CN108287056B - System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode - Google Patents
System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode Download PDFInfo
- Publication number
- CN108287056B CN108287056B CN201711351718.5A CN201711351718A CN108287056B CN 108287056 B CN108287056 B CN 108287056B CN 201711351718 A CN201711351718 A CN 201711351718A CN 108287056 B CN108287056 B CN 108287056B
- Authority
- CN
- China
- Prior art keywords
- polarization
- optical fiber
- sensitive ring
- polarization state
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 295
- 239000013307 optical fiber Substances 0.000 title claims abstract description 128
- 230000008878 coupling Effects 0.000 title claims abstract description 103
- 238000010168 coupling process Methods 0.000 title claims abstract description 103
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 59
- 238000012360 testing method Methods 0.000 claims abstract description 28
- 238000011156 evaluation Methods 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 9
- 230000008033 biological extinction Effects 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims description 97
- 230000003287 optical effect Effects 0.000 claims description 65
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 20
- 238000009826 distribution Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 abstract description 21
- 230000005684 electric field Effects 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 239000000306 component Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 238000000253 optical time-domain reflectometry Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤传感技术领域,具体涉及一种光纤敏感环偏振模耦合分布特性的测评系统及测评方法。The invention relates to the technical field of optical fiber sensing, in particular to an evaluation system and an evaluation method for the polarization mode coupling distribution characteristics of an optical fiber sensitive ring.
背景技术Background technique
作为一种关键的惯性测量技术,光纤陀螺(FOG)在1976年被首次提出后,便引起了许多国家的高度重视,经过多年的快速发展,FOG已经成为惯性技术领域的主流选择,被广泛应用于飞机与舰船导航,装甲车,坦克和摆式列车的姿态控制以及航天器稳定等。光纤敏感环是光纤陀螺的核心部件,它由保偏性能良好的偏振保持光纤(PMF)绕制而成,但是由光纤结构缺陷引起的固有偏振模耦合以及在绕制过程中受应力和主轴不对准引入的诱导偏振模耦合都会引起显著的偏振态波动,导致零漂。要从根本上提高光纤陀螺的性能,需要更精确的测量光纤敏感环的偏振模耦合系数和提高耦合点定位精度,深入研究光纤敏感环的保偏性能。As a key inertial measurement technology, fiber optic gyroscope (FOG) has attracted the attention of many countries since it was first proposed in 1976. After years of rapid development, FOG has become the mainstream choice in the field of inertial technology and is widely used It is used in aircraft and ship navigation, attitude control of armored vehicles, tanks and pendulum trains, and spacecraft stabilization. The fiber-optic sensing ring is the core component of the fiber optic gyroscope. It is wound from polarization-maintaining fiber (PMF) with good polarization-maintaining performance. The induced polarization mode coupling introduced by the quasi-induced polarization can cause significant polarization state fluctuations, resulting in zero drift. To fundamentally improve the performance of the fiber optic gyroscope, it is necessary to measure the polarization mode coupling coefficient of the fiber sensitive ring more accurately, improve the positioning accuracy of the coupling point, and deeply study the polarization-maintaining performance of the fiber sensitive ring.
光纤敏感环除了应用在光纤陀螺中以外,在光纤电流传感器中也获得广泛应用。与光纤陀螺的光纤敏感环不同,它采用椭圆偏振态保持光纤,它的偏振本征态为两个正交的椭圆。In addition to being used in fiber-optic gyroscopes, fiber-optic sensitive loops are also widely used in fiber-optic current sensors. Different from the fiber sensitive ring of the fiber optic gyroscope, it adopts an elliptical polarization state maintaining fiber, and its polarization eigenstates are two orthogonal ellipses.
目前,用于保偏光纤偏振模耦合检测的方法主要是光纤白光干涉仪,其原理是通过补偿光功率耦合点光程差来确定模耦合点;但是这种技术用于测量偏振模耦合时,会出现以下几个问题:第一,光纤敏感环中的宽谱光只有特定波长能谐振,并且偏振模耦合是波长相关的;然而白光干涉的光源是宽谱光源,其测量的模耦合强度是该宽谱光的平均模耦合,因此,使用白光干涉测量的宽谱光平均模耦合不能准确描述不同光纤谐振腔谐振波长受偏振模耦合的影响;第二,偏振模耦合系数是可正可负的,因为偏振模耦合本质上是由于相邻两段光纤双折射轴(也称偏振主轴)不对准引起的,其主轴不对准的角度可正可负;白光干涉仪所测得的模耦合系数是强度耦合系数,其值都是正的,不能反映真实的偏振模电场矢量的耦合系数;第三,由于使用宽谱光源,会导致很大的偏振模色散,其空间分辨率会随着测量长度的增加而降低;第四,白光干涉仪是通过机械扫描的方式来改变干涉仪两臂的光程差,而反射镜在机械运动过程中会使反射光偏振态发生变化,从而影响测量精度。第五,白光干涉仪在测量过程中要使用偏振分光棱镜,因此只能检测线偏振态保持光纤的偏振模耦合,不能检测偏振椭圆光纤中两个正交椭圆偏振态之间的模耦合。多年来,虽然光纤白光干涉仪技术已经达到相当高的水平,已经实用化和商品化。但是,对于更高质量的光纤敏感环,其模耦合系数更小,测量要求更高,而白光干涉仪受其原理的限制,进一步提高的空间有限。因此,为了进一步提高检测的灵敏度、检测出偏振模电场矢量的模耦合系数、也为了实现对椭圆偏振态保持光纤制作的光纤敏感环的偏振模耦合进行测量,探索新的方法是一个重要的需求。At present, the method used for polarization-maintaining fiber polarization mode coupling detection is mainly fiber white light interferometer. The principle is to determine the mode coupling point by compensating for the optical path difference of the optical power coupling point. The following problems will occur: First, the broad-spectrum light in the fiber-optic sensitive ring can only resonate at specific wavelengths, and the polarization mode coupling is wavelength-dependent; however, the light source of white light interference is a broad-spectrum light source, and the measured mode coupling strength is The average mode coupling of the broad-spectrum light, therefore, the broad-spectrum light average mode coupling using white light interferometry cannot accurately describe the effect of the polarization mode coupling on the resonant wavelengths of different fiber resonators; second, the polarization mode coupling coefficient can be positive or negative. , because the polarization mode coupling is essentially caused by the misalignment of the birefringence axes (also known as the polarization principal axes) of the two adjacent optical fibers, and the misalignment angle of the principal axes can be positive or negative; the mode coupling coefficient measured by the white light interferometer is the intensity coupling coefficient, and its values are all positive, which cannot reflect the coupling coefficient of the real polarization mode electric field vector; thirdly, due to the use of a broad-spectrum light source, it will lead to a large polarization mode dispersion, and its spatial resolution will vary with the measurement length. Fourth, the white light interferometer changes the optical path difference between the two arms of the interferometer by mechanical scanning, and the mirror will change the polarization state of the reflected light during the mechanical movement process, thereby affecting the measurement accuracy. Fifth, the white light interferometer uses a polarization beam splitter in the measurement process, so it can only detect the polarization mode coupling of the linear polarization state maintaining fiber, and cannot detect the mode coupling between two orthogonal elliptical polarization states in the polarization elliptical fiber. Although fiber optic white light interferometer technology has reached a fairly high level over the years, it has been practical and commercialized. However, for higher-quality fiber-optic sensitive rings, the mode coupling coefficient is smaller, and the measurement requirements are higher, while the white light interferometer is limited by its principle, and the space for further improvement is limited. Therefore, in order to further improve the detection sensitivity, detect the mode coupling coefficient of the electric field vector of the polarization mode, and also realize the measurement of the polarization mode coupling of the optical fiber sensitive ring made of the elliptically polarization state-preserving fiber, it is an important requirement to explore new methods. .
光时域反射技术是一种常用的测量光纤分布参数的技术,在光纤中某一点的瑞利散射光偏振态与该点入射光是一致的,所以可以利用瑞利散射光来检测光偏振态沿着光纤的变化。但光时域反射技术在具体应用中存在如下问题:首先,检测偏振态变化的脉冲时间必须小于光纤拍长的传输时间,而保偏光纤的拍长非常小,通常在2~3mm左右,这要求脉冲在ps甚至fs量级;其次,通常用于检测偏振态的光时域反射技术,采用的是固定方向的线偏振态,它不一定能够对准保偏光纤的偏振主轴,尤其没有办法确保对准椭圆偏振态保持光纤的偏振本征态;第三,检测偏振态变化的方法可以分为两种,一种是使用检偏器测量在特定偏振方向的光功,因而不能检测出偏振态的全部斯托克斯参数;另一种是方法是全偏振态检测,该技术通过获得沿着光纤长度分布的三个Stokes参量[S1,S2,S3],即完整的偏振态信息,但是,目前还没有在线的适应于高速脉冲的全偏振态检测的设备。因此,目前基于全偏振态检测的光时域反射技术仅限于普通单模光纤,还没有用于保偏光纤偏振模耦合性能测量。Optical time domain reflectometry is a commonly used technique for measuring fiber distribution parameters. The polarization state of the Rayleigh scattered light at a certain point in the fiber is consistent with the incident light at that point, so the Rayleigh scattered light can be used to detect the polarization state of the light. Variations along the fiber. However, the optical time domain reflectometry technology has the following problems in specific applications: first, the pulse time for detecting the change of polarization state must be less than the transmission time of the optical fiber beat length, and the beat length of the polarization maintaining fiber is very small, usually about 2~3mm. The pulse is required to be in the order of ps or even fs; secondly, the optical time domain reflectometry technology usually used to detect the polarization state uses a linear polarization state in a fixed direction, which may not be able to align with the polarization axis of the polarization maintaining fiber, especially there is no way to ensure Align the elliptical polarization state to maintain the polarization eigenstate of the fiber; thirdly, there are two methods to detect the polarization state change. One is to use an analyzer to measure the optical power in a specific polarization direction, so the polarization state cannot be detected. All Stokes parameters of ; the other method is full polarization state detection, which is the complete polarization state information by obtaining three Stokes parameters [S1, S2, S3] distributed along the length of the fiber, but, There is currently no online device suitable for full polarization state detection of high-speed pulses. Therefore, the current optical time domain reflectometry technology based on full polarization state detection is limited to ordinary single-mode fibers, and has not been used for the measurement of polarization mode coupling performance of polarization-maintaining fibers.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种能够对更高质量的光纤敏感环进行模耦合性能测量,有较高检测灵敏度,且能够检测出偏振模电场矢量的耦合系数,并能够对椭圆偏振态保持光纤制作的光纤敏感环的偏振模耦合进行测量的光纤敏感环偏振模耦合特性测评系统,以解决上述背景技术中不能进行全偏振态精确检测,实现保偏光纤偏振模耦合性能测量的技术问题。The purpose of the present invention is to provide a method capable of measuring the mode coupling performance of a higher-quality optical fiber sensitive ring, with higher detection sensitivity, and capable of detecting the coupling coefficient of the electric field vector of the polarization mode, and capable of maintaining the elliptical polarization state in the production of an optical fiber. The optical fiber sensitive ring polarization mode coupling characteristic evaluation system is used to measure the polarization mode coupling of the optical fiber sensitive ring, so as to solve the technical problem that the full polarization state cannot be accurately detected in the above-mentioned background art, and the polarization mode coupling performance measurement of the polarization maintaining fiber is realized.
为了实现上述目的,本发明采取了如下技术方案:In order to achieve the above object, the present invention has adopted the following technical solutions:
一种光纤敏感环偏振模耦合特性测评系统,包括发送模块、接收模块、计算模块,An optical fiber sensitive ring polarization mode coupling characteristic evaluation system, comprising a sending module, a receiving module, and a computing module,
所述发送模块包括依次连接的脉冲激光器、偏振控制器、光纤环行器,所述脉冲激光器的输出端连接所述偏振控制器的输入端,所述偏振控制器的输出端连接所述光纤环行器的第一端,所述光纤环行器的第二端连接所述待测光纤敏感环的所述测试始端。The sending module includes a pulsed laser, a polarization controller, and an optical fiber circulator connected in sequence, the output end of the pulsed laser is connected to the input end of the polarization controller, and the output end of the polarization controller is connected to the optical fiber circulator The first end of the fiber circulator is connected to the test start end of the fiber sensitive ring to be tested.
所述接收模块包括在线脉冲偏振态接收器、数字示波器,所述在线脉冲偏振态接收器的第一输入端连接所述光纤环行器的第三端,所述在线脉冲偏振态接收器的输出端连接所述数字示波器的输入端,所述数字示波器的输出端连接所述计算模块。The receiving module includes an online pulse polarization state receiver and a digital oscilloscope, the first input end of the online pulse polarization state receiver is connected to the third end of the optical fiber circulator, and the output end of the online pulse polarization state receiver is The input end of the digital oscilloscope is connected, and the output end of the digital oscilloscope is connected to the calculation module.
所述待测光纤敏感环的测试末端连接有偏振分析仪。A polarization analyzer is connected to the test end of the optical fiber sensitive ring to be tested.
进一步的,所述脉冲激光器包括窄带连续光激光器、铌酸锂调制器、可编程脉冲编码发生器、调制器驱动器、光纤放大器和光滤波器;所述窄带连续光激光器连接所述铌酸锂调制器的第一输入端,所述铌酸锂调制器的输出端连接光纤放大器的输入端,所述光纤放大器的输出端连接所述光滤波器的输入端,所述光滤波器的输出端连接所述偏振控制器;所述可编程脉冲编码发生器的输出端连接所述调制器驱动器的输入端,所述调制器驱动器的输出端连接所述铌酸锂调制器的第二输入端。Further, the pulsed laser includes a narrowband continuous light laser, a lithium niobate modulator, a programmable pulse code generator, a modulator driver, a fiber amplifier and an optical filter; the narrowband continuous light laser is connected to the lithium niobate modulator. The output end of the lithium niobate modulator is connected to the input end of the fiber amplifier, the output end of the fiber amplifier is connected to the input end of the optical filter, and the output end of the optical filter is connected to the input end of the optical filter. the polarization controller; the output end of the programmable pulse code generator is connected to the input end of the modulator driver, and the output end of the modulator driver is connected to the second input end of the lithium niobate modulator.
进一步的,所述在线脉冲偏振态接收器包括偏振分束器、耦合器、90°光混频器、3个平衡光探测器;所述偏振分束器的输出端连接有两个所述耦合器,所述两个耦合器的第一输出端分别连接所述90°光混频器的两个输入端,所述90°光混频器的两个输出端分别连接有第一平衡光探测器和第二平衡光探测器,所述两个耦合器的第二输出端连接有第三平衡光探测器,所述两个耦合器的第二输出端分别连接所述第三平衡光探测器的两个输入端;所述偏振分束器的输入端连接所述光纤环行器的第三端,所述第一平衡光探测器的输出端、所述第二平衡光探测器的输出端、所述第三平衡光探测器的输出端均连接所述数字示波器。Further, the online pulse polarization state receiver includes a polarization beam splitter, a coupler, a 90° optical mixer, and three balanced optical detectors; the output end of the polarization beam splitter is connected with two of the couplings. The first output ends of the two couplers are respectively connected to the two input ends of the 90° optical mixer, and the two output ends of the 90° optical mixer are respectively connected to the first balanced optical detector and a second balanced photodetector, the second output ends of the two couplers are connected to a third balanced photodetector, and the second output ends of the two couplers are respectively connected to the third balanced photodetector The input end of the polarization beam splitter is connected to the third end of the fiber circulator, the output end of the first balanced photodetector, the output end of the second balanced photodetector, The output ends of the third balanced photodetector are all connected to the digital oscilloscope.
进一步的,所述在线脉冲偏振态接收器包括耦合器、0°线检偏器、45°线检偏器、右旋圆检偏器、平衡光探测器;所述耦合器的三个输出端分别连接所述0°线检偏器、所述45°线检偏器和所述右旋圆检偏器的输入端,所述0°线检偏器、所述45°线检偏器和所述右旋圆检偏器的输出端分别连接有一个平衡光探测器,所述三个平衡光探测器的输出端均连接所述数字示波器,所述耦合器的输入端连接所述光纤环行器的第三端。Further, the online pulse polarization state receiver includes a coupler, a 0° line analyzer, a 45° line analyzer, a right-handed circular analyzer, and a balanced light detector; the three output ends of the coupler Connect the input ends of the 0° line analyzer, the 45° line analyzer and the right-hand circular analyzer respectively, the 0° line analyzer, the 45° line analyzer and the The output ends of the right-hand circular analyzer are respectively connected with a balanced photodetector, the output ends of the three balanced photodetectors are all connected to the digital oscilloscope, and the input end of the coupler is connected to the optical fiber loop the third end of the device.
一种利用如上所述的系统对光纤敏感环偏振模耦合特性进行测评的方法,包括如下步骤:A method for evaluating the polarization mode coupling characteristics of an optical fiber sensitive ring by using the above system, comprising the following steps:
调整输入所述待测光纤敏感环的光信号的偏振态与所述待测光纤敏感环的偏振本征态一致,将与所述待测光纤敏感环的偏振本征态一致的光信号作为测试光信号输入;Adjust the polarization state of the optical signal input to the optical fiber sensitive ring to be tested to be consistent with the polarization eigenstate of the optical fiber sensitive ring to be tested, and use the optical signal consistent with the polarization eigenstate of the optical fiber sensitive ring to be tested as the test Optical signal input;
通过所述在线脉冲偏振态接收器和所述数字示波器采集所述反射光信号沿纵向分布的完整偏振态斯托克斯矢量S;The complete polarization state Stokes vector S of the reflected optical signal distributed along the longitudinal direction is collected by the online pulse polarization state receiver and the digital oscilloscope;
根据所述斯托克斯矢量计算沿待测光纤敏感环纵向分布的偏振模耦合系数和消光比。According to the Stokes vector, the polarization mode coupling coefficient and extinction ratio distributed along the longitudinal direction of the fiber sensitive ring to be tested are calculated.
进一步的,所述调整输入所述待测光纤敏感环的测试光信号的偏振态与所述待测光纤敏感环的偏振本征态一致包括,调整所述脉冲激光器到连续光输出状态,经所述偏振控制器调制偏振态,并利用偏振分析仪观察待测光纤敏感环的输出偏振态,使得经偏振控制器调制后注入待测光纤敏感环的输入偏振态与待测光纤敏感环的偏振本征态一致。Further, the adjustment of the polarization state of the test optical signal input to the optical fiber sensitive ring to be tested is consistent with the polarization eigenstate of the optical fiber sensitive ring to be tested includes adjusting the pulsed laser to a continuous light output state, through the The polarization controller modulates the polarization state, and the polarization analyzer is used to observe the output polarization state of the fiber sensitive ring to be tested, so that the input polarization state of the fiber sensitive ring to be tested is modulated by the polarization controller and the polarization state of the fiber sensitive ring to be tested is the same. Consistent.
进一步的,所述通过所述在线脉冲偏振态接收器和所述数字示波器采集所述反射光信号沿纵向分布的完整偏振态斯托克斯矢量包括,将所述测试光信号经所述光纤环行器耦合后进入所述待测光纤敏感环,经背向瑞利散射形成反射光信号,所述反射光信号返回到所述光纤环行器的第二端进入到光纤环行器,经所述光纤环行器的第三端进入在线脉冲偏振态接收器。Further, the acquisition of the complete polarization state Stokes vector of the reflected optical signal along the longitudinal distribution by the online pulse polarization state receiver and the digital oscilloscope includes: circulating the test optical signal through the optical fiber. After coupling, it enters the optical fiber sensitive ring to be tested, and forms a reflected light signal through back Rayleigh scattering. The reflected light signal returns to the second end of the optical fiber circulator and enters the optical fiber circulator, and circulates through the optical fiber The third end of the device enters the online pulse polarization state receiver.
进一步的,所述根据所述斯托克斯矢量计算沿待测光纤敏感环纵向分布的偏振模耦合系数和消光比包括,根据所述完整偏振态斯托克斯矢量S,计算出斯托克斯矢量S的变化率根据公式计算出双折射矢量单位矢量表示本地偏振主轴的方向,大小|B|是偏振态绕偏振主轴旋转的速率,即在该主轴下双折射的大小;根据公式计算出模耦合系数k。Further, calculating the polarization mode coupling coefficient and extinction ratio longitudinally distributed along the optical fiber sensitive ring to be tested according to the Stokes vector includes calculating the Stokes vector S according to the complete polarization state Stokes vector. The rate of change of the S vector According to the formula Calculate the birefringence vector unit vector represents the direction of the local polarization principal axis, and the magnitude |B| is the rate at which the polarization state rotates around the polarization principal axis, that is, the magnitude of birefringence under this principal axis; according to the formula Calculate the mode coupling coefficient k.
进一步的,根据所述待测光纤敏感环上三个相邻检测点的斯托克斯矢量关系,采用三点四元数的方法计算所述双折射矢量B。Further, according to the Stokes vector relationship of the three adjacent detection points on the optical fiber sensitive ring to be measured, the birefringence vector B is calculated by a three-point quaternion method.
进一步的,根据所述所述双折射矢量B对邦加球上两轴进行投影计算所述模耦合系数k。Further, according to the birefringence vector B on the Bonga sphere The two axes are projected to calculate the mode coupling coefficient k.
本发明实现光纤敏感环的偏振模耦合分布式测量的原理如下:The principle of realizing the polarization mode coupling distributed measurement of the optical fiber sensitive ring in the present invention is as follows:
因为斯托克斯矢量S在邦加球上旋转,其矢径始终是1,因此它的变化率与当前的斯托克斯矢量垂直,从而有Because the Stokes vector S rotates on the Bonga sphere, its radius is always 1, so its rate of change is perpendicular to the current Stokes vector, thus having
其中其方向(单位矢量)是本地偏振主轴的方向,大小|B|是偏振态绕偏振主轴旋转的速率,即在该主轴下双折射的大小。当考虑偏振模耦合对偏振态传输的影响时,B应包含偏振模耦合系数,以下我们使用四元数的方法导出B与两个垂直偏振模的传输常数差Δβ=β+-β-和它们的模耦合系数k之间的关系。in its direction (unit vector ) is the orientation of the local polarization principal axis, and the magnitude |B| is the rate at which the polarization state rotates around the polarization principal axis, that is, the magnitude of birefringence under this principal axis. When considering the effect of polarization mode coupling on the transmission of polarization state, B should contain the polarization mode coupling coefficient. Below we use the quaternion method to derive the transmission constant difference between B and two vertically polarized modes Δβ=β + -β - and their The relationship between the mode coupling coefficient k of .
忽略保偏光纤损耗时,两个正交偏振态(包括线偏振保持光纤中的两个正交线偏振态,和椭圆偏振保持光纤中的两个正交椭圆偏振态)之间的耦合,理论上可写为Coupling between two orthogonal polarization states (including two orthogonal linear polarization states in linear polarization maintaining fibers, and two orthogonal elliptical polarization states in elliptical polarization maintaining fibers), ignoring the loss of polarization maintaining fibers, theoretical can be written as
分别为两个正交本征态投影到本地邦加球上的电场分量,并且β+,β-分别为两个正交本征态的传输常数,k为它们之间的耦合系数,z为沿着光纤纵向的长度。 are the electric field components of the two orthogonal eigenstates projected onto the local Bonga sphere, respectively, and β + , β- are the transmission constants of the two orthogonal eigenstates, k is the coupling coefficient between them, z is along the longitudinal length of the fiber.
将公式(2)表述为琼斯矢量的形式时,为When formula (2) is expressed in the form of Jones vector, it is
将公式(3)表述为四元数的形式[32],为Formula (3) is expressed in the form of quaternion [32], as
其中四元数(用英文花体Edwardian Script ITC表示,下同)是琼斯矢量对应的四元数,是琼斯矩阵对应的四元数,由于琼斯矩阵可以分解为where quaternion (expressed in English swash Edwardian Script ITC, the same below) is the Jones vector The corresponding quaternion, is the Jones matrix The corresponding quaternion, since the Jones matrix can be decomposed into
其中快慢轴的平均传输常数传输常数差Δβ=β+-β-,可得到琼斯矩阵对应的四元数为where the average transfer constant of the fast and slow axes Transmission constant difference Δβ=β + -β - , the quaternion corresponding to Jones matrix can be obtained as
因此therefore
其中,是的厄米转置。由于斯托克斯四元数因此in, Yes The Hermitian transpose of . Due to Stokes Quaternion therefore
将(7)代入(8),可得Substituting (7) into (8), we get
令斯托克斯四元数其中s0是标量部分,S是矢量部分,代入(9),可得Let Stokes Quaternion where s 0 is the scalar part and S is the vector part, and substituting in (9), we get
比较(11)与(1),可得Comparing (11) and (1), we can get
因此,只要测得B对两轴投影,就可以得到两个正交本征态的传输常数差Δβ和偏振模耦合系数k。Therefore, as long as the B pair is measured Two-axis projection, the transmission constant difference Δβ and the polarization mode coupling coefficient k of the two orthogonal eigenstates can be obtained.
基于三点四元数的方法,只需知道某小段光纤三个相邻点的斯托克斯矢量,便可以计算出B对两轴投影,即得到该小段光纤的传输常数差Δβ和偏振模耦合系数k。另外,在本系统中从光纤始端检测到的相邻三点A、B、C的偏振态四元数之间的旋转角度与在A点检测到的之间的旋转角度相同,因此在邦加球上Sout(A)、Sout(B)、Sout(C)之间的变化关系与SA(A)、SA(B)、SA(C)之间的变化关系是一致的。因此,在本系统中,通过计算光纤始端获得的A、B、C三个位置对应的斯托克斯矢量Sout(A)、Sout(B)、Sout(C),根据(12)式计算得到的偏振模耦合系数k,便可描述A、B、C相邻三点之间的偏振模耦合。Based on the three-point quaternion method, the B pair can be calculated only by knowing the Stokes vectors of three adjacent points of a small section of fiber. Two-axis projection, that is, the transmission constant difference Δβ and the polarization mode coupling coefficient k of the small section of optical fiber are obtained. In addition, the polarization state quaternion of three adjacent points A, B, and C detected from the beginning of the fiber in this system The rotation angle between the detected at point A and the The rotation angles between the _ (C) The variation relationship between is consistent. Therefore, in this system, the Stokes vectors S out (A), S out (B), and S out (C) corresponding to the three positions of A, B, and C obtained by calculating the beginning of the fiber, according to (12) The polarization mode coupling coefficient k calculated by the formula can describe the polarization mode coupling between the adjacent three points A, B, and C.
本发明有益效果:适用于测量高质量的光纤敏感环偏振模耦合,弥补现有白光干涉技术在测量光纤敏感环偏振模耦合精度不高以及不适用于椭圆偏振态保持光纤的不足,此外,可用于测量外界因素(如应力,弯曲,震动等)导致的保偏光纤偏振模耦合,实现多种参量的分布式测量。The invention has beneficial effects: it is suitable for measuring high-quality optical fiber sensitive ring polarization mode coupling, and makes up for the shortcomings of the existing white light interference technology in measuring optical fiber sensitive ring polarization mode coupling, which is not high in accuracy and is not suitable for elliptical polarization state-preserving fibers. It is used to measure the polarization mode coupling of polarization-maintaining fibers caused by external factors (such as stress, bending, vibration, etc.), and realize distributed measurement of various parameters.
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth in part in the following description, which will be apparent from the following description, or may be learned by practice of the present invention.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例所述的光纤敏感环偏振模耦合特性测评系统原理图。FIG. 1 is a schematic diagram of a system for evaluating the polarization mode coupling characteristics of an optical fiber sensitive ring according to an embodiment of the present invention.
图2为本发明实施例所述的光纤敏感环偏振模耦合特性测评系统中脉冲激光器的结构框图。FIG. 2 is a structural block diagram of a pulsed laser in the optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to an embodiment of the present invention.
图3为本发明实施例1所述的光纤敏感环偏振模耦合特性测评系统中在线脉冲偏振态接收器的结构框图。3 is a structural block diagram of an online pulse polarization state receiver in the optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to
图4为本发明实施例2所述的光纤敏感环偏振模耦合特性测评系统中在线脉冲偏振态接收器的结构框图。FIG. 4 is a structural block diagram of an online pulse polarization state receiver in the optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to Embodiment 2 of the present invention.
图5为本发明实施例所述的Stokes矢量三个分量S1、S2和S3对应的瑞利散射光功率沿光纤敏感环的纵向分布图。FIG. 5 is a longitudinal distribution diagram of the Rayleigh scattered light power corresponding to the three components S1 , S2 and S3 of the Stokes vector according to the embodiment of the present invention along the optical fiber sensitive ring.
图6为本发明实施例所述的从光纤敏感环的正向和反向测量得到的沿光纤敏感环的纵向分布的偏振模耦合曲线图。6 is a graph of polarization mode coupling along the longitudinal distribution of the optical fiber sensitive ring obtained from the forward and reverse measurements of the optical fiber sensitive ring according to the embodiment of the present invention.
图7为本发明实施例所述的经多次重复测量获得位置A(a)和E(b)的偏振态在邦加球上的分布图。FIG. 7 is a distribution diagram of the polarization states of positions A(a) and E(b) obtained by repeated measurements on the Bonga sphere according to the embodiment of the present invention.
其中:100-发送模块;200-接收模块;300-计算模块;110-脉冲激光器;120-偏振控制器;130-光纤环行器;400-待测光纤敏感环;210-在线脉冲偏振态接收器;220-数字示波器;500-偏振分析仪;111-窄带连续光激光器;112-铌酸锂调制器;113-可编程脉冲编码发生器;114-调制器驱动器;115-光纤放大器;116-光滤波器;211-偏振分束器;212-耦合器;213-90°光混频器;214-第一平衡光探测器;215-第二平衡光探测器;216-第三平衡光探测器;211a-耦合器;212a-0°线检偏器;213a-45°线检偏器;214a-右旋圆检偏器;215a-平衡光探测器。Among them: 100-sending module; 200-receiving module; 300-calculating module; 110-pulse laser; 120-polarization controller; 130-fiber circulator; ;220-digital oscilloscope;500-polarization analyzer;111-narrowband continuous light laser;112-lithium niobate modulator;113-programmable pulse code generator;114-modulator driver;115-fiber amplifier;116-optical 211-polarization beam splitter; 212-coupler; 213-90° optical mixer; 214-first balanced photodetector; 215-second balanced photodetector; 216-third
具体实施方式Detailed ways
下面详细叙述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below through the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件和/或它们的组。应该理解,这里使用的“连接”或“耦接”可以包括无线连接或耦接,使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It should be further understood that the word "comprising" used in the description of the present invention refers to the presence of stated features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, Integers, steps, operations, elements and/or groups thereof. It should be understood that "connected" or "coupled" as used herein can include wirelessly connected or coupled, and that use of the term "and/or" includes any and all combinations of one or more of the associated listed items.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in general dictionaries should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
为便于理解本发明,下面结合附图以具体实施例对本发明作进一步解释说明,且具体实施例并不构成对本发明实施例的限定。In order to facilitate the understanding of the present invention, the present invention will be further explained and described below with reference to the accompanying drawings with specific embodiments, and the specific embodiments do not constitute limitations to the embodiments of the present invention.
图1为本发明实施例所述的光纤敏感环偏振模耦合特性测评系统原理图,图2为本发明实施例所述的光纤敏感环偏振模耦合特性测评系统中脉冲激光器的结构框图,图3为本发明实施例1所述的光纤敏感环偏振模耦合特性测评系统中在线脉冲偏振态接收器的结构框图,图4为本发明实施例2所述的光纤敏感环偏振模耦合特性测评系统中在线脉冲偏振态接收器的结构框图,图5为本发明实施例所述的Stokes矢量三个分量S1、S2和S3对应的瑞利散射光功率沿光纤敏感环的纵向分布图,图6为本发明实施例所述的从光纤敏感环的正向和反向测量得到的沿光纤敏感环的纵向分布的偏振模耦合曲线图,图7为本发明实施例所述的经多次重复测量获得位置A(a)和E(b)的偏振态在邦加球上的分布图。1 is a schematic diagram of a system for evaluating the polarization mode coupling characteristics of an optical fiber sensitive ring according to an embodiment of the present invention, FIG. 2 is a structural block diagram of a pulsed laser in the system for evaluating the polarization mode coupling characteristics of an optical fiber sensitive ring according to an embodiment of the present invention, and FIG. 3 It is a structural block diagram of the online pulse polarization state receiver in the optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to the first embodiment of the present invention, and FIG. 4 is the optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to the second embodiment of the present invention. The structural block diagram of the online pulse polarization state receiver, Fig. 5 is the longitudinal distribution diagram of the Rayleigh scattered light power corresponding to the three components S1, S2 and S3 of the Stokes vector according to the embodiment of the present invention along the optical fiber sensitive ring, Fig. 6 is the The polarization mode coupling curve along the longitudinal distribution of the optical fiber sensitive ring obtained from the forward and reverse measurements of the optical fiber sensitive ring according to the embodiment of the present invention, FIG. 7 is the position obtained by repeated measurements according to the embodiment of the present invention Distributions of the polarization states of A(a) and E(b) on the Bonga sphere.
本领域技术人员应该理解,附图只是实施例的示意图,附图中的部件并不一定是实施本发明所必须的。Those skilled in the art should understand that the accompanying drawings are only schematic diagrams of the embodiments, and the components in the accompanying drawings are not necessarily necessary to implement the present invention.
如图1至图4所示,本发明实施例提供了一种光纤敏感环偏振模耦合特性测评系统,包括发送模块100、接收模块200、计算模块300,As shown in FIG. 1 to FIG. 4 , an embodiment of the present invention provides an optical fiber sensitive ring polarization mode coupling characteristic evaluation system, including a sending
所述发送模块100包括依次连接的脉冲激光器110、偏振控制器120、光纤环行器130,所述脉冲激光器110的输出端连接所述偏振控制器120的输入端,所述偏振控制器120的输出端连接所述光纤环行器130的第一端,所述光纤环行器130的第二端连接所述待测光纤敏感环400的所述测试始端;The sending
所述接收模块200包括在线脉冲偏振态接收器210、数字示波器220,所述在线脉冲偏振态接收器210的第一输入端连接所述光纤环行器130的第三端,所述在线脉冲偏振态接收器210的输出端连接所述数字示波器220的输入端,所述数字示波器220的输出端连接所述计算模块300;The receiving
所述待测光纤敏感环400的测试末端连接有偏振分析仪500。A
在本发明的一个具体实施例中,所述脉冲激光器110包括窄带连续光激光器111、铌酸锂调制器112、可编程脉冲编码发生器113、调制器驱动器114、光纤放大器115和光滤波器116;所述窄带连续光激光器111连接所述铌酸锂调制器112的第一输入端,所述铌酸锂调制器112的输出端连接光纤放大器115的输入端,所述光纤放大器115的输出端连接所述光滤波器116的输入端,所述光滤波器116的输出端连接所述偏振控制器120;所述可编程脉冲编码发生器113的输出端连接所述调制器驱动器114的输入端,所述调制器驱动器114的输出端连接所述铌酸锂调制器112的第二输入端。In a specific embodiment of the present invention, the
在本发明的一个具体实施例中,所述在线脉冲偏振态接收器210包括偏振分束器211、耦合器212、90°光混频器213、3个平衡光探测器214,215,216;所述偏振分束器211的输出端连接有两个所述耦合器212,所述两个耦合器212的第一输出端分别连接所述90°光混频器213的两个输入端,所述90°光混频器213的两个输出端分别连接有第一平衡光探测器214和第二平衡光探测器215,所述两个耦合器212的第二输出端连接有第三平衡光探测器216,所述两个耦合器212的第二输出端分别连接所述第三平衡光探测器216的两个输入端;所述偏振分束器211的输入端连接所述光纤环行器130的第三端,所述第一平衡光探测器214的输出端、所述第二平衡光探测器215的输出端、所述第三平衡光探测器216的输出端均连接所述数字示波器220。In a specific embodiment of the present invention, the online pulse
在本发明的一个具体实施例中,所述在线脉冲偏振态接收器210包括耦合器211a、0°线检偏器212a、45°线检偏器213a、右旋圆检偏器214a、平衡光探测器215a;所述耦合器211a的三个输出端分别连接所述0°线检偏器212a、所述45°线检偏器213a和所述右旋圆检偏器214a的输入端,所述0°线检偏器212a、所述45°线检偏器213a和所述右旋圆检偏器214a的输出端分别连接有一个平衡光探测器215a,所述三个平衡光探测器215a的输出端均连接所述数字示波器220,所述耦合器211a的输入端连接所述光纤环行器130的第三端。In a specific embodiment of the present invention, the online pulse
如图5至图7所示,本发明实施例还提供了一种利用如上所述的系统对光纤环偏振模耦合特性进行测评的方法,包括如下步骤:As shown in FIG. 5 to FIG. 7 , an embodiment of the present invention further provides a method for evaluating the polarization mode coupling characteristics of an optical fiber ring by using the above system, including the following steps:
调整输入所述待测光纤敏感环400的光信号的偏振态与所述待测光纤敏感环400的偏振本征态一致,将与所述待测光纤敏感环400的偏振本征态一致的光信号作为测试光信号输入;Adjust the polarization state of the optical signal input to the optical fiber
通过所述在线脉冲偏振态接收器210和所述数字示波器220采集所述反射光信号沿纵向分布的完整偏振态斯托克斯矢量S;The complete polarization state Stokes vector S of the reflected optical signal distributed along the longitudinal direction is collected by the online pulse
根据所述斯托克斯矢量计算沿待测光纤敏感环400纵向分布的偏振模耦合系数和消光比。The polarization mode coupling coefficient and extinction ratio distributed along the longitudinal direction of the optical
在本发明所述的方法实施例中,所述调整输入所述待测光纤敏感环400的测试光信号的偏振态与所述待测光纤敏感环400的偏振本征态一致包括,调整所述脉冲激光器110到连续光输出状态,经所述偏振控制器120调制偏振态,并利用偏振分析仪500观察待测光纤敏感环400的输出偏振态,使得经偏振控制器120调制后注入待测光纤敏感环400的输入偏振态与待测光纤敏感环400的偏振本征态一致。In the method embodiment of the present invention, the adjusting the polarization state of the test optical signal input to the optical
在本发明所述的方法实施例中,所述通过所述在线脉冲偏振态接收器210和所述数字示波器220采集所述反射光信号沿纵向分布的完整偏振态斯托克斯矢量包括,将所述测试光信号经所述光纤环行器130耦合后进入所述待测光纤敏感环400,经背向瑞利散射形成反射光信号,所述反射光信号返回到所述光纤环行器130的第二端进入到光纤环行器130,经所述光纤环行器130的第三端进入在线脉冲偏振态接收器210。In the method embodiment of the present invention, the acquisition of the complete polarization state Stokes vector distributed along the longitudinal direction of the reflected optical signal through the online pulse
在本发明所述的方法实施例中,所述根据所述斯托克斯矢量计算沿待测光纤敏感环400纵向分布的偏振模耦合系数和消光比包括,根据所述完整偏振态斯托克斯矢量S,计算出斯托克斯矢量S的变化率根据公式计算出双折射矢量单位矢量表示本地偏振主轴的方向,大小|B|是偏振态绕偏振主轴旋转的速率,即在该主轴下双折射的大小;根据公式计算出模耦合系数k。In the method embodiment of the present invention, the calculating the polarization mode coupling coefficient and the extinction ratio distributed along the longitudinal direction of the optical
在本发明所述的方法实施例中,根据所述待测光纤敏感环400上三个相邻检测点的斯托克斯矢量关系,采用三点四元数的方法计算所述双折射矢量B。In the method embodiment of the present invention, the birefringence vector B is calculated by the method of three-point quaternion according to the Stokes vector relationship of the three adjacent detection points on the optical
在本发明所述的方法实施例中,根据所述所述双折射矢量B对邦加球上两轴进行投影计算所述模耦合系数k。In the method embodiment of the present invention, according to the birefringence vector B on the Bonga sphere The two axes are projected to calculate the mode coupling coefficient k.
实施例1Example 1
本发明实施例1所述的一种光纤敏感环偏振模耦合特性测评系统,包括发送模块100、接收模块200、计算模块300,An optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to
所述发送模块100包括依次连接的脉冲激光器110、偏振控制器120、光纤环行器130,所述脉冲激光器110的输出端连接所述偏振控制器120的输入端,所述偏振控制器120的输出端连接所述光纤环行器130的第一端,所述光纤环行器130的第二端连接所述待测光纤敏感环400的所述测试始端;The sending
所述接收模块200包括在线脉冲偏振态接收器210、数字示波器220,所述在线脉冲偏振态接收器210的第一输入端连接所述光纤环行器130的第三端,所述在线脉冲偏振态接收器210的输出端连接所述数字示波器220的输入端,所述数字示波器220的输出端连接所述计算模块300;The receiving
所述待测光纤敏感环400的测试末端连接有偏振分析仪500。A
如图2所示,本发明实施例1所述的脉冲激光器110包括窄带连续光激光器111、铌酸锂调制器112、可编程脉冲编码发生器113、调制器驱动器114、光纤放大器115和光滤波器116;所述窄带连续光激光器111连接所述铌酸锂调制器112的第一输入端,所述铌酸锂调制器112的输出端连接光纤放大器115的输入端,所述光纤放大器115的输出端连接所述光滤波器116的输入端,所述光滤波器116的输出端连接所述偏振控制器120;所述可编程脉冲编码发生器113的输出端连接所述调制器驱动器114的输入端,所述调制器驱动器114的输出端连接所述铌酸锂调制器112的第二输入端。As shown in FIG. 2 , the
通过如图2所示的脉冲激光器110可实现连续光和脉冲光的切换。发射连续光时,连续光经偏振控制器120调制偏振态,通过光纤环130的第二端进入待测光纤敏感环400,连续光由待测光纤敏感环400的测试末端进入偏振分析仪500,通过偏振分析仪500观察经偏振控制器120调制偏振态,并利用偏振分析仪500观察待测光纤敏感环400的输出偏振态,使得经偏振控制器120调制后注入待测光纤敏感环400的输入连续光偏振态与待测光纤敏感环400的偏振本征态一致。使用脉冲激光器110发射脉冲光,脉冲光信号经调整后的偏振控制器120调制后作为测试信号由光纤环130的第二端进入待测光纤敏感环400,经待测光纤敏感环400瑞利散射后形成反射光信号,反射光信号由光纤环130的第三端进入接收模块200,进一步完成耦合特性测评。The switching between continuous light and pulsed light can be realized by the
如图3所示,所述在线脉冲偏振态接收器210包括偏振分束器211、耦合器212、90°光混频器213、3个平衡光探测器214,215,216;所述偏振分束器211的输出端连接有两个所述耦合器212,所述两个耦合器212的第一输出端分别连接所述90°光混频器213的两个输入端,所述90°光混频器213的两个输出端分别连接有第一平衡光探测器214和第二平衡光探测器215,所述两个耦合器212的第二输出端连接有第三平衡光探测器216,所述两个耦合器212的第二输出端分别连接所述第三平衡光探测器216的两个输入端;所述偏振分束器211的输入端连接所述光纤环行器130的第三端,所述第一平衡光探测器214的输出端、所述第二平衡光探测器215的输出端、所述第三平衡光探测器216的输出端均连接所述数字示波器220。As shown in FIG. 3 , the online pulse
实施例2Example 2
本发明实施例2所述的一种光纤敏感环偏振模耦合特性测评系统,包括发送模块100、接收模块200、计算模块300,An optical fiber sensitive ring polarization mode coupling characteristic evaluation system according to Embodiment 2 of the present invention includes a sending
所述发送模块100包括依次连接的脉冲激光器110、偏振控制器120、光纤环行器130,所述脉冲激光器110的输出端连接所述偏振控制器120的输入端,所述偏振控制器120的输出端连接所述光纤环行器130的第一端,所述光纤环行器130的第二端连接所述待测光纤敏感环400的所述测试始端;The sending
所述接收模块200包括在线脉冲偏振态接收器210、数字示波器220,所述在线脉冲偏振态接收器210的第一输入端连接所述光纤环行器130的第三端,所述在线脉冲偏振态接收器210的输出端连接所述数字示波器220的输入端,所述数字示波器220的输出端连接所述计算模块300;The receiving
所述待测光纤敏感环400的测试末端连接有偏振分析仪500。A
如图2所示,本发明实施例1所述的脉冲激光器110包括窄带连续光激光器111、铌酸锂调制器112、可编程脉冲编码发生器113、调制器驱动器114、光纤放大器115和光滤波器116;所述窄带连续光激光器111连接所述铌酸锂调制器112的第一输入端,所述铌酸锂调制器112的输出端连接光纤放大器115的输入端,所述光纤放大器115的输出端连接所述光滤波器116的输入端,所述光滤波器116的输出端连接所述偏振控制器120;所述可编程脉冲编码发生器113的输出端连接所述调制器驱动器114的输入端,所述调制器驱动器114的输出端连接所述铌酸锂调制器112的第二输入端。As shown in FIG. 2 , the
通过如图2所示的脉冲激光器110可实现连续光和脉冲光的切换。发射连续光时,连续光经偏振控制器120调制偏振态,通过光纤环130的第二端进入待测光纤敏感环400,连续光由待测光纤敏感环400的测试末端进入偏振分析仪500,通过偏振分析仪500观察经偏振控制器120调制偏振态,并利用偏振分析仪500观察待测光纤敏感环400的输出偏振态,使得经偏振控制器120调制后注入待测光纤敏感环400的输入连续光偏振态与待测光纤敏感环400的偏振本征态一致。使用脉冲激光器110发射脉冲光,脉冲光信号经调整后的偏振控制器120调制后作为测试信号由光纤环130的第二端进入待测光纤敏感环400,经待测光纤敏感环400瑞利散射后形成反射光信号,反射光信号由光纤环130的第三端进入接收模块200,进一步完成耦合特性测评。The switching between continuous light and pulsed light can be realized by the
如图4所示,本发明实施例2所述的在线脉冲偏振态接收器210包括耦合器211a、0°线检偏器212a、45°线检偏器213a、右旋圆检偏器214a、平衡光探测器215a;所述耦合器211a的三个输出端分别连接所述0°线检偏器212a、所述45°线检偏器213a和所述右旋圆检偏器214a的输入端,所述0°线检偏器212a、所述45°线检偏器213a和所述右旋圆检偏器214a的输出端分别连接有一个平衡光探测器215a,所述三个平衡光探测器215a的输出端均连接所述数字示波器220,所述耦合器211a的输入端连接所述光纤环行器130的第三端。As shown in FIG. 4 , the online pulse
如图5所示,所述数字示波器220采集的偏振态Stokes矢量三个分量S1,S2和S3对应的瑞利散射光功率沿光纤敏感环的纵向分布。利用算法计算可获得沿光纤敏感环的纵向分布的完整偏振态信息。As shown in FIG. 5 , the Rayleigh scattered light power corresponding to the three components S1 , S2 and S3 of the polarization state Stokes vector collected by the
图6是分别从光纤敏感环的正向和反向测量,通过Matlab算法计算得到的沿光纤敏感环的纵向分布的偏振模耦合曲线;可以看出这两条曲线基本一致,在光纤敏感环的A、B、C和D的位置检测出相对比较大的偏振模耦合,而在位置E的偏振模耦合很小。Figure 6 is the polarization mode coupling curve along the longitudinal distribution of the optical fiber sensitive ring calculated by the Matlab algorithm from the forward and reverse measurements of the optical fiber sensitive ring; it can be seen that the two curves are basically the same, and the Relatively large polarization mode coupling is detected at positions A, B, C, and D, while the polarization mode coupling at position E is small.
图7是多次重复测量获得两个不同位置的偏振态在邦加球上的分布,其中(a)和(b)分别对应图6所示光纤敏感环位置A和E。可以看出位置A的偏振模耦合较大,导致偏振态偏离偏振主轴[1,0,0]分布;而位置B的偏振模耦合较小,其偏振态集中分布于偏振主轴[1,0,0]。Figure 7 shows the distribution of polarization states at two different positions on the Bonga sphere obtained by repeated measurements, where (a) and (b) correspond to positions A and E of the fiber sensitive ring shown in Figure 6, respectively. It can be seen that the polarization mode coupling at position A is large, causing the polarization state to deviate from the polarization axis [1,0,0] distribution; while the polarization mode coupling at position B is small, and its polarization state is concentrated in the polarization axis [1,0,0] 0].
本发明实现光纤敏感环的偏振模耦合分布式测量的原理如下:The principle of realizing the polarization mode coupling distributed measurement of the optical fiber sensitive ring in the present invention is as follows:
因为斯托克斯矢量S在邦加球上旋转,其矢径始终是1,因此它的变化率与当前的斯托克斯矢量垂直,从而有Because the Stokes vector S rotates on the Bonga sphere, its radius is always 1, so its rate of change is perpendicular to the current Stokes vector, thus having
其中其方向(单位矢量)是本地偏振主轴的方向,大小|B|是偏振态绕偏振主轴旋转的速率,即在该主轴下双折射的大小。当考虑偏振模耦合对偏振态传输的影响时,B应包含偏振模耦合系数,以下我们使用四元数的方法导出B与两个垂直偏振模的传输常数差Δβ=β+-β_和它们的模耦合系数k之间的关系。in its direction (unit vector ) is the orientation of the local polarization principal axis, and the magnitude |B| is the rate at which the polarization state rotates around the polarization principal axis, that is, the magnitude of birefringence under this principal axis. When considering the effect of polarization mode coupling on the transmission of polarization state, B should contain the polarization mode coupling coefficient. Below we use the quaternion method to derive the transmission constant difference between B and the two vertically polarized modes Δβ = β + -β _ and their The relationship between the mode coupling coefficient k of .
忽略保偏光纤损耗时,两个正交偏振态(包括线偏振保持光纤中的两个正交线偏振态,和椭圆偏振保持光纤中的两个正交椭圆偏振态)之间的耦合,理论上可写为Coupling between two orthogonal polarization states (including two orthogonal linear polarization states in linear polarization maintaining fibers, and two orthogonal elliptical polarization states in elliptical polarization maintaining fibers), ignoring the loss of polarization maintaining fibers, theoretical can be written as
分别为两个正交本征态投影到本地邦加球上的电场分量,并且β+,β_分别为两个正交本征态的传输常数,k为它们之间的耦合系数,z为沿着光纤纵向的长度。 are the electric field components of the two orthogonal eigenstates projected onto the local Bonga sphere, respectively, and β + , β_ are the transfer constants of the two orthogonal eigenstates, k is the coupling coefficient between them, z is along the longitudinal length of the fiber.
将公式(2)表述为琼斯矢量的形式时,为When formula (2) is expressed in the form of Jones vector, it is
将公式(3)表述为四元数的形式[32],为Formula (3) is expressed in the form of quaternion [32], as
其中四元数(用英文花体Edwardian Script ITC表示,下同)是琼斯矢量对应的四元数,是琼斯矩阵对应的四元数,由于琼斯矩阵可以分解为where quaternion (expressed in English swash Edwardian Script ITC, the same below) is the Jones vector The corresponding quaternion, is the Jones matrix The corresponding quaternion, since the Jones matrix can be decomposed into
其中快慢轴的平均传输常数传输常数差Δβ=β+-β_,可得到琼斯矩阵对应的四元数为where the average transfer constant of the fast and slow axes Transmission constant difference Δβ=β + -β _ , the quaternion corresponding to Jones matrix can be obtained as
因此therefore
其中,是的厄米转置。由于斯托克斯四元数因此in, Yes The Hermitian transpose of . Due to Stokes Quaternion therefore
将(7)代入(8),可得Substituting (7) into (8), we get
令斯托克斯四元数其中s0是标量部分,S是矢量部分,代入(9),可得Let Stokes Quaternion where s 0 is the scalar part and S is the vector part, and substituting in (9), we get
比较(11)与(1),可得Comparing (11) and (1), we can get
因此,只要测得B对两轴投影,就可以得到两个正交本征态的传输常数差Δβ和偏振模耦合系数k。Therefore, as long as the B pair is measured Two-axis projection, the transmission constant difference Δβ and the polarization mode coupling coefficient k of the two orthogonal eigenstates can be obtained.
基于三点四元数的方法,只需知道某小段光纤三个相邻点的斯托克斯矢量,便可以计算出B对两轴投影,即得到该小段光纤的传输常数差Δβ和偏振模耦合系数k。另外,在本系统中从光纤始端检测到的相邻三点A、B、C的偏振态四元数之间的旋转角度与在A点检测到的之间的旋转角度相同,因此在邦加球上Sout(A)、Sout(B)、Sout(C)之间的变化关系与SA(A)、SA(B)、SA(C)之间的变化关系是一致的。因此,在本系统中,通过计算光纤始端获得的A、B、C三个位置对应的斯托克斯矢量Sout(A)、Sout(B)、Sout(C),根据(12)式计算得到的偏振模耦合系数k,便可描述A,B,C相邻三点之间的偏振模耦合。Based on the three-point quaternion method, the B pair can be calculated only by knowing the Stokes vectors of three adjacent points of a small section of fiber. Two-axis projection, that is, the transmission constant difference Δβ and the polarization mode coupling coefficient k of the small section of optical fiber are obtained. In addition, the polarization state quaternion of three adjacent points A, B, and C detected from the beginning of the fiber in this system The rotation angle between the detected at point A and the The rotation angles between the _ (C) The variation relationship between is consistent. Therefore, in this system, the Stokes vectors S out (A), S out (B), and S out (C) corresponding to the three positions of A, B, and C obtained by calculating the beginning of the fiber, according to (12) The polarization mode coupling coefficient k calculated by the formula can describe the polarization mode coupling between the three adjacent points A, B, and C.
通过4000次重复实验表明,本检测方法具有很高的可重复性,测量空间分辨率达到了1米。此外,实验表明该检测方法同样可用于测量外界因素(如应力,弯曲,震动等)导致的保偏光纤偏振模耦合,实现多种参量的分布式测量。4000 repeated experiments show that the detection method has high repeatability, and the measurement spatial resolution reaches 1 meter. In addition, experiments show that the detection method can also be used to measure the polarization mode coupling of polarization-maintaining fibers caused by external factors (such as stress, bending, vibration, etc.), and realize distributed measurement of various parameters.
综上所述,本发明能用于测量高质量的光纤敏感环偏振模耦合,弥补现有白光干涉技术在测量光纤敏感环偏振模耦合精度不高以及不适用于椭圆偏振态保持光纤的不足,此外,可用于测量外界因素(如应力,弯曲,震动等)导致的保偏光纤偏振模耦合,实现多种参量的分布式测量。To sum up, the present invention can be used to measure the high-quality optical fiber sensitive ring polarization mode coupling, which makes up for the shortcomings of the existing white light interference technology in measuring the optical fiber sensitive ring polarization mode coupling, which is not high in accuracy and is not suitable for elliptically polarized state-preserving fibers. In addition, it can be used to measure polarization-maintaining fiber polarization mode coupling caused by external factors (such as stress, bending, vibration, etc.), and realize distributed measurement of various parameters.
本领域普通技术人员可以理解:本发明实施例中的装置中的部件可以按照实施例的描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的部件可以合并为一个部件,也可以进一步拆分成多个子部件。Those of ordinary skill in the art can understand that: the components of the apparatus in the embodiment of the present invention may be distributed in the apparatus of the embodiment according to the description of the embodiment, and may also be located in one or more apparatuses different from this embodiment by making corresponding changes . The components of the above-mentioned embodiments may be combined into one component, or may be further divided into multiple sub-components.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711351718.5A CN108287056B (en) | 2017-12-15 | 2017-12-15 | System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711351718.5A CN108287056B (en) | 2017-12-15 | 2017-12-15 | System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108287056A CN108287056A (en) | 2018-07-17 |
CN108287056B true CN108287056B (en) | 2020-01-21 |
Family
ID=62832067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711351718.5A Expired - Fee Related CN108287056B (en) | 2017-12-15 | 2017-12-15 | System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108287056B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110501004B (en) * | 2019-07-16 | 2023-03-10 | 南京恒高光电研究院有限公司 | Fiber optic gyroscope structure based on double-end polarization state detection and capable of tolerating mode coupling |
CN111510209B (en) * | 2020-04-10 | 2021-08-06 | 中国信息通信研究院 | Optical fiber vibration monitoring method and device |
CN112162229B (en) * | 2020-09-14 | 2021-06-11 | 国网江苏省电力有限公司电力科学研究院 | State monitoring device for optical fiber current sensor |
CN113405566B (en) * | 2021-05-27 | 2023-05-16 | 广东工业大学 | Optical fiber sensitive ring optical performance test method based on distributed polarization crosstalk |
CN113654764A (en) * | 2021-07-05 | 2021-11-16 | 上海大学 | Polarization maintaining optical fiber beat length measuring device and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2183624A2 (en) * | 2007-06-29 | 2010-05-12 | Uto International Corporation | Distributed optical fiber sensor system |
CN102946270A (en) * | 2011-09-27 | 2013-02-27 | 中华电信股份有限公司 | Optical frequency domain reflection type optical fiber network testing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101344452B (en) * | 2008-08-22 | 2011-07-20 | 北京交通大学 | Method for implementing polarization sensitive optical time domain reflection technology by using piezoelectric ceramic |
CN102252831A (en) * | 2011-06-22 | 2011-11-23 | 北京交通大学 | Three-point measuring method for double-refraction distribution in optical fiber |
CN103076160B (en) * | 2013-01-15 | 2016-01-13 | 电子科技大学 | A kind of system based on clapping length from relevant OTDR systematic survey single-mode fiber |
CN203259329U (en) * | 2013-05-10 | 2013-10-30 | 武汉钜风科技有限公司 | Measuring device for polarization mode coupling distribution in polarization maintaining fiber |
CN105071894B (en) * | 2015-08-03 | 2017-10-24 | 西南交通大学 | A kind of nonopiate palarization multiplexing phase modulated signal transmission method based on phase tracking |
CN206497197U (en) * | 2017-02-24 | 2017-09-15 | 北京世维通光智能科技有限公司 | Optical fiber sensing ring performance detecting system |
-
2017
- 2017-12-15 CN CN201711351718.5A patent/CN108287056B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2183624A2 (en) * | 2007-06-29 | 2010-05-12 | Uto International Corporation | Distributed optical fiber sensor system |
CN102946270A (en) * | 2011-09-27 | 2013-02-27 | 中华电信股份有限公司 | Optical frequency domain reflection type optical fiber network testing method |
Also Published As
Publication number | Publication date |
---|---|
CN108287056A (en) | 2018-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287056B (en) | System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode | |
CN104677508B (en) | A kind of atomic spin precession detection method and device that light is detected based on circular polarization | |
CN102183360B (en) | The detection method of polarization extinction ratio of optical polarizer and pick-up unit | |
CN102279095B (en) | Device for reducing influence of birefringent chromatic dispersion on polarization coupling measurement of polarization maintaining optical fiber | |
CN102288388B (en) | Device and method for improving polarization-maintaining optical fiber polarization coupling measurement precision and symmetry | |
US10670389B2 (en) | Sensitive optical fiber shape sensing based on shape-related optical polarization evolution | |
CN106546411B (en) | Polarization maintaining optical fibre Verdet constant measuring apparatus and method based on Mach-Zehnder and Michelson interferometers | |
CN107702730A (en) | Method of testing, device, storage medium and the computer equipment of optical fibre gyro | |
Calvani et al. | Polarization measurements on single-mode fibers | |
CN103900680A (en) | Device and detecting method for restraining polarization crosstalk measuring noise by the adoption of light source | |
CN111238772A (en) | Optical fiber ring detection device and detection method based on polarization crosstalk principle | |
CN111366881A (en) | Fully polarized Faraday magnetic field sensor and modulation method based on Sagnac interference system | |
CN112082735B (en) | Optical fiber sensing ring bidirectional synchronous measurement device and method based on Sagnac structure | |
US9651380B2 (en) | Integrated optical coupler and fibre-optic system having such an integrated optical coupler | |
CN107314888B (en) | Polarization performance measurement method of multifunctional lithium niobate integrated device | |
CN104677596B (en) | A kind of Sagnac annulars light path is embedded in the optics autocorrelation function analyzer of non-equilibrium Mach Zehnder types light path scanner | |
US20080007718A9 (en) | Polarization diversity detection without a polarizing beam splitter | |
CN107289922B (en) | Forward and reverse simultaneous measurement device of common-light-path fiber-optic gyroscope ring | |
CN101587011A (en) | The Method of Measuring the Beat Length of Polarization Maintaining Fiber | |
CN103363905A (en) | Polarization-maintaining optical fiber length measuring system and polarization-maintaining optical fiber length measuring method based on spectrum analysis | |
CN107976300A (en) | A kind of measuring method of beat length of polarization maintaining optical fiber | |
CN107806981B (en) | Measuring device for beat length of polarization maintaining optical fiber | |
CN112082736B (en) | A bidirectional measurement device and method for polarization-maintaining fiber ring polarization crosstalk based on a multifunctional optical switch | |
Bing et al. | Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry | |
CN103047980A (en) | Re-entry-type fiber-optic gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200121 |