[go: up one dir, main page]

WO2004088253A2 - Mit ultraschall arbeitendes füllstandsmessgerät - Google Patents

Mit ultraschall arbeitendes füllstandsmessgerät Download PDF

Info

Publication number
WO2004088253A2
WO2004088253A2 PCT/EP2004/003405 EP2004003405W WO2004088253A2 WO 2004088253 A2 WO2004088253 A2 WO 2004088253A2 EP 2004003405 W EP2004003405 W EP 2004003405W WO 2004088253 A2 WO2004088253 A2 WO 2004088253A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
digital
electromechanical
analog
analogue
Prior art date
Application number
PCT/EP2004/003405
Other languages
English (en)
French (fr)
Other versions
WO2004088253A3 (de
Inventor
Manfred Eckert
Harald Faber
Dietmar Spanke
Original Assignee
Endress+Hauser Gmbh+Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Gmbh+Co. Kg filed Critical Endress+Hauser Gmbh+Co. Kg
Publication of WO2004088253A2 publication Critical patent/WO2004088253A2/de
Publication of WO2004088253A3 publication Critical patent/WO2004088253A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves

Definitions

  • the invention relates to a level measuring device operating with ultrasound.
  • Level gauges can be used, among other things, to measure levels
  • a signal emitted by the level measuring device e.g. a short ultrasonic wave pulse, sent in the direction of the filling material and reflected on the surface of the filling material.
  • the transit time of the pulse from the sensor to the surface and back is determined and the level or level is determined from this.
  • Such measuring devices are used in many branches of industry, e.g. used in the food industry, water and wastewater industry and in chemistry.
  • the ultrasonic signals are generated by means of an electromechanical transducer, e.g. a piezoelectric element.
  • Short transmission signals e.g. short transmission wave pulses, emitted and their echo received with the electromechanical converter and converted into echo signals that are available for further processing and / or evaluation.
  • Decay is required, incoming echoes cannot be clearly converted into echo signals and evaluated. Echoes arriving during this time are therefore usually not evaluated. This time is therefore also called the block distance, since the measurement is blocked by the swinging out during this time.
  • BESTATIGUNGSKOPIE Accordingly, efforts are made to keep the time that the electromechanical transducer needs after the excitation to swing out as short as possible. This is usually done by mechanical damping, for example by means of a casting compound surrounding parts of the electromechanical transducer. The stronger the mechanical damping, the faster the electromechanical transducer swings out. This is very important especially for level measuring devices for small measuring distances, for example from 2 m to 3 m. Small containers in particular, in which these mega devices are preferred, are often filled to the top.
  • a large mechanical damping not only causes the electromechanical transducer to swing out quickly, it also reduces measuring sensitivity. Echoes with low sound power cannot be recorded by strongly damped electromechanical transducers and converted into echo signals.
  • the invention consists in a level measuring device working with ultrasound
  • a digital signal processor which has an input to which the analog-digital converter is connected
  • the invention consists in a method for damping a ringing of an electromechanical transducer of a level measuring device operating with ultrasound, in which
  • the electromechanical transducer is briefly excited to vibrate during a transmission interval
  • a damping signal is generated from a received signal from the electromechanical transducer and is applied to the electromechanical transducer.
  • the damping signal is generated by inverting the received signal received during the ringing.
  • 1 shows an ultrasonic level measuring device according to the invention
  • 2 shows an amplitude of a vibration of the electromechanical transducer.
  • FIG 1 shows an ultrasonic level measuring device according to the invention.
  • the electromechanical transducer 1 has an electromechanical transducer 1, which is arranged in a pot-shaped housing 3, which is closed off by a base 5.
  • the electromechanical transducer 1 is a piezoelectric element in the exemplary embodiment shown. However, other types of electromechanical transducers can also be used.
  • the housing 3 consists of a plastic, e.g. made of polypropylene. The electromechanical transducer 1 is used to transmit and receive ultrasound through the floor 5.
  • a matching layer 7 made of a plastic with a medium acoustic impedance.
  • the plastic is e.g. an epoxy resin suitable.
  • the piezoelectric element is disk-shaped.
  • the matching layer is also disk-shaped and is located between the piezoelectric element and the bottom 5 of the housing 3.
  • the adaptation layer 13 preferably has a thickness which corresponds to a quarter of the wavelength of the generated sound or ultrasonic waves.
  • a damping material 9 is provided in the housing 3, which surrounds the piezoelectric element 1 with the exception of its end face facing the base 5.
  • a potting compound for example a silicone gel, is suitable as damping material 9.
  • connection of the electromechanical transducer 1 is carried out in the illustrated embodiment by two electrodes 11, 13 mounted on opposite end faces of the piezoelectric element 1.
  • the electrode 11 is located on the end face of the piezoelectric element facing the bottom 5 and is connected to ground or via a connecting line 15 connected to a fixed reference potential.
  • the second electrode 13 is located on the end face facing away from the bottom 5 and is connected to a measuring device electronics via connecting lines 15 and 17.
  • the measuring device electronics include an analog-digital converter 19 which is connected to the electromechanical converter 1 via the connecting line 15.
  • the heart of the measuring device electronics is a digital signal processor 21. This has an input 23 to which the analog-digital converter 19 is connected.
  • the digital signal processor 21 has an output 25 to which a digital-to-analog converter 27 is connected.
  • the digital-to-analog converter 27 is connected to the electromechanical converter 1 via the connecting line 17.
  • the digital signal processor 21 generates digital transmission signals, which are present in analog form on the electromechanical converter 1 during a transmission interval via the digital-to-analog converter 27 and excite the latter to vibrate. The vibrations are emitted by the electromechanical transducer 1 during the transmission interval.
  • Fill level measurement is usually emitted short ultrasonic wave pulses with transmission frequencies in the range from 1 kHz to 200 kHz for a transmission interval in the range of microseconds.
  • the electromechanical transducer oscillates. This is shown schematically in FIG. 2 using the vibration amplitude.
  • the amplitude is constant during the transmission interval, in the time interval from 0 to TS. Thereafter, the amplitude drops exponentially with time until it becomes zero at the end of the decay process at time TA. This is shown in Fig. 2 by a solid line.
  • the vibrations are converted by means of the electromechanical converter 1 into a received signal, which is digitized by the analog-digital converter 19 and fed to the digital signal processor 21. This receives the received signals.
  • the digital signal processor 21 derives an attenuation signal from the received signal to reduce the time required for the electromechanical transducer to decay.
  • the damping signal is applied by the digital signal processor to the electromechanical converter 1 in analog form following the transmission interval via the digital-to-analog converter 27.
  • the procedure is such that the electromechanical transducer 1 is briefly excited to vibrate during the transmission interval after the transmission interval from the Received signal of the electromechanical converter 1, the damping signal is generated and applied to the electromechanical converter 1.
  • the damping signal is preferably generated by inverting the received signal received during the ringing. This results in a feedback in inverted form, which leads to a destructive superimposition of the ringing with the vibrations excited by the damping signal.
  • the digital signal processor 21 thus initially generated during the
  • the digital signal processor inverts the incoming signal and outputs the inverted signal as a damping signal.
  • the decay time Td shortened by the damping with the damping signal is shown in FIG. 2 as a dash-dotted line.
  • This form of damping is very effective and has no influence whatsoever on the sensitivity of the electromechanical transducer 1. Ultrasonic waves with very low power can also be picked up and used for level measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Es ist ein mit Ultraschall arbeitendes Füllstandsmeßgerät mit hoher Meßempfindlichkeit und geringer Blockdistanz vorgesehen, mit einem elektromechanischen Wandler (1) zum Senden und Empfangen von Ultraschall, einem an den elektromechanischen Wandler (1) angeschlossenen Analog-Digital-Wandler (19), einem an den elektromechanischen Wandler (1) angeschlossenen Digital-Analog-Wandler (27), und einem digitalen Signalprozessor (21), der einen Eingang (23) aufweist, an dem der Analog-Digital-Wandler (19) angeschlossen ist, der einen Ausgang (25) aufweist, an den der Digital- Analog-Wandler (27) angeschlossen ist, und der dazu dient digitale Sendesignale zu erzeugen, die über den Digital-Analog-Wandler (27) in analoger Form während eines Sendeintervalls am elektromechanischen Wandler anliegen, der dazu dient vom Analog-Digital-Wandler zugeführte Empfangsignale aufzunehmen, und der dazu dient aus dem Empfangssignal ein Bedämpfungssignal zur Reduktion einer zum Ausschwingen des elektromechanischen Wandlers (1) benötigten Zeit abzuleiten und im Anschluß an das Sendeintervall über den Digital-Analog-Wandler in analoger Form an den elektromechanischen Wandler anzulegen.

Description

Mit Ultraschall arbeitendes Füllstandsmeßgerät
Die Erfindung betrifft ein mit Ultraschall arbeitendes Füllstandsmeßgerät.
Mit Füllstandsmeßgeräten lassen sich unter anderem Füllstände eines
Füllgutes z.B. in einem Behälter oder in einem offenen Gerinne zu messen. Dabei wird ein vom Füllstandsmeßgerät ausgesendetes Signal, z.B. ein kurzer Ultraschallwellenpuls, in Richtung des Füllgutes gesendet und an der Oberfläche des Füllgutes reflektiert. Die Laufzeit des Pulses vom Sensor zur Oberfläche und zurück wird ermittelt und daraus der Füllstand bzw. die Füllhöhe bestimmt.
Derartige Meßgeräte werden in vielen Industriezweigen, z.B. in der Lebensmittelindustrie, der Wasser- und Abwasserbranche und in der Chemie, eingesetzt.
Die Ultraschallsignale werden mittels eines elektromechnischen Wandlers, z.B. einem piezoelektrischen Element erzeugt. Es werden kurze Sendesignale, z.B. kurze Sendewellenpulse, ausgesendet und deren Echo mit dem elektromechanischen Wandler empfangen und in Echosignale umgewandelt, die einer weiteren Verarbeitung und/oder Auswertung zur Verfügung stehen.
Nachdem der elektromechanische Wandler beim Sendevorgang zu Schwingungen angeregt worden ist schwingt der elektromechanische Wandler aus. Innerhalb der Zeit, die der elektromechanische Wandler zum
Ausschwingen benötigt, eintreffende Echos können nicht eindeutig in Echosignale umgewandelt und ausgewertet werden. In dieser Zeit eintreffende Echos werden daher üblicherweise nicht ausgewertet. Man nennt diese Zeit daher auch Blockdistanz, da in dieser Zeit die Messung durch das Ausschwingen blokiert ist.
BESTATIGUNGSKOPIE Entsprechend ist man bemüht, die Zeit, die der elektromechanische Wandler nach erfolgter Anregung zum Ausschwingen benötigt möglichst kurz zu halten. Dies geschieht üblicherweise durch eine mechanische Dämpfung, z.B. mittels einer Teile des elektromechanischen Wandlers umgebenden Vergußmasse. Je stärker die mechanische Dämpfung ist, umso schneller schwingt der elektromechanische Wandler aus. Dies ist besonders bei Füllstandsmeßgeräten für kleine Meßdistanzen, z.B. von 2 m bis 3 m sehr wichtig. Gerade kleine Behälter, in denen diese Megeräte bevorzugt eingesetzt werden, werden häufig bis zur Oberkante befüllt.
Eine große mechanische Dämpfung bewirkt aber nicht nur ein schnelles Ausschwingen des elektromechanischen Wandlers, es reduziert auch eine Meßempfindlichkeit. Echos mit geringer Schallleistung können von stark gedämpften elektromechanischen Wandlern nicht aufgezeichnet und in Echosignale umgeformt werden.
Es ist eine Aufgabe der Erfindung ein mit Ultraschall arbeitendes Füllstandsmeßgerät mit hoher Meßempfindlichkeit und geringer Blockdistans anzugeben.
Hierzu besteht die Erfindung in einem mit Ultraschall arbeitenden Füllstandsmeßgerät mit
- mit einem elektromechanischen Wandler zum Senden und Empfangen von Ultraschall, - einem an den elektromechanischen Wandler angeschlossenen Analog-Digital-Wandler,
- einem an den elektromechanischen Wandler angeschlossenen Digital-Analog-Wandler, und
- einem digitalen Signalprozessor, - der einen Eingang aufweist, an dem der Analog- Digital-Wandler angeschlossen ist,
- der einen Ausgang aufweist, an den der Digital- Analog-Wandler angeschlossen ist, und -- der dazu dient digitale Sendesignale zu erzeugen,
- die über den Digital-Analog-Wandler in analoger Form während eines Sendeintervalls am elektromechanischen Wandler anliegen,
- der dazu dient vom Analog-Digital-Wandler zugeführte Empfangsignale aufzunehmen, und
- der dazu dient aus dem Empfangssignal ein Bedämpfungssignal zur Reduktion einer zum Ausschwingen des elektromechanischen Wandlers benötigten Zeit abzuleiten und im Anschluß an das Sendeintervall über den Digital-Analog-Wandler in analoger Form an den elektromechanischen Wandler anzulegen.
Weiter besteht die Erfindung in einem Verfahren zur Bedämpfung eines Nachschwingens eines elektromechanischen Wandlers eines mit Ultraschall arbeitenden Füllstandsmeßgeräts, bei dem
- der elektromechanische Wandler während eines Sendeintervalls kurzzeitig zu Schwingungen angeregt wird,
- nach Ablauf des Sendeintervalls aus einem Empfangssignal des elektromechanischen Wandlers ein Bedämpfungssignal erzeugt und an den elektromechanischen Wandler angelegt wird.
Gemäß einer Ausgestaltung des Verfahrens wird das Bedämpfungssignal durch ein Invertieren des während des Nachschwingens empfangenen Empfangssignals erzeugt.
Fig. 1 zeigt ein erfindungsgemäßes mit Ultraschall arbeitendes Füllstandsmeßgerät; und Fig. 2 zeigt eine Amplitude einer Schwingung des elektromechanischen Wandlers.
Fig. 1 zeigt ein erfindungsgemäßes mit Ultraschall arbeitendes Füllstandsmeßgerät.
Es weist einen elektromechanischen Wandler 1 auf, der in einem topfförmigen Gehäuse 3 angeordnet ist, das von einem Boden 5 abgeschlossenen ist. Der elektromechanische Wandler 1 ist in dem dargestellten Ausführungsbeispiel ein piezoelektrisches Element. Es können aber auch andere Arten von elektromechanischen Wandlern eingesetzt werden. Das Gehäuse 3 besteht aus einem Kunststoff, z.B. aus Polypropylen. Der elektromechanische Wandler 1 dient dazu Ultraschall durch den Boden 5 hindurch zu senden und zu empfangen.
Da sich die akustische Impedanz des Mediums, in das der Ultraschall auszusenden ist, z.B. Luft, und die des piezoelektrischen Elements sehr stark unterscheiden, ist vor dem piezoelektrischen Element eine Anpaßschicht 7 aus einem Kunststoff mit mittlerer akustischer Impedanz angeordnet. Als Kunststoff ist z.B. ein Epoxidharz geeignet. In dem dargestellten Ausführungsbeispiel ist das piezoelektrische Element scheibenförmig. Die Anpaßschicht ist ebenfalls scheibenförmig und befindet sich zwischen dem piezoelektrischen Element und dem Boden 5 des Gehäuses 3.
Um eine möglichst gute Anpassung und damit einen möglichst hohen
Schalldruck zu erzielen weist die Anpaßschicht 13 vorzugsweise eine Dicke auf, die einem viertel der Wellenlänge der erzeugten Schall- oder Ultraschalwellen entspricht.
Da der elektromechanische Wandler 1 nicht nur als Sender, sondern auch als Empfänger genutzt wird, ist es wichtig, daß eine einmal angeregte Sendeschwingung schnell abklingt. Um ein schnelles Abklingen der Sendeschwingung zu unterstützen ist in dem Gehäuse 3 ein Dämpfungsmaterial 9 vorgesehen, das das piezoelektrische Element 1 mit Ausnahme von dessen dem Boden 5 zugewandten Stirnfläche umgibt. Als Dämpfungsmaterial 9 eignet sich z.B. ein Verguß, beispielsweise ein Silikongel.
Der Anschluß des elektromechanischen Wandlers 1 erfolgt in dem dargestellten Ausführungsbeispiel durch zwei auf gegenüberliegenden Stirnflächen des piezoelektrischen Elements 1 angebrachte Elektroden 11 , 13. Die Elektrode 11 befindet sich auf der dem Boden 5 zugewandten Stirnfläche des piezoelektrischen Elements und ist über eine Anschlußleitung 15 an Masse oder an ein festes Bezugspotential angeschlossen. Die zweite Elektrode 13 befindet sich auf der vom Boden 5 abgewandten Stirnfläche und ist über Anschlußleitungen 15 und 17 an eine Meßgerätelektronik angeschlossen.
Die Meßgerätelektronik umfaßt einen Analog-Digital-Wandler 19, der an den elektromechanischen Wandler 1 über die Anschlußleitung 15 angeschlossen ist.
Kernstück der Meßgerätelektronik ist ein digitaler Signalprozessor 21. Dieser weist einen Eingang 23 auf, an dem der Analog-Digital-Wandler 19 angeschlossen ist.
Im Betrieb werden sämtliche Schwingungen des elektromechanischen Wandlers 1 , d.h. sowohl durch ein Senden von Ultraschall als auch durch von außen eintreffende Ultraschallwellen erzeugte Schwingungen, in Form von Empfangssignalen dem Analog-Digital-Wandler 19 zugeführt, von diesem digitalisiert und liegen unmittelbar im digitalen Signalprozessor 21 vor.
Der digitale Signalprozessor 21 weist einen Ausgang 25 auf an den ein Digital- Analog-Wandler 27 angeschlossen ist. Der Digital-Analog-Wandler 27 ist über die Anschlußleitung 17 an den elektromechanischen Wandler 1 angeschlossen. Im Betrieb erzeugt der digitale Signalprozessor 21 digitale Sendesignale, die während eines Sendeintervalls über den Digital-Analog-Wandler 27 in analoger Form am elektromechanischen Wandler 1 anliegen und diesen zu Schwingungen anregen. Die Schwingungen werden vom elektromechanischen Wandler 1 während des Sendeintervalls ausgesendet. Bei der
Füllstandsmessung werden üblicher Weise kurze Ultraschallwellenpulse mit Sendefrequenzen im Bereich von 1 kHz bis 200 kHz für ein Sendeintervall im Bereich von Mikrosekunden ausgesendet.
Im Anschluß an das Sendeintervall schwingt der elektromechanische Wandler nach. Dies ist in Fig. 2 schematisch anhand der Schwingungsamplitude dargestellt. Während des Sendeintervalls, im Zeitintervall von 0 bis TS ist die Amplitude konstant. Danach fällt die Amplitude exponentiell mit der Zeit ab, bis sie am Ende des Ausschwingvorgangs zur Zeit TA zu null wird. Dies ist in Fig. 2 durch eine durchgezogenen Linie dargestellt.
Die Schwingungen werden mittels des elektromechanischen Wandlers 1 in ein Empfangssignal umgewandelt, das vom Analog-Digital-Wandler 19 digitalisiert und dem digitalen Signalprozessor 21 zugeführt wird. Dieser nimmt die zugeführten Empfangsignale auf.
Erfindungsgemäß leitet der digitale Signalprozessor 21 aus dem Empfangssignal ein Bedämpfungssignal zur Reduktion einer zum Ausschwingen des elektromechanischen Wandlers benötigten Zeit ab. Dieses Bedämpfungssignal legt der digitale Signalprozessor im Anschluß an das Sendeintervall über den Digital-Analog-Wandler 27 in analoger Form an den elektromechanischen Wandler 1 an.
Zur der Bedämpfung des Nachschwingens des elektromechanischen Wandlers 1 wird so verfahren, daß der elektromechanische Wandler 1 während des Sendeintervalls kurzzeitig zu Schwingungen angeregt wird, nach Ablauf des Sendeintervalls aus dem Empfangssignal des elektromechanischen Wandlers 1 das Bedämpfungssignal erzeugt und an den elektromechanischen Wandler 1 angelegt wird.
Das Bedämpfungssignal wird vorzugsweise durch ein Invertieren des während des Nachschwingens empfangenen Empfangssignals erzeugt. Hierdurch wird eine Rückkopplung in invertierter Form erzielt, die zu einer destruktiven Überlagerung des Nachschwingens mit den durch das Bedämpfungssignal angeregten Schwingungen führt.
Der digitale Signalprozessor 21 erzeugt also zunächst während des
Sendeintervalls das Sendesignal und regt hierdurch den elektromechanischen Wandler 1 zu Schwingungen und damit zum Aussenden eines kurzen Ultraschallwellenpulses an. Unmittelbar im Anschluß an das Sendeintervall invertiert der digitale Signalprozessor das eingehende Empfangssignal und gibt das invertierte Signal als Bedämpfungssignal aus.
Zwischen dem Eingehen des Empfangssignals und der Ausgabe des invertierten Signals liegt ein geringer Zeitraum. Bei dem beschriebenen Füllstandsmeßgerät mit einer Sendefrequenz im Bereich von 1 kHz bis 200 kHz und einer Taktrate des digitalen Signalprozessors 21 im Bereich von 1 MHz, hat diese Verzögerung keine wesentlichen Auswirkungen. Werden höhere Sendefrequenzen bzw. niedrigere Signalverarbeitungsraten eingesetzt, so werden die Auswirkungen der Zeitverzögerung größer. Sie können jedoch vermieden werden, indem das eingehende Empfangssignal nicht nur invertiert wird, sondern auch in die Zukunft hinein extrapoliert wird.
Erfindungsgemäß ist es möglich die für das Ausschwingen benötigte Zeit deutlich zu verkürzen. Die durch die Bedämpfung mit dem Bedämpfungssignal verkürzte Ausschwingzeit Td ist in ist in Fig. 2 als gestrich-punktete Linie eingezeichnet. Diese Form der Bedämpfung ist sehr effektiv und hat keinerlei Einfluß auf die Empfindlichkeit des elektromechanischen Wandlers 1. Es können also auch Ultraschallwellen mit sehr geringer Leistung aufgenommen und zur Füllstandsmessung herangezogen werden.
Durch die Bedämpfung ist das Nachschwingen sehr schnell ausgeklungen. Im Anschluß an das Nachschwingen eintreffende Echos können aufgezeichnet und zur Füllstandsmessung herangezogen werden. Damit sind Füllstände meßbar, bei denen eine Signallaufzeit des Ultraschallwellenpulses vom elektromechanischen Wandler 1 bis zur Füllgutoberfläche und zurück größer gleich der, durch die Bedämpfung drastisch verkürzten, Nachschwingdauer Td sind.

Claims

Patentansprüche
Ultraschall arbeitendes Füllstandsmeßgerät mit - einem elektromechanischen Wandler (1 ) zum Senden und Empfangen von Ultraschall,
- einem an den elektromechanischen Wandler (1) angeschlossenen Analog-Digital-Wandler (19),
- einem an den elektromechanischen Wandler (1) angeschlossenen Digital-Analog-Wandler (27), und
- einem digitalen Signalprozessor (21 ),
- der einen Eingang (23) aufweist, an dem der Analog- Digital-Wandler (19) angeschlossen ist,
-- der einen Ausgang (25) aufweist, an den der Digital- Analog-Wandler (27) angeschlossen ist, und
- der dazu dient digitale Sendesignale zu erzeugen,
- die über den Digital-Analog-Wandler (27) in analoger Form während eines Sendeintervalls am elektromechanischen Wandler anliegen, - der dazu dient vom Analog-Digital-Wandler zugeführte Empfangsignale aufzunehmen, und
- der dazu dient aus dem Empfangssignal ein Bedämpfungssignal zur Reduktion einer zum Ausschwingen des elektromechanischen Wandlers (1 ) benötigten Zeit abzuleiten und im Anschluß an das
Sendeintervall über den Digital-Analog-Wandler in analoger Form an den elektromechanischen Wandler anzulegen.
2. Verfahren zur Bedämpfung eines Nachschwingens eines elektromechanischen Wandlers (1 ) eines mit Ultraschall arbeitenden Füllstandsmeßgeräts, bei dem
- der elektromechanische Wandler (1) während eines Sendeintervalls kurzzeitig zu Schwingungen angeregt wird,
- nach Ablauf des Sendeintervalls aus einem Empfangssignal des elektromechanischen Wandlers (1) ein Bedämpfungssignal erzeugt und an den eletromechanischen Wandler (1) angelegt wird.
3. Verfahren nach Anspruch 2, bei dem das
Bedämpfungssignal durch ein Invertieren des während des Nachschwingens empfangenen Empfangssignals erzeugt wird.
PCT/EP2004/003405 2003-04-01 2004-03-31 Mit ultraschall arbeitendes füllstandsmessgerät WO2004088253A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003114922 DE10314922A1 (de) 2003-04-01 2003-04-01 Mit Ultraschall arbeitendes Füllstandsmeßgerät
DE10314922.8 2003-04-01

Publications (2)

Publication Number Publication Date
WO2004088253A2 true WO2004088253A2 (de) 2004-10-14
WO2004088253A3 WO2004088253A3 (de) 2004-11-18

Family

ID=32980930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003405 WO2004088253A2 (de) 2003-04-01 2004-03-31 Mit ultraschall arbeitendes füllstandsmessgerät

Country Status (2)

Country Link
DE (1) DE10314922A1 (de)
WO (1) WO2004088253A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531058A (ja) * 2012-07-24 2015-10-29 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー ラジエータグリル内に超音波センサを含む超音波センサ構成、自動車および対応する方法
US20200413188A1 (en) * 2016-12-05 2020-12-31 Semiconductor Components Industries, Llc Reducing or eliminating transducer reverberation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008505A1 (de) * 2007-02-21 2008-08-28 Siemens Ag Verfahren zum Betreiben eines piezoelektrischen Wandlers und Wandlervorrichtung
DE102010039017B4 (de) * 2010-08-06 2017-09-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur aktiven Dämpfung eines akustischen Wandlers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274821A (en) * 1962-10-24 1966-09-27 Automation Ind Inc Ultrasonic testing apparatus having improved resolution
US4597068A (en) * 1983-04-21 1986-06-24 At&T Bell Laboratories Acoustic ranging system
JPS62156587A (ja) * 1985-12-27 1987-07-11 Yokogawa Electric Corp 超音波距離測定装置
DE3929243A1 (de) * 1989-09-02 1991-03-07 Rump Elektronik Tech Apparat und verfahren zur verkuerzung der ausklingzeit in ultraschall-impuls-sendeeinrichtungen
US5267219A (en) * 1992-07-17 1993-11-30 Milltronics Ltd. Acoustic range-finding system
DE4314247A1 (de) * 1993-04-30 1994-11-03 Bosch Gmbh Robert Schaltungsanordnung zur Dämpfung eines Ultraschallwandlers
US5483501A (en) * 1993-09-14 1996-01-09 The Whitaker Corporation Short distance ultrasonic distance meter
DE19548161C1 (de) * 1995-12-22 1997-02-13 Klaus Dipl Ing Petry Verringerung der Nachlaufzeit eines elektromechanischen Systems
DE10136628B4 (de) * 2001-07-26 2006-04-20 Valeo Schalter Und Sensoren Gmbh Ultraschallwandler zum Aussenden und Empfangen von Ultraschallwellen mittels einer Membran, Verfahren und Steuergerät zum Betrieb des Ultraschallwandlers, sowie Verwendung des Ultraschallwandlers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531058A (ja) * 2012-07-24 2015-10-29 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー ラジエータグリル内に超音波センサを含む超音波センサ構成、自動車および対応する方法
US20200413188A1 (en) * 2016-12-05 2020-12-31 Semiconductor Components Industries, Llc Reducing or eliminating transducer reverberation

Also Published As

Publication number Publication date
DE10314922A1 (de) 2004-10-14
WO2004088253A3 (de) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1480021B1 (de) Verfahren zur Füllstandsmessung
DE19714973C2 (de) Verfahren und Anordnung zur Feststellung einer Überfüllung bei der Messung des Füllstands einer Flüssigkeit in einem Behälter nach dem Impulslaufzeitverfahren
US4580448A (en) Method and apparatus for ultrasonic measurement of a physical parameter
EP2440888B1 (de) Verfahren zum messen einer messgrösse
EP0337293A1 (de) Füllstandsmessgerät
US3812709A (en) Stress gage
DE10323062A1 (de) Meßgerät
DE19620133C2 (de) Schall- oder Ultraschallsensor
US3741334A (en) Method and apparatus for measuring thickness by exciting and measuring free resonance frequency
WO2004088253A2 (de) Mit ultraschall arbeitendes füllstandsmessgerät
DE69532850T2 (de) Ultraschall-wandler mit kleinen abmessungen zur intravaskularen bilderzeugung
DE4204414C1 (en) Pulse echo level measuring instrument with pulse transceiver - has circuits to derive distance between transceiver and reflection surface from time between single or multiple echo pulses
DE2911807A1 (de) Verfahren und vorrichtung zum messen oder ueberwachen der dicke des filterkuchens auf einem filterelement
EP1493302B1 (de) Schall- oder ultraschallsensor
DE4437684C2 (de) Vorrichtung zur Messung der Konzentration einer in einem Behältnis befindlichen, sich zeitlich stofflich verändernden Flüssigkeit
DE958776C (de) Fuellhoehenbestimmung in Bunkern
CH456191A (de) Verfahren zur Temperaturmessung und Einrichtung zur Ausführung des Verfahrens
EP1790420A2 (de) Vorrichtung zur Ermittlung und Überwachung des Füllstands eines Füllguts in einem Behälter gemäß der Laufzeitmessmethode
DE3210591A1 (de) Anordnung fuer eine kontinuierliche blasengehaltsmessung in hydraulikfluessigkeiten
Smith et al. Measuring the level of liquid in a partially-filled pipe via the ultrasonic pulse-echo method using acoustic modeling
DE2025210A1 (de) Ultraschallmessverfahren zur Bestimmung der Wanddicke von Messobjekten wie Platten oder dgl
US4033176A (en) Pocket-sized, direct-reading ultrasonic thickness gauge
DE29723172U1 (de) Einrichtung zur akustischen Messung von Füllständen
SU1059421A1 (ru) Ультразвуковой контактный способ определени толщины изделий
SU723431A1 (ru) Способ контрол физических параметров жидкости

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase