[go: up one dir, main page]

JPH03169086A - Magnetostrictive actuator - Google Patents

Magnetostrictive actuator

Info

Publication number
JPH03169086A
JPH03169086A JP1309461A JP30946189A JPH03169086A JP H03169086 A JPH03169086 A JP H03169086A JP 1309461 A JP1309461 A JP 1309461A JP 30946189 A JP30946189 A JP 30946189A JP H03169086 A JPH03169086 A JP H03169086A
Authority
JP
Japan
Prior art keywords
magnetostrictive
self
actuator
magnetostrictive material
magnetostrictive actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309461A
Other languages
Japanese (ja)
Inventor
Taku Murakami
卓 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1309461A priority Critical patent/JPH03169086A/en
Publication of JPH03169086A publication Critical patent/JPH03169086A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve the abrasion resistance of a magnetostrictive material by arranging the constitution such that the whole periphery of the magnetostrictive material is coated with self lubricating agent. CONSTITUTION:This is put in such structure that the whole periphery of a magnetostrictive actuator is coated with self lubricating material 31-33. For the self lubricating material 31-33, if the use temperature is room temperature about 100 deg.C, metallic plating such as In, Cu, etc., is suitable, and if the use temperature is higher temperature, ceramic coating such as carbon, chromium oxide, titanium oxide, etc., is suitable. For the coating method, baking, plating, deposition, sputtering, flame-coating, alloying, or the like is used. Hereby, an electrostrictive actuator, wherein abrasion resistance is improved, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野ヨ [従来の技術〕 近時,振動子.音響備品及び変位アクチュエータにおい
て,その可動素子として,磁歪素子が圧電素子に替わっ
て用いられつつある。これは,圧電素子のエネルギー密
度,電気一機械変換係数及び使用可能温度等に対し,よ
り勝る磁歪素子が現れ始めたことに起因する傾向である
。このような磁歪素子,とりわけ稀上類系の磁歪素子へ
の脚光が高まりつつある。そこで,かかる磁歪素子を用
いてなる従来の磁歪アクチュエータを.図面参照して説
明する。第2図にその一例を示す。同図の磁歪アクチュ
エータ1は,大別して,シリンダ2内に,円柱形状の磁
歪材3と,この磁歪材3の磁歪変位χを外部に出力する
ためのラム4とから構成されている。詳しくは,磁歪材
3の外周にはボビン5に巻き回したコイル6が備えられ
,更にこのコイル6の外周にバイアス磁石(通常は永久
磁石)7が備えられている。磁歪材3の長芋方向の両端
にはコイル6と,バイアス磁石7と,この磁るだめのヨ
ーク81.82が設けてある。図示左端のヨーク81は
シリンダ2に当接しており,磁歪アクチュエータ1の固
定側をm戊している。他側,図示左端のヨーク81は,
図示左端が磁歪材3に当接すると共に図示右側が非磁性
体でなるリテーナ9を介してラム4に当接している。こ
のラム4は,シリンダ2の図示右端の開口部から摺動自
在に外部へ突出している。尚,リテーナ9とシノンダ2
との間には弾性体10が収めてあり,磁歪材3に対し,
リテーナ9とヨーク82とを介して常時圧縮力を加えて
いる。この圧縮力が磁歪材3におけるプリストレスであ
る。よく知られる通り,このプリストレスと前記バイア
ス磁石7によるバイアス磁場とは磁歪材3の磁歪特性を
向上せしめる効果をもたらす。かかる磁歪アクチュエー
タ1は,コイル6に交流又は脈流電流を流せば,振動子
となる。逆にコイル6に直流電流を流せばこの磁歪アク
チュエータ1は変位アクチュエータとなる。尚,同図の
磁歪アクチュエータ1は,磁歪材3の長手方向の長さが
コイル6の長手方向の長さよりも短<t+*戒してある
。この理由は,コ,fル6とバイアス磁石7とからの磁
束がヨーク81,82とこの磁歪材3とを通って形戒す
る磁気回路において.この磁歪材3内での磁束が並行と
なるよう配慮しているためである。
[Detailed Description of the Invention] [Industrial Field of Application] [Prior Art] Recently, vibrators. Magnetostrictive elements are increasingly being used in place of piezoelectric elements as movable elements in acoustic equipment and displacement actuators. This trend is due to the emergence of magnetostrictive elements that are superior to piezoelectric elements in terms of energy density, electromechanical conversion coefficient, usable temperature, etc. Such magnetostrictive elements, especially rare-class magnetostrictive elements, are increasingly attracting attention. Therefore, we have developed a conventional magnetostrictive actuator using such a magnetostrictive element. This will be explained with reference to the drawings. An example is shown in FIG. The magnetostrictive actuator 1 shown in the figure is roughly composed of a cylindrical magnetostrictive material 3 in a cylinder 2, and a ram 4 for outputting the magnetostrictive displacement χ of the magnetostrictive material 3 to the outside. Specifically, a coil 6 wound around a bobbin 5 is provided on the outer periphery of the magnetostrictive material 3, and a bias magnet (usually a permanent magnet) 7 is further provided on the outer periphery of this coil 6. A coil 6, a bias magnet 7, and yokes 81 and 82 of the magnetostrictive material 3 are provided at both ends of the magnetostrictive material 3 in the potato direction. The yoke 81 at the left end in the figure is in contact with the cylinder 2 and covers the fixed side of the magnetostrictive actuator 1. On the other side, the yoke 81 at the left end in the figure is
The left end in the drawing contacts the magnetostrictive material 3, and the right end in the drawing contacts the ram 4 via a retainer 9 made of a non-magnetic material. The ram 4 protrudes outward from an opening at the right end of the cylinder 2 in a slidable manner. Furthermore, retainer 9 and Shinonda 2
An elastic body 10 is housed between the magnetostrictive material 3 and the
A compressive force is constantly applied via the retainer 9 and the yoke 82. This compressive force is the prestress in the magnetostrictive material 3. As is well known, this prestress and the bias magnetic field generated by the bias magnet 7 have the effect of improving the magnetostrictive properties of the magnetostrictive material 3. Such a magnetostrictive actuator 1 becomes a vibrator when an alternating current or pulsating current is passed through the coil 6. Conversely, if a direct current is applied to the coil 6, the magnetostrictive actuator 1 becomes a displacement actuator. In the magnetostrictive actuator 1 shown in the figure, the length of the magnetostrictive material 3 in the longitudinal direction is shorter than the length of the coil 6 in the longitudinal direction. The reason for this is in the magnetic circuit in which the magnetic flux from the coils 6 and the bias magnet 7 passes through the yokes 81 and 82 and the magnetostrictive material 3. This is because consideration is given so that the magnetic fluxes within the magnetostrictive material 3 are parallel.

E発明が解決しようとする課題] 磁歪素子(磁歪材料)は,圧電素子(圧電材料)と比較
して上述したような利点を備えている。
Problems to be Solved by the Invention] Magnetostrictive elements (magnetostrictive materials) have the above-mentioned advantages compared to piezoelectric elements (piezoelectric materials).

しかしながら,このような磁歪材料であっても問題なし
とは言えない。最も大きい問題の一つに,磁歪材料が摩
耗し易いことを掲げることができるこれを項目列挙する
と,次の通りとなる。
However, even such magnetostrictive materials are not without problems. One of the biggest problems is that magnetostrictive materials tend to wear out easily.This can be summarized as follows.

(1)側面摩耗 磁歪材料はこれに加わる磁場変化で伸縮する。(1) Side wear Magnetostrictive materials expand and contract due to changes in the magnetic field applied to them.

例えば上記従来の磁歪アクチュエータ例からも分かるよ
うに,磁歪材が伸縮するとき,ボビンと磁歪材とが接触
し,摩耗し易い磁歪材の側面に摩耗が発生する。
For example, as can be seen from the above example of the conventional magnetostrictive actuator, when the magnetostrictive material expands and contracts, the bobbin and the magnetostrictive material come into contact, causing wear on the side surfaces of the magnetostrictive material that are prone to wear.

(2)端面摩耗 交番磁界が磁歪材料に印加されるとき,磁束の浸透深さ
はその交番磁界の周波数で決定される。
(2) End face wear When an alternating magnetic field is applied to a magnetostrictive material, the penetration depth of the magnetic flux is determined by the frequency of the alternating magnetic field.

つまり周波数が高ければ高い程.磁束の浸透深さは浅く
なる(いわゆる表皮効果である)。従って交番磁界が印
加されると,磁歪材の端面の歪みは軸心部と軸周辺部と
で異なる。この結果,磁歪材の端面では均一な変形が起
こらなくなる。即ち磁歪材の端面と,これに当接するヨ
ーク(場合によってはラム等)とはむら接触を起こすこ
とになり,この結果,端面当接部の摩耗が促進されるよ
うになる。
In other words, the higher the frequency. The penetration depth of the magnetic flux becomes shallower (this is the so-called skin effect). Therefore, when an alternating magnetic field is applied, the strain on the end face of the magnetostrictive material differs between the shaft center portion and the shaft peripheral portion. As a result, uniform deformation does not occur at the end face of the magnetostrictive material. In other words, the end face of the magnetostrictive material and the yoke (or ram, etc. in some cases) that abuts the magnetostrictive material come into uneven contact, and as a result, wear of the end face abutting portion is accelerated.

上記側面及び端面摩耗は,ブリストレス形式の磁歪アク
チスエータの磁歪材にあっては,その発生頻度はさらに
大きくなる。
The above-mentioned side and end surface wear occurs more frequently in the magnetostrictive material of the bristless type magnetostrictive actuator.

本発明は,かかる従来の技術の問題点に鑑み,耐摩耗性
を向上し得る磁歪アクチュエータを提供することをロ的
とする。
In view of the problems of the prior art, it is an object of the present invention to provide a magnetostrictive actuator that can improve wear resistance.

[課題を解決するたぬの手段] 上記目的を達戊するため,本発明に係わる磁歪アクチュ
エータは,その磁歪材の全周に自己潤滑歪材と接触する
他のFf4戊部材に自己潤滑剤をコーティングする構成
であってもよい。更にまた,その磁歪材と,この磁歪材
と接触する他の構成部材との間に自己潤滑剤を介在せし
める構成としてもよい。尚,かかる3つの構成において
,自己潤滑材が低摩耗率材である構或でもよい。
[Means for Solving the Problems] In order to achieve the above object, the magnetostrictive actuator according to the present invention has a self-lubricating agent applied to the other Ff4 member that contacts the self-lubricating strained material around the entire circumference of the magnetostrictive material. A coating structure may also be used. Furthermore, a self-lubricating agent may be interposed between the magnetostrictive material and other components that come into contact with the magnetostrictive material. Note that in these three configurations, the self-lubricating material may be a low wear rate material.

E作用コ 請求項1と,請求項2との発明の違いは自己潤滑剤のコ
ーティング先の遣いである。請求項1の発明であれば,
コーティング先は磁歪材であり,地方請求項2の発明で
あれば,コーティング先は磁歪材に当接する物(従来例
の図で述べれば,ボビン5)である。請求項3の発明の
場合は,かかる請求項1と請求項2との発明の中間態様
であって,磁歪材と磁歪材への当接物との隙間に自己潤
滑剤を介在せしめている。請求項4の発明にあっては,
請求項1乃至請求項3の発明における自己潤滑剤が低摩
耗率材であるとしたものである。これは発明の目的,即
ち磁歪材の摩耗低減から見れにしたものである。
E-effect The difference between the inventions of claim 1 and claim 2 is the use of the coating destination of the self-lubricating agent. If the invention of claim 1,
The coating target is a magnetostrictive material, and in the invention of local claim 2, the coating target is an object that comes into contact with the magnetostrictive material (in the conventional example, the bobbin 5). The invention of claim 3 is an intermediate aspect between the inventions of claims 1 and 2, in which a self-lubricating agent is interposed in the gap between the magnetostrictive material and the object that abuts the magnetostrictive material. In the invention of claim 4,
In the invention according to claims 1 to 3, the self-lubricating agent is a material with a low wear rate. This was done in view of the purpose of the invention, ie, reducing the wear of magnetostrictive materials.

[実施例] 以下本発明の実施例を説明する。請求項1の実施例は,
その構成「磁歪アクチュエータの磁歪材の全周に自己潤
滑剤をコーティングしたllI或」において次の各m戊
要素を例示することができる。
[Examples] Examples of the present invention will be described below. The embodiment of claim 1 is:
The following elements can be exemplified in the configuration "III or I in which the entire circumference of the magnetostrictive material of the magnetostrictive actuator is coated with a self-lubricating agent".

(1)自己潤滑材二使用温度が室温〜100度C位であ
れば,InやCu等の金属メッキ等が好適である。他方
使用温度がより高温であれば,カーボン,酸化クロム又
は酸化チタン等のセラミックのコーティング等が好適で
ある。
(1) Self-lubricating material 2 If the operating temperature is room temperature to about 100 degrees Celsius, metal plating such as In or Cu is suitable. On the other hand, if the operating temperature is higher, a ceramic coating such as carbon, chromium oxide or titanium oxide is suitable.

(2)コーティング方法:これは,焼きつけ,めっき,
蒸着,スパッタリング,溶射及び合金化等がこれに相当
する。
(2) Coating method: This includes baking, plating,
This includes vapor deposition, sputtering, thermal spraying, and alloying.

請求項2の実施例は,その構成「磁歪アクチュエータに
おいて,磁歪材と接触する他の構或部材に自己潤滑剤を
コーティングした構成」において次の各構成要業を例示
することができる。
The embodiment of claim 2 can exemplify the following constituent features in its configuration: "In the magnetostrictive actuator, other structural members that come into contact with the magnetostrictive material are coated with a self-lubricating agent."

(3)自己潤滑材:上記(1)と同様である。(3) Self-lubricating material: Same as (1) above.

(4)他の構成部材:例えば,第1図又は第2図の構成
例で言えば,ボビン5やヨーク81,.82である。要
は,磁歪材と接触している他の構成部材を指す(尚,第
1図については,後述する実験例で述べる)。
(4) Other components: For example, in the configuration example shown in FIG. 1 or 2, the bobbin 5, yoke 81, . It is 82. In short, it refers to other structural members that are in contact with the magnetostrictive material (Fig. 1 will be described in the experimental example described later).

請求項3の実施例は,その構成「磁歪アクチュ工−夕に
おいて,磁歪材と,この磁歪材と接触する他の構成部材
との間に自己潤滑剤を介在せしめた構成」において,次
の各構成要素を例示することができる。
The embodiment of claim 3 has the following configuration in its configuration: "In a magnetostrictive actuator, a self-lubricating agent is interposed between a magnetostrictive material and another component that comes into contact with the magnetostrictive material." Components can be exemplified.

(5)他の構成部材:−ヒ記(4)と同様である。(5) Other structural members: - Same as in (4).

(6)自己潤滑剤二使用温度が室温〜100度C位であ
れば,テフロン等の高分子材料,金属石鹸,グリース,
オイル又は二硫化モリブデン等が好適である。他方使用
温度がより高温であれば,酸化クロム又は酸化チタン等
のセラミック等が好適である。
(6) Self-lubricating agent 2 If the operating temperature is between room temperature and 100 degrees C, polymeric materials such as Teflon, metal soap, grease, etc.
Oil, molybdenum disulfide, etc. are suitable. On the other hand, if the operating temperature is higher, ceramics such as chromium oxide or titanium oxide are suitable.

(7)介在方法二吹き着け及び塗布等がこれに相当する
(7) Intervention method 2 Spraying, coating, etc. correspond to this.

請求項4の実施例は,その構成「自己潤滑材が低摩耗率
材である請求項1乃至請求項3の構成」において,次の
各構成要素を例示することができる。
In the embodiment of claim 4, the following components can be exemplified in the configuration "the configurations of claims 1 to 3 in which the self-lubricating material is a low wear rate material".

(8)低摩耗率材二上記(6)の中で言えば,テフロン
等の高分子材料,金属石鹸又は二硫化モリブデン等がこ
れに相当する。
(8) Low wear rate materials 2 In terms of (6) above, polymeric materials such as Teflon, metal soaps, molybdenum disulfide, etc. correspond to these materials.

実験例 上記実施例の内,いくつかの実験戒績を次に述一二る。Experimental example Some experimental results of the above examples are described below.

実験は,第1図に示す本発明に基づく磁歪アクチュエー
タの実施例を用いて行った。尚,この第1図の構成は,
従来の技術の欄で説明した第2図の構成と略同一である
。従って,第1図の説明は,既説の第2図との差位につ
いては,以下で行うが,同一部位の説明は,重複を避け
るため.以下では説明を省略する。実験例は,第1図の
磁歪アクチュエータにおいて,磁歪材3の側面31及び
両端面32.33が無処理の磁歪材でなる従来の磁歪ア
クチュエータと,実施例に係わる磁歪アクチュエータの
いくつかとについて,そのフレッチング発生頻度を比較
した。フレッチング発生頻度の相対値は次表に示す通り
である。尚,第1図において,図番31,32.33は
請求項1乃至請求項4記載の自己潤滑材又は低摩耗率材
をも指すものとする。
The experiment was conducted using the embodiment of the magnetostrictive actuator based on the present invention shown in FIG. The configuration of this figure 1 is as follows.
The configuration is substantially the same as the configuration shown in FIG. 2 described in the prior art section. Therefore, the differences between Figure 1 and Figure 2, which have already been explained, will be explained below, but explanations of the same parts will be given to avoid duplication. Description will be omitted below. The experimental examples are a conventional magnetostrictive actuator in which the side surface 31 and both end surfaces 32 and 33 of the magnetostrictive material 3 are made of untreated magnetostrictive material in the magnetostrictive actuator shown in FIG. The frequency of fretting was compared. The relative values of fretting frequency are shown in the table below. In addition, in FIG. 1, the drawing numbers 31, 32, and 33 also refer to the self-lubricating material or the low wear rate material according to claims 1 to 4.

一表一 本実験例では,上表に示す通り,従来の磁歪アクチュエ
ータ(無処理のDy−Tb−Fe合金)に対し,実施例
に係わる磁歪アクチュエータの耐摩耗性は向上している
Table 1 In this experimental example, as shown in the table above, the wear resistance of the magnetostrictive actuator according to the example is improved compared to the conventional magnetostrictive actuator (untreated Dy-Tb-Fe alloy).

[発明の効果] 以上説明したように,本発明に係わる磁歪アクチュエー
タは,その磁歪材の全周に自己潤滑剤をコーティング又
は介在せしめた構成としたため,磁歪材の耐摩耗性を向
上することができる。
[Effects of the Invention] As explained above, the magnetostrictive actuator according to the present invention has a structure in which a self-lubricating agent is coated or interposed around the entire circumference of the magnetostrictive material, so that the wear resistance of the magnetostrictive material can be improved. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に″係わる磁歪アクチュエータの一実施
例の断面図,第2図は従来の磁歪アクチュエータ例の断
面図である。 1・・・磁歪アクチュエータ 2・・・シリンダ 3・・・磁歪材 31,32.33・ ・自己潤滑材 4・・・ラム 5・・・ボビン 6・ ・コイル 7・・・バイアス磁石 81.82・ ・ヨーク 9・・・リテーナ 10・ ・弾性体χ磁歪変位
FIG. 1 is a sectional view of an embodiment of a magnetostrictive actuator according to the present invention, and FIG. 2 is a sectional view of an example of a conventional magnetostrictive actuator. 1...Magnetostrictive actuator 2...Cylinder 3...Magnetostrictive Materials 31, 32, 33 - Self-lubricating material 4 - Ram 5 - Bobbin 6 - Coil 7 - Bias magnet 81, 82 - Yoke 9 - Retainer 10 - Elastic body χ magnetostrictive displacement

Claims (4)

【特許請求の範囲】[Claims] (1)磁歪アクチュエータの磁歪材の全周に自己潤滑剤
をコーティングした構成を特徴とする磁歪アクチュエー
タ。
(1) A magnetostrictive actuator characterized by a structure in which the entire circumference of the magnetostrictive material of the magnetostrictive actuator is coated with a self-lubricating agent.
(2)磁歪アクチュエータにおいて、磁歪材と接触する
他の構成部材に自己潤滑剤をコーティングした構成を特
徴とする磁歪アクチュエータ。
(2) A magnetostrictive actuator characterized in that other components that come into contact with the magnetostrictive material are coated with a self-lubricating agent.
(3)磁歪アクチュエータにおいて、磁歪材と、この磁
歪材と接触する他の構成部材との間に自己潤滑剤を介在
せしめた構成を特徴とする磁歪アクチュエータ。
(3) A magnetostrictive actuator characterized by a structure in which a self-lubricating agent is interposed between a magnetostrictive material and another component that comes into contact with the magnetostrictive material.
(4)自己潤滑材が、低摩耗率材である請求項1、請求
項2又は請求項3記載の磁歪アクチュエータ。
(4) The magnetostrictive actuator according to claim 1, 2 or 3, wherein the self-lubricating material is a low wear rate material.
JP1309461A 1989-11-29 1989-11-29 Magnetostrictive actuator Pending JPH03169086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309461A JPH03169086A (en) 1989-11-29 1989-11-29 Magnetostrictive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309461A JPH03169086A (en) 1989-11-29 1989-11-29 Magnetostrictive actuator

Publications (1)

Publication Number Publication Date
JPH03169086A true JPH03169086A (en) 1991-07-22

Family

ID=17993273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309461A Pending JPH03169086A (en) 1989-11-29 1989-11-29 Magnetostrictive actuator

Country Status (1)

Country Link
JP (1) JPH03169086A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357232A (en) * 1991-12-12 1994-10-18 Tdk Corporation Magnetostrictive element
US5563673A (en) * 1991-09-06 1996-10-08 Canon Kabushiki Kaisha Camera
WO2004070930A1 (en) * 2003-02-03 2004-08-19 Tdk Corporation Linear actuator
US7339291B2 (en) * 2003-03-31 2008-03-04 Tdk Corporation Ultrasonic transducer and ultrasonic vibration device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563673A (en) * 1991-09-06 1996-10-08 Canon Kabushiki Kaisha Camera
US5357232A (en) * 1991-12-12 1994-10-18 Tdk Corporation Magnetostrictive element
WO2004070930A1 (en) * 2003-02-03 2004-08-19 Tdk Corporation Linear actuator
US7339291B2 (en) * 2003-03-31 2008-03-04 Tdk Corporation Ultrasonic transducer and ultrasonic vibration device using the same

Similar Documents

Publication Publication Date Title
US6198202B1 (en) Vibration actuator
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JPH03169086A (en) Magnetostrictive actuator
JP2017225333A (en) Friction material, method for producing friction material, vibration type actuator and electronic equipment
US20200251267A1 (en) Solenoid including a displaceable ferromagnetic member within an air gap
JP2006129625A (en) Drive unit
EP3171370B1 (en) High temperature electromagnetic actuator
JP2007231351A (en) Method for producing surface-hardened member, surface-hardened member and vibration type driving apparatus
JP4882252B2 (en) Vibration wave motor
KR20040082373A (en) Linear voice coil actuator with latching feature
JP3332125B2 (en) Magnetostrictive actuator
JPH04229085A (en) Magnetostrictive actuator
JP2566414B2 (en) Magnetic fixing device
JPH04334986A (en) Magnetostrictive type actuator
JP2012191846A (en) Friction member and vibration type drive device
JP3228610B2 (en) Ultrasonic actuator
JPH08275557A (en) Vibration driver, frictional contact layer forming method therefor
JPH03285577A (en) Magnetostriction type vibrating fan
JP2645212B2 (en) Inchworm device
JPH0869916A (en) Electromagnetic solenoid
EP4069998A1 (en) A bellows for a vacuum interrupter, exhaust compensator or valve
JPH05283762A (en) Magnetostrictive actuator
JP2504952Y2 (en) Electromagnetic coupling device
JP2003515944A (en) Method of manufacturing low eddy current armature for electromagnetic actuator
JP2524281Y2 (en) Ultrasonic motor