WO2004005973A2 - Polarization diversity detection without a polarizing beam splitter - Google Patents
Polarization diversity detection without a polarizing beam splitter Download PDFInfo
- Publication number
- WO2004005973A2 WO2004005973A2 PCT/US2003/021336 US0321336W WO2004005973A2 WO 2004005973 A2 WO2004005973 A2 WO 2004005973A2 US 0321336 W US0321336 W US 0321336W WO 2004005973 A2 WO2004005973 A2 WO 2004005973A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coupler
- output
- polarization
- optical signal
- generating
- Prior art date
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 69
- 238000001514 detection method Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 50
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 239000000835 fiber Substances 0.000 claims abstract description 24
- 239000013598 vector Substances 0.000 claims description 62
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 7
- 238000002168 optical frequency-domain reflectometry Methods 0.000 description 14
- 239000013307 optical fiber Substances 0.000 description 9
- 238000005284 basis set Methods 0.000 description 7
- 238000005562 fading Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000035559 beat frequency Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/331—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3172—Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3181—Reflectometers dealing with polarisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/337—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring polarization dependent loss [PDL]
Definitions
- a probe signal and a reference signal originating from the same source are typically mixed, resulting in fringes that can be detected and used to asses information about the device being probed.
- a reference signal is mixed with a signal whose phase and/or amplitude is modified by a parameter to be measured.
- the mixing produces an interference signal, and the amplitude of the interference signal depends on how efficiently the two optical signals mix.
- the mixing efficiency is 100%.
- the two signals have orthogonal polarization states, no mixing occurs - 0% efficiency. Between these two limits, only the portion of the signals whose polarization states resolve onto a single polarization axis actually mix.
- the reduced, mixed-signal amplitude results from an unmixed component in an orthogonal polarization state. This inefficiency is usually referred to as polarization induced fringe fading.
- Polarization diversity detection overcomes polarization induced fading.
- One commonly known interferometric scheme that can suffer from polarization fading is Optical Frequency Domain Reflectometry (OFDR).
- OFDR injects a highly monochromatic beam of light into the optical system or device to be tested. The frequency of that light is varied slowly with a time- linear sweep, and the optical signal back-scattered from the optical system is detected by coherently mixing the back-scattered signal with the reference input signal.
- the beat frequency component of the mixed signal (corresponding to an interference signal), is measured to determine a position of the back-scattering (reflection) point in the optical system/fiber.
- the interference signal amplitude also determines a back-scattering factor and an attenuation factor for the reflected light.
- U.S. patents 6,376,830 and 5,789,521 provide further details regarding OFDR measurement and are incorporated herein by reference. Reference may also be made to commonly-assigned, U.S. patent application serial number 10/005,819, entitled “Apparatus and Method for the Complete Characterization of Optical Devices Including Loss, Birefringence, and Dispersion Effects,” filed on December 14, 2001.
- a single mode optical fiber supports two degenerate polarization modes. This degeneracy causes field energy to be transferred between the modes as they propagate down the fiber. This phenomenon causes the polarization fading in fiber-optic interferometers.
- Fig. 1 shows schematically a Mach-Zender interferometer.
- E electric field
- a location may be described as being at 32 degrees North and 25 degrees West.
- the coordinate system is the set of latitude and longitude lines on the Earth, and the particular location is understood.
- Polarization diversity detection detects the s and p components (or projections onto the s and p axes) of Ei + E 2 separately using two S and P detectors.
- the power at each detector is proportional to the modulus squared of the components of the total field:
- and P p °
- PBS polarizing beam splitter
- the crystalline structure of the PBS imposes an orthonormal basis onto which the incident field is projected. That orthonormal basis is needed to extract information contained in the E and E 2 amplitudes.
- the present invention performs polarization diversity detection without using a polarizing beam splitter. Field vectors from one interferometer arm are used as the basis upon which to project a field vector from the other interferometer arm. Polarization diversity detection is performed using only standard optical couplers, e.g., 50-50 couplers. A polarization beam splitter is not needed.
- a first coupler receives a first optical signal from a device or system under test and generates first and second coupler outputs.
- a second coupler receives a second optical signal from a reference source and generates third and fourth coupler outputs.
- a first polarization controller (PC) changes the polarization state of the third coupler output and generates a PC output.
- a third coupler generates a first combined output from the first coupler output and the PC output.
- a fourth coupler generates a second combined output from the second coupler output and the fourth coupler output.
- a first detector detects a first power of the first combined output in a first projection plane, and a second detector detects a second power of the second combined output in a second projection plane.
- a processor processes interference terms in the first and second powers in the first and second projection planes to determine one or more characteristics of the first optical signal.
- a second polarization controller changes the polarization of the first optical signal before it is received in the first optical coupler.
- the first and second polarization controllers are adjusted to calibrate the fiber optic measurement device. Different second polarization controller settings result in multiple corresponding vector measurements at the first and second detectors.
- the processor calculates a vector calibration matrix using these vector measurements.
- the processor corrects subsequent detected vector measurements using the vector calibration matrix.
- the corrected vector measurements ensure that the vector representation of the first optical signal are in an ortho-normal basis set.
- the OFDR components can be constructed simply using optical fiber, and if desired, from the same type of standard low-loss fiber. Matching the type of fiber throughout the optical network results in very low losses with essentially zero scattering events in the network. As a result, the OFDR produces very clean time domain measurements (only reflection events from the device under test appear).
- Couplers are constructed by melting two optical fibers together.
- coupler manufacturers need only purchase fiber (an inexpensive commodity) designed for that wavelength and melt two sections together using the same process for all wavelengths. No re-tooling or significant changes to the process are required.
- couplers are readily available at all wavelengths at a reasonable price in contrast to polarization beam splitters and other bulk-optic based optical components.
- FIG. 2 illustrates orthogonal measurement field vectors Ei and E 2 and two basis vectors S and P;
- FIG. 3 illustrates a Mach-Zender interferometer with a polarization beam splitter;
- FIG. 4 illustrates in function block format an optical frequency domain reflectometer (OFDR) for polarization diversity detection without a polarization beam splitter;
- OFDR optical frequency domain reflectometer
- FIG. 5 illustrates a different configuration of the OFDR shown in
- FIG. 6 illustrates in further detail the detectors shown in Figs. 4 and 5;
- FIG. 7 illustrates in further detail the data acquisition block in
- FIG. 8 is a vector diagram showing the measurement field vector
- Ei and reference field vector E 2 each being projected and summed on each of the basis axes S and P in accordance with projections implemented by a polarization beam splitter;
- FIG. 10 is a vector projector diagram showing Ei projected onto virtual reference fields E' s and E' P .
- An OFDR 10 includes a tunable laser 12 for generating an electric field at a particular frequency (controlled by the frequency sweep signal from processor 32) provided to a standard optical coupler 14. Any such coupler may be employed, and one non-limiting example is Gould part number 23-40355-33- 01201 manufactured by Gould Fiber Optics Division of Gould Electronics of Baltimore, Maryland. Coupler 14 splits the input field E ⁇ N into two electric field signals Ei and E 2 . Ei is provided through optical coupler 36 and connector 38 to a device or system under test (DUT) 40. A back-scattered signal Ei to be measured as a function of its reflection point along the fiber is provided through coupler 36 to a first coupler 16.
- DUT device or system under test
- the reference signal E 2 is provided to a second coupler 22.
- a polarization state of a first output of coupler 22 is changed in polarization controller 24.
- the output of polarization controller 24 is the reference signal E 2 in a first reference plane denoted "S" so that this reference signal is referred to as E s .
- the second output of coupler 22 corresponds to the reference signal in another reference plane labeled "P" so that this signal is denoted E P .
- the first output of coupler 16 is E x and equals M 13 E ⁇ as described below.
- the second output of coupler 16 is E ⁇ and equals M 14 E ⁇ .
- the couplers 18 and 26 output the signals E x + E s and E ⁇ + E P , respectively, which are detected by respective detectors 20 and 28.
- the output of S-detector 20 is a power P s
- the output of P-detector 28 is a power P P .
- Both powers are provided to a data acquisition unit 30 which provides digital information to processor 32.
- the processor 32 processes the information and generates the desired electric field output signal E 0 u ⁇ which is then provided to a display 34 to display one or more parameters of EOU T - Such parameters may include amplitude and phase of the scattered light and the particular location at which the reflection occurs.
- Processor 32 sweeps the tunable laser 12 through a particular sweep range specified by a starting wavelength and a finishing wavelength, e.g., 1540nm-1580nm.
- Figure 5 illustrates another example embodiment with a slightly different configuration in which the device under test 40 is coupled directly to the output of the coupler 14. Both embodiments employ a polarization controller 42 used in calibrating the OFDR 10 as will be later described. [0034]
- the detectors 20 and 28 are illustrated in further detail in Figure
- Any suitable detector may be employed, and one non-limiting example is a ThorLabs PDA 400 optical detector manufactured by ThorLabs of Newton, New Jersey. Each detector includes a photodetector 42 and an amplifier 44 coupled to a low-pass filter 46.
- the data acquisition block 30 includes an analog-to-digital conversion block 48 coupled to a buffer 50. The filtered output from the detector is converted into a digital format by the digital-to- analog conversion means 48, and the digital signal is stored in the buffer 50 before being processed by the data processor 32.
- the vector diagram in Figure 8 shows projected fields on the S and P power detector reference planes.
- the reference fields S and P are assumed orthogonal — a reasonable assumption if a PBS is used.
- the S component or projection of the measured field Ei is denoted E x on the horizontal axis
- the P component or projection of the measured field Ei is denoted E ⁇ along the vertical axis.
- the reference field F ⁇ is also projected onto the S and P axes.
- the sum of E x and E s is detected on the S detector 20, and the sum of the projections E P and E ⁇ is detected on the P detector 28.
- Figure 9 shows the projection of E x onto E s and the projection of E ⁇ onto E P .
- Ei can be recovered from these projections shown in Figure 10 using a linear mathematical transformation.
- the interference terms measured at the S- and P- detectors 20 and 28 are proportional to
- the vectors s' and p act as the basis vectors onto which Ei is projected. Knowledge of the amplitudes of and relative angle between s' and p allows the projection of Ei onto an orthogonal basis set. What is required is a process by which this correcting matrix can be quickly and efficiently found to transform the measurements into an ortho-normal basis set.
- a calibration matrix, M is determined.
- the product gives a new vector E that represents the field Ei in a calibrated, orthogonal basis.
- the calibration begins by adjusting the polarization controllers
- PCi and PC 2 (41 and 24). With the reference laser 12 in the continuous sweep mode, PCi is adjusted so that the fringes observed on the P-detector 28 are maximized. When this is accomplished, the fringes on the S-detector 20 are minimized by adjusting PCi. When this is accomplished, PCi is adjusted so the fringe levels on the S- and P-detectors are approximately equal (to within
- Any measurement vector v m - ⁇ .E ⁇ scos ⁇ ⁇ ⁇ E ⁇ pco ⁇ j can be corrected by performing the following multiplication
- optical fiber can support a variety of different modes.
- one coupler and one detector would be added for each new mode present in the fiber.
- Module Controllers corresponding to fiber loops (like the polarization controller loops) would also be used in each reference path. Calibration would be carried out using analogous linear algebra operations.
- the absence of stray reflections as described above means that the invention is particularly effective at measuring the very low scatter levels that come from the non-homogeneities in the optical fiber core.
- Optical-fiber, scatter-level measurements can be used to measure losses within an optical network independently of the manner of connection to the network.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003256461A AU2003256461A1 (en) | 2002-07-09 | 2003-07-08 | Polarization diversity detection without a polarizing beam splitter |
US10/520,819 US7379168B2 (en) | 2002-07-09 | 2003-07-08 | Polarization diversity detection without a polarizing beam splitter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39426002P | 2002-07-09 | 2002-07-09 | |
US60/394,260 | 2002-07-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004005973A2 true WO2004005973A2 (en) | 2004-01-15 |
WO2004005973A3 WO2004005973A3 (en) | 2004-03-18 |
Family
ID=30115699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/021336 WO2004005973A2 (en) | 2002-07-09 | 2003-07-08 | Polarization diversity detection without a polarizing beam splitter |
Country Status (3)
Country | Link |
---|---|
US (1) | US7379168B2 (en) |
AU (1) | AU2003256461A1 (en) |
WO (1) | WO2004005973A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049287A1 (en) * | 2018-09-06 | 2020-03-12 | Cranfield University | Fluid sensing systems and methods |
EP3955477A1 (en) * | 2020-08-11 | 2022-02-16 | SubCom, LLC | Line monitoring system having heterodyne coherent detection |
EP4467957A1 (en) | 2023-05-24 | 2024-11-27 | Koninklijke Philips N.V. | Optical network with polarization diversity |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006025122A1 (en) * | 2005-05-31 | 2006-12-07 | Yokogawa Electric Corporation, Musashino | Device for measuring an optical characteristic |
US7538860B2 (en) * | 2007-08-17 | 2009-05-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber |
US8773650B2 (en) | 2009-09-18 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Optical position and/or shape sensing |
US9025158B2 (en) | 2010-06-01 | 2015-05-05 | Intuitive Surgical Operations, Inc. | Interferometric measurement with crosstalk suppression |
US9178611B2 (en) * | 2011-06-28 | 2015-11-03 | Intuitive Surgical Operations, Inc. | Fiber optic network interrogation tool for combined swept-heterodyne optical spectrum analysis and optical frequency-domain reflectometry |
US9009003B1 (en) | 2012-05-03 | 2015-04-14 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus and method for elimination of polarization-induced fading in fiber-optic sensor system |
US9429696B2 (en) | 2012-06-25 | 2016-08-30 | Intuitive Surgical Operations, Inc. | Systems and methods for reducing measurement error in optical fiber shape sensors |
US8909040B1 (en) | 2013-02-05 | 2014-12-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectometry (OFDR) system |
US9632006B2 (en) | 2013-06-10 | 2017-04-25 | General Photonics Corporation | Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry |
US9719883B2 (en) * | 2013-06-10 | 2017-08-01 | General Photonics Corporation | Devices and methods for characterization of distributed fiber bend and stress |
US10363101B2 (en) | 2015-01-08 | 2019-07-30 | Koninklijke Philips N.V. | Optical shape sensing system, medical apparatus and method for optical shape sensing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4397551A (en) * | 1981-10-29 | 1983-08-09 | Northern Telecom Limited | Method and apparatus for optical fiber fault location |
US6008487A (en) * | 1995-02-02 | 1999-12-28 | Yokogawa Electric Corporation | Optical-fiber inspection device |
US6111676A (en) * | 1998-02-26 | 2000-08-29 | Nortel Networks Corporation | Wavelength specific optical reflection meter/locator in signatured wavelength division multiplexed systems |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5646231A (en) * | 1988-02-17 | 1997-07-08 | Maxdem, Incorporated | Rigid-rod polymers |
DE69227902T3 (en) * | 1991-04-29 | 2010-04-22 | Massachusetts Institute Of Technology, Cambridge | DEVICE FOR OPTICAL IMAGING AND MEASUREMENT |
US6608717B1 (en) * | 1999-01-29 | 2003-08-19 | Colorado State University Research Foundation | Optical coherence microscope and methods of use for rapid in vivo three-dimensional visualization of biological function |
US6376830B1 (en) * | 1999-09-14 | 2002-04-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | System and method for measuring the transfer function of a guided wave device |
US6856400B1 (en) * | 2000-12-14 | 2005-02-15 | Luna Technologies | Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects |
-
2003
- 2003-07-08 WO PCT/US2003/021336 patent/WO2004005973A2/en not_active Application Discontinuation
- 2003-07-08 US US10/520,819 patent/US7379168B2/en not_active Expired - Lifetime
- 2003-07-08 AU AU2003256461A patent/AU2003256461A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4397551A (en) * | 1981-10-29 | 1983-08-09 | Northern Telecom Limited | Method and apparatus for optical fiber fault location |
US6008487A (en) * | 1995-02-02 | 1999-12-28 | Yokogawa Electric Corporation | Optical-fiber inspection device |
US6111676A (en) * | 1998-02-26 | 2000-08-29 | Nortel Networks Corporation | Wavelength specific optical reflection meter/locator in signatured wavelength division multiplexed systems |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049287A1 (en) * | 2018-09-06 | 2020-03-12 | Cranfield University | Fluid sensing systems and methods |
US12013385B2 (en) | 2018-09-06 | 2024-06-18 | Cranfield University | Fluid sensing systems and methods |
EP3955477A1 (en) * | 2020-08-11 | 2022-02-16 | SubCom, LLC | Line monitoring system having heterodyne coherent detection |
US11415481B2 (en) | 2020-08-11 | 2022-08-16 | Subcom, Llc | Line monitoring system having heterodyne coherent detection |
EP4467957A1 (en) | 2023-05-24 | 2024-11-27 | Koninklijke Philips N.V. | Optical network with polarization diversity |
WO2024240548A1 (en) | 2023-05-24 | 2024-11-28 | Koninklijke Philips N.V. | Optical network with polarization diversity |
Also Published As
Publication number | Publication date |
---|---|
US20060164627A1 (en) | 2006-07-27 |
US20080007718A9 (en) | 2008-01-10 |
AU2003256461A8 (en) | 2004-01-23 |
AU2003256461A1 (en) | 2004-01-23 |
WO2004005973A3 (en) | 2004-03-18 |
US7379168B2 (en) | 2008-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7280221B2 (en) | High efficiency low coherence interferometry | |
US9553664B2 (en) | Optical frequency domain reflectometry (OFDR) system | |
CN101871788B (en) | Distributed polarization crosstalk method and device for measuring polarization-preserving fiber and birefringent medium | |
US7379168B2 (en) | Polarization diversity detection without a polarizing beam splitter | |
CN103900797B (en) | With the optical coherence territory polarimeter of light path scanning position and velocity correction | |
US9041935B2 (en) | Measuring polarization crosstalk in optical birefringent materials and devices based on reduction of line broadening caused by birefringent dispersion | |
JPH05273082A (en) | Method and device for discriminating polarization mode dispersi0n of optical device | |
CN104792503B (en) | A kind of device of optical polarization device distribution crosstalk measurement sensitivity enhancing | |
CN105588661B (en) | A kind of device for realizing that single-point and regional temperature measure simultaneously using polarization-maintaining fiber grating | |
CN105784336B (en) | A kind of transmission of optical fibre device and reflecting properties test device and method | |
CN107515017A (en) | A kind of optical frequency domain reflectometer of light wave frequency shift modulation | |
JPH04265834A (en) | Independent-polarization-type measuring apparatus for reflection in optical coherence region | |
CN108287056B (en) | System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode | |
US5654793A (en) | Method and apparatus for high resolution measurement of very low levels of polarization mode dispersion (PMD) in single mode optical fibers and for calibration of PMD measuring instruments | |
EP1562032A2 (en) | Heterodyne optical network analysis that utilizes signal modulation | |
JPS6159224A (en) | Method and device for measuring state of polarization of quasi-monochromatic light for actual time | |
US10363101B2 (en) | Optical shape sensing system, medical apparatus and method for optical shape sensing | |
WO2014072845A1 (en) | Optical frequency domain reflectometry system with multiple fibers per detection chain | |
Bing et al. | Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry | |
JPS63118624A (en) | Optical fiber measuring device and method | |
Choi et al. | Accurate evaluation of polarization characteristics in the integrated optic chip for interferometric fiber optic gyroscope based on path-matched interferometry | |
Bock et al. | Characterization of highly birefringent optical fibers using interferometric techniques | |
Jing et al. | Analysis of the influence of opto-electro-mechanical devices on the measurementaccuracy of a distributed polarization detection system | |
Takada | Analysis of polarization dependence of optical low coherence reflectometry using an active faraday rotator | |
Steve Yao | DISTRIBUTED TRANSVERSE FORCE/STRESS SENSING ENABLED BY DISTRIBUTED POLARIZATION ANALYSIS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 7379168 Country of ref document: US Kind code of ref document: B2 Ref document number: 2006164627 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10520819 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 10520819 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10520819 Country of ref document: US |