WO2003069961A1 - Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds - Google Patents
Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds Download PDFInfo
- Publication number
- WO2003069961A1 WO2003069961A1 PCT/US2003/004149 US0304149W WO03069961A1 WO 2003069961 A1 WO2003069961 A1 WO 2003069961A1 US 0304149 W US0304149 W US 0304149W WO 03069961 A1 WO03069961 A1 WO 03069961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arom
- bis
- compound
- nmr
- bromohydrin
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims description 75
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical class C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 title abstract description 13
- 150000005359 phenylpyridines Chemical class 0.000 title abstract description 4
- 150000002504 iridium compounds Chemical class 0.000 title description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 75
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 34
- -1 phosphino alkoxide Chemical class 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 239000003446 ligand Substances 0.000 claims description 22
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- USJRLGNYCQWLPF-UHFFFAOYSA-N chlorophosphane Chemical compound ClP USJRLGNYCQWLPF-UHFFFAOYSA-N 0.000 claims description 6
- 150000002924 oxiranes Chemical class 0.000 claims description 6
- NYZSKEULTVZUAW-UHFFFAOYSA-N 2,2-bis(trifluoromethyl)oxirane Chemical group FC(F)(F)C1(C(F)(F)F)CO1 NYZSKEULTVZUAW-UHFFFAOYSA-N 0.000 claims description 5
- HPVIRTHDXVHGEF-UHFFFAOYSA-N 2-[bis(2,3,4,5,6-pentafluorophenyl)phosphanylmethyl]-1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC=1C(F)=C(F)C(F)=C(F)C=1P(CC(O)(C(F)(F)F)C(F)(F)F)C1=C(F)C(F)=C(F)C(F)=C1F HPVIRTHDXVHGEF-UHFFFAOYSA-N 0.000 claims description 5
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- GORJRRDZPJZJNO-UHFFFAOYSA-N 2-(diphenylphosphanylmethyl)-1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound C=1C=CC=CC=1P(CC(O)(C(F)(F)F)C(F)(F)F)C1=CC=CC=C1 GORJRRDZPJZJNO-UHFFFAOYSA-N 0.000 claims description 3
- XGRJZXREYAXTGV-UHFFFAOYSA-N chlorodiphenylphosphine Chemical group C=1C=CC=CC=1P(Cl)C1=CC=CC=C1 XGRJZXREYAXTGV-UHFFFAOYSA-N 0.000 claims description 3
- 229910001850 copernicium Inorganic materials 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical group 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- KPFUSZACLUJQBK-UHFFFAOYSA-N 1-diphenylphosphanylpropan-2-ol Chemical compound C=1C=CC=CC=1P(CC(O)C)C1=CC=CC=C1 KPFUSZACLUJQBK-UHFFFAOYSA-N 0.000 claims description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052805 deuterium Inorganic materials 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical class [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 abstract description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 110
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 102
- 239000010410 layer Substances 0.000 description 100
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 75
- 239000000203 mixture Substances 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 43
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 37
- 239000000243 solution Substances 0.000 description 32
- 239000000463 material Substances 0.000 description 31
- 238000004293 19F NMR spectroscopy Methods 0.000 description 30
- 238000005160 1H NMR spectroscopy Methods 0.000 description 29
- 238000004679 31P NMR spectroscopy Methods 0.000 description 28
- 238000010992 reflux Methods 0.000 description 26
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 24
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000013078 crystal Substances 0.000 description 18
- 238000003756 stirring Methods 0.000 description 18
- 239000012044 organic layer Substances 0.000 description 17
- 239000000741 silica gel Substances 0.000 description 16
- 229910002027 silica gel Inorganic materials 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910052741 iridium Inorganic materials 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000000284 extract Substances 0.000 description 9
- 230000005525 hole transport Effects 0.000 description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000005401 electroluminescence Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000539 dimer Substances 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- QFFVPLLCYGOFPU-UHFFFAOYSA-N barium chromate Chemical compound [Ba+2].[O-][Cr]([O-])(=O)=O QFFVPLLCYGOFPU-UHFFFAOYSA-N 0.000 description 6
- 150000002503 iridium Chemical class 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- XMGSMOCOWOKNNK-UHFFFAOYSA-N 2-(bromomethyl)-1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound BrCC(O)(C(F)(F)F)C(F)(F)F XMGSMOCOWOKNNK-UHFFFAOYSA-N 0.000 description 5
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 5
- 229940093475 2-ethoxyethanol Drugs 0.000 description 5
- 150000005360 2-phenylpyridines Chemical class 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003818 flash chromatography Methods 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKDGRDCXVWSXDC-UHFFFAOYSA-N 2-chloropyridine Chemical class ClC1=CC=CC=N1 OKDGRDCXVWSXDC-UHFFFAOYSA-N 0.000 description 3
- BCJVBDBJSMFBRW-UHFFFAOYSA-N 4-diphenylphosphanylbutyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCCP(C=1C=CC=CC=1)C1=CC=CC=C1 BCJVBDBJSMFBRW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- 125000003963 dichloro group Chemical group Cl* 0.000 description 3
- SPWVRYZQLGQKGK-UHFFFAOYSA-N dichloromethane;hexane Chemical class ClCCl.CCCCCC SPWVRYZQLGQKGK-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- DMILFILPEIMZDC-UHFFFAOYSA-N 2,3-bis(trifluoromethyl)oxirane Chemical compound FC(F)(F)C1OC1C(F)(F)F DMILFILPEIMZDC-UHFFFAOYSA-N 0.000 description 2
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 150000003944 halohydrins Chemical class 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- YOLNUNVVUJULQZ-UHFFFAOYSA-J iridium;tetrachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Ir] YOLNUNVVUJULQZ-UHFFFAOYSA-J 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000001455 metallic ions Chemical class 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000000935 solvent evaporation Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- CGLGVKOSEKPHBD-UHFFFAOYSA-N 1-[[2-(hydroxymethyl)phenyl]methyl]pyrimidine-2,4-dione Chemical compound OCC1=CC=CC=C1CN1C(=O)NC(=O)C=C1 CGLGVKOSEKPHBD-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- SUCRXPISVHPSRD-UHFFFAOYSA-N 2-(2,4-dimethoxyphenyl)pyridine Chemical compound COC1=CC(OC)=CC=C1C1=CC=CC=N1 SUCRXPISVHPSRD-UHFFFAOYSA-N 0.000 description 1
- AQZRARFZZMGLHL-UHFFFAOYSA-N 2-(trifluoromethyl)oxirane Chemical compound FC(F)(F)C1CO1 AQZRARFZZMGLHL-UHFFFAOYSA-N 0.000 description 1
- MZVSTDHRRYQFGI-UHFFFAOYSA-N 2-chloro-4-methylpyridine Chemical compound CC1=CC=NC(Cl)=C1 MZVSTDHRRYQFGI-UHFFFAOYSA-N 0.000 description 1
- UNCQVRBWJWWJBF-UHFFFAOYSA-N 2-chloropyrimidine Chemical class ClC1=NC=CC=N1 UNCQVRBWJWWJBF-UHFFFAOYSA-N 0.000 description 1
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical class C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- YGBCLRRWZQSURU-UHFFFAOYSA-N 4-[(diphenylhydrazinylidene)methyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=NN(C=1C=CC=CC=1)C1=CC=CC=C1 YGBCLRRWZQSURU-UHFFFAOYSA-N 0.000 description 1
- SYQQWGGBOQFINV-FBWHQHKGSA-N 4-[2-[(2s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-2-yl]ethoxy]-4-oxobutanoic acid Chemical compound C1CC2=CC(=O)[C@H](CCOC(=O)CCC(O)=O)C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 SYQQWGGBOQFINV-FBWHQHKGSA-N 0.000 description 1
- PGDARWFJWJKPLY-UHFFFAOYSA-N 4-[2-[3-[4-(diethylamino)phenyl]-2-phenyl-1,3-dihydropyrazol-5-yl]ethenyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=CC1=CC(C=2C=CC(=CC=2)N(CC)CC)N(C=2C=CC=CC=2)N1 PGDARWFJWJKPLY-UHFFFAOYSA-N 0.000 description 1
- KBXXZTIBAVBLPP-UHFFFAOYSA-N 4-[[4-(diethylamino)-2-methylphenyl]-(4-methylphenyl)methyl]-n,n-diethyl-3-methylaniline Chemical compound CC1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)N(CC)CC)C)C1=CC=C(C)C=C1 KBXXZTIBAVBLPP-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- UHBIKXOBLZWFKM-UHFFFAOYSA-N 8-hydroxy-2-quinolinecarboxylic acid Chemical compound C1=CC=C(O)C2=NC(C(=O)O)=CC=C21 UHBIKXOBLZWFKM-UHFFFAOYSA-N 0.000 description 1
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005577 Kumada cross-coupling reaction Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- 241001126918 Sycon Species 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- PSWFJSUZIUTUJD-UHFFFAOYSA-N [Li]CP(c1ccccc1)c1ccccc1 Chemical compound [Li]CP(c1ccccc1)c1ccccc1 PSWFJSUZIUTUJD-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001543 aryl boronic acids Chemical class 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006255 dilithiation reaction Methods 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JKMBMIMLVFMXRW-LYYFRFARSA-N epicocconone Chemical compound C1=C2C[C@@H](CO)OC=C2C(=O)[C@]2(C)C1=C(C(/O)=C/C(=O)/C=C/C=C/C=C/C)C(=O)O2 JKMBMIMLVFMXRW-LYYFRFARSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- LWSQHQVQBSQPJQ-UHFFFAOYSA-M magnesium;1,3-dimethoxybenzene-6-ide;bromide Chemical compound [Mg+2].[Br-].COC1=CC=[C-]C(OC)=C1 LWSQHQVQBSQPJQ-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- CBHCDHNUZWWAPP-UHFFFAOYSA-N pecazine Chemical compound C1N(C)CCCC1CN1C2=CC=CC=C2SC2=CC=CC=C21 CBHCDHNUZWWAPP-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000000607 proton-decoupled 31P nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003513 tertiary aromatic amines Chemical class 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
- C07F15/004—Iridium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/5004—Acyclic saturated phosphines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/505—Preparation; Separation; Purification; Stabilisation
- C07F9/5063—Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds
- C07F9/5068—Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds from starting materials having the structure >P-Hal
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- This invention relates to electroluminescent complexes of iridium(lll) with phenylpyridines or phenylpyrimidines, which additionally have a phosphinoalkoxide ligand. It also relates to electronic devices in which the active layer includes an electroluminescent Ir(lll) complex. Description of the Related Art
- Organic electronic devices that emit light, such as light-emitting diodes that make up displays, are present in many different kinds of electronic equipment.
- an organic active layer is sandwiched between two electrical contact layers. At least one of the electrical contact layers is light-transmitting so that light can pass through the electrical contact layer.
- the organic active layer emits light through the light-transmitting electrical contact layer upon application of electricity across the electrical contact layers.
- organic electroluminescent compounds As the active component in light-emitting diodes. Simple organic molecules such as anthracene, thiadiazole derivatives, and coumarin derivatives are known to show electroluminescence. Semiconductive conjugated polymers have also been used as electroluminescent components, as has been disclosed in, for example, Friend et al., U.S. Patent 5,247,190, Heeger et al., U.S. Patent 5,408,109, and Nakano et al., Published European Patent Application 443 861. Complexes of 8-hydroxyquinolate with trivalent metal ions, particularly aluminum, have been extensively used as electroluminescent components, as has been disclosed in, for example, Tang et al., U.S. Patent 5,552,678.
- the present invention is directed to an iridium compound having the following Formula I: lrL a Lbu (I) where
- L a and L D are alike or different and each of L a and L D has Formula II, shown in Figure 1 , wherein:
- R 1 through R ⁇ are independently selected from hydrogen, deuterium, alkyl, alkoxy, halogen, nitro, cyano, fluoro, C n (H+F)2 n +l, OC n (H+F)2 n +l , and OCF2X, where n is an integer from 1 through 12, and X is H, CI, or Br, and
- A is C or N, provided that when A is N, there is no R1 ; and L' is a bidentate phosphino alkoxide ligand having Formula III, shown in Figure 2, wherein: R9 can be the same or different at each occurrence and is selected from C m (H+F) 2n + ⁇ , C 6 (H+F)pY 5- p, R10 can be the same or different at each occurrence and is selected from H, F, and C n (H+F)2n+ ⁇ ; Y is C m (H+F) 2m+ ⁇ ; n is an integer from 1 through 12; m is 2 or 3; p is 0 or an integer from 1 through 5.
- the present invention is directed to phosphinoalkanol precursor compounds from which the phosphinoalkoxide ligands are made.
- the phosphinoalkanol compounds have Formula lll-H, shown in Figure 2, in which R 9 , R 1 0, Y, n, m, and p are as defined above for Formula III.
- the present invention is directed to a process for making a phosphinoalkanolcompound.
- the present invention is directed to an organic electronic device having at least one emitting layer comprising the above Ir(lll) compound, or combinations of the above- lr(l 11) compounds.
- compound is intended to mean an electrically uncharged substance made up of molecules that further consist of atoms, wherein the atoms cannot be separated by physical means.
- ligand is intended to mean a molecule, ion, or atom that is attached to the coordination sphere of a metallic ion.
- complex when used as a noun, is intended to mean a compound having at least one metallic ion and at least one ligand.
- group is intended to mean a part of a compound, such a substituent in an organic compound or a ligand in a complex.
- adjacent to when used to refer to layers in a device, does not necessarily mean that one layer is immediately next to another layer.
- adjacent R groups is used to refer to R groups that are next to each other in a chemical formula (i.e., R groups that are on atoms joined by a bond).
- photoactive refers to any material that exhibits electroluminescence and/or photosensitivity.
- (H+F) is intended to mean all combinations of hydrogen and fluorine, including completely hydrogenated, partially fluorinated or perfluorinated substituents.
- Electroluminescence is generally measured in a diode structure, in which the material to be tested is sandwiched between two electrical contact layers and a voltage is applied. The light intensity and wavelength can be measured, for example, by a photodiode and a spectrograph, respectively.
- the IUPAC numbering system is used throughout, where the groups from the Periodic Table are numbered from left to right as 1 through 18 (CRC Handbook of Chemistry and Physics, 81 st Edition, 2000). DESCRIPTION OF THE DRAWINGS Figure 1 shows Formula II for phenylpyridine and phenylpyrimidine ligands useful in the metal complex of the invention, and Formula ll-H for the ligand precursor compound.
- Figure 2 shows Formula III for phosphinoalkanoxide ligands useful in the metal complex of the invention, and Formula lll-H for the ligand precursor compound.
- Figure 3 shows Equation 1 for forming the ligand precursor compound, ll-H.
- Figure 4 shows Equation 2 for forming the ligand precursor compound, lll-H.
- Figure 5 shows Formulae IV and V for bridged- Ir dimers.
- FIG. 6 is a schematic diagram of a light-emitting device (LED).
- FIG. 7 is a schematic diagram of an LED testing apparatus. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
- the Ir(lll) compounds of the invention have Formula I, as defined above.
- the compounds are frequently referred to as bis-cyclometalated complexes.
- the cyclometalated complexes of the invention are neutral and non-ionic, and can be sublimed intact. Thin films of these materials obtained via vacuum deposition exhibit good to excellent electroluminescent properties.
- Two of the ligands in the Ir(lll) compounds of the invention are phenylpyridine or phenylpyrimidine ligands having Formula II, shown in Figure 1.
- the R1 through R ⁇ groups of Formula II may be chosen from conventional substitutents for organic compounds, such as alkyl, alkoxy, halogen, nitro, and cyano groups, as well as fluoro, fluorinated alkyl and fluorinated alkoxy groups.
- the groups can be partially or fully fluorinated (perfluorinated).
- the precursor 2-phenylpyridines and 2-phenylpyrimidines, Formula ll-H in Figure 1 are prepared, in good to excellent yield, using the Suzuki coupling of the substituted 2-chloropyridine or 2-chloropyrimidine with arylboronic acid as described in O. Lohse, P.Thevenin, E. Waldvogel Synlett, 1999, 45-48. This reaction is illustrated for the pyridine derivative, where X and Y represent substituents, in Equation (1) shown in Figure 3.
- t-Bu represents a tertiary butyl group
- the third ligand in the Ir(lll) compounds of the invention is a phosphinoalkoxide.
- the precursor phosphinoalkanol compounds having Formula lll-H, as shown in Figure 2 can be prepared using known procedures, such as, for example, the procedure reported in Inorg. Chem. 1985, v.24, p.3680, for 1 ,1-bis(trifluoromethyl)-2- (diphenylphosphino)ethanol. This method involves the reaction of diphenylphosphinomethyllithium with hexafluoroacetylacetone, followed by hydrolysis.
- the phosphino alkanol compounds can be prepared using the reaction of 1 ,1-bis(trifluoromethyl)ethylene oxide with the corresponding secondary phosphine (R 9 2 PH) or its deprotonated form as a salt ([R 9 2P]M), where M is Li, Na, or K.
- the deprotonated form can be prepared by the treatment of the secondary phosphine with a strong base, such as BuLi or t-BuOK.
- the phosphino alkanol compounds can be made using dilithiated derivatives of halohydrins, which can be prepared as described in J. Chem. Soc, Perkin Trans. 1, 1983, p. 3019. The dilithio-derivative is reacted with a chlorophosphine to produce the desired phosphinoalkanol ligand.
- a dried bromohydrin is combined with n-butyl lithium, wherein the molar ratio of n-butyl lithium to bromohydrin is about 2.
- the preferred process for preparing the phosphino alkanol comprises the steps: (1) combining an epoxide with aqueous HBr, to form a bromohydrin;
- step (3) combining the dried bromohydrin from step (2) with n-butyl lithium, wherein the molar ratio of n-butyl lithium to the bromohydrin is about 2; (4) adding a chlorophosphine to the product of step (3); and
- the epoxide can be substituted with groups such as alkyl, partially fluorinated alkyl, and perfluoroalkyl groups; preferably trifluoromethyl groups.
- the chlorophosphine is a chlorodialkylphosphine or a chlorodiarylphosphine; preferably, chlorodiphenylphosphine.
- the acid can be any Bronsted acid which will provide a proton in the last reaction step, preferably trifluoroacetic acid.
- the reaction scheme is illustrated using bis(trifluoromethyl)ethylene oxide in Equation (2), shown in Figure 4.
- the dilithiation of the bromohydrin deriving from bis(trifluoromethyl)ethylene oxide can be done with 2 equivalents of BuLi within 0.5 h at -78 °C. This is different from the literature procedure (J. Chem. Soc, Perkin Trans. 1, 1983, p. 3019) which employs 1 equivalent of BuLi for 3 hours, followed by 1 equivalent of naphthyl lithium for 5 hours at -78 °C. • Napthyl lithium is not commercially available and is more expensive to make. The process of the invention is, in general, faster and uses readily available butyl lithium.
- R9 is C ⁇ Fs or CeHpYs-p, where Y is CF 3 and p is 3 or 4.
- R 10 is CF 3 and m is 2.
- Suitable phosphinoalkanol compounds include:
- the phosphinoalkoxide ligands from the above compounds are, respectively (abbreviations provided in brackets): 1 -diphenylphosphino-2-propoxide [dppO] 1 -bis(trifluoromethyl)-2-(diphenylphosphino)ethoxide [PO-1 ] 1 ,1 -bis(trifluoromethyl)-2-(bis(3'5'- ditrifluoromethylphenyl)phosphino)ethoxide [PO-2] 1 , 1 -bis(trifluoromethyl)-2-(bis(4'- trifluoromethylphenyl)phosphino)ethoxide [PO-3] 1 , 1 -bis(trifluoromethyl)-2- (bis(pentafluorophenyl)phosphino)ethoxide [PO-4]
- the iridium complexes of the invention can be prepared by first preparing an intermediate iridium dimer with the phenylpyridine or phenypyrimidine ligand.
- the dichloro bridged dimers having Formula IV can generally be prepared by reacting iridium trichloride hydrate with the 2-phenylpyridine or 2-phenylpyrimidine in a suitable solvent, such as 2-ethoxyethanol.
- the iridium bridged dimers having Formula V can generally be prepared by reacting iridium trichloride hydrate with the 2-phenylpyridine or
- the chloro dicyclometalated complexes can react, under biphasic or homogeneous conditions, with either the phosphinoalkanols in the presence of a base, such as NaOH, or salts of the phosphinoalkanols.
- a base such as NaOH
- salts of the phosphinoalkanols are used with the dichloro bridged dimers, and also when intermediates having Formula V are used, no additional base is required for the synthesis.
- Examples of compounds having Formula I, where L a is the same as i are given in Table 2 below, where Rl through R ⁇ are as shown in Formula I, and A is C.
- the present invention also relates to an electronic device comprising at least one photoactive layer positioned between two electrical contact layers, wherein the at least one layer of the device includes the iridium complex of the invention.
- Devices frequently have additional hole transport and electron transport layers.
- a typical structure is shown in Figure 1.
- the device 100 has an anode layer 110 and a cathode layer 150. Adjacent to the anode is a layer 120 comprising hole transport material. Adjacent to the cathode is a layer 140 comprising an electron transport material. Between the hole transport layer and the electron transport layer is the photoactive layer 130. Layers 120, 130, and 140 are individually and collectively referred to as the active layers.
- the photoactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
- an applied voltage such as in a light-emitting diode or light-emitting electrochemical cell
- a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage
- photodetectors include photoconductive cells, photoresistors, photoswitches, phototransistors, and phototubes, and photovoltaic cells, as these terms are describe in Markus, John, Electronics and Nucleonics Dictionary, 470 and 476 (McGraw-Hill, Inc. 1966).
- the iridium compounds of the invention are particularly useful as the photoactive material in layer 130, or as electron transport material in layer 140.
- the iridium complexes of the invention are used as the light-emitting material in diodes. It has been found that in these applications, the compounds of the invention do not need to be in a solid matrix diluent in order to be effective.
- a layer that is greater than 20% by weight iridium compound, based on the total weight of the layer, up to 100% iridium compound, can be used as the emitting layer. Additional materials can be present in the emitting layer with the iridium compound. For example, a fluorescent dye may be present to alter the color of emission. A diluent may also be added.
- the diluent can be a polymeric material, such as poly(N-vinyl carbazole) and polysilane. It can also be a small molecule, such as 4,4'-N,N'-dicarbazole biphenyl or tertiary aromatic amines. When a diluent is used, the iridium compound is generally present in a small amount, usually less than 20% by weight, preferably less than 10% by weight, based on the total weight of the layer.
- the iridium complexes may be present in more than one isomeric form, or mixtures of different complexes may be present. It will be understood that in the above discussion of OLEDs, the term "the iridium compound" is intended to encompass mixtures of compounds and/or isomers.
- the HOMO (highest occupied molecular orbital) of the hole transport material should align with the work function of the anode
- the LUMO (lowest un-occupied molecular orbital) of the electron transport material should align with the work function of the cathode.
- Chemical compatibility and sublimation temp of the materials are also important considerations in selecting the electron and hole transport materials.
- the other layers in the OLED can be made of any materials which are known to be useful in such layers.
- the anode 110 is an electrode that is particularly efficient for injecting positive charge carriers. It can be made of, for example materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide, or it can be a conducting polymer. Suitable metals include the Group 11 metals, the metals in Groups 4, 5, and 6, and the Group 8-10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals, such as indium-tin- oxide, are generally used.
- the anode 110 may also comprise an organic material such as polyaniline as described in “Flexible light-emitting diodes made from soluble conducting polymer,” Nature vol. 357, pp 477-479 (11 June 1992). At least one of the anode and cathode should be at least partially transparent to allow the generated light to be observed.
- hole transport materials for layer 120 have been summarized for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transporting molecules and polymers can be used. Commonly used hole transporting molecules are: N,N'-diphenyl-N,N'-bis(3-methylphenyl)- [1 ,r-biphenyl]-4,4'-diamine (“TPD”), 1,1-bis[(di-4-tolylamino) phenyljcyclohexane (“TAPC”), N,N'-bis(4-methylphenyl)-N,N'-bis(4- ethylphenylHI S.S'-dimethy biphenylj ⁇ '-diamine (“ETPD”), tetrakis-(3-methylphenyl)-N,N,N',N'-2,5-phenylenediamine (“PDA”), a- phenyl
- hole transporting polymers are polyvinylcarbazole, (phenylmethyl)polysilane, and polyaniline. It is also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
- electron transport materials for layer 140 include metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum ("Alq 3 "); phenanthroline-based compounds, such as 2,9-dimethyl-4,7- diphenyl-1,10-phenanthroline (“DDPA”) or 4,7-diphenyl-1,10- phenanthroline (“DPA”), and azole compounds such as 2-(4-biphenylyl)-5- (4-t-butylphenyl)-1 ,3,4-oxadiazole (“PBD”) and 3-(4-biphenylyl)-4-phenyl- 5-(4-t-butylphenyl)-1,2,4-triazole (“TAZ").
- metal chelated oxinoid compounds such as tris(8-hydroxyquinolato)aluminum (“Alq 3 ")
- phenanthroline-based compounds such as 2,9-dimethyl-4,7- diphenyl-1,10-phen
- the cathode 150 is an electrode that is particularly efficient for injecting electrons or negative charge carriers.
- the cathode can be any metal or nonmetal having a lower work function than the anode.
- Materials for the cathode can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals, the Group 12 metals, including the rare earth elements and lanthanides, and the actinides. Materials such as aluminum, indium, calcium, barium, samarium and magnesium, as well as combinations, can be used.
- Li-containing organometallic compounds can also be deposited between the organic layer and the cathode layer to lower the operating voltage.
- a layer between the conductive polymer layer 120 and the active layer 130 to facilitate positive charge transport and/or band-gap matching of the layers, or to function as a protective layer.
- additional layers between the active layer 130 and the cathode layer 150 to facilitate negative charge transport and/or band-gap matching between the layers, or to function as a protective layer.
- Layers that are known in the art can be used.
- any of the above-described layers can be made of two or more layers.
- inorganic anode layer 110 may be surface treated to increase charge carrier transport efficiency.
- the choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency.
- each functional layer may be made up of more than one layer.
- the device can be prepared by sequentially vapor depositing the individual layers on a suitable substrate.
- Substrates such as glass and polymeric films can be used.
- Conventional vapor deposition techniques can be used, such as thermal evaporation, chemical vapor deposition, and the like.
- the organic layers can be coated from solutions or dispersions in suitable solvents, using any conventional coating technique.
- the different layers will have the following range of thicknesses: anode 110, 500-5000A, preferably 1000-2000A; hole transport layer 120, 50-1 OO0A, preferably 200-800A; light-emitting layer 130, 10-1000 A, preferably 100-800A; electron transport layer 140, 50-1 OOOA, preferably 200-800A; cathode 150, 200-1 OOOOA, preferably 300-5000A.
- the location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer.
- the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer.
- the desired ratio of layer thicknesses will depend on the exact nature of the materials used.
- the efficiency of devices made with the iridium compounds of the invention can be further improved by optimizing the other layers in the device.
- more efficient cathodes such as Ca, Ba or LiF can be used.
- Shaped substrates and novel hole transport materials that result in a reduction in operating voltage or increase quantum efficiency are also applicable.
- Additional layers can also be added to tailor the energy levels of the various layers and facilitate electroluminescence.
- the iridium complexes of the invention are phosphorescent and photoluminescent and may be useful in applications other than OLEDs.
- organometallic complexes of iridium have been used as oxygen sensitive indicators, as phosphorescent indicators in bioassays, and as catalysts.
- This example illustrates the preparation of the 2-phenylpyridines and 2-phenylpyrimidines which are used to form the iridium compounds.
- 2-(2',4'-dimethoxyphenyl)pyridine was prepared via Kumada coupling of 2-chloropyridine with 2,4-dimethoxyphenylmagnesium bromide in the presence of [(dppb)PdCI 2 ] catalyst, where dppb represents 1,4-bis(diphenylphosphino)butane).
- This example illustrates the preparation of the precursor compound 1 , 1 -bis(trifluoromethyl)-2-bis(triphenylphosphino)-ethanol (PO-1 H).
- the compound was made by two different methods.
- Method a The phosphino alkanol was made according to the procedure in Inorg. Chem. (1985), 24(22), pp. 3680-7. Under nitrogen, 1 ,1- bis(trifluoromethyl)ethylene oxide (12 g, 0.066 mol) was added dropwise to a pre-cooled (10-15 °C) solution of diphenylphosphine (10g, 0.053 mol) in dry THF (50 mL). The reaction mixture was stirred at 25°C for 2 days, after which NMR analysis indicated > 90% conversion.
- Method a Under nitrogen, a stirring solution of (3,5-(CF 3 ) 2 C 6 H 3 ) 2 PH (1.50 g; 3.27 mmol; prepared as described in: Casey, C. P. et al., J. Am. Chem. Soc.
- Method b Under nitrogen, to a stirring solution of 1 ,1-bis(trifluoromethyl)-2- bromoethanol (0.91 g) in dry ether (20 mL) cooled to -78 °C, was added drop-wise 1.6 M n-BuLi in hexanes (Aldrich; 4.35 mL). After 1 h at -78 °C, (3,5-(CF 3 ) 2 C 6 H 3 ) 2 PCI (1.63 g; prepared as described in: Casalnuovo et al., US Patent 5175335) was added drop-wise, at vigorous stirring, to the resulting solution of the dilithiated derivative.
- This example illustrates the formation of dichloro-bridged dinuclear bis- cyclometallated Ir complexes.
- the Ir complexes were prepared by the reaction between lrCl 3 -nH 2 0 and the corresponding 2-arylpyridine in aqueous 2- ethoxyethanol.
- the method is similar to the literatures procedure for 2- phenylpyridine (Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J., J. Am. Chem. Soc, 1984, 106, 6647-53; Garces, F. O.; King, K. A.; Watts, R. J., Inorg. Chem., 1988, 27, 3464-71.).
- EXAMPLE 7 This example illustrates the formation of Ir complexes of the invention having the Formula I.
- the general procedure was to combine a dichloro-bridged dinuclear bis-cyclometallated Ir complex from Example 6, a phosphinoalkanol compound (1.1-1.5 equivs per Ir), 1 ,2-dichloroethane (DCE; 3-12 mL), and 10% aqueous NaOH (2-10-fold excess) and stir under reflux (N 2 ) until all solids dissolved and then for additional 0.5-1.5 hours.
- the products were isolated and purified in air.
- the organic layer was separated, filtered through a short silica gel plug, and reduced in volume to 0.5-2 mL.
- Compound 2-c (Table 2) A mixture of the dichloro-bridged dinuclear bis-cyclometallated Ir complex made with phenylpyridine compound 1-ah from Example 1 (200 mg), phosphinoalkanol PO-1 H from Example 2 (150 mg), DCE (5 mL), and 10% NaOH (1 mL) was vigorously stirred under reflux (N 2 ) for 0.5 h. The yellow organic layer (blue photoluminescent) was separated and filtered through a short silica plug. The aqueous layer was extracted with dichloromethane and passed through the same plug. The combined organic solutions were reduced in volume to 1-2 mL and treated with hexanes (10 mL; portionwise).
- Compound 2-i (Table 2) A mixture of the dichloro-bridged dinuclear bis-cyclometallated Ir complex made with phenylpyridine compound 1-k (340 mg) from Example 1 , phosphinoalkanol PO-1 H from Example 2 (220 mg), DCE (5 mL), and 10% NaOH (1 mL) was vigorously stirred under reflux (N 2 ) for 20 min. The yellow organic layer (green photoluminescent) was separated and filtered through a short silica plug. The aqueous layer was extracted with dichloromethane and passed through the same plug. The combined organic solutions were reduced in volume to ca. 1 mL and treated with hexanes (10 mL). The yellow oil solidified upon trituration.
- Compound 2-k (Table 2) A mixture of the dichloro-bridged dinuclear bis-cyclometallated Ir complex made with phenylpyridine compound 1-ai from Example 1 (300 mg), phosphinoalkanol PO-1 H from Example 2 (215 mg), DCE (5 mL), and 10% NaOH (2 mL) was vigorously stirred under reflux (N 2 ) for 2 h. The yellow organic layer (blue photoluminescent) was separated and filtered through a short silica plug. The aqueous layer was extracted with dichloromethane and passed through the same plug. The combined organic solutions were evaporated to dryness and treated with hexanes (10 mL).
- EXAMPLE 8 This example illustrates the formation of an Ir complex of the invention having the Formula I, in a two-step, one-pot method, directly from lrCI 3 (hydrate).
- Compound 2-f (Table 2)
- EXAMPLE 9 This example illustrates the formation of OLEDs using the iridium complexes of the invention.
- Thin film OLED devices including a hole transport layer (HT layer), electroluminescent layer (EL layer) and at least one electron transport layer (ET layer) were fabricated by the thermal evaporation technique.
- An Edward Auto 306 evaporator with oil diffusion pump was used.
- the base vacuum for all of the thin film deposition was in the range of 10"6 torr.
- the deposition chamber was capable of depositing five different films without the need to break up the vacuum.
- ITO indium tin oxide coated glass substrate
- the substrate was first patterned by etching away the unwanted ITO area with 1 N HCI solution, to form a first electrode pattern.
- Polyimide tape was used as the mask.
- the patterned ITO substrates were then cleaned ultrasonically in aqueous detergent solution.
- the substrates were then rinsed with distilled water, followed by isopropanol, and then degreased in toluene vapor for ⁇ 3 hours.
- the cleaned, patterned ITO substrate was then loaded into the vacuum chamber and the chamber was pumped down to 10-6 torr. The substrate was then further cleaned using an oxygen plasma for about 5-10 minutes.
- the OLED samples were characterized by measuring their (1) current- voltage (l-V) curves, (2) electroluminescence radiance versus voltage, and (3) electroluminescence spectra versus voltage.
- the apparatus used, 200 is shown in Figure 7.
- the l-V curves of an OLED sample, 220 were measured with a Keithley Source-Measurement Unit Model 237, 280.
- the electroluminescence radiance (in the unit of Cd/m 2 ) vs. voltage was measured with a Minolta LS-110 luminescence meter, 210, while the voltage was scanned using the Keithley SMU.
- the electroluminescence spectrum was obtained by collecting light using a pair of lenses, 230, through an electronic shutter, 240, dispersed through a spectrograph, 250, and then measured with a diode array detector, 260. All three measurements were performed at the same time and controlled by a computer, 270.
- the efficiency of the device at certain voltage is determined by dividing the electroluminescence radiance of the LED by the current density needed to run the device. The unit is in Cd/A. The results are given in Table 6 below:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003568940A JP2005518081A (ja) | 2002-02-14 | 2003-02-11 | ホスフィノアルコキシドとフェニルピリジンまたはフェニルピリミジンとを有するエレクトロルミネセンスイリジウム化合物およびそのような化合物で製造されたデバイス |
CA002476193A CA2476193A1 (en) | 2002-02-14 | 2003-02-11 | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
AU2003213015A AU2003213015A1 (en) | 2002-02-14 | 2003-02-11 | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
KR10-2004-7012168A KR20040089601A (ko) | 2002-02-14 | 2003-02-11 | 포스피노알콕시드 및 페닐피리딘 또는 페닐피리미딘을갖는 전기발광 이리듐 화합물 및 이 화합물로 제조된 장치 |
EP03709057A EP1472909A1 (en) | 2002-02-14 | 2003-02-11 | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35688602P | 2002-02-14 | 2002-02-14 | |
US60/356,886 | 2002-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003069961A1 true WO2003069961A1 (en) | 2003-08-21 |
Family
ID=27734697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/004149 WO2003069961A1 (en) | 2002-02-14 | 2003-02-11 | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
Country Status (9)
Country | Link |
---|---|
US (3) | US6919139B2 (zh) |
EP (1) | EP1472909A1 (zh) |
JP (1) | JP2005518081A (zh) |
KR (1) | KR20040089601A (zh) |
CN (1) | CN1656854A (zh) |
AU (1) | AU2003213015A1 (zh) |
CA (1) | CA2476193A1 (zh) |
TW (1) | TW200303350A (zh) |
WO (1) | WO2003069961A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073340A1 (en) * | 2004-01-23 | 2005-08-11 | Battelle Memorial Institute | Organic materials with tunable electric and electroluminescent properties |
WO2005075597A3 (en) * | 2004-01-30 | 2005-12-01 | Du Pont | Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds |
WO2006028224A1 (ja) * | 2004-09-10 | 2006-03-16 | Idemitsu Kosan Co., Ltd. | 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子 |
WO2006014599A3 (en) * | 2004-07-07 | 2006-06-22 | Universal Display Corp | Stable and efficient electroluminescent materials |
WO2007133523A3 (en) * | 2006-05-08 | 2008-01-10 | Du Pont | Electroluminescent bis-cyclometalled iridium compounds and devices made with such compounds |
JP2008532998A (ja) * | 2005-03-05 | 2008-08-21 | ドゥサン コーポレーション | 新規イリジウム錯体及びこれを用いた有機電界発光素子 |
US7709100B2 (en) | 2004-07-07 | 2010-05-04 | Universal Display Corporation | Electroluminescent efficiency |
US7816016B1 (en) | 2003-02-13 | 2010-10-19 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds and devices made therefrom |
US7851072B2 (en) | 2005-05-19 | 2010-12-14 | Universal Display Corporation | Stable and efficient electroluminescent materials |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1080162B1 (en) | 1998-05-05 | 2004-03-10 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US20050147534A1 (en) | 1998-05-05 | 2005-07-07 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US6995445B2 (en) * | 2003-03-14 | 2006-02-07 | The Trustees Of Princeton University | Thin film organic position sensitive detectors |
US7198730B2 (en) * | 2003-08-28 | 2007-04-03 | E. I. Du Pont De Nemours And Company | Phosphorescent material |
WO2005097943A1 (ja) * | 2004-03-31 | 2005-10-20 | Konica Minolta Holdings, Inc. | 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
KR100730115B1 (ko) * | 2004-06-23 | 2007-06-19 | 삼성에스디아이 주식회사 | 이리듐 화합물 및 이를 이용한 유기 전계 발광 소자 |
US8617819B2 (en) * | 2004-09-17 | 2013-12-31 | Massachusetts Institute Of Technology | Polymers for analyte detection |
KR100668305B1 (ko) * | 2004-10-01 | 2007-01-12 | 삼성에스디아이 주식회사 | 시클로메탈화 전이금속 착물 및 이를 이용한 유기 전계발광 소자 |
US9118020B2 (en) * | 2006-04-27 | 2015-08-25 | Global Oled Technology Llc | Electroluminescent devices including organic eil layer |
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8802447B2 (en) * | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US20090215189A1 (en) * | 2006-10-27 | 2009-08-27 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
US7740942B2 (en) * | 2006-12-13 | 2010-06-22 | General Electric Company | Opto-electronic devices containing sulfonated copolymers |
US20080284317A1 (en) * | 2007-05-17 | 2008-11-20 | Liang-Sheng Liao | Hybrid oled having improved efficiency |
US20080284318A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid fluorescent/phosphorescent oleds |
TW200911821A (en) * | 2007-06-08 | 2009-03-16 | Solvay | Light emitting material |
US8034465B2 (en) * | 2007-06-20 | 2011-10-11 | Global Oled Technology Llc | Phosphorescent oled having double exciton-blocking layers |
US20090191427A1 (en) * | 2008-01-30 | 2009-07-30 | Liang-Sheng Liao | Phosphorescent oled having double hole-blocking layers |
US8486737B2 (en) * | 2009-08-25 | 2013-07-16 | Samsung Display Co., Ltd. | Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same |
JP5328726B2 (ja) * | 2009-08-25 | 2013-10-30 | 三星ディスプレイ株式會社 | 薄膜蒸着装置及びこれを利用した有機発光ディスプレイ装置の製造方法 |
JP5611718B2 (ja) * | 2009-08-27 | 2014-10-22 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 薄膜蒸着装置及びこれを利用した有機発光表示装置の製造方法 |
JP5677785B2 (ja) * | 2009-08-27 | 2015-02-25 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 薄膜蒸着装置及びこれを利用した有機発光表示装置の製造方法 |
US20110052795A1 (en) * | 2009-09-01 | 2011-03-03 | Samsung Mobile Display Co., Ltd. | Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same |
US8876975B2 (en) | 2009-10-19 | 2014-11-04 | Samsung Display Co., Ltd. | Thin film deposition apparatus |
US8716699B2 (en) | 2009-10-29 | 2014-05-06 | E I Du Pont De Nemours And Company | Organic light-emitting diodes having white light emission |
US8716700B2 (en) * | 2009-10-29 | 2014-05-06 | E I Du Pont De Nemours And Company | Organic light-emitting diodes having white light emission |
KR101084184B1 (ko) | 2010-01-11 | 2011-11-17 | 삼성모바일디스플레이주식회사 | 박막 증착 장치 |
KR101174875B1 (ko) * | 2010-01-14 | 2012-08-17 | 삼성디스플레이 주식회사 | 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치 |
KR101193186B1 (ko) | 2010-02-01 | 2012-10-19 | 삼성디스플레이 주식회사 | 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치 |
KR101156441B1 (ko) * | 2010-03-11 | 2012-06-18 | 삼성모바일디스플레이주식회사 | 박막 증착 장치 |
KR101202348B1 (ko) | 2010-04-06 | 2012-11-16 | 삼성디스플레이 주식회사 | 박막 증착 장치 및 이를 이용한 유기 발광 표시 장치의 제조 방법 |
US8894458B2 (en) | 2010-04-28 | 2014-11-25 | Samsung Display Co., Ltd. | Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method |
KR101223723B1 (ko) | 2010-07-07 | 2013-01-18 | 삼성디스플레이 주식회사 | 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치 |
KR101723506B1 (ko) | 2010-10-22 | 2017-04-19 | 삼성디스플레이 주식회사 | 유기층 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법 |
KR101738531B1 (ko) | 2010-10-22 | 2017-05-23 | 삼성디스플레이 주식회사 | 유기 발광 디스플레이 장치의 제조 방법 및 이에 따라 제조된 유기 발광 디스플레이 장치 |
KR20120045865A (ko) | 2010-11-01 | 2012-05-09 | 삼성모바일디스플레이주식회사 | 유기층 증착 장치 |
KR20120065789A (ko) | 2010-12-13 | 2012-06-21 | 삼성모바일디스플레이주식회사 | 유기층 증착 장치 |
KR101760897B1 (ko) | 2011-01-12 | 2017-07-25 | 삼성디스플레이 주식회사 | 증착원 및 이를 구비하는 유기막 증착 장치 |
KR101840654B1 (ko) | 2011-05-25 | 2018-03-22 | 삼성디스플레이 주식회사 | 유기층 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법 |
KR101852517B1 (ko) | 2011-05-25 | 2018-04-27 | 삼성디스플레이 주식회사 | 유기층 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법 |
KR101857249B1 (ko) | 2011-05-27 | 2018-05-14 | 삼성디스플레이 주식회사 | 패터닝 슬릿 시트 어셈블리, 유기막 증착 장치, 유기 발광 표시장치제조 방법 및 유기 발광 표시 장치 |
KR101826068B1 (ko) | 2011-07-04 | 2018-02-07 | 삼성디스플레이 주식회사 | 유기층 증착 장치 |
JP2014231477A (ja) * | 2011-09-21 | 2014-12-11 | シャープ株式会社 | アルコキシ基を有する遷移金属錯体、及びこれを用いた有機発光素子、色変換発光素子、光変換発光素子、有機レーザーダイオード発光素子、色素レーザー、表示装置、照明装置並びに電子機器 |
US10854826B2 (en) * | 2014-10-08 | 2020-12-01 | Universal Display Corporation | Organic electroluminescent compounds, compositions and devices |
US9397302B2 (en) * | 2014-10-08 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001041512A1 (en) * | 1999-12-01 | 2001-06-07 | The Trustees Of Princeton University | Complexes of form l2mx as phosphorescent dopants for organic leds |
US20010019782A1 (en) * | 1999-12-27 | 2001-09-06 | Tatsuya Igarashi | Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex |
WO2002002714A2 (en) * | 2000-06-30 | 2002-01-10 | E.I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725072A1 (de) * | 1995-01-31 | 1996-08-07 | Hoechst Aktiengesellschaft | Verfahren zur Herstellung von Arylphosphinigsäurealkylestern |
KR100913568B1 (ko) | 1999-05-13 | 2009-08-26 | 더 트러스티즈 오브 프린스턴 유니버시티 | 전계인광에 기초한 고 효율의 유기 발광장치 |
KR100613674B1 (ko) | 1999-05-14 | 2006-08-21 | 동경 엘렉트론 주식회사 | 웨이퍼 처리 장치 및 처리 방법 |
US6670645B2 (en) * | 2000-06-30 | 2003-12-30 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
JP4067286B2 (ja) * | 2000-09-21 | 2008-03-26 | 富士フイルム株式会社 | 発光素子及びイリジウム錯体 |
US6963005B2 (en) * | 2002-08-15 | 2005-11-08 | E. I. Du Pont De Nemours And Company | Compounds comprising phosphorus-containing metal complexes |
-
2003
- 2003-02-03 US US10/356,813 patent/US6919139B2/en not_active Expired - Lifetime
- 2003-02-11 WO PCT/US2003/004149 patent/WO2003069961A1/en not_active Application Discontinuation
- 2003-02-11 CA CA002476193A patent/CA2476193A1/en not_active Abandoned
- 2003-02-11 AU AU2003213015A patent/AU2003213015A1/en not_active Abandoned
- 2003-02-11 CN CNA038035766A patent/CN1656854A/zh active Pending
- 2003-02-11 KR KR10-2004-7012168A patent/KR20040089601A/ko not_active Withdrawn
- 2003-02-11 JP JP2003568940A patent/JP2005518081A/ja active Pending
- 2003-02-11 EP EP03709057A patent/EP1472909A1/en not_active Withdrawn
- 2003-02-14 TW TW092103081A patent/TW200303350A/zh unknown
-
2005
- 2005-04-13 US US11/105,013 patent/US7227041B2/en not_active Expired - Fee Related
- 2005-04-13 US US11/104,989 patent/US7164045B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001041512A1 (en) * | 1999-12-01 | 2001-06-07 | The Trustees Of Princeton University | Complexes of form l2mx as phosphorescent dopants for organic leds |
US20010019782A1 (en) * | 1999-12-27 | 2001-09-06 | Tatsuya Igarashi | Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex |
WO2002002714A2 (en) * | 2000-06-30 | 2002-01-10 | E.I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
Non-Patent Citations (4)
Title |
---|
BOERÉ, R.T. ET AL.: "Complexes of Hybrid Ligands. Synthesis of Fluoro-Alcohol Diarylphosphino Ligand and Its Complexes with Pt2+, Pd2+, Ni2+, Co2+, Cu+, and Rh 3+: Crystal and Molecular Structure of a Trans Square-Planar Ni2+ Complex with Two Bidentate Ligands Showing Cis-Trans Isomerism in Solution", INORGANIC CHEMISTRY, vol. 24, no. 22, 1985, pages 3680 - 3687, XP002243254 * |
GRUSHIN V V ET AL: "Facile preparation and synthetic applications of LiCH2C(CF3)2OLi", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 117, no. 2, 28 October 2002 (2002-10-28), pages 121 - 129, XP004389686, ISSN: 0022-1139 * |
GRUSHIN V V ET AL: "New, efficient electroluminescent materials based on organometallic Ir complexes", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, GB, 2001, pages 1494 - 1495, XP002196401, ISSN: 1359-7345 * |
MARSI, K.L.; CO-SARNO, M.E.: "Synthesis, Structure Analysis, and Stereochemistry of Some Reactions of cis- and trans-2,2,5-Trimethyl-3-phenyl-1,3-oxaphospholane", JOURNAL OF ORGANIC CHEMISTRY, vol. 42, no. 5, 1977, pages 778 - 781, XP002243253 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7476452B2 (en) | 2000-06-30 | 2009-01-13 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds |
US7816016B1 (en) | 2003-02-13 | 2010-10-19 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds and devices made therefrom |
WO2005073340A1 (en) * | 2004-01-23 | 2005-08-11 | Battelle Memorial Institute | Organic materials with tunable electric and electroluminescent properties |
WO2005075597A3 (en) * | 2004-01-30 | 2005-12-01 | Du Pont | Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds |
EP2378582A1 (en) * | 2004-07-07 | 2011-10-19 | Universal Display Corporation | Stable and efficient electroluminescent materials |
JP2012149083A (ja) * | 2004-07-07 | 2012-08-09 | Universal Display Corp | 安定で効率的なエレクトロルミネッセンス材料 |
JP2008505925A (ja) * | 2004-07-07 | 2008-02-28 | ユニバーサル ディスプレイ コーポレイション | 安定で効率的なエレクトロルミネセンス材料 |
EP3855519A3 (en) * | 2004-07-07 | 2021-09-22 | Universal Display Corporation | Stable and efficient electroluminescent materials |
US8449990B2 (en) | 2004-07-07 | 2013-05-28 | Universal Display Corporation | Electroluminescent efficiency |
US7709100B2 (en) | 2004-07-07 | 2010-05-04 | Universal Display Corporation | Electroluminescent efficiency |
WO2006014599A3 (en) * | 2004-07-07 | 2006-06-22 | Universal Display Corp | Stable and efficient electroluminescent materials |
KR101258042B1 (ko) | 2004-07-07 | 2013-04-24 | 유니버셜 디스플레이 코포레이션 | 안정하면서 효율이 높은 전기발광 재료 |
US20060163542A1 (en) * | 2004-09-10 | 2006-07-27 | Idemitsu Kosan Co., Ltd. | Metal-complex compound and organic electroluminescence device using the compound |
WO2006028224A1 (ja) * | 2004-09-10 | 2006-03-16 | Idemitsu Kosan Co., Ltd. | 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子 |
JP2008532998A (ja) * | 2005-03-05 | 2008-08-21 | ドゥサン コーポレーション | 新規イリジウム錯体及びこれを用いた有機電界発光素子 |
US7851072B2 (en) | 2005-05-19 | 2010-12-14 | Universal Display Corporation | Stable and efficient electroluminescent materials |
US8603645B2 (en) | 2005-05-19 | 2013-12-10 | Universal Display Corporation | Stable and efficient electroluminescent materials |
WO2007133523A3 (en) * | 2006-05-08 | 2008-01-10 | Du Pont | Electroluminescent bis-cyclometalled iridium compounds and devices made with such compounds |
Also Published As
Publication number | Publication date |
---|---|
TW200303350A (en) | 2003-09-01 |
US7227041B2 (en) | 2007-06-05 |
US20030173896A1 (en) | 2003-09-18 |
US6919139B2 (en) | 2005-07-19 |
EP1472909A1 (en) | 2004-11-03 |
US20060057425A1 (en) | 2006-03-16 |
US20050186447A1 (en) | 2005-08-25 |
CN1656854A (zh) | 2005-08-17 |
AU2003213015A1 (en) | 2003-09-04 |
US7164045B2 (en) | 2007-01-16 |
JP2005518081A (ja) | 2005-06-16 |
KR20040089601A (ko) | 2004-10-21 |
CA2476193A1 (en) | 2003-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6919139B2 (en) | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds | |
AU2001271550B2 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds | |
JP4299144B2 (ja) | フッ素化フェニルピリジン、フェニルピリミジン、およびフェニルキノリンを含むエレクトロルミネッセンスイリジウム化合物ならびにこのような化合物を用いて製造されるデバイス | |
US6670645B2 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds | |
US6946688B2 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds | |
AU2001271550A1 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds | |
US20040075096A1 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds | |
AU2002231155A1 (en) | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003213015 Country of ref document: AU Ref document number: 1020047012168 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038035766 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003568940 Country of ref document: JP Ref document number: 2476193 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003709057 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003709057 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2003709057 Country of ref document: EP |