WO2004070930A1 - Linear actuator - Google Patents
Linear actuator Download PDFInfo
- Publication number
- WO2004070930A1 WO2004070930A1 PCT/JP2004/001016 JP2004001016W WO2004070930A1 WO 2004070930 A1 WO2004070930 A1 WO 2004070930A1 JP 2004001016 W JP2004001016 W JP 2004001016W WO 2004070930 A1 WO2004070930 A1 WO 2004070930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- casing
- magnetic field
- magnetostrictive element
- slider
- field generating
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims description 36
- 238000001514 detection method Methods 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 230000008602 contraction Effects 0.000 claims description 5
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 5
- 150000002602 lanthanoids Chemical class 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000005192 partition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/021—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
- H02N2/025—Inertial sliding motors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N35/00—Magnetostrictive devices
Definitions
- the present invention relates to a linear actuator used in the field of AV (Audio Video) equipment and home electric appliances.
- AV Audio Video
- Reactuators have been used in various fields, for example, for adjusting the focus of a lens.
- a linear actuator may be used to adjust the focus of an imaging lens.
- a linear actuator may be used to adjust the focus of a laser beam irradiation lens.
- a device using a hydraulic (or pneumatic) cylinder and a rotary motor As such a reactor, a device using a hydraulic (or pneumatic) cylinder and a rotary motor, a device using a vibration of a piezoelectric element, and the like are known.
- a linear motor using the vibration of a piezoelectric element an impact drive type in which the piezoelectric element is configured in a bimorph type so as to generate an impact (for example, see Japanese Patent Application Laid-Open No. 2001-86867). No. 8) and an ultrasonic motor which generates a traveling wave (for example, see Japanese Patent Application Laid-Open No. 2002-199753).
- hydraulic (or pneumatic) cylinders have the problem that the expansion and contraction speed is slow, and that high-precision positioning is difficult.
- the linear actuator using a rotary motor has a problem that a structure for converting a rotary motion into a linear motion is required, so that the structure is complicated and it is difficult to make the linear compact. Further, since the rotation angle of the motor is controlled in units of the pitch of the stator, there is a problem in that high-precision positioning is difficult.
- an impact-driven linear motor using a piezoelectric element has a weak driving force, and may not be able to obtain a sufficient driving force.
- an ultrasonic motor using a piezoelectric element has a problem in that it generates a large amount of heat and is difficult to use continuously for a long time. Further, ultrasonic motors often require a booster circuit such as a transformer due to a high applied voltage, and have a problem in that the structure is complicated and compactness is difficult. Disclosure of the invention
- the present invention has been made in view of the above problems, and provides a compact linear actuator that has a high slider feed speed, high-precision positioning, and a large driving force. Is the task.
- the inventor of the present invention has solved the above-mentioned problem by using a magnetostrictive element, which generates a larger strain than a piezoelectric element, for a reactor.
- a casing a slider slidably supported by the casing, a magnetostrictive element for vibrating the casing, and a magnetic field generating coil for applying a magnetic field to the magnetostrictive element.
- a linear actuator wherein the slider is slid in the front-rear direction by intermittently energizing the magnetic field generating coil to vibrate the casing.
- the two magnetostrictive elements are provided in the casing, and one of the magnetostrictive elements is attached to the casing at a rear end and extends in the front-rear direction.
- the other end of the magnetostrictive element is mounted in the casing at the front end and expands and contracts in the front-rear direction so that the rear end contacts the casing.
- the magnetostrictive element is attached to the case so as to be extendable and contractible in the front-rear direction, and the casing is vibrated in the front-rear direction by a reaction of inertial force due to expansion and contraction of the magnetostrictive element.
- the linear actuator according to any one of the above (1) to (3).
- a power supply is provided for increasing or decreasing the current value, and supplying a current having a different increasing speed and a decreasing speed to the magnetic field generating coil, and in a vibration mode in which the forward acceleration and the backward acceleration are different.
- Two sets of the magnetostrictive element and the magnetic field generating coil are provided, and one of the magnetostrictive elements vibrates the casing in a vibration mode in which a forward acceleration is larger than a backward acceleration, and Control means for controlling the vibration mode of the two magnetostrictive elements so that the other magnetostrictive element vibrates the casing in a vibration mode in which the acceleration of the two is greater than the acceleration in the forward direction.
- the linear actuator according to the above (8), wherein the linear actuator is controlled.
- the slider is made of a magnetic material, a detection coil is provided around the slider, and a relative position between the casing and the slider is detected based on an impedance of the detection coil.
- the linear actuator according to any one of (1) to (10), characterized in that: BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 is a side cross-sectional view including a partial block diagram schematically showing the structure of a reactor actuator according to a first embodiment of the present invention.
- FIG. 2 is a graph showing a waveform of a drive current of the linear actuator.
- FIG. 3 is a side cross-sectional view including a partial block diagram schematically showing a structure of a reactor actuator according to a second embodiment of the present invention.
- FIG. 4 is a graph showing a waveform of a drive current of the linear actuator.
- FIG. 5 shows a structure of a reactor according to a third embodiment of the present invention. It is a side sectional view including a partial block diagram schematically shown.
- FIG. 6 is a side cross-sectional view including a partial block diagram schematically showing a structure of a linear actuator according to a fourth embodiment of the present invention.
- FIG. 7 is a side cross-sectional view including a partial block diagram schematically illustrating a structure of a linear actuator according to a fifth embodiment of the present invention.
- FIG. 1 is a side sectional view schematically showing the structure of the linear actuator 10 according to the present embodiment.
- the relay actuator 10 includes a game sink 12, a slider 14 slidably supported on the casing 12, magnetostrictive elements 16 and 17 for exciting the casing 12, and magnetostriction.
- a magnetic field generating coil 32, 34 for applying a magnetic field to the elements 16, 17 is provided, and the casing 12 is vibrated by intermittently energizing the magnetic field generating coils 32, 34.
- the slider 14 slides in the front-rear direction.
- the other configuration is the same as that of the conventional linear actuator, and therefore, the description thereof will be omitted as appropriate.
- the casing 12 has a bottom plate 18, a front wall 20, a rear wall 22, and a tubular portion 24.
- the tubular portion 24 is supported between the front wall 20 and the rear wall 22, the front end is opened outside the front wall 20, and the rear end is closed by the rear wall 22.
- a partition wall 24A is provided inside the cylindrical portion 24 near the center in the longitudinal direction. Further, an impact plate 24 B is provided between the partition plate 24 A and the rear wall 22.
- the slider 14 is a round bar-shaped body made of a magnetic material, is slidably fitted inside the cylindrical portion 24 of the casing 12, and protrudes outside the front wall 20.
- the sliding surface 24 C inside the cylindrical portion 24 is, for example, Teflon (registered trademark). And the like, whereby the frictional force between the casing 12 and the slider 14 is adjusted.
- a detection coil 26 is provided around the slider 14 so as to surround the cylindrical portion 24 along the longitudinal direction.
- Each of the magnetostrictive elements 16 and 17 is a round bar, and is made of a giant magnetostrictive element containing a lanthanide and an iron element.
- the linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal.
- the magnetostrictive element 16 is attached to the rear wall 22 of the casing 12 at the rear end 16A and expands and contracts in the front-rear direction so that the front end 16B comes into contact with and separates from the impact plate 24B. It is arranged.
- the magnetostrictive element 17 is attached to the partition wall 24A of the casing 12 at the front end 17A, and expands and contracts in the front-rear direction, so that the rear end 17B comes into contact with and separates from the impact plate 24B. It is arranged as follows.
- the magnetic field generating coil 32 is arranged so as to surround the magnetostrictive element 16, and the magnetic field generating coil 34 is arranged so as to surround the cylindrical part 24 around the magnetostrictive element 17.
- a power source 36 is connected to the magnetic field generating coils 32 and 34.
- the power supply 36 is connected with control means 38 for controlling the oscillation mode of the magnetostrictive elements 16 and 17 by controlling the output current of the power supply 36.
- the control means 38 is connected to the detection coil 26, and can detect the relative position between the casing 12 and the slider 14 based on the impedance of the detection coil 26.
- the control means 38 controls the output current of the power supply 36, and when the power supply 36 supplies a current having a rectangular waveform as shown in FIG. Generates a magnetic field.
- the magnetostrictive element 16 elongates and the front end 16 B collides with the impact plate 24 B, and the casing An impact is applied. Due to this impact, the casing 12 swings forward, and the slider 14 also swings forward due to the frictional force with the casing 12.
- the slider 14 slides forward against the frictional force with the casing 12 due to inertia, and remains at the front of the original position. I do.
- the above operation is repeated by intermittently supplying a current having a rectangular waveform as described above to the magnetic field generating coil 32, and the slider 14 is sent forward.
- the slider 14 is sent backward.
- the volume occupied by the slider 14 in the space inside the detection coil 26 changes. That is, the volume of the magnetic material occupying the space inside the detection coil 26 changes, and as a result, the impedance of the detection coil 26 changes.
- the control means 38 By detecting this impedance by the control means 38, the position of the slider 14 with respect to the casing 12 can be detected.
- magnetostrictive elements 16 and 17 are giant magnetostrictive elements that generate a large strain when a magnetic field is applied, a correspondingly large impact can be applied to the casing 12, and the linear actuator 10 is driven. Power is great.
- the magnetostrictive elements 16 and 17 are giant magnetostrictive elements, the response speed at which distortion occurs with respect to the input current is fast, and the linear actuator 10 can send the slider 14 in the front-rear direction at high speed. it can.
- the linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal, even if the temperature changes due to heat generation of the magnetic field generating coils 32 and 34, etc.
- the change in the gap between the free ends of the magnetostrictive elements 16 and 17 and the casing 12 is limited to a small range, and the impact can be reliably applied to the casing 12.
- fluorine resin is coated on the sliding surface of the cylindrical part 24 of the casing 12. Since the friction coefficient between the casing 12 and the slider 14 is adjusted, the slider 14 can be reliably driven by vibrating the case 12. '
- control means 38 detects the position of the slider 14 based on the impedance of the detection coil 26, and energizes the magnetic field generating coils 32, 34 as appropriate.
- the relative position of 14 can be controlled with high accuracy.
- the slider 14 and the magnetostrictive elements 16 and 17 are accommodated in the cylindrical portion 24, and the detection coil 26, the first magnetic field generating coil 32 and the second magnetic field are generated around the cylindrical portion 24. Since the coil 34 is provided, the linear actuator 10 has a simple structure and is compact.
- FIG. 3 is a side sectional view schematically showing the structure of the linear actuator 40 according to the second embodiment.
- the linear actuator 40 is attached to the casing 46 so that the magnetostrictive elements 42 and 44 can expand and contract in the front-rear direction with respect to the linear actuator 10, and the magnetostrictive elements 42 and 4 It is characterized in that the casing 46 is vibrated in the front-rear direction by the reaction of inertia force due to the expansion and contraction of 4.
- the other configuration is the same as that of the reactor 10, so that the same reference numerals as in FIG.
- Each of the magnetostrictive elements 42 and 44 is a round bar like the magnetostrictive elements 16 and 17 and is made of a giant magnetostrictive element containing a lanthanide and an iron element.
- the magnetostrictive elements 42 and 44 are housed in series in a cylindrical housing member 50 arranged in the front-back direction.
- the housing member 50 is attached to the casing 46 at its front end in a cantilever manner, and a partition plate 5OA is provided inside near the center in the longitudinal direction.
- the rear end of the housing member 50 is closed by a rear wall 50B.
- the housing member 50 is flexible and can be expanded and contracted.
- Magnetic The distortion element 42 is cantileverly attached to the rear wall 62 of the casing 46 at the front end 42A, and the rear end 42B is connected to the partition plate 5OA.
- the magnetostrictive element 44 is supported by a partition plate 50A at a front end 44A, and a rear end 44B is connected to a rear wall 50B of the housing member 50. That is, the magnetostrictive element 44 is attached to the casing 46 substantially in a cantilever state via the partition plate 50A and the magnetostrictive element 42.
- a magnetic field generating coil 54 for applying a magnetic field to the magnetostrictive element 42 is provided around the magnetostrictive element 42, and a magnetic field for applying a magnetic field to the magnetostrictive element 44 is provided around the magnetostrictive element 44. All of the generating coils 56 are arranged so as to surround the housing member 50.
- a power supply 36 is connected to the magnetic field generating coils 54 and 56, and a control means 38 for controlling the vibration mode of the magnetostrictive elements 42 and 44 is connected to the power supply 36.
- the control means 38 controls the power supply 36 to supply a current having a triangular waveform whose increasing speed is faster than the decreasing speed to the magnetic field generating coil 54 to the magnetic field generating coil 54 as shown in FIG.
- the power supply 36 is controlled so that the generator coil 56 has a triangular waveform shown in FIG. 4 and a symmetrical triangular waveform as shown in FIG.
- the casing 46 has a bottom plate 58, a front wall 60, a rear wall 62, and a tubular portion 64.
- the cylindrical portion 64 is supported between the front wall 60 and the rear wall 62, and has a front end opened outside the front wall 60 and a rear end closed by the rear wall 62. Further, the sliding surface 64 A inside the cylindrical portion 64 is coated with a fluorine resin, and the frictional force with the slider 14 is adjusted. Note that no partition wall is provided inside the cylindrical portion 64.
- the power supply 36 supplies a triangular waveform current as shown in FIG. 4 to the magnetic field generating coil 54, a magnetic field is generated temporarily near the magnetostrictive element 42, and The material 50 rapidly expands in the backward direction together with the magnetostrictive element 42, and then gradually contracts. At this time, the magnetostrictive element 44 also moves back and forth in the front-back direction, but does not expand or contract. Due to the reaction of the inertial force of the magnetostrictive elements 42, 44 and the housing member 50, the casing 46 is vibrated after a vibration state in which the forward acceleration is larger than the backward acceleration. When the casing 46 is urged forward, the acceleration is large, and the slider 14 slides rearward relative to the casing 12.
- the slider 14 when the casing 46 is urged rearward, the acceleration is small, so that the slider 14 gently finely moves rearward integrally with the casing 12 and does not slide with respect to the casing 12. That is, the slider 14 moves backward from the original position.
- the power supply 36 intermittently supplies a current having a triangular waveform symmetrical to that of FIG. 4 to the magnetic field generating coil 56, so that the slider 14 is sent forward.
- the magnetostrictive element 42 and the magnetostrictive element 44 are giant magnetostrictive elements, the amplitude of expansion and contraction is large and the reaction of the inertial force is correspondingly large. Therefore, the casing 46 can be vibrated strongly, and the linear actuator 40 has a large driving force. In addition, since the amplitude is large, the feed amount by one vibration is correspondingly large, and the slider 14 can be moved in the front-rear direction at a high speed.
- two magnetostrictive elements 42 and 44 are arranged in series, and the magnetostrictive element 42 applies the casing 46 in a vibration mode in which the acceleration in the forward direction is larger than the acceleration in the backward direction.
- a symmetrical triangular waveform current is input to the magnetic field generating coils 54 and 56 so that the magnetostrictive element 44 vibrates the casing 46 in a vibration mode in which the rearward acceleration is greater than the forward acceleration.
- the present invention is not limited to this, and a magnetostrictive element such as a linear actuator 50 according to a third embodiment of the present invention as shown in FIG.
- One magnetostrictive element 42 may vibrate the casing 46 in two vibration modes, a vibration mode and a vibration mode in which the rearward acceleration is larger than the forward acceleration. By doing so, the compactness of the relay actuator can be further increased.
- the two magnetostrictive elements bias the casing in the front-rear direction by virtue of the reaction of the inertial force to vibrate the casing, and in the first embodiment, the two magnetostrictive elements move in the forward
- the casing is vibrated by selectively applying the shock of the rearward direction and the shock of the rearward direction
- a configuration in which these are combined may be employed.
- the casing is applied by the reaction of the inertial force so that the acceleration in the forward direction becomes larger than the acceleration in the backward direction.
- One magnetostrictive element for vibrating and one magnetostrictive element for applying a rearward impact to the casing may be provided.
- one magnetostrictive element for vibrating the casing by the reaction of the inertial force so that the rearward acceleration becomes larger than the forward acceleration and one magnetostrictive element for applying a forward impact to the casing. It may be provided. Further, in the first to fourth embodiments, the magnetostrictive element and the slider are disposed apart from each other in the axial direction. However, the present invention is not limited to this. Like the reactor 7 according to the fifth embodiment, a void 74 is formed in the slider 72 to form a hollow structure, and the giant magnetostrictive element 42 and the magnetic field generating coil are provided in the void 74. May accommodate 4 4. By doing so, it is possible to achieve a significant compaction in the axial direction. The structure of the linear actuator 70 will be briefly described.
- the gap 74 is provided on the rear end side of the slider 72, and the slider 72 is formed on the inner peripheral surface of the gap 74.
- the outer peripheral surface of the housing member 76 is slidably fitted in the axial direction.
- the housing member 76 has a structure in which the front end and the rear end of the cylindrical side wall 76 A are closed by the front wall 76 B and the rear wall 76 C, and is fixed to the casing 78 at the rear wall 76 C. Have been.
- the magnetostrictive element 42 and the magnetic field generating coil 54 are housed in a housing member 76, and the magnetostrictive element 42 is cantilevered on a rear wall 76C of the housing member 76 at a rear end 42B. ing. Note that a gap is formed between the front end 42 A of the magnetostrictive element 42 and the front wall 76 B of the housing member 76.
- the linear actuators 40, 50 are formed.
- a rear actuator that vibrates the casing 78 by the reaction of the inertial force of the magnetostrictive element 42 can be configured.
- the casing 78 is vibrated by impact similarly to the linear actuator according to the first embodiment. Can be configured.
- the reactor 70 has only one magnetostrictive element. However, as in the first, second, and fourth embodiments, the reactor has two magnetostrictive elements. Of course, it is also possible to accommodate in the slider 72. Also, when only one of the two magnetostrictive elements is housed in the slider 27, compactness in the axial direction can be achieved.
- the slider is made of a magnetic material, and the detection coil directly detects the position of the slider.
- the present invention is not limited to this.
- a magnetic object may be attached to a non-magnetic slider, and the position of the slider may be indirectly detected via the object.
- a position detection sensor having another configuration may be provided. Also in this case, by appropriately applying a magnetic field to the two magnetostrictive elements, the slider can be slid with high driving force and at high speed to achieve high precision. Can be positioned.
- the sliding surface of the casing is coated with fluororesin.
- the present invention is not limited to this. May be coated.
- the sliding surfaces of both the casing and the slider may be coated with a fluororesin.
- a coating of another material may be formed on at least one of the sliding surfaces of the casing and the slider.
- the coating may not be formed on the sliding surfaces of both the casing and the slider.
- the magnetostrictive element is a giant magnetostrictive element containing a lanthanide and an iron group element.
- the present invention is not limited to this.
- the material is not particularly limited as long as it has an effect.
- the linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal.
- the present invention is not limited to this. Even when the temperature change around the element is small, or even when the temperature change around the magnetostrictive element is large, if the deformation of the magnetostrictive element and the casing is sufficiently small, the linear expansion coefficient of the magnetostrictive elements 16 and 17 is not necessarily required. It is not necessary to make the linear expansion coefficient of the casing 12 substantially equal to that of the casing 12. Industrial potential
- the slider can be moved at a high speed, high-precision positioning is possible, and the driving force is large.
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
A compact linear actuator exhibiting a high driving force in which feeding speed of a slider is high and highly accurate positioning is ensured. The linear actuator (10) comprises a casing (12), a slider (14) supported slidably on the casing (12), magnetostrictive elements (16, 17) for shaking the casing (12), and magnetic field generating coils (32, 34) for imparting a magnetic field to the magnetostrictive elements (16, 17), wherein the slider (14) is slid back and forth by supplying a current to the magnetic field generating coils (32, 34) intermittently thereby shaking the casing (12).
Description
明細書 Specification
リユアァクチユエータ Reactivator
技術分野 Technical field
本発明は、 A V ( A u d i o V i s u a l ) 機器、 家電製品等の分 野で用いられるリニアァクチユエータに関する。 背景技術 The present invention relates to a linear actuator used in the field of AV (Audio Video) equipment and home electric appliances. Background art
従来、 例えばレンズのフォーカスの調整等のために様々な分野でリェ ァァクチユエータが用いられている。 例えば、 デジタルカメラ、 口ボッ ト等では、 撮像用のレンズのフォーカスを調整するのためにリニアァク チユエータが用いられることがある。 又、 光記録装置、 光磁気記録装置 等では、 レーザー光線照射用のレンズのフォーカスを調整するためにリ ニァァクチユエータが用いられることがある。 2. Description of the Related Art Reactuators have been used in various fields, for example, for adjusting the focus of a lens. For example, in a digital camera, a mouth bot, and the like, a linear actuator may be used to adjust the focus of an imaging lens. Also, in optical recording devices, magneto-optical recording devices, and the like, a linear actuator may be used to adjust the focus of a laser beam irradiation lens.
このようなリエァァクチユエータとして、 油圧 (又は空気圧) シリ ン ダ、 回転モータを用いるもの、 圧電素子の振動を利用したリエアモータ 等が知られている。 尚、 圧電素子の振動を利用したリニアモータには、 圧電素子をバイモルフ型に構成してィンパク トが発生するようにしたィ ンパク ト駆動型 (例えば、 特開 2 0 0 1— 8 6 7 7 8号公報参照。 ) と、 進行波が発生するようにした超音波モータ (ί列えば、 特開 2 0 0 2—1 9 9 7 5 3号公報参照。 ) がある。 As such a reactor, a device using a hydraulic (or pneumatic) cylinder and a rotary motor, a device using a vibration of a piezoelectric element, and the like are known. Incidentally, in a linear motor using the vibration of a piezoelectric element, an impact drive type in which the piezoelectric element is configured in a bimorph type so as to generate an impact (for example, see Japanese Patent Application Laid-Open No. 2001-86867). No. 8) and an ultrasonic motor which generates a traveling wave (for example, see Japanese Patent Application Laid-Open No. 2002-199753).
しかしながら、 油圧 (又は空気圧) シリンダは伸縮速度が遅く、 更に、 高精度な位置決めが困難であるという問題がある。 However, hydraulic (or pneumatic) cylinders have the problem that the expansion and contraction speed is slow, and that high-precision positioning is difficult.
又、 回転モータを用いたリニアァクチユエータは、 回転運動を直線運 動に変換するための機構が必要となるため構造が複雑となり、 コンパク ト化が困難であるという問題がある。 更に、 モータの回転角はステータ のピッチ単位で制御することになるため、 高精度な位置決めが困難であ るという問題がある。
又、 圧電素子を利用したインパク ト駆動型のリニアモータは駆動力が 弱く、 充分な駆動力が得られないことがある。 一方、 圧電素子を利用し た超音波モータは発熱量が多いた 連続して長時間使用することが困難 であるという問題がある。 更に、 超音波モータは印加電圧が高いために トランス等の昇圧回路が必要となることが多く、 構造が複雑になり、 コ ンパク ト化が困難であるという問題がある。 発明の開示 Also, the linear actuator using a rotary motor has a problem that a structure for converting a rotary motion into a linear motion is required, so that the structure is complicated and it is difficult to make the linear compact. Further, since the rotation angle of the motor is controlled in units of the pitch of the stator, there is a problem in that high-precision positioning is difficult. In addition, an impact-driven linear motor using a piezoelectric element has a weak driving force, and may not be able to obtain a sufficient driving force. On the other hand, an ultrasonic motor using a piezoelectric element has a problem in that it generates a large amount of heat and is difficult to use continuously for a long time. Further, ultrasonic motors often require a booster circuit such as a transformer due to a high applied voltage, and have a problem in that the structure is complicated and compactness is difficult. Disclosure of the invention
本発明は、 以上の問題点に鑑みてなされたものであって、 スライダの 送り速度が速く、 高精度な位置決めが可能であり、 駆動力が大きいコン パク トなリニァァクチユエータを提供することをその課題とする。 The present invention has been made in view of the above problems, and provides a compact linear actuator that has a high slider feed speed, high-precision positioning, and a large driving force. Is the task.
本発明の発明者は、 圧電素子よりも大きな歪が生じる磁歪素子をリ二 ァァクチユエータに用いることで上記課題を解決するに至った。 The inventor of the present invention has solved the above-mentioned problem by using a magnetostrictive element, which generates a larger strain than a piezoelectric element, for a reactor.
即ち、 次のような本発明により、 上記課題の解決を図ったものである。 That is, the present invention as described below solves the above problems.
( 1 ) ケーシングと、 該ケーシングに摺動自在に支持されたスライダ と、 前記ケーシングを加振する.ための磁歪素子と、 該磁歪素子に対して 磁界を付与するための磁界発生コイルと、 を含んでなり、 前記磁界発生 コイルに断続的に通電して前記ケーシングを加振することにより前記ス ライダが前後方向に摺動するようにしたことを特徴とするリニアァクチ ユエータ。 (1) A casing, a slider slidably supported by the casing, a magnetostrictive element for vibrating the casing, and a magnetic field generating coil for applying a magnetic field to the magnetostrictive element. A linear actuator, wherein the slider is slid in the front-rear direction by intermittently energizing the magnetic field generating coil to vibrate the casing.
( 2 ) 前記磁歪素子は、 ランタノイ ド及び鉄属元素を含んでなる超磁 歪素子であることを特徴とする前記 ( 1 ) のリニアァクチユエータ。 (2) The linear actuator according to (1), wherein the magnetostrictive element is a giant magnetostrictive element containing a lanthanoid and an iron element.
( 3 ) 前記スライダ及びケーシングの少なく とも一方の摺動面にフッ 素樹脂がコーティングされたことを特徴とする前記 ( 1 ) 又は (2 ) の Vニァァクチユエータ。 (3) The V-actuator according to (1) or (2), wherein at least one of the sliding surfaces of the slider and the casing is coated with a fluorine resin.
( 4 ) 前記磁歪素子が前記ケーシング内に 2個備えられ、 且つ、 一方 の磁歪素子は後端において前記ケーシングに取付けられて前記前後方向
に伸縮することにより前端が前記ケーシングに当接 ·離間するように配 設され、 他方の磁歪素子は前端において前記ケーシング内に取付けられ て前記前後方向に伸縮することにより後端が前記ケーシングに当接 ·離 間するように配設されてなり、 前記ケーシングに前方向の衝撃及び後方 向の衝撃を選択的に付与可能としたことを特徴とする前記 ( 1 ) 乃至 (3) のいずれかのリニアァクチユエータ。 (4) The two magnetostrictive elements are provided in the casing, and one of the magnetostrictive elements is attached to the casing at a rear end and extends in the front-rear direction. The other end of the magnetostrictive element is mounted in the casing at the front end and expands and contracts in the front-rear direction so that the rear end contacts the casing. Any one of the above (1) to (3), wherein the casing is disposed so as to be in contact with and separated from the casing, and a forward impact and a rearward impact can be selectively applied to the casing. Linear Actuator.
(5) 前記磁歪素子の線膨張係数と前記ケーシングの線膨張係数とを 略等しく したことを特徴とする前記 (4) のリニアァクチユエータ。 (5) The linear actuator according to (4), wherein the linear expansion coefficient of the magnetostrictive element and the linear expansion coefficient of the casing are substantially equal.
(6) 前記磁歪素子は前記前後方向に伸縮自在であるように前記ケー シングに取付けられ、 該磁歪素子の伸縮による慣性力の反作用で前記ケ 一シングを前記前後方向に加振するようにしたことを特徴とする前記 ( 1) 乃至 ( 3) のいずれかのリニアァクチユエータ。 (6) The magnetostrictive element is attached to the case so as to be extendable and contractible in the front-rear direction, and the casing is vibrated in the front-rear direction by a reaction of inertial force due to expansion and contraction of the magnetostrictive element. The linear actuator according to any one of the above (1) to (3).
(7) 前記磁歪素子は前端及び後端の一方において前記ケーシングに 実質的に片持ち状態で取付けられたことを特徴とする (6) に記載のリ エアァクチユエータ。 (7) The relay actuator according to (6), wherein the magnetostrictive element is attached to the casing at one of a front end and a rear end in a substantially cantilever state.
(8) 電流値が増減し、 且つ、 増加速度と減少速度とが異なる電流を 前記磁界発生コイルに通電するための電源が備えられ、 前方向の加速度 と後方向の加速度とが異なる振動態様で前記磁歪素子が前記ケーシング を加振するようにしたことを特徴とする前記 (6) 又は (7) に記載の リエァァクチユエータ。 (8) A power supply is provided for increasing or decreasing the current value, and supplying a current having a different increasing speed and a decreasing speed to the magnetic field generating coil, and in a vibration mode in which the forward acceleration and the backward acceleration are different. The reactuator according to (6) or (7), wherein the magnetostrictive element vibrates the casing.
( 9 ) 前記磁歪素子及び前記磁界発生コィルが 2組配設されると共に、 前方向の加速度が後方向の加速度よりも大きい振動態様で一方の磁歪素 子が前記ケーシングを加振し、 後方向の加速度が前方向の加速度よりも 大きい振動態様で他方の磁歪素子が前記ケーシングを加振するように 2 個の前記磁歪素子の振動態様を制御するための制御手段が備えられ、 こ の制御手段は、 一方の磁界発生コイルに対して前記増加速度が減少速度 よりも速い電流を通電し、 他方の磁界発生コイルに対して前記減少速度
が増加速度より も速い電流を通電するように前記電源から 2個の前記磁 界発生コイルへの出力電流を制御するようにされたことを特徴とする前 記 (8 ) のリニアァクチユエータ。 (9) Two sets of the magnetostrictive element and the magnetic field generating coil are provided, and one of the magnetostrictive elements vibrates the casing in a vibration mode in which a forward acceleration is larger than a backward acceleration, and Control means for controlling the vibration mode of the two magnetostrictive elements so that the other magnetostrictive element vibrates the casing in a vibration mode in which the acceleration of the two is greater than the acceleration in the forward direction. Means that a current having the increasing speed higher than the decreasing speed is applied to one magnetic field generating coil, and the decreasing speed is applied to the other magnetic field generating coil. Wherein the output current from the power supply to the two magnetic field generating coils is controlled so as to supply a current faster than the increasing speed. .
( 1 0 ) 前記磁歪素子及び磁界発生コイルが 1組配設されると共に、 前方向の加速度が後方向の加速度よりも大きい振動態様及び後方向の加 速度が前方向の加速度よりも大きい振動態様の 2つの振動態様で 1個の 前記磁歪素子が前記ケーシングを選択的に加振するように前記磁歪素子 の振動態様を制御するための制御手段が備えられ、 この制御手段は、 前 記增加速度が減少速度よりも速い電流及び前記減少速度が増加速度より も速い電流を 1個の前記磁界発生コイルに対して選択的に通電するよう に前記電源から 1個の前記磁界発生コイルへの出力電流を制御するよう にされたことを特徴とする前記 (8 ) のリニアァクチユエータ。 (10) A vibration mode in which one set of the magnetostrictive element and the magnetic field generating coil is disposed, and a vibration mode in which the forward acceleration is larger than the rear acceleration and a vibration mode in which the rear acceleration is larger than the front acceleration. Control means for controlling the vibration mode of the magnetostrictive element such that one magnetostrictive element selectively vibrates the casing in the two vibration modes; Output current from the power supply to one of the magnetic field generating coils so that a current faster than the decreasing speed and a current faster than the decreasing speed are selectively applied to one magnetic field generating coil. The linear actuator according to the above (8), wherein the linear actuator is controlled.
( 1 1 ) 前記スライダは磁性体から構成され、 且つ、 該スライダの周 囲に検出コイルが配設され、 該検出コイルのインピーダンスに基づいて 前記ケーシングと前記スライダとの相対位置を検出するようにしたこと を特徴とする ( 1 ) 乃至 ( 1 0 ) のいずれかのリニアァクチユエータ。 図面の簡単な説明 (11) The slider is made of a magnetic material, a detection coil is provided around the slider, and a relative position between the casing and the slider is detected based on an impedance of the detection coil. The linear actuator according to any one of (1) to (10), characterized in that: BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施形態に係るリ -ァァクチユエータの構造を 模式的に示す一部プロック図を含む側断面図である。 FIG. 1 is a side cross-sectional view including a partial block diagram schematically showing the structure of a reactor actuator according to a first embodiment of the present invention.
図 2は、 同リニァァクチユエータの駆動電流の波形を示すグラフであ る。 FIG. 2 is a graph showing a waveform of a drive current of the linear actuator.
図 3は、 本発明の第 2実施形態に係るリユアァクチユエータの構造を 模式的に示す一部プロック図を含む側断面図である。 FIG. 3 is a side cross-sectional view including a partial block diagram schematically showing a structure of a reactor actuator according to a second embodiment of the present invention.
図 4は、 同リニアァクチユエータの駆動電流の波形を示すグラフであ る。 FIG. 4 is a graph showing a waveform of a drive current of the linear actuator.
図 5は、 本発明の第 3実施形態に係るリユアァクチユエータの構造を
模式的に示す一部ブロック図を含む側断面図である。 FIG. 5 shows a structure of a reactor according to a third embodiment of the present invention. It is a side sectional view including a partial block diagram schematically shown.
図 6は、 本発明の第 4実施形態に係るリニァァクチユエータの構造を 模式的に示す一部プロック図を含む側断面図である。 FIG. 6 is a side cross-sectional view including a partial block diagram schematically showing a structure of a linear actuator according to a fourth embodiment of the present invention.
図 7は、 本発明の第 5実施形態に係るリニァァクチユエータの構造を 模式的に示す一部プロック図を含む側断面図である。 発明を実施するための最良の形態 FIG. 7 is a side cross-sectional view including a partial block diagram schematically illustrating a structure of a linear actuator according to a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について図面を参照して詳細に説明する。 図 1は、 本実施形態に係るリニアァクチユエータ 1 0の構造を模式的 に示す側断面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a side sectional view schematically showing the structure of the linear actuator 10 according to the present embodiment.
リエアァクチユエータ 1 0は、 ゲーシンク' 1 2 と、 ケーシング 1 2に 摺動自在に支持されたスライダ 1 4と、 ケーシング 1 2を加振するため の磁歪素子 1 6、 1 7と、 磁歪素子 1 6、 1 7に対して磁界を付与する ための磁界発生コイル 3 2、 3 4とを備え、 磁界発生コイル 3 2、 3 4 に断続的に通電してケーシング 1 2を加振することによりスライダ 1 4 が前後方向に摺動するようにしたことを特徴としている。 他の構成につ いては従来のリニァァクチユエータと同様であるので説明を適宜省略す ることとする。 The relay actuator 10 includes a game sink 12, a slider 14 slidably supported on the casing 12, magnetostrictive elements 16 and 17 for exciting the casing 12, and magnetostriction. A magnetic field generating coil 32, 34 for applying a magnetic field to the elements 16, 17 is provided, and the casing 12 is vibrated by intermittently energizing the magnetic field generating coils 32, 34. Thus, the slider 14 slides in the front-rear direction. The other configuration is the same as that of the conventional linear actuator, and therefore, the description thereof will be omitted as appropriate.
ケーシング 1 2は、 底板 1 8と、 前壁 2 0と、 後壁 2 2と、 筒状部 2 4と、 を有して構成されている。 The casing 12 has a bottom plate 18, a front wall 20, a rear wall 22, and a tubular portion 24.
筒状部 2 4は、 前壁 2 0及び後壁 2 2の間に支持され、 前端は前壁 2 0の外側に開口し、 後端は後壁 2 2で閉塞されている。 又、 筒状部 2 4 の長手方向中央近傍内側には仕切壁 2 4 Aが設けられている。 更に、 仕 切板 2 4 Aと後壁 2 2との間には衝撃板 2 4 Bが設けられている。 The tubular portion 24 is supported between the front wall 20 and the rear wall 22, the front end is opened outside the front wall 20, and the rear end is closed by the rear wall 22. A partition wall 24A is provided inside the cylindrical portion 24 near the center in the longitudinal direction. Further, an impact plate 24 B is provided between the partition plate 24 A and the rear wall 22.
スライダ 1 4は丸棒状体で材質が磁性体とされ、 ケーシング 1 2の筒 状部 2 4の内側に摺動自在に嵌合し、 前壁 2 0の外側に突出している。 尚、 筒状部 2 4の内側の摺動面 2 4 Cには例えばテフロン (登録商標)
等のフッ素樹脂がコーティングされ、 これによりケーシング 1 2とスラ イダ 1 4 との摩擦力が調節されている。 スライダ 1 4の周囲には検出コ ィル 2 6が長手方向に沿って筒状部 2 4を取り巻く ように配設されてい る。 The slider 14 is a round bar-shaped body made of a magnetic material, is slidably fitted inside the cylindrical portion 24 of the casing 12, and protrudes outside the front wall 20. The sliding surface 24 C inside the cylindrical portion 24 is, for example, Teflon (registered trademark). And the like, whereby the frictional force between the casing 12 and the slider 14 is adjusted. A detection coil 26 is provided around the slider 14 so as to surround the cylindrical portion 24 along the longitudinal direction.
磁歪素子 1 6及び 1 7は丸棒状体で、 材質はランタノィ ド及び鉄属元 素を含んでなる超磁歪素子とされている。 尚、 磁歪素子 1 6及ぴ 1 7の 線膨張係数と、 ケーシング 1 2の線膨張係数とは略等しく されている。 磁歪素子 1 6は、 後端 1 6 Aにおいてケーシング 1 2の後壁 2 2に取 付けられて前後方向に伸縮することにより前端 1 6 Bが衝撃板 2 4 Bに 当接 ·離間するように配設されている。 Each of the magnetostrictive elements 16 and 17 is a round bar, and is made of a giant magnetostrictive element containing a lanthanide and an iron element. The linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal. The magnetostrictive element 16 is attached to the rear wall 22 of the casing 12 at the rear end 16A and expands and contracts in the front-rear direction so that the front end 16B comes into contact with and separates from the impact plate 24B. It is arranged.
一方、 磁歪素子 1 7は、 前端 1 7 Aにおいてケーシング 1 2の仕切壁 2 4 Aに取付けられて前後方向に伸縮することにより後端 1 7 Bが衝撃 板 2 4 Bに当接 ·離間するように配設されている。 On the other hand, the magnetostrictive element 17 is attached to the partition wall 24A of the casing 12 at the front end 17A, and expands and contracts in the front-rear direction, so that the rear end 17B comes into contact with and separates from the impact plate 24B. It is arranged as follows.
磁界発生コイル 3 2は、 磁歪素子 1 6の周囲において、 磁界発生コィ ル 3 4は、 磁歪素子 1 7の周囲においていずれも筒状部 2 4を取り巻く ように配設されている。 又、 磁界発生コイル 3 2、 3 4には電源 3 6が 結線されている。 The magnetic field generating coil 32 is arranged so as to surround the magnetostrictive element 16, and the magnetic field generating coil 34 is arranged so as to surround the cylindrical part 24 around the magnetostrictive element 17. A power source 36 is connected to the magnetic field generating coils 32 and 34.
電源 3 6には電源 3 6の出力電流を制御することにより磁歪素子 1 6、 1 7の振動態様を制御するための制御手段 3 8が結線されている。 又、 制御手段 3 8は検出コイル 2 6に結線され、 検出コイル 2 6のインピー ダンスに基づいてケーシング 1 2とスライダ 1 4との相対位置を検出可 能とされている。 The power supply 36 is connected with control means 38 for controlling the oscillation mode of the magnetostrictive elements 16 and 17 by controlling the output current of the power supply 36. The control means 38 is connected to the detection coil 26, and can detect the relative position between the casing 12 and the slider 14 based on the impedance of the detection coil 26.
次に、 リニアァクチユエータ 1 0の作用について説明する。 Next, the operation of the linear actuator 10 will be described.
制御手段 3 8が電源 3 6の出力電流を制御し、 電源 3 6が図 2に示さ れるような矩形波形の電流を磁界発生コイル 3 2に通電すると、 磁歪素 子 1 6の近傍に一時的に磁界が発生する。 これにより磁歪素子 1 6が伸 長して前端 1 6 Bが衝撃板 2 4 Bに衝突し、 ケーシング 1 2に前方向の
衝撃が付与される。 この衝撃でケーシング 1 2は前方向に振れ、 スライ ダ 1 4もケーシング 1 2との摩擦力により前方向に振れる。 一方、 衝突 後、 ケーシング 1 2が後方向に戻る際、 スライダ 1 4は慣性力によりケ 一シング 1 2との摩擦力に抗して前方向に摺動し、 元の位置よりも前側 に残留する。 上記のような矩形波形の電流を磁界発生コイル 3 2に断続 的に通電することにより、 以上の動作が繰返されてスライダ 1 4は前方 向に送られる。 The control means 38 controls the output current of the power supply 36, and when the power supply 36 supplies a current having a rectangular waveform as shown in FIG. Generates a magnetic field. As a result, the magnetostrictive element 16 elongates and the front end 16 B collides with the impact plate 24 B, and the casing An impact is applied. Due to this impact, the casing 12 swings forward, and the slider 14 also swings forward due to the frictional force with the casing 12. On the other hand, when the casing 12 returns to the rear after the collision, the slider 14 slides forward against the frictional force with the casing 12 due to inertia, and remains at the front of the original position. I do. The above operation is repeated by intermittently supplying a current having a rectangular waveform as described above to the magnetic field generating coil 32, and the slider 14 is sent forward.
同様に、 電源 3 6が上記のような矩形波形の電流を磁界発生コイル 3 4に断続的に通電することにより、 スライダ 1 4は後方向に送られる。 スライダ 1 4が前後方向に摺動すると、 スライダ 1 4が検出コイル 2 6の内側の空間に占める容積が変化する。 即ち、 検出コイル 2 6の内側 の空間に占める磁性体の容積が変化し、 これにより検出コイル 2 6のィ ンピーダンスが変化する。 このインピーダンスを制御手段 3 8が検出す ることにより、 ケーシング 1 2に対するスライダ 1 4の位置を検出する ことができる。 Similarly, when the power supply 36 intermittently supplies a current having a rectangular waveform as described above to the magnetic field generating coil 34, the slider 14 is sent backward. When the slider 14 slides back and forth, the volume occupied by the slider 14 in the space inside the detection coil 26 changes. That is, the volume of the magnetic material occupying the space inside the detection coil 26 changes, and as a result, the impedance of the detection coil 26 changes. By detecting this impedance by the control means 38, the position of the slider 14 with respect to the casing 12 can be detected.
磁歪素子 1 6、 1 7は磁界が付与されることにより大きな歪が生じる 超磁歪素子であるので、 それだけ大きな衝撃をケーシング 1 2に付与す ることができ、 リニアァクチユエータ 1 0は駆動力が大きい。 Since the magnetostrictive elements 16 and 17 are giant magnetostrictive elements that generate a large strain when a magnetic field is applied, a correspondingly large impact can be applied to the casing 12, and the linear actuator 10 is driven. Power is great.
又、 磁歪素子 1 6、 1 7は超磁歪素子であるので、 入力電流に対して 歪が生じる応答速度が速く、 リニアァクチユエータ 1 0はスライダ 1 4 を高速で前後方向に送ることができる。 Also, since the magnetostrictive elements 16 and 17 are giant magnetostrictive elements, the response speed at which distortion occurs with respect to the input current is fast, and the linear actuator 10 can send the slider 14 in the front-rear direction at high speed. it can.
尚、 磁歪素子 1 6、 1 7の線膨張係数とケーシング 1 2の線膨張係数 とが略等しく されているので、 磁界発生コイル 3 2、 3 4の発熱等によ り温度が変化しても磁歪素子 1 6、 1 7の自由端とケーシング 1 2との 隙間の変化は微小な範囲に制限され、 ケーシング 1 2に対して確実に衝 搫を付与することができる。 Since the linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal, even if the temperature changes due to heat generation of the magnetic field generating coils 32 and 34, etc. The change in the gap between the free ends of the magnetostrictive elements 16 and 17 and the casing 12 is limited to a small range, and the impact can be reliably applied to the casing 12.
又、 ケーシング 1 2の筒状部 2 4の摺動面にフッ素榭脂がコーティン
グされ、 ケーシング 1 2とスライダ 1 4との摩擦係数が調節されている ので、 ケース 1 2を加振することによりスライダ 1 4を確実に駆動する ことができる。 ' Also, fluorine resin is coated on the sliding surface of the cylindrical part 24 of the casing 12. Since the friction coefficient between the casing 12 and the slider 14 is adjusted, the slider 14 can be reliably driven by vibrating the case 12. '
更に、 制御手段 3 8が検出コイル 2 6のィンピーダンスに基づいてス ライダ 1 4の位置を検出しつつ、 磁界発生コイル 3 2、 3 4に適宜通電 することでケ.一シング 1 2に対するスライダ 1 4の相対位置を高精度で 制御することができる。 Further, the control means 38 detects the position of the slider 14 based on the impedance of the detection coil 26, and energizes the magnetic field generating coils 32, 34 as appropriate. The relative position of 14 can be controlled with high accuracy.
又、 筒状部 2 4にスライダ 1 4、 磁歪素子 1 6、 1 7が収容され、 筒 状部 2 4の周囲に検出コイル 2 6、 第 1の磁界発生コイル 3 2、 第 2の 磁界発生コイル 3 4が配設されているのでリニァァクチユエータ 1 0は 構造が簡単でコンパク トである。 Further, the slider 14 and the magnetostrictive elements 16 and 17 are accommodated in the cylindrical portion 24, and the detection coil 26, the first magnetic field generating coil 32 and the second magnetic field are generated around the cylindrical portion 24. Since the coil 34 is provided, the linear actuator 10 has a simple structure and is compact.
次に、 本発明の第 2実施形態について説明する。 Next, a second embodiment of the present invention will be described.
図 3は、 本第 2実施形態に係るリニアァクチユエータ 4 0の構造を模 式的に示す側断面図である。 FIG. 3 is a side sectional view schematically showing the structure of the linear actuator 40 according to the second embodiment.
リニアァクチユエータ 4 0は、 前記リニアァクチユエータ 1 0に対し、 磁歪素子 4 2及び 4 4が前後方向に伸縮自在であるようにケーシング 4 6に取付けられ、 磁歪素子 4 2、 4 4の伸縮による慣性力の反作用でケ 一シング 4 6を前後方向に加振するようにしたことを特徴と している。 他の構成については、 前記リユアァクチユエータ 1 0と同様であるの で図 1 と同一符号を付することとして説明を適宜省略する。 The linear actuator 40 is attached to the casing 46 so that the magnetostrictive elements 42 and 44 can expand and contract in the front-rear direction with respect to the linear actuator 10, and the magnetostrictive elements 42 and 4 It is characterized in that the casing 46 is vibrated in the front-rear direction by the reaction of inertia force due to the expansion and contraction of 4. The other configuration is the same as that of the reactor 10, so that the same reference numerals as in FIG.
磁歪素子 4 2及び 4 4は、 前記磁歪素子 1 6及び 1 7 と同様に丸棒状 体で、 材質はランタノィ ド及び鉄属元素を含んでなる超磁歪素子である。 磁歪素子 4 2及び 4 4は、 前後方向に配置された筒状の収容部材 5 0 内に直列に収容されている。 収容部材 5 0は、 前端においてケーシング 4 6に片持ち状態で取付けられ、 長手方向中央近傍の内側には仕切板 5 O Aが設けられている。 又、 収容部材 5 0の後端は後壁 5 0 Bで閉塞さ れている。 尚、 収容部材 5 0は可撓性を有し伸縮自在とされている。 磁
歪素子 4 2は前端 4 2 Aにおいてケーシング 4 6の後壁 6 2に片持ち状 態で取付けられ、 後端 4 2 Bが仕切板 5 O Aに連結されている。 一方、 磁歪素子 4 4は、 前端 4 4 Aにおいて仕切板 5 0 Aに支持され、 後端 4 4 Bが収容部材 5 0の後壁 5 0 Bに連結されている。 即ち、 磁歪素子 4 4は、 仕切板 5 0 A及び磁歪素子 4 2を介してケーシング 4 6に実質的 に片持ち状態で取付けられている。 Each of the magnetostrictive elements 42 and 44 is a round bar like the magnetostrictive elements 16 and 17 and is made of a giant magnetostrictive element containing a lanthanide and an iron element. The magnetostrictive elements 42 and 44 are housed in series in a cylindrical housing member 50 arranged in the front-back direction. The housing member 50 is attached to the casing 46 at its front end in a cantilever manner, and a partition plate 5OA is provided inside near the center in the longitudinal direction. The rear end of the housing member 50 is closed by a rear wall 50B. The housing member 50 is flexible and can be expanded and contracted. Magnetic The distortion element 42 is cantileverly attached to the rear wall 62 of the casing 46 at the front end 42A, and the rear end 42B is connected to the partition plate 5OA. On the other hand, the magnetostrictive element 44 is supported by a partition plate 50A at a front end 44A, and a rear end 44B is connected to a rear wall 50B of the housing member 50. That is, the magnetostrictive element 44 is attached to the casing 46 substantially in a cantilever state via the partition plate 50A and the magnetostrictive element 42.
又、 磁歪素子 4 2の周囲には磁歪素子 4 2に磁界を付与するための磁 界発生コイル 5 4が、 磁歪素子 4 4の周囲には磁歪素子 4 4に磁界を付 与するための磁界発生コイル 5 6がいずれも収容部材 5 0を取り巻くよ うに配設されている。 A magnetic field generating coil 54 for applying a magnetic field to the magnetostrictive element 42 is provided around the magnetostrictive element 42, and a magnetic field for applying a magnetic field to the magnetostrictive element 44 is provided around the magnetostrictive element 44. All of the generating coils 56 are arranged so as to surround the housing member 50.
磁界発生コィル 5 4、 5 6には電源 3 6が結線され、 電源 3 6には磁 歪素子 4 2、 4 4の振動態様を制御するための制御手段 3 8が結線され ている。 制御手段 3 8は、 電源 3 6が磁界発生コイル 5 4に対して図 4 に示されるような、 増加速度が減少速度よりも速い三角波形の電流を磁 界発生コイル 5 4に通電し、 磁界発生コイル 5 6に対して図 4に示され る三角波形と左右対称の三角波形で、 減少速度が増加速度よりも速い電 流を通電するように電源 3 6を制御している。 A power supply 36 is connected to the magnetic field generating coils 54 and 56, and a control means 38 for controlling the vibration mode of the magnetostrictive elements 42 and 44 is connected to the power supply 36. The control means 38 controls the power supply 36 to supply a current having a triangular waveform whose increasing speed is faster than the decreasing speed to the magnetic field generating coil 54 to the magnetic field generating coil 54 as shown in FIG. The power supply 36 is controlled so that the generator coil 56 has a triangular waveform shown in FIG. 4 and a symmetrical triangular waveform as shown in FIG.
ケーシング 4 6は、 底板 5 8と、 前壁 6 0と、 後壁 6 2と、 筒状部 6 4と、 を有している。 The casing 46 has a bottom plate 58, a front wall 60, a rear wall 62, and a tubular portion 64.
筒状部 6 4は、 前壁 6 0と、 後壁 6 2 との間に支持され、 前端が前壁 6 0の外側に開口し、 後端は後壁 6 2で閉塞されている。 又、 筒状部 6 4の内側の摺動面 6 4 Aにはフッ素樹脂がコーティングされ、 スライダ 1 4との摩擦力が調節されている。 尚、 筒状部 6 4の内側に仕切壁は設 けられていない。 The cylindrical portion 64 is supported between the front wall 60 and the rear wall 62, and has a front end opened outside the front wall 60 and a rear end closed by the rear wall 62. Further, the sliding surface 64 A inside the cylindrical portion 64 is coated with a fluorine resin, and the frictional force with the slider 14 is adjusted. Note that no partition wall is provided inside the cylindrical portion 64.
次に、 リニアァクチユエータ 4 0の作用について説明する。 Next, the operation of the linear actuator 40 will be described.
電源 3 6が図 4に示されるような三角波形の電流を磁界発生コイル 5 4に通電すると、 磁歪素子 4 2の近傍に一時的に磁界が発生し、 収容部
材 5 0は磁歪素子 4 2と共に後方向に急速に伸長してから緩やかに収縮 する。 尚、 この際、 磁歪素子 4 4も前後方向に進退動するが伸縮はしな い。 磁歪素子 4 2、 4 4及び収容部材 5 0の慣性力の反作用により、 ケ 一シング 4 6は前方向の加速度が後方向の加速度よりも大きい振動態後 で加振される。 ケーシング 4 6が前方向に付勢されるときは加速度が大 きいので、 スライダ 1 4はケーシング 1 2に対して相対的に後方向に摺 動する。 一方、 ケーシング 4 6が後方向に付勢されるときは加速度が小 さいので、 スライダ 1 4はケーシング 1 2と一体で後方向に緩やかに微 動し、 ケーシング 1 2に対して摺動しない。 即ち、 スライダ 1 4は元の 位置より も後方向に移動する。 このように三角波形の電流を磁界発生コ ィル 5 4に断続的に通電して以上の動作を繰返すことにより、 スライダ 1 4は後方向に送られる。 - 同様に、 電源 3 6が図 4 と左右対称の三角波形の電流を磁界発生コィ ル 5 6に断続的に通電することにより、 スライダ 1 4は前方向に送られ る。 When the power supply 36 supplies a triangular waveform current as shown in FIG. 4 to the magnetic field generating coil 54, a magnetic field is generated temporarily near the magnetostrictive element 42, and The material 50 rapidly expands in the backward direction together with the magnetostrictive element 42, and then gradually contracts. At this time, the magnetostrictive element 44 also moves back and forth in the front-back direction, but does not expand or contract. Due to the reaction of the inertial force of the magnetostrictive elements 42, 44 and the housing member 50, the casing 46 is vibrated after a vibration state in which the forward acceleration is larger than the backward acceleration. When the casing 46 is urged forward, the acceleration is large, and the slider 14 slides rearward relative to the casing 12. On the other hand, when the casing 46 is urged rearward, the acceleration is small, so that the slider 14 gently finely moves rearward integrally with the casing 12 and does not slide with respect to the casing 12. That is, the slider 14 moves backward from the original position. By repeating the above operation by intermittently supplying a triangular waveform current to the magnetic field generating coil 54, the slider 14 is sent backward. Similarly, the power supply 36 intermittently supplies a current having a triangular waveform symmetrical to that of FIG. 4 to the magnetic field generating coil 56, so that the slider 14 is sent forward.
磁歪素子 4 2、 磁歪素子 4 4が超磁歪素子であるので、 伸縮の振幅が 大きく、 慣性力の反作用もそれだけ大きい。 従って、 ケーシング 4 6を 強く加振することができ、 リニアァクチユエータ 4 0は駆動力が大きい。 又、 振幅が大きいので 1回の振動による送り量もそれだけ大きくなり、 スライダ 1 4を高速で前後方向に送ることができる。 Since the magnetostrictive element 42 and the magnetostrictive element 44 are giant magnetostrictive elements, the amplitude of expansion and contraction is large and the reaction of the inertial force is correspondingly large. Therefore, the casing 46 can be vibrated strongly, and the linear actuator 40 has a large driving force. In addition, since the amplitude is large, the feed amount by one vibration is correspondingly large, and the slider 14 can be moved in the front-rear direction at a high speed.
尚、 本第 2実施形態において、 磁歪素子 4 2及び 4 4が 2個直列に配 設され、 磁歪素子 4 2が前方向の加速度が後方向の加速度よりも大きい 振動態様でケーシング 4 6を加振し、 磁歪素子 4 4が後方向の加速度が 前方向の加速度よりも大きい振動態様でケーシング 4 6を加振するよう に磁界発生コイル 5 4、 5 6に対称的な三角波形の電流を入力している 、 本発明はこれに限定されるものではなく、 図 5に示されるような本 発明の第 3実施形態に係るリニアァクチユエータ 5 0のよ うに磁歪素子
及び磁界発生コイルを 1組だけ配設し、 1個の磁界発生コイル 5 4に対 称的な三角波形の電流を選択的に通電することにより、 前方向の加速度 が後方向の加速度よりも大きい振動態様及び後方向の加速度が前方向の 加速度よりも大きい振動態様の 2つの振動態様で 1個の磁歪素子 4 2が ケーシング 4 6を加振するようにしてもよい。 このようにすることで、 リエアァクチユエータの一層のコンパク ト化を図ることができる。 In the second embodiment, two magnetostrictive elements 42 and 44 are arranged in series, and the magnetostrictive element 42 applies the casing 46 in a vibration mode in which the acceleration in the forward direction is larger than the acceleration in the backward direction. A symmetrical triangular waveform current is input to the magnetic field generating coils 54 and 56 so that the magnetostrictive element 44 vibrates the casing 46 in a vibration mode in which the rearward acceleration is greater than the forward acceleration. However, the present invention is not limited to this, and a magnetostrictive element such as a linear actuator 50 according to a third embodiment of the present invention as shown in FIG. And one set of magnetic field generating coils, and selectively apply a symmetrical triangular waveform current to one magnetic field generating coil 54, so that the forward acceleration is greater than the backward acceleration. One magnetostrictive element 42 may vibrate the casing 46 in two vibration modes, a vibration mode and a vibration mode in which the rearward acceleration is larger than the forward acceleration. By doing so, the compactness of the relay actuator can be further increased.
又、 本第 2実施形態では 2個の磁歪素子が慣性力の反作用によりケー シングを前後方向に付勢して加振し、 前記第 1実施形態では 2個の磁歪 素子がケーシング対して前方向の衝撃及び後方向の衝撃を選択的に付与 することによりケーシングを加振しているが、 これらを組合わせた構成 としてもよい。 例えば、 図 6に示される本発明の第 4実施形態に係るリ ニァァクチユエータ 5 0のように前方向の加速度が後方向の加速度より も大きくなるように慣性力の反作用でケーシングを加振するための磁歪 素子と、 後方向の衝撃をケーシングに付与する磁歪素子とを 1個ずつ配 設してもよい。 又、 後方向の加速度が前方向の加速度よりも大きくなる ように慣性力の反作用でケーシングを加振するための磁歪素子と、 前方 向の衝搫をケーシングに付与する磁歪素子とを 1個ずっ配設してもよい。 又、 前記第 1〜第 4実施形態において磁歪素子とスライダとが軸方向 に離間して配設されているが、 本発明はこれに限定されるものではなく、 図 7に示される本発明の第 5実施形態に係るリエァァクチユエータ 7 0 のように、 スライダ 7 2に空隙部 7 4を形成して中空構造と し、 空隙部 7 4内に超磁歪素子 4 2及び磁界発生コイル 5 4を収容してもよい。 こ のようにすることで軸方向の大幅なコンパク ト化を図ることができる。 尚、 リニアァクチユエータ 7 0の構造について簡単に説明すると、 空 隙部 7 4はスライダ 7 2の後端側に設けられており、 スライダ 7 2は空 隙部 7 4の内周面において収容部材 7 6の外周面に軸方向摺動自在に嵌 合している。
収容部材 7 6は、 円筒状の側壁 7 6 Aの前端及び後端が前壁 7 6 B及 び後壁 7 6 Cで閉塞された構造とされ、 後壁 7 6 Cにおいてケーシング 7 8に固定されている。 In the second embodiment, the two magnetostrictive elements bias the casing in the front-rear direction by virtue of the reaction of the inertial force to vibrate the casing, and in the first embodiment, the two magnetostrictive elements move in the forward Although the casing is vibrated by selectively applying the shock of the rearward direction and the shock of the rearward direction, a configuration in which these are combined may be employed. For example, as in the linear actuator 50 according to the fourth embodiment of the present invention shown in FIG. 6, the casing is applied by the reaction of the inertial force so that the acceleration in the forward direction becomes larger than the acceleration in the backward direction. One magnetostrictive element for vibrating and one magnetostrictive element for applying a rearward impact to the casing may be provided. Also, one magnetostrictive element for vibrating the casing by the reaction of the inertial force so that the rearward acceleration becomes larger than the forward acceleration, and one magnetostrictive element for applying a forward impact to the casing. It may be provided. Further, in the first to fourth embodiments, the magnetostrictive element and the slider are disposed apart from each other in the axial direction. However, the present invention is not limited to this. Like the reactor 7 according to the fifth embodiment, a void 74 is formed in the slider 72 to form a hollow structure, and the giant magnetostrictive element 42 and the magnetic field generating coil are provided in the void 74. May accommodate 4 4. By doing so, it is possible to achieve a significant compaction in the axial direction. The structure of the linear actuator 70 will be briefly described. The gap 74 is provided on the rear end side of the slider 72, and the slider 72 is formed on the inner peripheral surface of the gap 74. The outer peripheral surface of the housing member 76 is slidably fitted in the axial direction. The housing member 76 has a structure in which the front end and the rear end of the cylindrical side wall 76 A are closed by the front wall 76 B and the rear wall 76 C, and is fixed to the casing 78 at the rear wall 76 C. Have been.
磁歪素子 4 2及び磁界発生コイル 5 4は収容部材 7 6内に収容されて おり、 磁歪素子 4 2は後端 4 2 Bにおいて収容部材 7 6の後壁 7 6 Cに 片持ち状態で支持されている。 尚、 磁歪素子 4 2の前端 4 2 Aと収容部 材 7 6の前壁 7 6 Bとの間には隙間が形成されている。 The magnetostrictive element 42 and the magnetic field generating coil 54 are housed in a housing member 76, and the magnetostrictive element 42 is cantilevered on a rear wall 76C of the housing member 76 at a rear end 42B. ing. Note that a gap is formed between the front end 42 A of the magnetostrictive element 42 and the front wall 76 B of the housing member 76.
磁歪素子 4 2が伸長しても前端 4 2 Aと前壁 7 6 Bとが当接しないよ うに隙間を形成すれば前記第 2実施形態、 第 3実施形態に係るリニァァ クチユエータ 4 0、 5 0と同様に磁歪素子 4 2の慣性力の反作用でケー シング 7 8を加振するリエアァクチユエータを構成することができる。 一方、 磁歪素子が伸長することにより前端 4 2 Aと前壁 7 6 Bとが当 接するように隙間を形成すれば前記第 1実施形態に係るリニアァクチュ エータと同様に衝撃でケーシング 7 8を加振するリユアァクチユエータ を構成することができる。 If a gap is formed so that the front end 42A does not abut on the front wall 76B even if the magnetostrictive element 42 extends, the linear actuators 40, 50 according to the second and third embodiments are formed. Similarly, a rear actuator that vibrates the casing 78 by the reaction of the inertial force of the magnetostrictive element 42 can be configured. On the other hand, if a gap is formed so that the front end 42 A and the front wall 76 B are in contact with each other by the extension of the magnetostrictive element, the casing 78 is vibrated by impact similarly to the linear actuator according to the first embodiment. Can be configured.
尚、 リ -ァァクチユエータ 7 0は磁歪素子を 1個だけ備える構成であ るが、 前記第 1、 第 2、 第 4実施形態と同様に 2個の磁歪素子を備える 構成とし、 2個の磁歪素子をスライダ 7 2内に収容することも当然可能 である。 又、 2個の磁歪素子のうちの一方だけをスライダ 2 7内に収容 した場合も、 軸方向のコンパク ト化を図ることができる。 The reactor 70 has only one magnetostrictive element. However, as in the first, second, and fourth embodiments, the reactor has two magnetostrictive elements. Of course, it is also possible to accommodate in the slider 72. Also, when only one of the two magnetostrictive elements is housed in the slider 27, compactness in the axial direction can be achieved.
又、 前記第 1〜第 5実施形態において、 スライダは材質が磁性体とさ れ、 検出コイルがスライダの位置を直接検出するようにされているが、 本発明はこれに限定されるものではなく、 例えば、 非磁性体のスライダ に磁性体の被検出体を取付けて、 該被検出体を介してスライダの位置を 間接的に検出するようにしてもよい。 更に、 他の構成の位置検出センサ を備えてもよい。 この場合も、 2個の磁歪素子に適宜磁界を付与するこ とにより、 スライダを大きな駆動力で、 且つ、 高速セ摺動させて高精度
で位置決めすることができる。 In the first to fifth embodiments, the slider is made of a magnetic material, and the detection coil directly detects the position of the slider. However, the present invention is not limited to this. For example, a magnetic object may be attached to a non-magnetic slider, and the position of the slider may be indirectly detected via the object. Further, a position detection sensor having another configuration may be provided. Also in this case, by appropriately applying a magnetic field to the two magnetostrictive elements, the slider can be slid with high driving force and at high speed to achieve high precision. Can be positioned.
又、 前記第 1〜第 5実施形態において、 ケーシングの摺動面にはフッ 素樹脂がコーティングされているが、 本発明はこれに限定されるもので はなく、 スライダの摺動面にフッ素樹脂をコーティングしてもよい。 更 に、 ケーシング及ぴスライダの双方の摺動面にフッ素樹脂をコーティン グしてもよい。 In the first to fifth embodiments, the sliding surface of the casing is coated with fluororesin. However, the present invention is not limited to this. May be coated. Further, the sliding surfaces of both the casing and the slider may be coated with a fluororesin.
尚、 フッ素樹脂で適度な摩擦係数が得られない場合には、 他の材質の コーティングをケーシング及びスライダの少なく とも一方の摺動面に形 成してもよい。 一方、,ケーシング及びスライダめ素材同志の摩擦係数が 適当である場合には、 ケーシング及びスライダの双方の摺動面にコーテ ィングを形成しない構成と してもよい。 If an appropriate coefficient of friction cannot be obtained with fluororesin, a coating of another material may be formed on at least one of the sliding surfaces of the casing and the slider. On the other hand, if the friction coefficient between the casing and the material for the slider is appropriate, the coating may not be formed on the sliding surfaces of both the casing and the slider.
又、 前記第 1〜第 5実施形態において、 磁歪素子は、 ランタノィ ド及 び鉄属元素を含んでなる超磁歪素子とされているが、 本発明はこれに限 定されるものではなく、 磁歪効果を有する素子であれば、 材質は特に限 定されない。 尚、 スライダの摺動の高速化を図り、 駆動力を高めるため には、 磁界が付与されることにより迅速に大きな歪が生じる超磁歪素子 を用いることが好ましい。 In the first to fifth embodiments, the magnetostrictive element is a giant magnetostrictive element containing a lanthanide and an iron group element. However, the present invention is not limited to this. The material is not particularly limited as long as it has an effect. In order to increase the sliding speed of the slider and increase the driving force, it is preferable to use a giant magnetostrictive element in which a large strain is quickly generated by applying a magnetic field.
又、 前記第 1実施形態において、 磁歪素子 1 6 、 1 7の線膨張係数と ケーシング 1 2の線膨張係数とを略等しく しているが、 本発明はこれに 限定されるものではなく、 磁歪素子の周辺の温度変化が小さい場合、 又、 磁歪素子の周辺の温度変化が大きい場合であっても磁歪素子、 ケーシン グの変形が充分小さければ、 必ずしも磁歪素子 1 6、 1 7の線膨張係数 とケーシング 1 2の線膨張係数とを略等しくする必要はない。 産業上の利用の可能性 In the first embodiment, the linear expansion coefficients of the magnetostrictive elements 16 and 17 and the linear expansion coefficient of the casing 12 are substantially equal. However, the present invention is not limited to this. Even when the temperature change around the element is small, or even when the temperature change around the magnetostrictive element is large, if the deformation of the magnetostrictive element and the casing is sufficiently small, the linear expansion coefficient of the magnetostrictive elements 16 and 17 is not necessarily required. It is not necessary to make the linear expansion coefficient of the casing 12 substantially equal to that of the casing 12. Industrial potential
以上説明したように、 本発明は磁歪素子を用いることで、 スライダの 送り速度が速く、 高精度な位置決めが可能であり、 駆動力が大きいコン
30 As described above, according to the present invention, by using the magnetostrictive element, the slider can be moved at a high speed, high-precision positioning is possible, and the driving force is large. 30
PCT/JP2004/001016 PCT / JP2004 / 001016
14 ク トなリニアァクチユエータを実現することができる
14 linear actuators can be realized
Claims
1 . ケーシングと、 該ケーシングに摺動自在に支持されたスライダと、 前記ケーシングを加振するための磁歪素子と、 該磁歪素子に対して磁界 を付与するための磁界発生コイルと、 を含んでなり、 前記磁界発生コィ ルに断続的に通電して前記ケーシングを加振することにより前記スライ ダが前後方向に摺動するようにしたことを特徴とするリニアァクチユエ ータ。 1. A casing, a slider slidably supported by the casing, a magnetostrictive element for exciting the casing, and a magnetic field generating coil for applying a magnetic field to the magnetostrictive element. A linear actuator, wherein the slider is slid in the front-rear direction by exciting the casing by intermittently energizing the magnetic field generating coil.
2 . 前記磁歪素子は、 ランタノイ ド及び鉄属元素を含んでなる超磁歪素 子であることを特徴とする請求項 1に記載のリニアァクチユエータ。 2. The linear actuator according to claim 1, wherein the magnetostrictive element is a giant magnetostrictive element containing a lanthanoid and an iron group element.
3 . 前記スライダ及びケーシングの少なく とも一方の摺動面にフッ素樹 脂がコーティングされたことを特徴とする請求項 1又は 2に記載のリ二 ァァクチユエータ。 3. The linear actuator according to claim 1, wherein at least one sliding surface of the slider and the casing is coated with a fluorine resin.
4 . 前記磁歪素子が前記ケーシング内に 2個備えられ、 且つ、 一方の磁 歪素子は後端において前記ケーシングに取付けられて前記前後方向に伸 縮することにより前端が前記ケーシングに当接 ·離間するように配設さ れ、 他方の磁歪素子は前端において前記ケーシング内に取付けられて前 記前後方向に伸縮することにより後端が前記ケーシングに当接 ·離間す るように配設されてなり、 前記ケーシングに前方向の衝撃及ぴ後方向の 衝撃を選択的に付与可能としたことを特徴とする請求項 1乃至 3のいず れかに記載のリエァァクチユエータ。 4. Two of the magnetostrictive elements are provided in the casing, and one of the magnetostrictive elements is attached to the casing at a rear end and expands and contracts in the front-rear direction so that the front end contacts and separates from the casing. The other magnetostrictive element is mounted in the casing at the front end, and is arranged so that the rear end contacts and separates from the casing by expanding and contracting in the fore-and-aft direction. 4. The reactuator according to claim 1, wherein a forward impact and a rearward impact can be selectively applied to the casing.
5 . 前記磁歪素子の線膨張係数と前記ケーシングの線膨張係数とを略等 しく したことを特徴とする請求項 4に記載のリニアァクチユエータ。
5. The linear actuator according to claim 4, wherein a linear expansion coefficient of the magnetostrictive element and a linear expansion coefficient of the casing are substantially equal.
6 . 前記磁歪素子は前記前後方向に伸縮自在であるように前記ケーシン グに取付けられ、 該磁歪素子の伸縮による慣性力の反作用で前記ケーシ ' ングを前記前後方向に加振するようにしたことを特徴とする請求項 1乃 至 3のいずれかに記載のリニァァクチユエータ。 6. The magnetostrictive element is attached to the casing so as to be able to expand and contract in the front-rear direction, and the casing is vibrated in the front-rear direction by a reaction of inertial force due to expansion and contraction of the magnetostrictive element. The linear actuator according to any one of claims 1 to 3, characterized in that:
5 Five
, ,
7 . 前記磁歪素子は前端及び後端の一方において前記ケーシングに実質 的に片持ち状態で取付けられたことを特徴とする請求項 6に記載のリニ ァァクチユエータ。 7. The linear actuator according to claim 6, wherein the magnetostrictive element is attached to the casing substantially at one of a front end and a rear end in a cantilever state.
1 0 8 . 電流値が増減し、 且つ、 増加速度と減少速度とが異なる電流を前記 磁界発生コイルに通電するための電源が備えられ、 前方向の加速度と後 方向の加速度とが異なる振動態様で前記磁歪素子が前記ケーシングを加 振するようにしたことを特徴とする請求項 6又は 7に記載のリ二ァァク チユエータ。 108. A vibration mode in which a current value increases and decreases, and a power supply for supplying a current having a different increasing speed and a decreasing speed to the magnetic field generating coil is provided, and the forward acceleration and the backward acceleration are different. 8. The linear actuator according to claim 6, wherein the magnetostrictive element vibrates the casing.
1 5 1 5
9 . 前記磁歪素子及び前記磁界発生コイルが 2組配設されると共に、 前 方向の加速度が後方向の加速度よりも大きい振動態様で一方の磁歪素子 が前記ケーシングを加振し、 後方向の加速度が前方向の加速度よりも大 きい振動態様で他方の磁歪素子が前記ケーシングを加振するように 2個 20 の前記磁歪素子の振動態様を制御するための制御手段が備えられ、 この 制御手段は、 一方の磁界発生コイルに対して前記増加速度が減少速度よ りも速い電流を通電し、 他方の磁界発生コイルに対して前記減少速度が 増加速度よりも速い電流を通電するように前記電源から 2個の前記磁界 発生コイルへの出力電流を制御するようにされたことを特徴とする請求 9. Two sets of the magnetostrictive element and the magnetic field generating coil are provided, and one of the magnetostrictive elements vibrates the casing in a vibration mode in which a forward acceleration is larger than a backward acceleration, and a rearward acceleration is provided. Is provided with control means for controlling the vibration mode of the two magnetostrictive elements so that the other magnetostrictive element vibrates the casing in a vibration mode larger than the acceleration in the forward direction. However, the power source supplies current to the one magnetic field generating coil such that the increasing speed is faster than the decreasing speed, and supplies current to the other magnetic field generating coil so that the decreasing speed is faster than the increasing speed. An output current to two of said magnetic field generating coils is controlled.
25 項 8に記載のリニアァクチユエータ。 25. The linear actuator according to item 8.
0 . 前記磁歪素子及び磁界発生コイルが 1組配設されると共に、 前方
向の加速度が後方向の加速度よりも大きい振動態様及び後方向の加速度 が前方向の加速度よりも大きい振動態様の 2つの振動態様で 1個の前^ 磁歪素子が前記ケーシングを選択的に加振するように前記磁歪素子の振 動態様を制御するための制御手段が備えられ、 この制御手段は、 前記増 加速度が減少速度よりも速い電流及び前記減少速度が増加速度よりも速 い電流を 1個の前記磁界発生コイルに対して選択的に通電するように前 記電源から 1個の前記磁界発生コイルへの出力電流を制御するようにさ れたことを特徴とする請求項 8に記載のリニアァクチユエータ。 0. One set of the magnetostrictive element and the magnetic field generating coil is provided, and One front magnetostrictive element selectively vibrates the casing in two vibration modes, a vibration mode in which the forward acceleration is greater than the backward acceleration, and a vibration mode in which the backward acceleration is higher than the forward acceleration. Control means for controlling the oscillation mode of the magnetostrictive element so that the current increases at a rate higher than the decreasing speed and the current increases at a rate higher than the decreasing rate. 9.The power supply according to claim 8, wherein an output current from the power supply to one of the magnetic field generating coils is controlled so as to selectively energize the magnetic field generating coils. Linear Actuator.
1 1 . 前記スライダは磁性体から構成され、 且つ、 該スライダの周囲に 検出コイルが配設され、 該検出コイルのインピーダンスに基づいて前記 ケーシングと前記スライダとの相対位置を検出するようにしたことを特 徴とする請求項 1乃至 1 0のいずれかに記載のリエァァクチユエータ。
11. The slider is made of a magnetic material, a detection coil is provided around the slider, and a relative position between the casing and the slider is detected based on an impedance of the detection coil. The reactuator according to any one of claims 1 to 10, characterized in that:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-026270 | 2003-02-03 | ||
JP2003026270A JP4105958B2 (en) | 2003-02-03 | 2003-02-03 | Linear actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004070930A1 true WO2004070930A1 (en) | 2004-08-19 |
Family
ID=32844135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/001016 WO2004070930A1 (en) | 2003-02-03 | 2004-02-02 | Linear actuator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4105958B2 (en) |
TW (1) | TW200419888A (en) |
WO (1) | WO2004070930A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI348775B (en) * | 2008-03-18 | 2011-09-11 | Silicon Touch Tech Inc | Piezoelectric actuator system with position detection and method thereof |
JP2011129736A (en) * | 2009-12-18 | 2011-06-30 | Denso Corp | Piezoelectric actuator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03169086A (en) * | 1989-11-29 | 1991-07-22 | Komatsu Ltd | magnetostrictive actuator |
JPH06216425A (en) * | 1993-01-18 | 1994-08-05 | Unisia Jecs Corp | Giant magnetostrictive actuator |
JPH07259690A (en) * | 1994-03-25 | 1995-10-09 | Unisia Jecs Corp | Giant magnetostrictive actuator |
JPH11346016A (en) * | 1998-06-02 | 1999-12-14 | Tdk Corp | Super-magnetostrictive element |
JP2001086778A (en) * | 1999-09-13 | 2001-03-30 | Minolta Co Ltd | Drive apparatus of impact-type piezoelectric actuator |
JP2002058268A (en) * | 2000-08-09 | 2002-02-22 | Moritex Corp | Giant magnetostrictive actuator |
-
2003
- 2003-02-03 JP JP2003026270A patent/JP4105958B2/en not_active Expired - Fee Related
-
2004
- 2004-02-02 WO PCT/JP2004/001016 patent/WO2004070930A1/en active Application Filing
- 2004-02-03 TW TW093102418A patent/TW200419888A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03169086A (en) * | 1989-11-29 | 1991-07-22 | Komatsu Ltd | magnetostrictive actuator |
JPH06216425A (en) * | 1993-01-18 | 1994-08-05 | Unisia Jecs Corp | Giant magnetostrictive actuator |
JPH07259690A (en) * | 1994-03-25 | 1995-10-09 | Unisia Jecs Corp | Giant magnetostrictive actuator |
JPH11346016A (en) * | 1998-06-02 | 1999-12-14 | Tdk Corp | Super-magnetostrictive element |
JP2001086778A (en) * | 1999-09-13 | 2001-03-30 | Minolta Co Ltd | Drive apparatus of impact-type piezoelectric actuator |
JP2002058268A (en) * | 2000-08-09 | 2002-02-22 | Moritex Corp | Giant magnetostrictive actuator |
Also Published As
Publication number | Publication date |
---|---|
JP4105958B2 (en) | 2008-06-25 |
TW200419888A (en) | 2004-10-01 |
JP2004266881A (en) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3830515B2 (en) | Electromechanical positioning unit | |
JP2004056878A (en) | Drive unit, position controller, and camera | |
JP2006262685A (en) | Driving apparatus and driving method | |
JP6639243B2 (en) | Vibration type actuator and electronic equipment | |
Suzuki et al. | Resonant-type smooth impact drive mechanism actuator with two Langevin transducers | |
Shafik et al. | Piezoelectric motor technology: A review | |
JPH10290589A (en) | Driver using electromechanical transducer | |
JP2017127127A5 (en) | ||
JP6632283B2 (en) | Vibration wave motor, camera and lens barrel | |
JPWO2019146771A1 (en) | Actuators for optical instruments and lens barrels equipped with them | |
JP4804040B2 (en) | Impact drive actuator | |
JP5309719B2 (en) | Vibration actuator, lens barrel and camera including the same | |
JP5490132B2 (en) | Drive device | |
WO2004070930A1 (en) | Linear actuator | |
JP2005312229A (en) | Drive apparatus and drive method | |
Mrad et al. | A control methodology for an inchworm piezomotor | |
Avirovik et al. | L-shaped piezoelectric motor-Part I: Design and experimental analysis | |
JP5396820B2 (en) | Vibration actuator, lens barrel and optical equipment | |
JPS59185180A (en) | Supersonic motor | |
JPH02159982A (en) | piezoelectric actuator | |
JP4687314B2 (en) | Drive device and drive system | |
KR100759075B1 (en) | Linear Actuator Using Piezoelectric Body | |
JP4720347B2 (en) | Drive device and drive system | |
Boudaoud et al. | Voltage/frequency rate dependent modeling for nano-robotic systems based on piezoelectric stick-slip actuators | |
JP2971971B2 (en) | Ultrasonic actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |