of the present invention.
  • FIG. 8A is a sectional view of a main part
  • FIG. 8B is a diagram showing a contact state of a seal lip.
  • C) is an enlarged view of the contact part
  • (d) is a view showing another contact angle of the first projection.
  • FIG. 9 is a diagram showing a conventional reciprocating sealing device. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fluid side to be sealed is “oil side"
  • Anti-sealed fluid side is “atmosphere side”.
  • FIG. 1 shows a reciprocating sealing device according to a first embodiment of the present invention.
  • This reciprocating sealing device 1 seals a space between a housing 2 as two members provided to be relatively movable in an axial direction and a shaft 4 inserted into a shaft hole 3 of the housing 2.
  • a shaft ring 3 is provided with a metal ring 5 as a ring-shaped sealing device main body fixed to the inner periphery, and a seal lip 6 extending from the metal ring 5 toward the shaft 4 and slidably contacting the outer peripheral surface. ing.
  • the metal ring 5 is an annular member having a substantially L-shaped cross section and includes a cylindrical outer fitting portion 7 and an inward flange portion 8 extending radially inward from one end of the outer fitting portion 7. Have.
  • the seal lip 6 is formed of a rubber-like elastic material such as synthetic rubber, and has a tapered cylindrical shape extending substantially in parallel with the outer peripheral fitting portion 7 of the metal ring 5. Supported in a cantilevered state fixed to the end The tip of the small-diameter lip, which is the free end, is in contact with the outer periphery of the shaft 4. A spring member 16 is mounted on the rear surface of the lip tip.
  • a pair of first-stage and second-stage projections 9, 10 are provided on a contact surface of the seal lip 6 with the shaft 4 at a predetermined distance in the axial direction.
  • the tips of the first and second projections 9 and 10 slidably contact the surface of the shaft 4 as the mating member, and a valley space 1 between the projections 9 and 10 and the outer peripheral surface of the shaft 4. 1 is formed.
  • each of the projections 9 and 10 is a substantially triangular shape in which the slopes on the oil side 0 and the atmospheric side A in the axial direction gradually decrease in height from the tip of the projection. It is set by the angle between the slope on the oil side 0 and the atmospheric side A of 10 and the outer circumference of the shaft 4.
  • the valley space 11 between the projections 9 and 10 is a trapezoidal space formed by the slopes of the projections 9 and 10 and the bottom surface parallel to the outer peripheral surface of the shaft 4.
  • the contact angle on the oil side 0 of the first projection 9 is 31 and the contact angle on the air side (the valley space 11 side) is ⁇ 1.
  • the contact angle if set to alpha 2 are set to 3 2 to be greater than ⁇ 2 ( ⁇ 2 ⁇ / 3 2).
  • the oil to be sealed is positively introduced into the valley space 11 between the projections 9 and 10 by the specific contact angle of the pair of projections 9 and 10.
  • the oil is sealed mainly by the second protrusion 10.
  • the oil film formed on the second projection 10 becomes thinner than the first projection 9, that is, the oil film is reduced by the second projection 10. Oil is accumulated in the valley space 11 between the protrusions 9 and 10 because it is scraped off.
  • the contact angle of the first-stage projection 9 is ⁇ 1 ⁇ / 31, so that between the contact surfaces with the first-stage projection 9, the oil flows between the projections 9 and 10. It flows into the space 11.
  • the contact angle of the second projection 10 is set to) 3 2> ⁇ 2
  • the oil flowing into the valley space 11 is only an extremely thin oil film (or a thick oil film). Do not leak to Also, when the shaft 4 moves to the oil side 0 with respect to the seal lip 6, the oil in the valley space 11 is prevented from flowing out to the oil side 0 at the first-stage projection 9, and the shaft As 4 reciprocates, oil flows into the valley space 11 between the protrusions 9 and 10, and the pressure ⁇ between the protrusions increases.
  • the seal lip 6 since the seal lip 6 has a cantilever structure, the tightening force of the first-stage protrusion 9 and the second-stage protrusion 10 increases with the increase of the sealing pressure. Pressed in the direction to increase. At this time, since the seal lip 6 has a thickness, pressure acts on the thick portion in the axial direction of the atmosphere side. The seal lip 6 receives a compressive force, but the seal lip 6 has an outer periphery. Since it is pressed by pressure from the side, it is displaced so as to bend toward the center of the shaft 4, and the second-stage projection 10 is further pushed toward the center of the shaft. For this reason, the tension force of the second-stage protrusion 10 is greater than that of the first-stage protrusion 9, and the sealing performance is ensured.
  • the inner diameter of the second projection is set to be smaller than that of the first projection in a free state.
  • ⁇ ,, 01 The shape of the second projection 10 determined by 2/3/2, which is the shape of the first projection 9, is formed between a pair of projections under the condition of ⁇ 1 ⁇ ⁇ 1, a2 ⁇ 2. It is preferable that the shape of the two projections 9 and 10 be asymmetrical in cross section with respect to the space to be set, and) 3 2 ⁇ 1. This makes it easier for the oil to return.
  • the load capacity (the ability to lift the seal lip 6) is shared by the positive pressure accumulation effect between the projections 9 and 10 of the seal lip 6 to reduce the friction. Therefore, when applied to a cantilevered seal lip 6, which has a structure with good eccentricity followability in the present invention, the contact pressure generated at the tips of the projections 9, 10 increases and decreases as the sealing pressure increases and decreases. However, since the pressure accumulating effect follows the fluctuation, stable low friction characteristics that are not easily affected by the pressure fluctuation can be obtained.
  • the lubrication of the second projection is poor and the friction force and wear are large because the first projection removes oil.
  • the shape of the present invention positively supplies oil to the valley space 11 between the projections 9 and 10, so that the lubricity of the first projection 9 and the second projection 10 is improved. I do. For this reason, it also has the effect of reducing the frictional force and wear of the second-stage protrusion 10.
  • the test was performed using the apparatus shown in FIG.
  • Sample S is mounted on the lower part of chamber 20 and oil 21 is poured on the upper part.
  • the seal lip of sample S was in contact with the surface of shaft 22 at the contact angle shown in Table 1.
  • the shaft 22 was vertically reciprocated by a sine wave in the vertical direction, and the frictional force at that time was measured by a force detector 23 such as a load cell.
  • test conditions were: oil type; paraffinic mineral oil; rod stroke; 50 [mm]; reciprocating vibration frequency: 1.2 [Hz]; pressure inside the chamber; 0.25 [MPa]; Temperature: 27 [° C].
  • Table 2 shows the pressure P between the projections and the average friction force at the center position of the stroke obtained in Figs. 2 (b) and (c). Is shown. [Table 2]
  • FIG. 3 shows a reciprocating sealing device according to a second embodiment of the present invention.
  • the first-stage projection 13 closest to the oil side 0 and the shaft 4 extend over the entire contact area of the seal lip 12 with the shaft 4.
  • the contact angles al, ⁇ 81 of ⁇ 1 ⁇ / 31 and ⁇ 2, / 32 of the contact between the second projection 14 and the shaft 4 are ⁇ 2 ⁇ / 32, and
  • a plurality of sets of fine projections 15 are formed within the range of a projection height of 5 to 50 [n], with the second-stage projections 13 and 14 as one set.
  • a spring member 16 is mounted on the back surface of the fine projection group 15.
  • the “push stroke” is one step.
  • the oil film formed by the projections 13 becomes thicker, and the oil film is cut off by the second projections 14. Therefore, the oil in the valley space 17 between the first and second projections 13 and 14 Is accumulated.
  • the pressure between the protrusions increases, and the pressure accumulation is achieved.
  • the valley space 17 between the pair of projections 13 and 14 located closest to the oil side is accumulated in pressure, and the accumulation area is gradually expanded between the projections on the atmosphere side.
  • the fine projection group 15 of the present invention has a shape in which oil is positively accumulated in the valley space 17 between the two sets of projections 13, 14,
  • the first and second projections 13 and 14 are always in contact with oil, and have the effect of good lubricity, low friction and low wear.
  • the contact area is reduced and the contact surface pressure is increased at the tip by miniaturization, the accumulated force is increased and the friction can be further reduced.
  • the point is that the volume between the lugs 13 and 14 for storing oil can be made very small, and the effect of accumulating pressure, that is, low friction can be obtained immediately.
  • the height of each of the fine protrusions 13 and 14 is optimally 5 to 50 [m]. A minimum height of about 1 [m] is sufficient.
  • a predetermined flat portion 17 may be formed as shown in FIG. 3 (d). This is because, in the initial state of the seal, if only the tip 12a of the seal lip 12 or only the tip 12a and some of the fine projections contact the shaft and the pressure becomes relatively high, By setting so that many fine projections are in contact with each other, the aim is to develop the pressure accumulation effect according to the pressure of the sealing fluid and to improve the wear resistance.
  • FIG. 4 shows a reciprocating sealing device according to a third embodiment of the present invention.
  • the reciprocating sealing device 31 seals a space between a housing 32 as two members provided so as to be relatively movable in an axial direction and a shaft 34 inserted through a shaft hole 33 of the housing 32.
  • a metal ring 35 as an annular sealing device main body fixed to the inner periphery of the shaft hole 33 of the housing 32, and extending from the metal ring 35 toward the shaft 34 so as to be slidable on the outer peripheral surface.
  • a sealing lip 36 for sealing contact.
  • the metal ring 35 is an annular member having a substantially L-shaped cross section, and has a cylindrical outer fitting portion 37 and an inward flange portion 38 extending radially inward from one end of the outer fitting portion 37.
  • the seal lip 36 is made of a rubber-like elastic material such as synthetic rubber, and has a tapered cylindrical shape extending substantially in parallel with the outer peripheral fitting portion 37 of the metal ring 35, with one end having a large diameter facing inward.
  • the small-diameter lip tip which is fixed to the inner end of the flange portion 38 and supported in a cantilevered state and is a free end, is in sealing contact with the outer periphery of the shaft 34.
  • a spring member 46 is mounted on the rear surface of the lip tip.
  • a pair of first-stage and second-stage projections 39 and 40 are provided on the contact surface of the seal rib 36 with the mating shaft 34 and are separated by a predetermined distance in the axial direction.
  • each projection 39, 40 is 0 on the oil side in the axial direction from the tip of the projection, and large.
  • the contact angle is set by the angle between the slope of the first and second projections 39, 40 and the outer circumference of the shaft 34.
  • the tips of the first and second projections 39 and 40 are slidably in contact with the surface of the shaft 34 as the mating member, and the gap between the first and second projections 39 and 40 and the shaft 34
  • a valley space 41 having a triangular cross section is formed between the outer peripheral surfaces.
  • the oil to be sealed is applied to the valley space 41 between the projections 39, 40 due to the specific contact angles of the first and second projections 39, 40 described above.
  • the lubrication of each projection 39, 40 is improved by eliminating the oil shortage by reducing the friction, and the friction is reduced.
  • the oil is mainly sealed with the second-stage projection 40. In this point, it is different from the conventional one in which the main seal is provided by the first projection.
  • the lubricating properties of the air side A of the first projection 39 and the oil side 0 of the second projection 40 are improved, and the friction is reduced.
  • the shaft 34 moves to the atmosphere side A.
  • the first projection 39 forms a thick oil film 2nd projection 4 0, valley space 4 Friction is reduced by improving the lubricity of the oil introduced in (1).
  • the friction of the first-stage projection 39 is reduced due to the improvement of the lubrication by the oil introduced into the valley space 41. It is.
  • the lubrication of the second projection is poor and the friction and wear are large because the first projection removes oil.
  • the frictional force and the wear are reduced by actively supplying the oil to the second-stage projections 40.
  • the seal lip 36 since the seal lip 36 has a cantilever structure, the tightening force of the first-stage protrusion 39 and the second-stage protrusion 40 increases with the increase of the sealing pressure. Pressed in the direction to increase. At this time, since the seal lip 36 has a thickness, the pressure acts on the thick portion in the axial direction toward the atmosphere side, and the seal rip 36 receives a compressive force. Since the pipe 36 is pressed by pressure from the outer peripheral side, the pipe 36 is displaced so as to be bent toward the center of the shaft 34, and the second-stage projection 40 is further pressed toward the center of the shaft. For this reason, the tightening force of the second-stage projection 40 is greater than that of the first-stage projection 39, and there is an effect that sealing is ensured.
  • the oil introduced into the valley space 41 between the projections 39, 40 improves the lubricity of the first-stage projection 39 on the air side and the second-stage projection 40 on the oil 0 side. Rubbing is reduced.
  • the contact angle i3 1 on the oil side of the first stage projection 39 must be set small.
  • the shaft 34 slides to the atmosphere side A during the "push stroke"
  • the first projection 39 forms a thick oil film
  • the second projection 40 uses the oil introduced into the valley space 41.
  • the friction is reduced by the improvement of the lubricity.
  • the friction of the first-stage projection 39 is reduced by the lubrication enhanced by the oil introduced into the valley space 41 between the projections 39 and 40. Reduced.
  • the lubrication of the second-stage projections 40 is poor and the frictional force and wear are large because the first-stage projections 39 remove oil.
  • the shape of the present invention positively supplies oil up to the second-stage protrusion 40.
  • the test was performed using the apparatus shown in FIG. 2 (a).
  • Test conditions are: oil type; paraffinic mineral oil; load stroke; 50 [mm]; reciprocating vibration frequency; 1.2 [Hz]; pressure inside chamber; 0 [MPa] (open to atmosphere) , Temperature; 25 C].
  • the obtained results are shown in Fig. 5 (a) and (b) in relation to stroke position and frictional force.
  • Table 4 shows one side at the stroke center position obtained in Figs. 5 (a) and (b). Indicates the average friction force.
  • FIG. 6 shows a reciprocating sealing device according to a fifth embodiment of the present invention.
  • the other configuration is the same as that of the third embodiment, so that the same components are denoted by the same reference numerals and description thereof will be omitted.
  • a plurality of sets of fine projections 45 based on fine first and second projections 43 and 44 that slide in contact with the shaft 34 are used.
  • the oil film formed by the second projection 44 becomes thinner than the first projection 43, that is, the oil film is formed by the second projection 44.
  • the oil is dropped off, and the oil flows into and accumulates in the valley space 41 between the first-stage and second-stage protrusions 43, 44. '
  • oil flows into the valley space 47 between the pair of projections 4 3 and 4 4 located on the oil side 0, and the oil inflow gradually increases between the projections on the atmospheric side A. .
  • a set of protrusions 4 3 The protrusions 4 3, 4 4 of each set are always in contact with oil, have good lubricity, and have low friction and wear due to the shape that actively accumulates oil in the valley space 47 between Has the effect of being less.
  • FIG. 7 shows a fourth embodiment of the present invention.
  • the tip of the oil-side projection 29 has a rounded shape 29a. It was done.
  • the radius of curvature R is expressed as R> 0.03 [mm] It is effective to set to about. Preferably, R ⁇ 0.3 [mm].
  • FIG. 8 shows a reciprocating sealing device according to a sixth embodiment of the present invention.
  • This sealing device for reciprocating motion also seals between a housing 2 as two members provided so as to be relatively movable in the axial direction and a shaft 4 passing through a shaft hole 3 of the housing 2.
  • a pair of first-stage and second-stage protrusions 69, 70 separated by a predetermined distance in the axial direction are provided on the contact surface of the seal lip 66, which is integrally supported by the metal ring 65, with the shaft 4. Is provided.
  • the axial cross-sectional shape of the first and second-stage projections' 9, 70 is approximately triangular, with the tip of the projection as the apex and a slope inclined to the oil side 0 and the atmosphere side A.
  • the contact angle is It is set by the angle between the slope of 69, 70 and the outer circumference of shaft 4.
  • the tips of the first and second projections 69 and 70 slidably contact the surface of the shaft 4 and cross-section between the first and second projections 69 and 70 and the outer peripheral surface of the shaft 4.
  • a triangular valley space 71 is formed.
  • a fine protrusion group 73 including a plurality of fine protrusions 72 is provided on the surface of the atmosphere side ⁇ (the valley space 71 side) serving as a contact surface of the first-stage protrusion 69 with the shaft 4.
  • the valley space 71 side
  • i3 3 is set to ⁇ 3.
  • the height of the fine projection 72 is set in the range of 5 to 50 [ ⁇ m].
  • the height of the fine projection 72 may be approximately 1 [m], and may be 50 [ ⁇ ] or more.
  • the oil to be sealed is supplied to the valley space 7 1 between the projections 69 and 70 by the specific contact angle of the fine projection group 73 provided on the contact of the first projection 69 with the shaft 4.
  • the lubrication of the pair of projections 69 and 70 has been improved, and the friction has been reduced by actively introducing the oil into the oil and eliminating the shortage of oil.
  • the oil is sealed mainly by the second projection 7.0 on the atmosphere side.
  • the first-side projection 69 has the oil-side contact angle of each fine projection 72 of the fine projection group 73
  • 3 3 is smaller than the contact angle ⁇ 3 on the atmosphere side A, that is, because 3) ⁇ 3, a thick oil film is formed.
  • 32 on the oil side 0 is larger than the contact angle ⁇ 2 on the atmosphere side A, that is, i3 2> a 2, so that a thin oil film is formed. It is formed and hardly leaks to the atmosphere side A, so sealing is achieved. That is, fluid is accumulated in the valley space 71 between the protrusions 69 and 70 by the thickness of the oil film.
  • the oil is reliably accumulated in the valley space 71 by the reciprocating motion.
  • the oil flowing into and accumulated in the valley space 71 is the same as the conventional product in the atmosphere side 1 (the valley space 71 side) of the first stage protrusion 9 and the oil side 0 ( The lubricity of the valley space 7 1) is improved.
  • the fine projection group 73 provided on the first projection 69 is provided on the contact surface with the shaft 4, and the contact angle of the first projection 69 is / 31 on the oil side 0, and If the contact angle on the atmosphere side ⁇ is ⁇ 1, and if i3 1> ⁇ 1, the first stage projection 69 is provided on the surface on the atmosphere side 9 as described above, and ⁇ 1 When ⁇ a 1 is set, it is provided on the surface of the oil side 0 of the first stage projection 69, as shown in Fig. 8 (d).
  • fluid to be sealed is not limited to oil, but can be used for sealing various liquids or gases such as water and various chemicals.
  • the fluid to be sealed is not limited to being open to the atmosphere, but can be applied to various gases. Industrial applicability
  • a fluid such as oil is actively introduced and accumulated between projections to enhance lubricity and reduce friction and wear. It is suitable for planning.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Description

明 細 書 往復動用密封装置 技術分野
本発明は往復動用の密封装置に関し、 特にシールリ ップの摺動面に複 数の突起を設けたものに関する。
背景技術
従来のこの種の往復動用密封装置としては、 たとえば、 図 9 ( a ) に 示すようなものがある。 すなわち、 軸方向に相対往復移動自在に設けら れるハウジング 1 0 0 と軸 1 0 1間をシールするもので、 ハウジング 1 0 0の軸孔 1 0 2内周に固定される環状の密封装置本体 1 0 3 と、 密封 装置本体 1 0 3に一体的に取り付けられるシールリ ップ 1 0 4と 備え ている。
そして、 このシールリ ップ 1 0 4のリ ップ摺動面には、 圧力変動等に よる 1段目突起 1 0 5の接触状態を安定化させるということを主目的と して、 2段目突起 1 0 6が設けられていた。 各突起 1 0 5, 1 0 6の軸 1 0 1 との大気側の接触角 α 1, a 2 , 油側の接触角 /3 1, |3 2は、 各 段の突起 1 0 5, 1 0 6において、 & 2 > OL 2 、 /3 1 ≥ ]3 2 > α 1 とし て密封性を高めていた。
しかしながら、 上記した従来技術の場合には、 1段目突起 1 0 5が油 を搔き落とすために、 後段の 2段目以降の突起 1 0 6での潤滑不足によ つて摩擦力が大きくなるという問題があった。
また、 密封圧力が高くなると、 シールリ ップ 1 0 4が軸に押し付けら れるため、 緊迫力が大きくなつて、 必然的に摩擦力も大きくなるという 問題がある。 また、 図 9 ( c ) に示すように、 シールリ ップ 1 0 7のリ プ摺動面 に摩擦低減のために、 複数の微細突起群 1 0 8を設けたものも知られて いる。
しかし、 このような従来の多段微細突起群 1 0 8で構成されるシール リ ップ 1 0 7も、 図 9 ( e ) に示すように、 同一形状の微細突起 1 0 9 を配列して油を単に微細突起 1 0 9間に保持し、 それによる潤滑効果を 期待するだけで、 積極的な'油の導入とその効果を活用するものではなか つた。 各微細突起 1 0 9の密封対象流体側と大気側の接触角 α, 13は、 α = (3あるいは上記従来例と同様に |3 2 ½ (3 1≥ α 2 に設定され ており、 微細突起 1 0 9間に油が導入されなかった場合には、 潤滑不足 のために本来の摩擦低減効果が得られない。
また、 図 9 ( f ) に示すように、 微細突起 1 0 9先端の最大接触圧力 (図中 a ) は、 突起なしの場合 (図中 b ) より相当大きくなつているた めに、 油膜が薄くなるような使用条件では摩耗を促進してしまう。
また、 密封圧力が高くなってシ一ルリップ 1 0 7の押付け力が増加す ると、 押付け力が増加した分、 油膜が薄くなつて微細突起 1 0 9間への 油の導入が妨げられてしまい、 さらに摩擦力の増加を助長する。
本発明は上記した従来技術の問題点を解決するためになされたもので 、 その目的とするところは、 シールリ ップの摩擦力低減を図ると共に、 耐摩耗性向上を図り得る往復動用密封装置を提供することにある。 ' 発明の開示
本発明は、 軸方向に相対移動自在に設けられる 2部材間をシールする もので、 一方の部材に固定される環状の密封装置本体と、 該密封装置本 体から他方の部材に向かって延びて他方の部材に摺動自在に接触するシ ―ルリ ツプとを備えた往復動用密封装置において、 前記シールリ ップの相手部材との接触面に、 軸方向に所定距離だけ離 間する一対の環状の突起を設け、 該突起先端を相手摺動面に摺動自在に 接触させて突起間と相手摺動面間に環状の空間を形成し、
前記反密封対象流体側の突起の相手摺動面との接触構造を、 その密封 対象流体側の接触角を /3 2とし、 反密封対象流体側の接触角を α 2 とし た場合に、 (3 2 > α 2に設定し、
前記密封対象流体側の突起の前記相手摺動面との接触構造を、 前記相 手部材が密封対象流体側から反密封対象流体側へ移動する際に、 前記密 封対象流体側の突起と相手摺動面との間に形成される流体膜の膜厚が、 反密封対象流体側の突起と相手摺動面間に生じる流体膜の膜厚よりも大 きくなるような構造としたことを特徴とする。
本発明にあっては、 流体の密封は主に反密封対象流体側の突起で行い 、 密封対象流体側の突起は、 密封すべき油等の流体を突起間の空間に積 極的に導入し、 流体の量不足を解消することによって一対の突起の潤滑 性を向上させ、 摩擦を低減させる。
たとえば、 密封対象流体側の突起の接触構造として、 密封対象流体側 の接触角を /3 1 とし、 反密封対象流体側の接触角を α 1 とした場合に、 β 1 ≤ α 1に設定する。
すなわち、 シールリ ップに対して相手部材が相対的に反密封対象流体 側に移動した場合、 密封対象流体側の突起の接触角が ]3 1 ≤ α 1 となつ ているので、 突起の接触面において、 密封対象流体が厚い流体膜で突起 間の谷部空間に流入する。 一方、 反密封対象流体側の突起の接触角が |3 2 > α 2となっているため、 突起間の谷部空間に流入した流体が極端に 薄い流体膜でしか (または、 厚い流体膜としては) 外部に流出しない。 また、 シールリ ップに対して相手部材が相対的に密封対象流体側に移動 した場合、 密封対象流体側の突起において、 谷部空間の流体の密封対象 流体側への厚い流体膜としての流出は阻止され、 往復動をするにつれて 突起間の谷部空間に密封対象流体が流入蓄積され、 谷部空間を満たして 、 その部分の圧力を上昇させることになる。
この突起間の谷部空間に蓄圧された圧力が密封圧力や緊迫力という摩 擦力のもとになる力に対して打ち消す方向に働き、 摩擦力を低減させる 。 つまり、 蓄圧された流体は突起の設けられたシールリ ップ全体を持ち 上げる効果を発現する。
また、 密封圧力が増大した場合、 それに伴って突起間圧力も追随して 大きくなり、 摩擦低減効果も密封圧増大前よりも大きくなるという自己 追随能力を有する。 これは密封圧力増大にともなって、 各突起の接触面 圧が増大して、 蓄圧可能な限界圧力が増大するからである。
また、 さらなる効果として、 密封対象流体側め突起の密封対象流体側 の接触角 |3 1を小さく設定することによって、 シ一ルリ ップに対して相 手部材が相対的に反密封対象流体側に移動した場合、 密封対象流体側の 突起においては、 反密封対象流体側の突起よりも厚い流体膜の形成によ つて、 また、 反密封対象流体側の突起においては突起間に導入された流 体による潤滑性の向上によって摩擦が低減される。 逆に、 相手部材が相 対的に密封対象流体側に移動した場合には、 突起間に導入された油によ る潤滑性の向上によって、 密封対象流体側の突起の摩擦が低減される。 また、 密封対象流体側の突起の相手摺動面との他の接触構造を、 密封 対象流体側の接触角を 0 1 とし、 反密封対象流体側の接触角を α 1 とし た場合に、 |3 2 > 3 1 > α 1に設定したことを特徴とする。
すなわち、 シールリップに対して相手部材が相対的に反密封対象流体 側に移動した場合、 密封対象流体側の突起の密封対象流体側の接触角)3 1の方が、 反密封対象流体側の突起の密封対象流体側の接触角 |3 2より 小さく、 つまり )3 1 < /3 2となっているため、 密封対象流体側の突起で 形成される流体膜の方が反密封対象流体側の突起より厚くなり、 その差 の分だけ、 密封対象流体が突起間の空間に流入する。 従来品に比べてこ の空間に流入した流体は、 密封対象流体側の突起の反密封対象流体側及 び反密封対象流体側の突起の密封対象流体側の潤滑性を向上させる。 一方、 反密封対象流体側の突起の接触角が |3 2 > α 2に設定されてい るので、 空間に流入した流体が極端に薄い油膜でしか (又は厚い油膜と しては) 外部に流出しない。
すなわち、 密封対象流体側の突起の密封対象流体側の接触角 0 1を小 さく設定することによって、 シールリ ップに対して相手部材が相対的に 反密封対象流体側に移動した場合、 密封対象流体側の突起においては、 反密封対象流体側の突起よりも厚い膜の形成によって、 また、 反密封対 象流体側の突起においては突起間に導入された流体による潤滑性の向上 によって摩擦が低減される。 逆に、 相手部材が相対的に密封対象流体側 に移動した場合には、 突起間に導入された流体による潤滑性の向上によ つて、 密封対象流体側の突起の摩擦が低減される。
また、 一対の突起を、 軸方向に複数組設けたことを特徴とする。
複数組の突起は、 相手部材の相対的な往復運動による流体膜形成によ つて潤滑される。 そして、 相手部材が相対的に反密封対象流体側へ移動 すると、 各組の密封対象流体側の突起と比べて反密封対象流体側の突起 で形成される流体膜が薄くなり、 つまり反密封対象流体側の突起によつ て流体膜が搔き落とされ、 各組の突起間の谷部空間に密封対象流体が流 入蓄積される。 このように 2段 1組の突起間に積極的に流体を蓄積する 形状となっているために、 各組の突起は必ず流体と接して、 潤滑性が良 好で低摩擦で摩耗が少ない。
突起の高さは、 最低限 1 [ m ] 程度の高さを有することが好ましい 特に、 各組の突起間に上記したような蓄圧機能を持たせれば、 往復運 動によって発生する流体膜が各組の突起間に積極的に蓄積されて各突起 間の圧力が上昇する。 一組の突起間で発生する圧力の上昇速度は、 その 突起で形成される空間の体積に大きく左右される。 突起を微細突起で構 成することにより、 空間の体積は非常に小さくなり、 流れ込む流体の量 が流体膜程度の少量であっても、 その空間に油等の流体を急速に充満さ せ、 瞬時に蓄圧を達成することができる。 つまり、 微細突起の効果をう ま く引き出すことができる。
微細突起を構成要素とすると、 実際に接触する面積が減少し、 シール リ ップ形状や緊迫力付与用のばねが同一であれば、 緊迫力も同じ値とな るが、 接触面積が小さく、 突起先端で局所的に強く当たっているため、 突起の最大接触圧力の値は、 微細突起が無い場合に比較して相当大きく なる。 このため、 蓄圧される限界値が高くなり、 その分摩擦低減効果も 大きくなる。
また、 一対の両突起間に流体を積極的に流入させ、 両突起の潤滑性を 向上させる方法としては、 密封対象流体側の突起の接触角を 0 2 > 1 > α 1 とする他に、 その突起の先端を丸みのある形状とすることも有効 である。
すなわち、 密封対象流体側の突起の軸方向断面形状を断面円弧状とす ることによって、 相手部材が相対的に反密封対象流体側に移動するとき 、 密封対象流体側の突起での膜厚の方が、 その先端の丸みによって、 反 密封対象流体側の突起より厚くなり、 両突起間の空間へ流体を流入蓄積 することができる。 このため、 両突起の潤滑性が改善され、 摩擦力が低 される。
さらに、 一対の両突起間に流体を積極的に流入させ、 両突起の潤滑性 を向上させるその他の方法としては、 密封対象流体側の突起の相手摺動 面との接触面に複数の微細突起からなる微細突起群を設け、 それぞれの 微細突起の密封対象流体側の接触角を /3 3とし、 大気側の接触角を α 3 とした場合に、 |3 3 < α 3に設定することも有効である。
このようにすれば、 密封対象流体側の突起の相手摺動面との接触面上 に設けた微細突起群の特有の接触角によって、 密封すべき油等の流体を 突起間の谷部空間に積極的に導入し、 流体量の不足を解消することによ つて、 一対の突起の潤滑性を向上させ、 摩擦を低減させる。 流体の密封 は主に反密封対象流体側の突起で行う。
シールリ ップに対して相手部材が相対的に反密封対象流体側に移動し た場合、 密封対象流体側の突起において、 各微細突起の密封対象流体側 の接触角 β 3の方が、 反密封対象流体側の突起の接触角 α 3よりも小さ く、 つまり |3 3 < α 3となっているために、 厚い流体膜が形成される。 一方、 反密封対象流体側の突起においては、 密封対象流体側の接触角 β 2の方が、 反密封対象流体側の接触角 α 2より大きく、 つまり /3 2 > α 2 となっているため、 薄い流体膜が形成され、 反密封対象流体側へは ほとんど漏れ出さないため、 密封が達成される。 すなわち、 その流体膜 の厚さ分だけ、 突起間の谷部空間に流体が蓄積される。
逆に、 シールリップに対して相手部材が相対的に密封対象流体側へ移 動した場合、 密封対象流体側の突起において、 相手部材との接触面に形 成された各微細突起の接触角 α 3, 3 3が /3 3 < α 3となっているため 、 谷部空間に蓄積された流体は薄い流体膜しか形成されないため、 密封 対象流体側へ流体は小量しか戻らない。
つまり、 繰り返し往復運動によって、 流体は谷部空間に確実に蓄積さ れることになる。 この谷部空間に流入蓄積された流体は、 従来品に対して、 密封対象流 体側突起の反密封対象流体側 (谷部空間側) および反密封対象流体側突 起の密封対象流体側 (谷部空間側) の潤滑性を向上させる。
すなわち、 密封対象流体側突起の相手摺動面との接触面に形成する微 細突起の接触角を |3 3 < α 3 とすることによって、 シールリ ップに対し て相手部材が相対的に反密封対象流体側に移動した場合、 密封対象流体 側突起の微細突起においては厚い流体膜が形成されることによって、 ま た、 反密封対象流体側突起においては谷部空間に流入蓄積された十分な 流体による潤滑性の向上によって、 摩擦力が低減される。
逆に、 シ一ルリ ップに対して相手部材が相対的に密封対象流体側に移 動した場合には、 谷部空間に流入蓄積された十分な流体による潤滑性の 向上によって、 密封対象流体側突起の微細突起群の摩擦力が低減される このような接触角の効果を持たせるためには、 突起の高さはほぼ 1 [ j m ] の高さを有することが好ましい。
密封対象流体側の突起に設けられる微細突起群は相手摺動面との接触 面に設けられるもので、 密封対象流体側の突起の接触角が、 密封対象流 体側の接触角を ) 3 1 とし、 反密封対象流体側の接触角を α 1 とした場合 に、 /3 1 > α 1に設定されている場合には、 密封対象流体側突起の反密 封対象流体側の表面に設けられ、 ]3 1 ≤ α 1に設定されている場合には 、 密封対象流体側突起の密封対象流体側の表面に設けられる。
この密封対象流体側の突起の接触角 3 1 , α 1の大小関係は、 微細突 起群の作用には無関係であり、 いずれの場合にも上記微細突起群によつ て谷部空間への流体蓄積効果が得られる。 また、 /3 1 ≤ひ 1、 あるいは 、 β 2 > β 1 > a 1の場合には、 谷部空間への蓄圧を助長させる効果を 有する。 ■ 図面の簡単な説明
図 1は本発明の第 1実施例に係る往復動用密封装置を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリ ップの接触状態を示す図 、 同図( c) は圧力分布を示す図、 同図( d) は蓄圧状態を示す図であ る。
図 2 ( a) は図 1の装置の実験装置を示す図、 同図( b) , ( c ) は 実験結果を示す図である。
図 3は本発明の第 2実施例に係る往復動用密封装置を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリ ップの接触状態を示す図 、 同図( c) , ( d) は接触部の拡大図である。
図 4は本発明の第 3実施例に係る往復動用密封装置を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリ ップの接触状態を示す図 である。
図 5は図 4の装置の実験結果を示す図である。
図 6は本発明の第 4実施例に係る往復動用密封装置を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリ ップの接触状態を示す図 である。
図 7は本発明の第 5実施例に係る往復動用密封装霉を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリップの接触状態を示す図 、 同図( c) は接触部の拡大図である。
図 8は本発明の第 6実施例に係る往復動用密封装置を示すもので、 同 図( a) は要部断面図、 同図( b) はシールリ ップの接触状態を示す図 、 同図( c) は接触部の拡大図、 同図 (d) は 1段目突起の他の接触角 を示す図である。
図 9は従来の往復動用密封装置を示す図である。 発明を実施するための最良の形態
以下に本発明を図示の実施例に基づいて説明する。
以下の説明では、
「密封対象流体側」 は 「油側」 、
「反密封対象流体側」 は 「大気側」 、
「油側の突起」 を 「 1段目突起」 、
「大気側の突起」 を 「 2段目突起」 、
「軸が油側から大気側に移動」 する場合を 「押し行程 (Pumping St roke) J 、
「軸が大気側から油側に移動」 する場合を 「引き行程 (Motoring S troke ) J 、
として説明するものとする。
(第 1実施例)
図 1には本発明の第 1実施例に係る往復動用密封装置を示している。 この往復動用密封装置 1は、 軸方向に相対移動自在に設けられる 2部材 としてのハウジング 2と、 ハウジング 2の軸孔 3に挿通される軸 4との 間をシールするものであり、 ハウジング 2の軸孔 3内周に固定される環 状の密封装置本体としての金属環 5と、 金属環 5から軸 4に向かって延 びて外周面に摺動自在に接触するシールリ ップ 6とを備えている。
金属環 5は断面略 L字形状の環状部材で、 円筒状の外周嵌合部 7と、 この外周嵌合部 7の一端から半径方向内方に向かって延びる内向きフラ ンジ部 8と、 を備えている。
シールリ ップ 6は合成ゴム等のゴム状弾性材によって構成され、 前記 金属環 5の外周嵌合部 7と略並行に延びるテーパ円筒形状で、 大径の一 端が内向きフランジ部 8の内端に固定される片持ち状態で支持され、 自 由端となる小径のリ ップ先端部が軸 4外周に接触している。 また、 リ ツ プ先端部の背面にはばね部材 1 6が装着されている。
このシ一ルリップ 6の軸 4との接触面に、 軸方向に所定距離だけ離間 する一対の 1段目, 2段目突起 9, 1 0が設けられている。 この 1段目 , 2段目突起 9, 1 0先端は相手部材としての軸 4表面に摺動自在に接 触し、 突起 9, 1 0間と軸 4外周面との間に谷部空間 1 1が形成されて いる。
各突起 9, 1 0の軸方向断面形状は、 突起の先端から軸方向油側 0及 び大気側 Aの斜面が徐々に高さが低くなる略三角形状で、 接触角は各突 起 9 , 1 0の油側 0および大気側 Aの斜面と軸 4外周とのなす角度で設 定される。 この突起 9, 1 0間の谷部空間 1 1は、 両突起 9, 1 0の斜 面と軸 4外周面と平行な底面とで形成される断面台形形状の空間となつ ている。
本発明では、 図 1 ( b ) に示すように、 1段目突起 9の油側 0の接触 角を 3 1 とし、 大気側の (谷部空間 1 1側) の接触角を α 1 とした場合 に、 α 1を /3 1以上に設定し ( α 1≥ /3 1 ) 、 2段目突起 1 0の油側 0 (空間 1 1側) の接触角を ) 3 2とし、 大気側 Αの接触角を α 2とした場 合に、 3 2を α 2より大きくなるように設定している ( α 2 < /3 2 ) 。 本発明にあっては、 上記した一対の突起 9 , 1 0の特有の接触角によ つて、 密封すべき油を突起 9, 1 0間の谷部空間 1 1に積極的に導入し 、 谷部空間 1 1の圧力を上昇させて緊迫力を低減させると共に、 油量不 足を解消することによって 1段目, 2段目突起 9, 1 0の潤滑性を向上 させることによって摩擦を低減させる。 油の密封は主に 2段目突起 1 0 で行う。 この点、 従来の 1段目突起によって主たるシールを行うものと 相違している。 すなわち、 軸 4が大気側 Aへ摺動する 「押し行程」 では、 1段目突起 9より 2段目突起 1 0に形成される油膜が薄くなり、 つまり 2段目突起 1 0によって油膜が搔き落とされるため、 突起 9, 1 0間の谷部空間 1 1に油が蓄積される。 逆に、 油側 0へ軸 4が摺動する 「引き行程」 でも 、 同様に突起 9, 1 0間の谷部空間 1 1に油が蓄積される。 この谷部空 間 1 1に油が充満されるに従って、 谷部空間 1 1の圧力 P (以下、 突起 間圧力 Pという) が上昇し蓄圧される。
すなわち、 「押し行程」 では 1段目突起 9の接触角が α 1≥ /3 1 とな つているので、 1段目突起 9との接触面間において、 油が突起 9, 1 0 間の谷部空間 1 1内に流入する。 一方、 2段目突起 1 0の接触角が )3 2 > α 2に設定されているので、 谷部空間 1 1内に流入した油が極端に薄 い油膜でしか (又は厚い油膜では) 外部に流出しない。 また、 シ一ルリ ップ 6に対して軸 4が油側 0に移動した場合、 1段目突起 9において、 谷部空間 1 1内の油が油側 0へ流出することが阻止され、 軸 4が往復動 をするにつれて突起 9, 1 0間の谷部空間 1 1に油が流入し、 突起間圧 力 Ρを上昇させることになる。
この蓄圧された油が、 図 1 ( d ) に示すようにシールリ ップ 6を持ち 上げる方向に働き、 密封圧力によって増大してしまう軸 4に対する緊迫 力、 つまり軸 4にかかる垂直力 Wを低減する。 摩擦係数 ΐが一定ならば 、 摩擦力 F = ΐ X Wとなるため、 Wの低減分だけ摩擦力 Fは減少して良 好な摺動を達成する。
谷部空間 1 1の突起間圧力 Ρが各突起 9, 1 0の最大接触圧力より上 昇しょうとすると、 油膜として谷部空間 1 1外へ流出するため、 最大接 触圧力よりも高くならない限界圧力値をもつ。
密封圧力が上昇した場合、 シールリ ップ 6全体が軸 4へ押付けられ、 1段目、 2段目突起 9, 1 0先端の最大接触圧力も増大する。 その増大 によって谷部空間 1 1の蓄圧の限界値が大きくなって、 突起間圧力 Pは 増加し、 シールリ ップ 6を持ち上げる力が増加するため、 密封圧力の増 加に伴って増加する緊迫力を低減させることによって摩擦力増加を押さ える効果がある。 つまり、 緊迫力低減の効果をもつ突起間圧力 Pは密封 圧力に対して自己追随効果を有している。
1段目, 2段目突起 9, 1 0の最大接触圧力に突起間圧力 Pが近づい ていく と、 それ以上蓄積されようとする油は油膜として谷部空間 1 1外 へ流出する。 大気側 Aへ油が流出すると密封性が低下してしまう。 その 密封性を向上させるためには、 油を油側 0へ戻るようにする必要性があ る。
そのためには、 図 1 ( c ) のように、 2段目突起 1 0の最大接触圧 P 2 を 1段目突起 9の P 1 より大きくすると、 より低い 1段目突起 9の最 大接触圧 P 1 の山を越えて油が油側 0へ戻るように蓄圧性能を制御する ことで摩擦力を低減すると共にシール性向上を図ることができる。
この実施例にあっては、 シ一ルリ ップ 6が片持ち構造となっているの で、 1段目突起 9と 2段目突起 1 0の緊迫力は密封圧力の増加に伴って 軸中心方向に押し付けられて増加する。 このとき、 シールリ ップ 6は厚 みを持っているので、 この厚み部分に圧力が大気側軸方向の向きに作用. してシールリ ップ 6は圧縮力を受けるが、 シールリ ップ 6は外周側から 圧力で押されているため、 軸 4中心方向へ折れ曲がるように変位し、 2 段目突起 1 0部分は軸中心方向にさらに押される。 このため、 2段目突 起 1 0の緊迫力が 1段目突起 9に比べて大きくなり、 シール性が確実と なる。
蓄圧時のシール性をさらに向上させるためには、 自由状態で 1段目突 起より 2段目突起の内径を小さく設定することが好ましい。
さらに、 上記の蓄圧性能を制御する方法としては、 α ΐ , 0 1で定ま る 1段目突起 9の形状とな 2, /3 2で定まる 2段目突起 1 0の形状を、 α 1 ≥ β 1 , a 2 < β 2の条件下で、 一対の突起間に形成される空間に 対して両突起 9 , 1 0の形状を断面非対称とし、 )3 2≥ α 1に設定する ことが好適である。 このようにすれば、 油が戻りやすくなる。
本発明は、 シールリ ップ 6の突起 9, 1 0間の積極的蓄圧効果によつ て負荷容量 (シールリ ップ 6を持ち上げる能力) を分担させて低摩擦化 させる。 そのため、 本案の偏心追随性の良好な構造である片持ち支持の シールリ ップ 6に適用させた場合には、 密封圧力の増減に応じて、 突起 9, 1 0の先端に生じる接触圧も増減し、 その変動に対して蓄圧効果が 追随するため、 圧力変動による影響を受けにくい安定した低摩擦特性が 得られる。
従来の形状においては、 1段目突起が油を搔き落とすために 2段目突 起の潤滑性が悪く摩擦力と摩耗が大きい。 これに対して、 本発明の形状 は、 積極的に突起 9, 1 0間の谷部空間 1 1 まで油を供給するため、 1 段目突起 9 と 2段目突起 1 0の潤滑性を良くする。 このため、 2段目突 起 1 0の摩擦力と摩耗を低減する効果も有している。
一実験例一
図 9 ( a ) に示される従来形状のサンプル Aと、 図 1に示される本発 明の形状のサンプル Bを用いて、 表 1に示す軸 4となす接触角になるよ うに作成し、 摩擦力を計測した。 [表 1 ]
Figure imgf000017_0001
試験は、 図 2に示す装置で行った。
サンプル Sはチヤンバ 2 0の下部に装着し、 その上部に油 2 1を入れ る。 サンプル Sのシ一ルリ ップは軸 2 2表面と表 1の接触角をなして接 触している。 この状態で、 軸 2 2を上下方向に正弦波で往復加振し、 そ のときの摩擦力をロードセル等の力検出器 2 3で計測した。
試験条件は、 油種; パラフィ ン系鉱油、 ロッ ドストローク ; 5 0 [m m] 、 往復加振周波数; 1 . 2 [ H z、] 、 チヤンバ一内圧力 ; 0. 2 5 [M P a ] 、 温度; 2 7 [° C ] とした。
得られた結果を、 表 2にストローク位置と摩擦力の関係で示し、 表 2 に突起間発生圧力 Pと、 図 2 ( b ) , ( c ) で求められるストローク中 央位置での平均摩擦力を示す。 [表 2 ]
Figure imgf000018_0001
従来形状のサンプルと本発明のサンプル Bを比較すると、 図 2 ( b ) , ( c ) に示すように、 摩擦力が本発明のサンプルにおいて格段に低減 されていることが明らかであり、 表 2によると、 その片側平均摩擦力は 4 1 %にまで低減されている。 また、 突起間圧力 Pは、 従来のサンプル Aでは発生せず、 本発明のサンプル Bのみ 0. 1 5 [M P a〗 発生して おり、 摩擦力を低減する効果を有することが明らかである。
(第 2実施例)
図 3には、 本発明の第 2実施例にかかる往復動用密封装置が示されて いる。
この第 2実施例では、 シールリップ 1 2の軸 4 との接触部の全領域に わたり、 図 3 ( c ) に示すように、 油側 0に最も近い 1段目突起 1 3と 軸 4との接触角 a l, ι8 1を α 1 ≥ /3 1 とし、 2段目突起 1 4と軸 4と の接触角 α 2, /3 2を、 α 2 < /3 2とし、 これら 1段目と 2段目突起 1 3 , 1 4を一組として、 複数組の微細突起群 1 5を突起高さ 5〜5 0 [ n ] の範囲内で形成したものである。 この微細突起群 1 5の背面にば ね部材 1 6が装着されている。
その他の構成は第 1実施例と同一であるので、 同一の構成部分につい 1フ
ては同一の符号を付して説明を省略する。
本第 2実施例の往復動用密封装置では、 軸 4との接触角を対向させた 2段の微細突起を 1組を基本とする微細突起群 1 5において、 「押し行 程」 では、 1段目突起 1 3で形成される油膜が厚くなり、 2段目突起 1 4によって油膜が搔き落とされるため、 1段目と 2段目突起 1 3, 1 4 間の谷部空間 1 7に油が蓄積される。 油が谷部空間 1 7に充満するにし たがって、 突起間圧力が上昇して蓄圧が達成される。 最初に最も油側に 位置する 2段 1組の突起 1 3, 1 4間の谷部空間 1 7が蓄圧され、 順次 大気側の突起間に蓄圧領域が拡大されていく。
図 9 ( c ) に示した従来のシールリ ップの微細突起群においては、 積 極的に突起 1 0 9間に油を導入する形状となっていないために、 接触摺 動領域内で潤滑不足に陥りやすく、 摩擦力が増加し摩耗しやすい。 特に 、 大気側の接触域の突起では、 油側に近い突起で油が阻止されるために 、 潤滑不足となって摩耗しやすい。 また、 密封圧力が増大した場合には 、 摺動によって発生する油膜が薄くなるために、 突起の摩耗が促進され やすい。
これに対して、 本発明の微細突起群 1 5においては、 2段 1組の突起 1 3 , 1 4間の谷部空間 1 7に積極的に油を蓄積する形状となっている ために、 各 1段目, 2段目突起 1 3, 1 4は必ず油と接し、 潤滑性が良 好で低摩擦で摩耗が少ないという効果をもたらす。
本発明の微細突起への適用については、 微細化することで接触面積が 小さくなり接触面圧がその先端で増大するため、 蓄積される力が増大し 、 一段と低摩擦化を図ることができる。 また、 油を貯える突起 1 3, 1 4間の体積が非常に小さくでき、 蓄圧つまり低摩擦化に即効性が得られ る点がボイントである。
微細突起 1 3, 1 4の各高さは 5 ~ 5 0 [ m ] が最適であるが、 最 低限 1 [ m ] 程度の高さを有していればよい。
なお、 微細突起を設ける際に、 図 3 ( d ) に示すように、 所定の平坦 部 1 7を形成する場合もある。 これは、 シールの初期の状態ではシール リ ップ 1 2の先端部 1 2 aのみ、 または先端部 1 2 aと微細突起の何本 かが軸に接触し、 比較的高圧になった場合、 多数の微細突起が接触する ように設定することにより、 密封流体の圧力に応じた蓄圧効果の発現と 共に耐摩耗性向上を狙ったものである。
' (第 3実施例)
図 4は本発明の第 3実施例に係る往復動用密封装置を示している。 こ の往復動用密封装置 3 1は、 軸方向に相対移動自在に設けられる 2部材 としてのハウジング 3 2 と、 ハウジング 3 2の軸孔 3 3に挿通される軸 3 4との間をシールするものであり、 ハウジング 3 2の軸孔 3 3内周に 固定される環状の密封装置本体としての金属環 3 5と、 金属環 3 5から 軸 3 4に向かって延びて外周面に摺動自在に密封接触するシ一ルリ プ 3 6とを備えている。
金属環 3 5は断面略 L字形状の環状部材で、 円筒状の外周嵌合部 3 7 と、 この外周嵌合部 3 7の一端から半径方向内方に向かって延びる内向 きフランジ部 3 8と、 を備えている。
シ一ルリ ップ 3 6は合成ゴム等のゴム状弾性材によって構成され、 前 記金属環 3 5の外周嵌合部 3 7と略並行に延びるテーパ円筒形状で、 大 径の一端が内向きフランジ部 3 8の内端に固定されて片持ち状態に支持 され、 自由端となる小径のリップ先端部が軸 3 4外周に密封接触してい る。 また、 リ ップ先端部の背面にはばね部材 4 6が装着されている。 このシールリ ッブ 3 6の相手軸 3 4との接触面に、 軸方向に所定距離だ け離間する一対の 1段目, 2段目突起 3 9 , 4 0が設けられている。 各 突起 3 9, 4 0の軸方向断面形状は、 突起先端から軸方向油側 0及び大 気側 Aに傾斜する斜面を備えた略三角形状で、 接触角は 1段目, 2段目 突起 3 9, 4 0の斜面と軸 3 4外周面とのなす角度で設定される。 この 1段目, 2段目突起 3 9, 4 0先端は相手部材としての軸 3 4表面に摺 動自在に接触して 1段目, 2段目突起 3 9 , 4 0間と軸 3 4外周面間に 断面三角形状の谷部空間 4 1が形成されている。
そして、 図 4 ( b ) に示すように、 2段目突起 4 0の大気側 Aの接触 角を α 2とし、 油側 0の接触角を /3 2 とした場合に、 /3 2を α 2よ り大 きくなるように設定し ( α 2 < |3 2 ) 、 1段目突起 3 9の、 油側 0の接 触角を 0 1 とし、 大気側 Α (空間 4 1側) の接触角を α 1 とした場合に 、 β 2 > β 1 > a 1 ( 1 = 2 ) となるように設定している。
本発明にあっては、 上記した 1段目, 2段目突起 3 9, 4 0の特有の 接触角によって、 密封すべき油を突起 3 9, 4 0間の谷部空間 4 1に積 極的に導入し、 油量不足を解消することによって各突起 3 9, 4 0の潤 滑性を向上させ、 摩擦を低減させる。 油の密封は主に 2段目突起 4 0で 行う。 この点、 従来の 1段目突起によって主たるシールを行うものと相 違している。
すなわち、 軸 3 4が反密封対象流体側である大気側 Αへ摺動すると、 1段目突起 3 9より 2段目突起 4 0に形成される油膜が薄くなり、 つま り 2段目突起 4 0によって油膜が搔き落とされるため、 突起 3 9, 4 0 間の谷部空間 4 1に油が導入される。
この谷部空間 4 1に導入された油によって、 1段目突起 3 9の大気側 A及び 2段目突起 4 0の油側 0の潤滑性が向上され、 摩擦が低減される すなわち、 1段目の突起 3 9の油側 0の接触角 0 1を小さく設定する ことによって、 軸 3 4が大気側 Aに移動する 「押し行程」 では、 1段目 突起 3 9では厚い油膜の形成によって、 2段目突起 4 0では谷部空間 4 1に導入された油による潤滑性の向上によって摩擦が低減される。 逆に 、 軸 3 4が油側 0へ摺動する 「引き行程」 では、 谷部空間 4 1に導入さ れた油による潤滑性の向上によって、 1段目の突起 3 9の摩擦が低減さ れる。
従来の形状においては、 1段目の突起が油を搔き落とすために 2段目 の突起の潤滑性が悪く摩擦力と摩耗が大きい。 これに対して、 本発明の 形状は、 積極的に 2段目突起 4 0まで油を供給することによって、 摩擦 力と摩耗を低減している。
一方、 本発明にあっては、 シールリ ップ 3 6が片持ち構造となってい るので、 1段目突起 3 9 と 2段目突起 4 0の緊迫力は密封圧力の増加に 伴って軸中心方向に押し付けられて増加する。 このとき、 シールリ ップ 3 6は厚みを持っているので、 この厚み部分に圧力が大気側軸方向の向 きに作用してシ一ルリ ヅプ 3 6は圧縮力を受けるが、 シ一ルリ ヅプ 3 6 は外周側から圧力で押されているため、 軸 3 4中心方向へ折れ曲がるよ うに変位し、 2段目突起 4 0部分は軸中心方向にさらに押される。 この ため、 2段目突起 4 0の緊迫力が 1段目突起 3 9に比べて大きくなり、 シールが確実になる効果がある。
上記実施例では、 ほぼ α 1 = α 2に設定している力 α 1 < α 2とし てもよく、 また α 1 > α 2 としてもよい。 α 1 > α 2に設定すれば、 シ 一ルリップ 6に対して 「引き行程」 では、 1段目突起 3 9を通過して油 側へ戻る流量が少なくなり、 谷部空間 4 1への流体蓄積がより助長され ることになる。
突起 3 9, 4 0間の谷部空間 4 1に導入された油によって、 1段目突 起 3 9の大気側 Α及び 2段目突起 4 0の油 0側の潤滑性が向上され、 摩 擦が低減される。
すなわち、 1段目突起 3 9の油側の接触角 i3 1を小さく設定すること によって、 軸 3 4が大気側 Aへ摺動する 「押し行程」 では、 1段目突起 3 9では厚い油膜の形成によって、 2段目突起 4 0では谷部空間 4 1に 導入された油による潤滑性の向上によって摩擦が低減される。 逆に、 軸 4 1が油側 0へ摺動するときには、 突起 3 9, 4 0間の谷部空間 4 1に 導入された油による潤滑性の向上によって、 1段目突起 3 9の摩擦が低 減される。
従来の形状においては、 1段目突起 3 9が油を接き落とすために 2段 目突起 4 0の潤滑性が悪く摩擦力と摩耗が大きい。 これに対して、 本発 明の形状は、 積極的に 2段目突起 4 0まで油を供給する。
一実験例一
次に、 図 9 ( a ) に示される従来形状のサンプル Cと、 図 4に示され る本発明の形状のサンプル Dを用いて、 表 3に示す接触角になるように 作成し、 摩擦力を計測した。
[表 3 ]
Figure imgf000023_0001
a 1 = α 2
試験は、 上記した図 2 ( a ) に示す装置で行った。
試験条件は、 油種; パラフィ ン系鉱油、 ロヅ ドストローク ; 5 0 [m m] 、 往復加振周波数; 1 . 2 [H z ] 、 チャンバ一内圧力 ; 0 [M P a ] (大気開放) 、 温度; 2 5 C ] とした。 得られた結果を、 図 5 ( a) , ( b ) にストローク位置と摩擦力の関 係で示し、 表 4に、 図 5 ( a ) , ( b ) で求められるストローク中央位 置での片側平均摩擦力を示す。
従来形状のサンプル Cと本発明のサンプル Dを比較すると、 図 5 ( a
) , ( b) に示すように、 摩擦力が本発明のサンプルにおいて格段に低 減されていることが明らかであり、 表 4によると、 その片側平均摩擦力 はおよそ半減されている。
[表 4 ]
Figure imgf000024_0001
(第 4実施例) '
図 6には、 本発明の第 5実施例にかかる往復動用密封装置が示されて いる。
この第 5実施例では、 シールリ ップ 4 2の軸 3 4との接触部の全領域 にわたり、 図 6 ( c ) に示すように、 油側 0に最も近い一組の突起の内 、 2段目突起 44と軸 3 4との接触角 α 2, β 2を、 α 2く 3 2とし、 1段目突起 4 3と軸 34との接触角 α ΐ , 0 1を /3 2 > (3 1 > α 1 とし 、 これら 1段目と 2段目突起 43, 44を一組として、 複数組の微細突 起群 4 5を突起高さ 5〜5 0 lnm] の範囲内で形成したものである。 この微細突起群 4 5の背面にばね部材 4 6が装着されている。
その他の構成は第 3実施例と同一であるので、 同一の構成部分につい ては同一の符号を付して説明を省略する。 本第 4実施例の往復動用密封装置では、 軸 3 4と接触摺動する微細な 1段目, 2段目突起 4 3, 4 4を基本とする複数組の微細突起群 4 5に おいて、 軸 3 4が大気側 Aへ摺動すると、 1段目突起 4 3と比べて 2段 目突起 4 4で形成される油膜が薄くなり、 つまり 2段目突起 4 4によつ て油膜が搔き落とされ、 1段目, 2段目突起 4 3, 4 4間の谷部空間 4 1に油が流入蓄積される。 '
最初に最も油側 0に位置する 2段 1組の突起 4 3, 4 4間の谷部空間 4 7に油が流入蓄積され、 順次大気側 Aの突起間へと油流入が拡大され ていく。
図 9 ( c ) に示した従来のシールリ ップの微細突起群においては、 積 極的に突起間に油を導入する形状となつて'"いないために、 接触摺動領域 内で潤滑不足に陥りやすく、 摩擦力が増加し摩耗しやすい。 特に、 大気 側の接触域の突起では、 油側に近い突起で油が阻止されるために、 潤滑 不足となって摩耗しやすい。 また、 密封圧力が増大した場合には、 摺動 によって発生する油膜が薄くなるために、 突起の摩耗が促進されやすい これに対して、 本発明の微細突起群 4 5においては、 2段 1組の突起 4 3 , 4 4間の谷部空間 4 7に積極的に油を蓄積する形状となっている ために、 各組の突起 4 3, 4 4は必ず油と接し、 潤滑性が良好で低摩擦 で摩耗が少ないという効果をもたらす。
(第 5実施例)
図 7には、 本発明の第 4実施例が示されている。
一対の両突起間に流体を積極的に流入させ、 両突起の潤滑性を向上さ せる方法として、 図 7に示すように、 油側の突起 2 9の先端を丸み 2 9 aを有する形状としたものである。
丸み 4 9 aとしては、 たとえば曲率半径 Rを、 R > 0 . 0 3 [ m m ] 程度に設定することが有効である。 好ましくは、 R≥ 0 . 3 [ m m ] と する。
1段目突起 4 9に丸み 4 9 aを付けることによって、 軸 3 4が相対的 に大気側 Aに移動するとき、 1段目突起 4 9での膜厚の方が、 その先端 の丸み 4 9 aによって、 2段目突起 4 0より厚くなり、 両突起 4 9, 4 0間の谷部空間 4 1へ油を流入蓄積することができる。 このため、 1段 目, 2段目突起 4 9, 4 0の潤滑性が改善され、 摩擦力が低減される。 その他の構成及び作用については、 上記実施例 3と同一のため、 同一 の構成部分については同一の符号を付して、 その説明は省略する。
(第 6実施例)
図 ' 8には、 本発明の第 6実施例に係る往復動用密封装置が示されてい る。
この往復動用密封装置も、 軸方向に相対移動自在に設けられる 2部材 としてのハウジング 2と、 ハウジング 2の軸孔 3に揷通される軸 4との 間をシールするものであり、 装置本体としての金属環 6 5に一体的に支 持されるシールリップ 6 6の軸 4との接触面に、 軸方向に所定距離だけ 離間する一対の 1段目, 2段目突起 6 9, 7 0が設けられている。
この 1段目, 2段目突起' 9, 7 0の軸方向断面形状は、 突起先端を 頂点として油側 0と大気側 Aに傾斜する斜面を備えた略三角形状で、 接 触角は各突起 6 9, 7 0の斜面と軸 4外周とのなす角度で設定される。 この 1段目, 2段目突起 6 9, 7 0の先端は軸 4表面に摺動自在に接触 して 1段目, 2段目突起 6 9, 7 0間と軸 4外周面間に断面三角形状の 谷部空間 7 1が形成されている。
本実施例では、 図 8 ( b ) に示すように、 2段目突起 7 0の大気側 A の接触角を ct 2 とし、 油側 0の接触角を 0 2とした場合に、 (3 2を α 2 より大きくなるように設定している ( α 2 < 3 2 ) 。
また、 この実施例では、 1段目突起 6 9の油側 0の接触角を (3 1 とし 、 大気側 Α (谷部空間 7 1側) の接触角を α 1 とした場合に、 《 1 < 13 1 となるように設定している。
そして、 1段目突起 69の軸 4との接触面となる大気側 Α (谷部空間 7 1側) 表面に複数の微細突起 72からなる微細突起群 73を設け、 そ れぞれの微細突起 72の油側 0の接触角を )3 3とし、 大気側 Aの接触角 を α 3とした場合に、 i3 3く α 3に設定している。 微細突起 72の高さ は 5〜50 [ μ m] の範囲に設定される。 もっとも、 このような接触角 の効果を持たせるためには微細突起 72の高さはほぼ 1 [ m] の高さ を有していればよく、 50 [μηι] 以上としてもよい。
本発明にあっては、 1段目突起 69の軸 4との接触上に設けた微細突 起群 73の特有の接触角によって、 密封すべき油を突起 69, 70間の 谷部空間 7 1に積極的に導入し、 油量の不足を解消することによって、 一対の突起 69, 70の潤滑性を向上させ、 摩擦を低減させている。 油 の密封は主に大気側 Αの 2段目突起 7.0で行っている。
シールリ ップ 66に対して軸 4が相対的に大気側 Aに移動する 「押し 行程」 では、 1段目突起 69において、 微細突起群 73の各微細突起 7 2の油側の接触角 |3 3の方が、 大気側 Aの接触角 α 3よりも小さく、 つ まり )3 3 < α 3となっているために、 厚い油膜が形成される。
一方、 2段目突起 70においては、 油側 0の接触角 |3 2の方が、 大気 側 Aの接触角 α 2より大きく、 つまり i3 2〉 a 2 となっているため、 薄 い油膜が形成され、 大気側 Aへはほとんど漏れ出さないため、 密封が達 成される。 すなわち、 その油膜の厚さ分だけ、 突起 69, 70間の谷部 空間 7 1に流体が蓄積される。
逆に、 シールリ ップ 66に対して軸 4が相対的に油側 0へ移動する 「 引き行程」 では、 1段目突起 6 9において、 軸 4との接触面に形成され た各微細突起 7 2の接触角 α 3, /3 3が |3 3 < α 3となっているため、 谷部空間 7 1に蓄積された油は薄い油膜しか形成されないため、 油側 0 へ油は小量しか戻らない。
つまり、 繰り返し往復運動によって、 油は谷部空間 7 1に確実に蓄積 されることになる。
この谷部空間 7 1に流入蓄積された油は、 従来品に対して、 1段目突 起 9の大気側 Α (谷部空間 7 1側) および 2段目突起 7 0の油側 0 (谷 部空間 7 1側) の潤滑性を向上させる。
すなわち、 1段目突起 6 9の軸 4との接触面に形成する微細突起 7 2 の接触角を /3 3 < α 3とすることによって、 「押し行程」 の場合に、 1 段目突起 6 9の微細突起 7 2においては厚い油膜が形成されることによ つて、 また、 2段目突起 7 0においては谷部空間 7 1に流入蓄積された 十分な油による潤滑性の向上によって、 摩擦力が低減される。
逆に、 「引き行程」 の場合には、 谷部空間 7 1に流入蓄積された十分 な油による潤滑性の向上によって、 1段目突起 6 9の微細突起群 7 3の 摩擦力が低減される。
1段目突起 6 9に設けられる微細突起群 7 3は軸 4との接触面に設け られるもので、 1段目突起 6 9の接触角が、 油側 0の接触角を /3 1 とし 、 大気側 Αの接触角を α 1 とした場合に、 i3 1 > α 1に設定されている 場合には、 上記したように 1段目突起 6 9の大気側 Αの表面に設けられ 、 β 1 ≤ a 1に設定されている場合には、 図 8 ( d ) に示すように、 1 段目突起 6 9の油側 0の表面に設けられる。
この 1段目突起 6 9の接触角 )3 1, α 1の大小関係は、 微細突起群 7 3の作用には無関係であり、 いずれの場合にも微細突起群 7 3によって 谷部空間 7 1への流体蓄積効果が得られる。 なお、 上記各実施例では、 シールリップが軸に対して接触する場合を 例にとって説明したが、 密封装置本体が軸に固定されシールリ ップがハ ゥジング内周側に接触するァゥタシールについても同様に適用すること ができる。
また、 上記各実施の形態ではいわゆるオイルシールを例にとって説明 したが、 これに限定されるものではなく、 Uパッキン等の成形パッキン 等、 シールリ ップを備えた往復動用の密封装置全般に広く適用すること ができる。
また、 密封対象流体としては油に限定されるものではなく、 水や各種 薬品類等種々の液体あるいは気体のシールに使用可能である。 また、 反 密封対象流体としては、 大気開放に限られず、 各種気体の場合でも適用 可能である。 産業上の利用可能性
以上説明したように、 本発明によれば、 往復動用の密封装置として有 用であり、 特に突起間に油等の流体を積極的に導入蓄積して潤滑性を高 め、 摩擦及び摩耗の低減を図るのに適している。

Claims

求 の 範 囲
1 . 軸方向に相対移動自在に設けられる 2部材間をシールするもので、 一方の部材に固定される環状の密封装置本体と、 該密封装置本体から他 方の部材に向かって延びて他方の部材に摺動自在に接触するシールリッ プとを備えた往復動用密封装置において、
前記シールリ ップの相手部材との接触面に、 軸方向に所定距離 け離 間する一対の環状の突起を設け、 該突起先端を相手摺動面に摺動自在に 接触させて突起間と相手摺動面間に環状の空間を形成し、
前記反密封対象流体側の突起の相手摺動面との接触構造を、 その密封 対象流体側の接触角を ί3 2とし、 反密封対象流体側の接触角を α 2とし た場合に、 |3 2 > α 2に設定して主たるシールを構成し、
前記密封対象流体側の突起の前記相手摺動面との接触構造を、 前記相 手部材が密封対象流体側から反密封対象流体側へ移動する際に、 前記密 封対象流体側の突起と相手摺動面との間に形成される流体膜の膜厚が、 反密封対象流体側の突起と相手摺動面間に生じる流体膜の膜厚よりも厚 くなるような構造としたことを特徴とする往復動用密封装置。
2 . 密封対象流体側の突起の相手摺動面との接触構造は、 密封対象流体 側の接触角を )3 1 とし、 反密封対象流体側の接触角を α 1 とした場合に 、 β K a lに設定したことを特徴とする請求項 1に記載の往復動用密
3 . 密封対象流体側の突起の相手摺動面との接触構造は、 密封対象流体 側の接触角を 0 1 とし、 反密封対象流体側の接触角を α 1 とした場合に 、 β 2 > β 1 > a 1に設定したことを特徴とする請求項 1に記載の往復 動用密封装置。
4. 密封対象流体側の突起の相手摺動面との接触構造は、 密封対象流体 側の突起の軸方向の断面形状が円弧形状となっていることを特徴とする 請求項 1に記載の往復動用密封装置。
5. 密封対象流体側の突起の相手摺動面との接触面に複数の微細突起か らなる微細突起群を設け、 該微細突起群の各微細突起の密封対象流体側 の接触角を )3 3とし、 反密封対象流体側の接触角を a 3とした場合に、 0 3 < α 3に設定したことを特徴とする請求項 1に記載の往復動用密封
6. —対の突起を、 軸方向に複数組設けたことを特徴とする請求項 1に 記載の往復動用密封装置。
7. シールリ ップの一対の突起の接触角の関係は、 (2 1≥ 0 1かっ <2 2 < β 2を条件として、 /3 2≥ α 1に設定することを特徴とする請求項 2 に記載の往復動用密封装置。
8. 突起の高さは、 最低限 1 [ m] の高さを有する微細突起である請 求項 5または 6に記載往復動用密封装置。
9. 複数組の突起組が設けられるシールリ ップのリ ップ摺動面は、 密封 対象流体側から反密封対象流体側に向かって相手摺動面から徐々に離れ る傾斜面となっており、 リ ツプ摺動面の先端部は所定幅だけ平坦面とな つていることを特徴とする請求項 6に記載の往復動用密封装置。
1 0. 突起の軸方向断面形状は、 突起の先端から軸方向密封対象流体側 及び反密封対象流体側の斜面が傾斜する略三角形状で、 前記突起の斜面 と相手摺動面とのなす角度である請求項 1, 2または 3に記載の往復動 用密封装置。
1 1 . 断面円弧形状の曲率半径は、 ( 3Z 1 0 0 ) [mm] 程度以上に 設定される請求項 4に記載の往復動用密封装置。
PCT/JP1996/001113 1996-04-24 1996-04-24 往復動用密封装置 WO2004092620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/001113 WO2004092620A1 (ja) 1996-04-24 1996-04-24 往復動用密封装置
US08/981,009 US6045138A (en) 1996-04-24 1996-04-24 Sealing device for reciprocal movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001113 WO2004092620A1 (ja) 1996-04-24 1996-04-24 往復動用密封装置

Publications (1)

Publication Number Publication Date
WO2004092620A1 true WO2004092620A1 (ja) 2004-10-28

Family

ID=14153233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001113 WO2004092620A1 (ja) 1996-04-24 1996-04-24 往復動用密封装置

Country Status (2)

Country Link
US (1) US6045138A (ja)
WO (1) WO2004092620A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004648A (ja) * 2019-06-26 2021-01-14 Nok株式会社 油圧アクチュエータの密封装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244442B2 (ja) * 1998-06-12 2009-03-25 Nok株式会社 密封装置
JP2002147517A (ja) * 2000-11-08 2002-05-22 Showa Corp 油圧緩衝器のオイルシール
DE10234305A1 (de) * 2002-07-26 2004-02-19 Spicer Gelenkwellenbau Gmbh & Co. Kg Dichtring zur Abdichtung eines Längenausgleichs einer Gelenkwelle
EP1538376B1 (en) * 2002-09-09 2008-11-19 Nok Corporation Sealing device
US7134671B2 (en) * 2002-12-20 2006-11-14 Macrotech Polyseal, Inc. Lip seal having increased contact force at interface and apparatus incorporating the same
CN100578047C (zh) * 2004-06-07 2010-01-06 Nok株式会社 密封系统
US20060103075A1 (en) * 2004-11-15 2006-05-18 Zahn Henry W Triple lip fork seal
JP4877460B2 (ja) * 2005-06-14 2012-02-15 Nok株式会社 リップタイプシール
JP2008057756A (ja) * 2006-09-04 2008-03-13 Kayaba Ind Co Ltd 往復動用オイルシール
US7828300B2 (en) * 2006-09-21 2010-11-09 Nok Corporation Sealing device for reciprocating shaft
US20090026405A1 (en) * 2007-07-26 2009-01-29 Dana Canada Corporation Leak resistant by-pass valve
DE102007036625B4 (de) * 2007-08-02 2013-10-17 Ab Skf Dichtelement
US9752681B2 (en) * 2010-05-07 2017-09-05 Parker-Hannifin Corporation Precision formed article and method
DE102011002491A1 (de) * 2011-01-11 2012-07-12 Aktiebolaget Skf Radialwellendichtring
JP6054135B2 (ja) * 2012-10-23 2016-12-27 Nok株式会社 オイルシール
DE102013207029B4 (de) * 2013-04-18 2016-05-04 Aktiebolaget Skf Radialwellen-Dichtungsanordnung
US20150001804A1 (en) * 2013-06-27 2015-01-01 Aktiebolaget Skf Fluid seal assembly with wear ring
KR101592657B1 (ko) * 2013-12-30 2016-02-12 현대자동차주식회사 연료전지 차량의 스택 냉각수 조절용 밸브
CN108368938B (zh) * 2015-12-08 2020-01-24 Nok株式会社 气门油封

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03486Y2 (ja) * 1984-06-06 1991-01-10
JPH051608Y2 (ja) * 1987-08-11 1993-01-18
JPH0529419Y2 (ja) * 1987-09-17 1993-07-28
JPH0531328Y2 (ja) * 1985-12-04 1993-08-11

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695061A (en) * 1985-08-29 1987-09-22 Eagle-Picher Industries, Inc. Valve stem seal
DE3545683C1 (de) * 1985-12-21 1987-07-16 Freudenberg Carl Fa Wellendichtung
US4827834A (en) * 1987-06-05 1989-05-09 Automotive Products, Plc Four point seal
DE3940005C2 (de) * 1989-12-02 1993-10-28 Freudenberg Carl Fa Kolben- oder Stangendichtung
KR100279109B1 (ko) * 1993-04-09 2001-03-02 후지 하루노스케 회전축 시일
DE4324529C1 (de) * 1993-07-21 1994-11-17 Bruss Dichtungstechnik Wellendichtring
DE4333244C2 (de) * 1993-09-30 1997-04-24 Freudenberg Carl Fa Stangen- oder Kolbendichtung
JP3261275B2 (ja) * 1994-12-28 2002-02-25 エヌオーケー株式会社 密封装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03486Y2 (ja) * 1984-06-06 1991-01-10
JPH0531328Y2 (ja) * 1985-12-04 1993-08-11
JPH051608Y2 (ja) * 1987-08-11 1993-01-18
JPH0529419Y2 (ja) * 1987-09-17 1993-07-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004648A (ja) * 2019-06-26 2021-01-14 Nok株式会社 油圧アクチュエータの密封装置
JP7281980B2 (ja) 2019-06-26 2023-05-26 Nok株式会社 油圧アクチュエータの密封装置

Also Published As

Publication number Publication date
US6045138A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
WO2004092620A1 (ja) 往復動用密封装置
US7918463B2 (en) Reciprocating seal
KR20140101885A (ko) 스프링-활성화된 동적 실링 조립체를 위한 시스템, 방법 및 장치
US9261139B2 (en) Friction-reducing geometric surface feature
WO2007097175A1 (ja) 往復動用密封リング
JP2009526170A (ja) 制御可能なポンプ速度を有するシール
CN107850213B (zh) 具有异形截面的压缩活塞环
JP2008164162A (ja) 高圧シール装置
EP0491942B1 (en) Annular support for a seal for a tilt piston
JP3613833B2 (ja) 往復動用密封装置
EP3121447A1 (en) Ultrahigh-pressure sealing device and reciprocatiing pump
KR102336893B1 (ko) 팽창가능한 연속 링을 갖는 고압 회전식 밀봉-플러그 조립체
JP4396850B2 (ja) パッキン
JP6735673B2 (ja) 密閉組立体、及びアクチュエータ
CN109073079B (zh) 带油压效应接片的两件式刮油环
JP5323964B2 (ja) U形シール
JPH09292031A (ja) 往復動用密封装置
WO2007020099A2 (en) Pressure vessel and method and device for sealing a pressure vessel
JP3539066B2 (ja) 往復動用密封装置
JPH1151193A (ja) 超高圧流体封止装置
JPH05133477A (ja) 高圧装置の可動部分の密封装置
CN105673861B (zh) 自泄压密封装置
CN107830240A (zh) 一种具有Ni‑P化学镀层阀体零件密封环
CN115769010A (zh) 活塞环组件、活塞式压缩机和密封压缩腔室的方法
RU2265767C1 (ru) Герметизирующее устройство

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08981009

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US