WO2003060325A1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- WO2003060325A1 WO2003060325A1 PCT/JP2001/011598 JP0111598W WO03060325A1 WO 2003060325 A1 WO2003060325 A1 WO 2003060325A1 JP 0111598 W JP0111598 W JP 0111598W WO 03060325 A1 WO03060325 A1 WO 03060325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- chamber
- valve
- lubricating oil
- check valve
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1036—Component parts, details, e.g. sealings, lubrication
- F04B27/109—Lubrication
Definitions
- the present invention relates to a compressor, and more particularly, to a compressor in which movable parts in a housing are lubricated with mist lubricating oil mixed with a coolant.
- a variable displacement compressor (hereinafter simply referred to as a compressor) applied to a vehicle air conditioner, for example, there is one as shown in FIG. That is, a crank chamber 102 is defined in a housing 101, and a drive shaft 103 is rotatably arranged.
- the rib seal 104 is interposed between the housing 101 and seals a gap between the drive shaft 103 and the housing 101.
- the drive shaft 103 is operatively connected to a vehicle engine Eg as an external drive source via an electromagnetic friction clutch 105 as a power transmission mechanism.
- the friction clutch 105 includes a mouth 106 operatively connected to the vehicle engine Eg, an armature 107 fixed to the drive shaft 103 so as to be integrally rotatable, and a coil 108.
- the coil 108 attracts the armature 107 to the rotor 106 by excitation, and fastens the two 106, 107, so that power can be transmitted between the vehicle engine Eg and the drive shaft 103. Yes (friction clutch 105 is on).
- the rotary support 109 is fixed to the drive shaft 103 in the crank chamber 102, and a swash plate 110 is connected to the rotary support 109 via a hinge mechanism 111.
- the swash plate 110 is connected to the rotary support 109 via a hinge mechanism 111 so that it can rotate integrally with the drive shaft 103 and change the inclination angle of the drive shaft 103 with respect to the axis L.
- the minimum inclination angle defining section 112 is provided on the drive shaft 103 and abuts on the minimum inclination angle of the swash plate 110.
- the cylinder pore 113, the suction chamber 114 and the discharge chamber 115 are formed in the housing 101.
- the piston 116 is accommodated in the cylinder bore 113 so as to be able to reciprocate, and is connected to the swash plate 110.
- the rotational movement of the drive shaft 103 is converted into a reciprocating movement of the biston 116 via the rotary support 109, the hinge mechanism 111 and the swash plate 110, and the suction port of the valve / port forming body 117 provided in the housing 101 is formed.
- the compression cycle of discharging the compressed refrigerant gas to the discharge chamber 115 is repeated.
- the suction chamber 114 and the discharge chamber 115 are connected by an external refrigerant circuit (not shown).
- the refrigerant discharged from the discharge chamber 115 is introduced into the external refrigerant circuit. In this external refrigerant circuit, heat exchange using the refrigerant is performed.
- the refrigerant discharged from the external refrigerant circuit is introduced into the suction chamber 114, is drawn into the cylinder bore 113, and undergoes a compression action again.
- the bleed passage 119 communicates the crank chamber 102 with the suction chamber 114.
- the air supply passage 120 connects the discharge chamber 115 and the crank chamber 102.
- the control valve 121 is provided on the air supply passage 120, and is capable of adjusting the opening degree of the air supply passage 120.
- the control valve 121 is based on a signal from a control computer (not shown).
- the drive circuit is driven by a current output from a drive circuit (not shown) to adjust the opening degree of the air supply passage 120.
- the control valve 121 operates to open the air supply passage 120 when power is not supplied from the drive circuit, and operates to adjust the opening degree of the air supply passage 120 when power is being supplied. It is like that.
- the opening of the control valve 121 By adjusting the opening of the control valve 121, the balance between the amount of high-pressure gas introduced into the crank chamber 102 through the air supply passage 120 and the amount of gas discharged from the crank chamber 102 through the bleed passage 119 is increased. Is controlled to determine the crank pressure P c. In accordance with the change of the crank pressure P c, the difference between the crank pressure P c via the piston 116 and the internal pressure of the cylinder bore 113 is changed, and as a result, the inclination angle of the swash plate 110 is changed. In other words, the discharge capacity is adjusted.
- the compressor when the compressor is rotated at the maximum discharge capacity, the force at which the friction clutch 105 is turned off in response to the operation of turning off the air conditioner switch (not shown), or the vehicle engine E g Stops and the compressor operation stops.
- the power supply to the control valve 121 is also stopped (the input current value is set to zero), and the air supply passage 120 is suddenly fully opened. Therefore, the supply amount of the high-pressure refrigerant gas from the discharge chamber 115 to the crank chamber 102 is rapidly increased, and the pressure in the crank chamber 102 is excessively increased because the bleed passage 119 cannot fully escape the rapid increase. To rise. Further, the pressure in the cylinder bore 113 is reduced by trying to equalize the pressure in the suction chamber 114 due to the stoppage of the compressor. As a result, the pressure difference between the cylinder pore 113 and the crankcase 102 is excessively increased.
- the swash plate 110 with the minimum inclination angle (indicated by a two-dot chain line in FIG. 7) is pushed through the hinge mechanism 111 so as to be pressed against the minimum inclination angle defining portion 112 with excessive force.
- Rotating support 109 backward (right drawing) )) It will also pull strongly to the side.
- the driving shaft 103 receives a strong moving force toward the rear side of the axis L, and slides against the urging force of the driving shaft urging panel 118. This may cause the following problems.
- the compressor mixes the mist-like lubricating oil with the refrigerant so that the lubricating oil circulates together with the circulation of the refrigerant between the compressor and the external refrigerant circuit.
- the compressor has a structure in which the movable parts are exposed to the refrigerant. Therefore, the movable part is also exposed to the mist lubricating oil, and the movable part can be lubricated.
- the atomized lubricating oil is also introduced into the external refrigerant circuit by the refrigerant circulation.
- the lubricating oil acts in the external refrigerant circuit in a direction to reduce the efficiency of heat exchange performed in the circuit. Further, since the lubricating oil is discharged from the inside of the compressor to the outside, the amount of the lubricating oil in the compressor decreases, and the lubricating efficiency in the compressor decreases.
- the various problems caused by the increase in the pressure of the crank chamber 102 can be solved by, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 11-315875.
- a check valve that regulates the refrigerant flow direction is provided between the discharge chamber and the external refrigerant circuit, so that the reverse flow of the refrigerant from the external refrigerant circuit side to the discharge chamber side is prevented. I'm sorry.
- the high-pressure refrigerant gas present on the side of the external refrigerant circuit is introduced into the crank chamber 102 through the air supply passage 120 when the air supply passage 120 is fully opened as described above. Will not be done. As a result, the crank chamber The internal pressure of 102 does not rise excessively.
- the problem due to the discharge of the lubricating oil to the external refrigerant circuit can be solved by, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. H10-280160.
- an oil separator that separates the mist of the lubricating oil mixed with the refrigerant from the refrigerant is provided in the discharge chamber, and discharge of the lubricating oil to the external refrigerant circuit is suppressed. I have.
- An object of the present invention is to provide a compressor capable of preventing a backflow of refrigerant from an external refrigerant circuit to a discharge chamber and suppressing discharge of lubricating oil to the external refrigerant circuit.
- the present invention provides, in a housing, a discharge chamber through which refrigerant discharged from a compression chamber passes, and a suction chamber through which refrigerant sucked into the compression chamber passes;
- a compressor that connects the suction chamber and the external refrigerant circuit with a suction path while connecting the chamber and the external refrigerant circuit with a discharge path, and circulates the refrigerant with the external refrigerant circuit.
- a check valve for preventing the refrigerant from flowing back from the external refrigerant circuit to the discharge chamber in the discharge path; an oil separator for separating mist-like lubricating oil mixed with the refrigerant; And an oil supply passage for introducing the separated lubricating oil into the low-pressure region.
- the oil separator separates the refrigerant and the lubricating oil, and suppresses the discharge of the lubricating oil to the external refrigerant circuit. Since the lubricating oil causes a decrease in the heat exchange efficiency in the external refrigerant circuit, the separation can suppress the decrease in the heat exchange efficiency.
- the lubricating oil separated from the refrigerant described above is introduced into the low-pressure region via the oil supply passage.
- the low pressure region in the present invention refers to the suction chamber, the suction path, a crank chamber formed in the housing, and the like. As a result, it is possible to suppress a decrease in the amount of lubricating oil in the compressor including the suction path and to lubricate the inside of the compressor satisfactorily. Further, the check valve prevents the backflow of the refrigerant from the external refrigerant circuit to the discharge chamber.
- FIG. 1 is a sectional view showing an outline of a compressor according to a first embodiment of the present invention.
- FIG. 2 is an enlarged partial cross-sectional view (with a valve closed) of a unit 40, which is a main part of the compressor of FIG.
- FIG. 4 is an enlarged partial cross-sectional view (valve-opened state) of a unit 40, which is a main part of the compressor in FIG.
- FIG. 5 is an enlarged sectional view (in a valve-opened state) of a unit 70, which is a main part of a compressor according to a second embodiment of the present invention.
- the variable capacity compressor (hereinafter simply referred to as the compressor) C is a cylinder block 1, a front housing 2 joined to its front end, and a rear end of cylinder block 1. And a rear housing 4 joined to the housing via a valve forming body 3.
- the cylinder hook 1, the front housing 2, the valve forming body 3, and the rear housing 4 are joined and fixed to each other by a plurality of through-ports 10 (only one is shown in FIG. 1), and a compressor is provided.
- a crank chamber 5 is defined in a region surrounded by the cylinder opening 1 and the front housing 2.
- a drive shaft 6 is rotatably supported by a pair of front and rear radial bearings 8A and 8B.
- a panel 7 and a rear thrust bearing 9B are arranged in a housing recess formed in the center of the cylindrical hook 1.
- a lug plate 11 is fixed on the drive shaft 6 in the crank chamber 5 so as to be rotatable, and a front thrust bearing 9 is provided between the lug plate 11 and the inner wall surface of the front housing 2.
- A is provided.
- the integrated drive shaft 6 and lug plate 11 are moved in the thrust direction (drive shaft axis direction) by the rear thrust bearing 9B and the front thrust bearing 9A urged forward by the panel 7.
- a lip seal 2A is provided between the drive shaft 6 and the front housing 2 on the front side of the radial bearing 8A.
- the rib seal 2A seals a gap between the drive shaft 6 and the front housing 2 so that the inside and the outside of the compressor C are pressure-isolated.
- the front end of the drive shaft 6 is operatively connected to a vehicle engine E as an external drive source via a power transmission mechanism PT.
- the power transmission mechanism PT may be a clutch mechanism (for example, an electromagnetic clutch) capable of selecting the transmission of power by an external electric control, or may be a constant transmission type that does not have such a clutch mechanism. It may be a clutchless mechanism (for example, a belt / pulley combination). In this embodiment, a clutchless type power transmission mechanism is employed.
- a swash plate 12 as a cam plate is accommodated in the crank chamber 5.
- the swash plate 12 has a through hole formed in the center thereof, and the drive shaft 6 is disposed through the through hole.
- the swash plate 12 is operatively connected to the lug plate 11 and the drive shaft 6 via a hinge mechanism 13 as a connection guide mechanism.
- the hinge mechanism 13 has two support arms 14 (only one is shown) protruding from the rear surface of the lag plate 11, and two support arms 14 protruding from the front surface of the swash plate 12.
- Guide bin 15 (only one is shown).
- the swash plate 12 is synchronized with the lug plate 11 and the drive shaft 6 by the linkage between the support arm 14 and the guide bin 15 and the contact with the drive shaft 6 in the central through hole of the swash plate 12. It is rotatable and tiltable with respect to the drive shaft 6 with sliding movement in the axial direction of the drive shaft 6. Note that the swash plate 12 has a power weight section 12 a on the opposite side of the hinge mechanism 13 across the drive shaft 6.
- An inclination reducing panel 16 is provided around the drive shaft 6 between the lag plate 11 and the swash plate 12.
- the inclination decreasing panel 16 urges the swash plate 12 in a direction approaching the cylinder block 1 (the inclination decreasing direction).
- a return panel 17 is provided around the drive shaft 6 between the restriction ring 18 fixed to the drive shaft 6 and the swash plate 12. In this return panel 17, the swash plate 12 is in the state of large inclination (indicated by the two-dot chain line). Sometimes the swash plate 12 is simply wound around the drive shaft 6 and does not exert any urging action on the swash plate or other members.
- each cylinder bore la contains a single-headed piston 20 in a reciprocating manner.
- Each cylinder pore 1a has a compression chamber 1 whose volume changes according to the reciprocating movement of the piston 20.
- b is partitioned.
- the front end of each biston 20 is moored to the outer periphery of the swash plate 12 via a pair of showers 19, and via this shower 19 each of the toner 20 is connected to the swash plate 12. It is operatively connected. Therefore, when the swash plate 12 rotates synchronously with the drive shaft 6, the rotational motion of the swash plate 12 is changed to the reciprocating linear motion of the piston 20 in the stroke corresponding to the tilt angle. Is converted.
- a suction chamber 21 located in the central area and a discharge chamber 22 surrounding the suction chamber 21 are formed between the valve forming body 3 and the rear housing 4.
- the valve forming body 3 is formed by stacking a suction valve forming plate, a port forming plate, a discharge valve forming plate, and a retainer forming plate.
- the valve forming body 3 has a suction valve 24 for opening and closing the suction port 23 and the port 23, and a discharge valve for opening and closing the discharge port 25 and the port 25 corresponding to each cylinder bore 1a.
- Valve 26 is formed.
- the suction chamber 21 communicates with each cylinder bore 1 a via the suction port 23, and the cylinder pore 1 a communicates with the discharge chamber 22 via the discharge port 25.
- the suction chamber 21 and the crank chamber 5 are connected by a bleed passage 27. Further, the discharge chamber 22 and the crank chamber 5 are connected by a communication path 28 via a unit 40 described later, and a control valve 30 is provided in the middle of the communication path 28. .
- the control valve 30 includes a solenoid part 31 and a valve element 32 operatively connected to the solenoid part 31 via a rod.
- Control (not shown)
- a solenoid circuit 31 is driven by a current output from a drive circuit (not shown) based on a signal from a computer to change the position of the valve body 32 and adjust the opening of the communication passage 28. It has become.
- the valve element 32 is arranged at a position that opens the communication path 28 when power is not supplied from the drive circuit, and adjusts the opening degree of the communication path 28 when power is supplied. I have.
- the opening of the control valve 30 By adjusting the opening of the control valve 30, the balance between the amount of high-pressure gas introduced into the crankcase 5 through the communication passage 28 and the amount of gas discharged from the crankcase 5 through the bleed passage 27 is increased. It is controlled to determine the crank pressure Pc. In accordance with the change in the crank pressure P c, the difference between the crank pressure P c via the piston 20 and the internal pressure of the cylinder pore 1 a is changed, and as a result, the inclination angle of the swash plate 12 is changed. The stroke of the ton 20, that is, the discharge capacity (refrigerant circulation amount) is adjusted. In this case, the communication passage 28 and the control valve 30 function as a part of an air supply passage for introducing the refrigerant in the discharge chamber 22 into the crank chamber 5.
- the rear housing 4 is provided with a suction port 21A serving as an inlet for introducing a refrigerant into the suction chamber 21. Further, the rear housing 4 is provided with a mounting port 22 A communicating with the discharge chamber 22, and a unit 40 having a discharge port 42 F described later is mounted on the mounting port 22 A. An external refrigerant circuit 50 is interposed between the suction port 21A and the discharge port 42F.
- the unit 40 is a cylindrical case 42 with a substantially bottomed shape attached to the mounting opening 22A of the rear housing 4, and is housed in the case 42.
- Check valve 41 is provided.
- the check valve 41 includes a disc 44 press-fitted into the discharge port 42F, and a substantially bottomed cylindrical casing 43 having an open end face joined and fixed to the disc 44.
- a valve chamber 43A is formed by covering the opening-side end face of the casing 43 with a disk 44.
- a valve inlet 43B as a refrigerant inlet is formed at the bottom of the casing 43, and a valve outlet 44A as a refrigerant outlet is formed at the disc 44.
- a valve body 45 is housed so as to be able to reciprocate between a valve inlet 43B and a valve outlet 44A. The valve body 45 is urged toward the valve inlet 43 B by a valve closing panel 46.
- the urging force on the valve body 45 by the refrigerant pressure on the upstream side of the check valve 41 and the urging force on the valve body 45 by the refrigerant pressure on the downstream side of the check valve 41 are determined.
- the opening and closing operation of the valve inlet 43B is performed by the balance between the biasing force and the biasing force by the valve closing panel 46, and the backflow of the refrigerant is prevented.
- the check valve 41 allows the flow of the refrigerant. .
- the opening side of the case 42 is covered with the disk 44 to define the separation chamber 42A.
- the downstream side (opening side) of the disk 42 of the case 42 functions as a discharge port 42F as a refrigerant discharge port.
- FIGS. 1, 2 and 4 for convenience, illustration of a mechanism for connecting and fixing the discharge port 42F and the flow pipe 22B is omitted.
- the case 42 has an inlet 42B for introducing the refrigerant in the discharge chamber 22 into the separation chamber 42A.
- the inlet 42B and the discharge chamber 22 are connected by an inlet passage 42C. In the inlet 42B, the refrigerant introduced into the separation chamber 42A swirls inside the separation chamber 42A.
- case 42 it is formed along the circumferential direction of case 42. Since the casing 43 of the check valve 41 is disposed in the separation chamber 42A, the refrigerant introduced into the separation chamber 42A from the inlet 42B is actually a case 4. It turns in the gap between the inner peripheral surface of 2 and the outer peripheral surface of the casing 43. By this swirling, the lubricating oil mixed with the refrigerant is centrifuged and adheres to the inner peripheral surface of the case 42.
- a tapered inclined recess 42D is provided at the bottom of the case 42, and the lubricating oil attached to the inner peripheral surface of the case 42 and drooping is provided at the bottom of the inclined recess 42D. It is easy to gather in the back.
- a discharge passage 42E for discharging the lubricating oil out of the unit 40 is formed in the innermost portion of the inclined concave portion 42D. As shown in FIG. 1, the lubricating oil discharged out of the unit 40 through the discharge passage 42E is introduced into the crank chamber 5 as a low pressure region through the communication passage 28 and the control valve 30. It is supposed to be.
- the case 42, the casing 43, and the disk 44 constitute an oil separator for separating mist-like lubricating oil mixed with the refrigerant.
- the discharge passage 42 E, the communication passage 28 and the control valve 30 function as an oil supply passage for supplying the lubricating oil separated by the oil separator to the crank chamber 5.
- the inlet passage 42C, the inlet 42B, the separation chamber 42A and the discharge passage 42E of the unit 40 supply the refrigerant in the discharge chamber 22 to the crank chamber 5 side. It functions as a part of the passage.
- a discharge path connecting the discharge chamber 22 and the external refrigerant circuit 50 is constituted by the mounting port 22 A, the unit 40 and the flow pipe 22 B, and the suction port 21 A and the flow pipe 21 are formed.
- B forms a suction path connecting the suction chamber 21 and the external refrigerant circuit 50.
- the control computer issues a command signal to the drive circuit to increase the value of the current supplied to the solenoid unit 31. Due to a change in the current value from the drive circuit based on this signal, the solenoid portion 31 increases the urging force so that the valve body 32 further reduces the opening of the communication passage 28. As a result, the valve element 32 moves and the opening degree of the communication passage 28 decreases. As a result, the amount of high-pressure refrigerant gas supplied from the discharge chamber 22 to the crank chamber 5 via the communication path 28 decreases, the pressure in the crank chamber 5 decreases, and the inclination angle of the swash plate 12 increases. As a result, the discharge capacity of the compressor C increases. When the communication passage 28 is fully closed, the pressure in the crank chamber 5 drops significantly, the inclination angle of the swash plate 12 becomes maximum, and the discharge capacity (refrigerant circulation amount) of the compressor C becomes maximum. .
- the mist mixed with the refrigerant together with the refrigerant Lubricating oil is introduced.
- These refrigerant and lubricating oil circulate along the gap between the inner peripheral surface of the case 42 and the outer peripheral surface of the casing 43 of the check valve 41.
- the lubricating oil is centrifuged, collected in the inclined recess 42D, and then introduced into the crank chamber 5 via the discharge passage 42E, the communication passage 28 and the control valve 30.
- the lubricating oil introduced into the crankcase 5 lubricates mechanical components (bearings, hinge mechanisms, etc.) in the crankcase 5.
- the refrigerant separated from the lubricating oil tries to enter the valve chamber 43A through the valve inlet 43B.
- the refrigerant pushes up the valve body 45, passes through a gap formed between the bottom of the valve body 45 and the valve inlet 43B, enters the valve chamber 43A, and forms the groove 4 Pass 5 A to reach valve outlet 44 A.
- the valve body 45 is in contact with the disk 44 by being pushed up by the refrigerant, the refrigerant is formed by the disk 44 and the notch 45B after passing through the groove 45A. It reaches the valve outlet 4 4 A through the gap.
- the refrigerant that has reached the outside of the valve chamber 43A through the valve outlet 44A enters the external refrigerant circuit 50 through the circulation pipe 22B, and performs a heat exchange action.
- the check valve 41 is provided between the discharge chamber 22 and the external refrigerant circuit 50, the backflow of the refrigerant from the external refrigerant circuit 50 to the discharge chamber 22 can be prevented. . That is, for example, when the compressor C is turned off, the power supply to the solenoid portion 31 of the control valve 30 is stopped, the abnormal passage 28 is fully opened, and the high-pressure refrigerant in the external refrigerant circuit 50 is discharged.
- the crank pressure P c does not rise abnormally suddenly to the crank chamber 5 via the chamber 22, the unit 40 and the communication passage 28. Therefore, it is possible to prevent the slide movement of the drive shaft 6 and the trouble caused by the movement. This defect includes, for example, (a), (b) and (c) in the prior art.
- a check valve 41 is provided to prevent abnormal increase of the crank pressure P c when power supply to the control valve 30 is stopped, so that accelerated deterioration of the rib seal 2A is suppressed and durability of the compressor C is reduced. Can be improved.
- An oil separator is provided between the discharge chamber 22 and the external refrigerant circuit 50 to suppress the amount of lubricating oil discharged to the external refrigerant circuit 50 side, so that the heat of the refrigerant in the external refrigerant circuit 50 is reduced.
- the exchange efficiency can be increased, and the lubrication efficiency in the compressor C can be increased.
- the oil separator is arranged upstream of the check valve 41.
- an oil supply passage for introducing the lubricating oil separated by the oil separator into the crank chamber 5 together with the oil separator is also arranged upstream of the check valve 41. That is, even if the downstream side of the check valve 41 has a higher pressure than the upstream side, the downstream side refrigerant does not flow backward to the upstream side through the oil supply passage. Therefore, the backflow of the refrigerant can be prevented without providing a means for opening and closing this passage in the oil supply passage.
- the check valve 41 and the oil separator are integrated into the unit 40, the installation space for both can be reduced as a whole as compared with the case where both are provided separately. In addition, since the unit 40 is assembled to the rear housing 4, the assemblability and the maintainability are improved.
- the check valve 41 is arranged in the case 42 to separate the lubricating oil on the outer peripheral side of the casing 43 and prevent the refrigerant from flowing back on the inner peripheral side. That is, the casing 43 is commonly used for both the lubricating oil separating function and the refrigerant backflow preventing function. Therefore, the number of parts can be reduced, and the cost can be reduced.
- the valve body 45 is arranged so as to be able to reciprocate within the inner peripheral side of the bottomed cylindrical casing 43, and a groove 45A is formed on the outer periphery of the valve body 45, and the valve body is formed. Refrigerant from a valve inlet 43 B formed below 45 was passed through the groove 45 A to reach a valve outlet 44 A formed above the valve body 45. If the groove 45 A is not provided on the outer circumference of the valve body 45, the refrigerant cannot pass from below to above the valve body 45, so that the refrigerant flows inside the casing 43. It is necessary to provide a hole on the peripheral surface of the casing 43 to escape from the outside.
- an external casing for housing the casing 43 is further provided so that the refrigerant from the inlet 42B does not enter the casing 43 through the hole, and the outer periphery of the outer casing is provided. It is necessary to make the refrigerant and lubricating oil swirl.
- the groove 45A is formed in the valve body 45 so that the refrigerant can pass from below to above the valve body 45, thereby reducing the number of parts and reducing the cost. It is possible to achieve.
- the disk 44 is formed as the separation chamber 42A and is commonly used as the member forming the valve chamber 43A, so that the cost can be reduced by reducing the number of parts.
- a part of an air supply passage for supplying the refrigerant in the discharge chamber 22 to the crank chamber 5 is an oil supply passage for supplying lubricating oil separated by an oil separator to the crank chamber 5,
- a control valve 30 for adjusting the opening degree of the passage was provided in the middle of the passage (oil supply passage).
- the compressor C of the second embodiment is obtained by changing the configuration of the unit 40 in the first embodiment. It has the same configuration as the compressor C of the embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals in the drawings, and duplicate description will be omitted.
- the unit 70 is attached to the mounting port 22A. As shown in FIGS. 5 and 6, the unit 70 includes a check valve 71 and a substantially bottomed cylindrical unit unit 72 that houses the check valve 71.
- the check valve 71 includes a substantially cylindrical casing 73 and a disk 74.
- the casing 73 is provided with an entry-side cylindrical portion 73A as a cylindrical portion formed to have a smaller diameter than the upper portion, from the middle to the lower part in the axial direction of the casing 73. ing.
- a valve chamber 73B is formed in a portion of the casing 73 not having the small diameter (above the inlet cylindrical portion 73A) by covering the upper end portion of the casing 73 with a disk 74. I have.
- the casing 73 has a valve outlet 73C communicating the valve chamber 73B with the outer peripheral side of the casing 73.
- a step 73D is formed in a portion of the casing 73 between the valve chamber 73B and the inlet cylindrical portion 73A.
- a communication hole 74A is formed in the disk 74 so that the outside and the inside of the valve chamber 73B can communicate with each other.
- a valve body 75 is housed in the valve chamber 73B so as to be able to reciprocate in the axial direction of the casing 73. The valve body 75 is urged toward the inlet cylindrical portion 73A by the valve closing panel 76.
- the valve body 7.5 has a bottomed cylindrical shape. When the valve body 75 is pressed against the stepped portion 73D by the valve closing panel 76, it closes the passage between the valve chamber 73B and the inlet cylindrical portion 73A. (See Figure 6).
- the urging force to the valve element 75 due to the refrigerant pressure on the upstream side of the check valve 71 and the check valve 7 Due to the balance between the urging force of the valve body 75 due to the refrigerant pressure on the downstream side of 1 and the urging force of the valve closing panel 76, the downstream side (external refrigerant The backflow of the refrigerant from the circuit 50 side) to the upstream side (discharge chamber 22 side) is regulated, and the flow starts.
- the unit case 72 has a separation chamber 72A formed therein, and a cylindrical projecting wall 72B extends above the separation chamber 72A.
- An insertion hole 72C is formed above the separation chamber 72A, and a check valve 71 is mounted in the insertion hole 72C.
- the opening at the upper end of the protruding wall 72B functions as a discharge port 72H for discharging the refrigerant. 5 and 6, a mechanism for connecting and fixing the discharge port 72H and the flow pipe 22B is omitted for convenience.
- the inlet side cylindrical portion 73 A of the check valve 71 is press-fitted and fixed in the inlet hole 72 C, and is arranged so that the lower end opening of the inlet side cylindrical portion 73 A reaches near the bottom of the separation chamber 72 A.
- an inlet 72D for introducing the refrigerant in the discharge chamber 22 into the separation chamber 72A is formed in the unit case 72.
- the inlet 72D and the discharge chamber 22 are connected by an inlet passage 72E.
- the inlet 72D is formed along the circumferential direction of the unit case 72 so that the refrigerant introduced into the separation chamber 72A swirls inside the separation chamber 72A.
- the coolant introduced into the separation chamber 72A from the inlet 72D is actually supplied to the separation chamber 72A. Swivel the gap between the peripheral surface of 2 A and the outer peripheral surface of the entry cylindrical part 73 ⁇ A. By this swirling, the lubricating oil mixed with the refrigerant is centrifugally separated and adheres to the peripheral surface of the separation chamber 72A.
- an inclined recess 72 F is provided at the bottom of the separation chamber 72 A, and the lubricating oil attached to the peripheral surface of the separation chamber 72 A and drooping is formed by the inclined recess 72 F. It is easy to gather at the innermost part of the building.
- a discharge passage 72 G for discharging the lubricating oil out of the unit 70 is formed in the innermost portion of the inclined recess 72 F, and the lubricating oil is discharged through the discharge passage 72 G and the communication passage. 28 and the control valve 30 to the crankcase 5 as a low pressure area. Is to be entered.
- the lower part of the unit case 72 and the inlet cylindrical part 73 A constitute an oil separator for separating mist-like lubricating oil mixed with the refrigerant.
- the discharge passage 72 G, the communication passage 28 and the control valve 30 function as an oil supply passage for supplying the lubricating oil separated from the oil separator to the crank chamber 5.
- the inlet passage 72 E, inlet 72 D, separation chamber 72 A, and discharge passage 72 G of the unit 70 serve as an air supply passage for supplying the refrigerant in the discharge chamber 22 to the crank chamber 5 side. Functioning as a part.
- a discharge path for connecting the discharge chamber 22 and the external refrigerant circuit 50 is formed by the mounting port 22A, the unit 70, and the flow pipe 22B from the cylinder pore 1a to the discharge chamber 22.
- the discharged refrigerant is introduced into the separation chamber 72A via the introduction passage 72E and the introduction port 72D.
- the mixture of the refrigerant and the lubricating oil swirls in the gap between the outer peripheral surface of the separation chamber 72A and the outer peripheral surface of the inlet cylindrical portion 73A of the check valve 71. Due to this swirling, the lubricating oil is centrifuged, drawn into the discharge passage 72G by the inclined recess 72F, and introduced into the crank chamber 5 via the communication passage 28 and the control valve 30.
- the refrigerant separated from the lubricating oil tries to enter the valve chamber 73B via the inner peripheral side of the inlet cylindrical portion 73A.
- the refrigerant pushes up the valve body 75, passes through a gap formed between the bottom of the valve body 75 and the stepped portion 73D, enters the valve chamber 73B, and the valve outlet 7 After passing through 3C and reaching the outside of the valve chamber 73B, it enters the external refrigerant circuit 50 via the circulation pipe 22B to perform a heat exchange action.
- Valve urging force due to pressure and valve closing panel 4 When it becomes smaller than the sum of the biasing force by 6, the valve body 75 shuts off the space between the valve chamber 73B and the inlet cylindrical portion 73A. That is, the check valve 71 prevents the backflow of the refrigerant from the downstream side (the external refrigerant circuit 50 side) to the upstream side (the discharge chamber 22 side).
- Embodiments are not limited to the above, and may be, for example, in the following modes.
- the unit 40 (or 70) may be installed so as to fit inside the housing 4 instead of protruding toward the outside of the housing 4.
- the unit 40 (or 70) may be provided in the discharge chamber 22. That is, the unit 40 (or 70) may be assembled to the rear housing 4 before joining the rear housing 4 to the valve forming body 3 side so that the housing 40 cannot be attached or detached after the housing is completed. Conversely, the rear housing 4 may be assembled with the cylinder hook 1, the front housing 2, and the valve body 3 to form a housing of the compressor C, and then retrofitted from outside the housing. When the retrofitting is possible, the maintainability is improved.
- the lubricating oil separated from the refrigerant may be supplied to the suction chamber 21, the suction inlet 21 A or the circulation pipe 21 B as a low-pressure region.
- the upstream portion of the communication path 28 may be connected to the discharge chamber 22.
- Inhalation chamber 2 1 The lubricating oil supplied to the suction port 21A or the distribution pipe 21B is sucked into the cylinder bore 1a together with the refrigerant by the reciprocating motion of the biston 20 to lubricate the inside of the cylinder pore 1a. Then, a part of the lubricating oil leaks to the crank chamber 5 side through a gap between the cylinder bore 1a and the biston 20 to lubricate a sliding portion of a mechanism in the crank chamber 5.
- the lubricating oil separated from the refrigerant may be directly supplied to the crankcase 5 without passing through the control valve 30.
- the amount of lubricating oil for lubricating the sliding portion of the mechanism in the crank chamber 5 increases, and the lubricating efficiency improves, as compared with the case where oil is supplied via the control valve 30.
- the oil supply passage and the air supply passage may not be shared and may be provided separately.
- the inclined recess 42D (or 72F) may not be provided.
- the case 42 (or the unit case 72) is made separate from the rear housing 4, but it may be integrated. That is, the case 42 (or the unit case 72) may be formed integrally with the rear housing 4. Even in this case, if the check valve 41 (or 71) can be assembled into the case 42 (or the unit case 72) from the outside of the rear housing 4, assemblability and maintenance can be achieved. Can be prevented from deteriorating.
- the check valve 71 and the oil separator may be provided separately in the unit case 72 without using common parts.
- the inlet cylindrical portion 73A is separated from the casing 73, and the inlet cylindrical portion 73A is fixed to the insertion hole 72C separately from the check valve 71.
- the hinge mechanism 13 includes a first arm provided on the swash plate 12, a second arm provided on the lug plate 11, a guide hole provided on one of the first and second arms.
- the vehicle may further include a mounting hole provided in the other arm, and a pin penetrating the mounting hole and having a protruding portion inserted into the guide hole.
- the control valve 30 may not be an external control type controlled by an external device such as the control computer or the drive circuit, but may be an internal control type that performs completely autonomous control.
- the compressor C may be a fixed capacity type in which the stroke of the piston 20 cannot be changed.
- the oil separator may be provided downstream of the check valve 41. In that case, it is desirable to provide an opening / closing means in the oil supply passage.
- the check valve and the oil separator may be separate units. In this case, since each unit is separate, the degree of freedom of arrangement of each unit increases.
- the check valve includes a substantially cylindrical casing and a valve body having a substantially circular cross section, and the valve body is housed in the casing so as to reciprocate in the axial direction of the casing, and is provided on one of upper and lower sides of the casing.
- a coolant inlet is provided on the other side, and a coolant outlet is provided on the other side.
- a groove extending in an axial direction of the valve body is formed on an outer periphery of the valve body, and a coolant that has entered the casing from the coolant inlet through the groove has the coolant outlet. May be reached.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
Abstract
A housing is internally formed with a delivery chamber (22) through which a refrigerant delivered from a compression chamber (1b) passes, and a suction chamber (21) through which the refrigerant to be sucked into the compression chamber (1b) passes. The delivery chamber (22) is connected to an external refrigerant circuit (50) by a delivery path, and the suction chamber (21) is connected to the external refrigerant circuit (50) by a suction path. The delivery chamber (22) or the delivery path is provided with a check valve for preventing the refrigerant from flowing from the external refrigerant circuit (50) back into the delivery chamber (22), and an oil separator for separating the refrigerant from misty lubricating oil mixed therein. The lubricating oil thus separated is introduced into a crank chamber (5) through a communication passageway (28). This ensures compatibility between prevention of the refrigerant from flowing from the external refrigerant circuit (50) back into the delivery chamber (22) and prevention of the lubricating oil from flowing into the external refrigerant circuit (50).
Description
圧縮機 Compressor
技術分野 Technical field
本発明は、 圧縮機に係り、 詳しく はハウジング内の可動部品を冷 媒と混在させた霧状の潤滑油で潤滑する圧縮機に関するものである 明 The present invention relates to a compressor, and more particularly, to a compressor in which movable parts in a housing are lubricated with mist lubricating oil mixed with a coolant.
背景技術 書 Background art
車両空調装置に適用される可変容量型圧縮機 (以下単に圧縮機と する) としては、 例えば、 図 7に示すよ うなものが存在する。 すな わち、 ハウジング 101 にはクランク室 102 が区画形成されると とも に、 駆動軸 103 が回転可能に配置されている。 リ ッブシール 104 は 、 ハゥジング 101 との間に介在されて駆動軸 103 とハウジング 101 との隙間を封止する。 As a variable displacement compressor (hereinafter simply referred to as a compressor) applied to a vehicle air conditioner, for example, there is one as shown in FIG. That is, a crank chamber 102 is defined in a housing 101, and a drive shaft 103 is rotatably arranged. The rib seal 104 is interposed between the housing 101 and seals a gap between the drive shaft 103 and the housing 101.
駆動軸 103 は、 動力伝達機構と しての電磁式の摩擦クラッチ 105 を介して外部駆動源としての車輛エンジン E gに作動連結されてい る。 摩擦クラッチ 105 は、 車輛エンジン E gに作動連結された口一 タ 106 と、 駆動軸 103 に一体回転可能に固定されたァーマチヤ 107 と、 コイル 108 とを備えている。 コイル 108 は、 その励磁によ りァ 一マチヤ 107 をロータ 106 側に吸引して両者 106 , 107 を締結するこ とで、 車輛エンジン E g と駆動軸 103 との間での動力伝達を可能と する (摩擦クラッチ 105 のオン) 。 この状態からコイル 108 が消磁 されると、 ァーマチヤ 107 がロータ 106 から離間して、 車輛ェンジ ン E g と駆動軸 103 との間での動力伝達は遮断される (摩擦クラッ チ 105 のオフ) 。
回転支持体 109 は前記クランク室 102 において駆動軸 103 に固定 されると ともに、 この回転支持体 109 には斜板 110 がヒンジ機構 11 1 を介して連結されている。 斜板 110 は回転支持体 109 にヒ ンジ機 構 111 を介して連結されることで、 駆動軸 103 と一体回転可能でか つ駆動軸 103 の軸線 Lに対する傾斜角度を変更可能となっている。 最小傾斜角度規定部 112 は駆動軸 103 に設けられ、 斜板 110 の最小 傾斜角度を当接規定する。 The drive shaft 103 is operatively connected to a vehicle engine Eg as an external drive source via an electromagnetic friction clutch 105 as a power transmission mechanism. The friction clutch 105 includes a mouth 106 operatively connected to the vehicle engine Eg, an armature 107 fixed to the drive shaft 103 so as to be integrally rotatable, and a coil 108. The coil 108 attracts the armature 107 to the rotor 106 by excitation, and fastens the two 106, 107, so that power can be transmitted between the vehicle engine Eg and the drive shaft 103. Yes (friction clutch 105 is on). When the coil 108 is demagnetized in this state, the armature 107 is separated from the rotor 106, and the power transmission between the vehicle engine Eg and the drive shaft 103 is cut off (the friction clutch 105 is turned off). The rotary support 109 is fixed to the drive shaft 103 in the crank chamber 102, and a swash plate 110 is connected to the rotary support 109 via a hinge mechanism 111. The swash plate 110 is connected to the rotary support 109 via a hinge mechanism 111 so that it can rotate integrally with the drive shaft 103 and change the inclination angle of the drive shaft 103 with respect to the axis L. The minimum inclination angle defining section 112 is provided on the drive shaft 103 and abuts on the minimum inclination angle of the swash plate 110.
シリ ンダポア 113 、 吸入室 114 及び吐出室 115 は前記ハウジング 101 に形成されている。 ピス トン 116 は、 シリ ンダボア 113 に往復 動可能に収容されると ともに、 斜板 110 に連結されている。 The cylinder pore 113, the suction chamber 114 and the discharge chamber 115 are formed in the housing 101. The piston 116 is accommodated in the cylinder bore 113 so as to be able to reciprocate, and is connected to the swash plate 110.
そして、 前記駆動軸 103 の回転運動が、 回転支持体 109 、 ヒ ンジ 機構 111 及び斜板 110 を介してビス トン 116 の往復運動に変換され 、 ハゥジング 101 が備える弁 · ポート形成体 117 の吸入ポー ト 117a 及び吸入弁 117bを介した、 吸入室 114 からシリ ンダボア 113 への冷 媒ガスの吸入、 吸入冷媒ガスの圧縮、 及び弁 · ポー ト形成体 117 の 吐出ポート 117c及び吐出弁 117dを介した、 圧縮済み冷媒ガスの吐出 室 115 への吐出の圧縮サイクルが繰り返される。 Then, the rotational movement of the drive shaft 103 is converted into a reciprocating movement of the biston 116 via the rotary support 109, the hinge mechanism 111 and the swash plate 110, and the suction port of the valve / port forming body 117 provided in the housing 101 is formed. Refrigerant gas from the suction chamber 114 into the cylinder bore 113 via the inlet 117a and the suction valve 117b, compression of the suction refrigerant gas, and the discharge port 117c and the discharge valve 117d of the valve / port forming body 117. The compression cycle of discharging the compressed refrigerant gas to the discharge chamber 115 is repeated.
吸入室 114 と吐出室 115 とは、 図示しない外部冷媒回路で接続さ れている。 吐出室 115 から吐出された冷媒は、 前記外部冷媒回路に 導入される。 この外部冷媒回路では、 前記冷媒を利用した熱交換が 行われる。 前記外部冷媒回路から排出された冷媒は、 吸入室 114 に 導入され、 シリ ンダボア 113 に吸入されて再度圧縮作用を受ける。 抽気通路 119 は前記クランク室 102 と吸入室 114 とを連通する。 給気通路 120 は吐出室 115 とクランク室 102 とを連通する。 制御弁 121 は給気通路 120 上に配設され、 給気通路 120 の開度を調節可能 である。 The suction chamber 114 and the discharge chamber 115 are connected by an external refrigerant circuit (not shown). The refrigerant discharged from the discharge chamber 115 is introduced into the external refrigerant circuit. In this external refrigerant circuit, heat exchange using the refrigerant is performed. The refrigerant discharged from the external refrigerant circuit is introduced into the suction chamber 114, is drawn into the cylinder bore 113, and undergoes a compression action again. The bleed passage 119 communicates the crank chamber 102 with the suction chamber 114. The air supply passage 120 connects the discharge chamber 115 and the crank chamber 102. The control valve 121 is provided on the air supply passage 120, and is capable of adjusting the opening degree of the air supply passage 120.
制御弁 121 は、 図示しない制御コンピュータからの信号に基づい
て図示しない駆動回路が出力する電流によ り駆動されて給気通路 12 0 の開度を調節するようになっている。 制御弁 121 は、 前記駆動回 路から給電されていない状態では、 給気通路 120 を開放するよ うに 動作し、 給電されている状態では、 給気通路 120 の開度を調節する ように動作するようになつている。 The control valve 121 is based on a signal from a control computer (not shown). The drive circuit is driven by a current output from a drive circuit (not shown) to adjust the opening degree of the air supply passage 120. The control valve 121 operates to open the air supply passage 120 when power is not supplied from the drive circuit, and operates to adjust the opening degree of the air supply passage 120 when power is being supplied. It is like that.
制御弁 121 の開度を調節するこ とで給気通路 120 を介したク ラン ク室 102 への高圧ガスの導入量と抽気通路 119 を介したクランク室 102 からのガス導出量とのパランスが制御され、 クランク圧 P cが 決定される。 クランク圧 P cの変更に応じて、 ピス ト ン 116 を介し てのクランク圧 P c とシリ ンダボア 113 の内圧との差が変更され、 斜板 110 の傾角が変更される結果、 ピス ト ン 116 のス ト ロークすな わち吐出容量が調節される。 By adjusting the opening of the control valve 121, the balance between the amount of high-pressure gas introduced into the crank chamber 102 through the air supply passage 120 and the amount of gas discharged from the crank chamber 102 through the bleed passage 119 is increased. Is controlled to determine the crank pressure P c. In accordance with the change of the crank pressure P c, the difference between the crank pressure P c via the piston 116 and the internal pressure of the cylinder bore 113 is changed, and as a result, the inclination angle of the swash plate 110 is changed. In other words, the discharge capacity is adjusted.
ここで、 例えば、 圧縮機が最大吐出容量にて蓮転されている状態 から、 エアコンスィ ッチ (図示しない) のオフ操作に応じて摩擦ク ラッチ 105 がオフされる力 、 或いは車輛エンジン E gが停止して圧 縮機の運転が停止されたとする。 このような場合、 制御弁 121 に対 する給電も停止され (入力電流値はゼロ とされ) 、 給気通路 120 を 急激に全開することとなる。 従って、 吐出室 115 からクランク室 10 2 への高圧冷媒ガスの供給量が急激に増大され、 抽気通路 119 がこ の急激な増大分を逃がしきらないこ とから、 クランク室 102 の圧力 が過大に上昇する。 また、 シリ ンダボア 113 の圧力は、 圧縮機の停 止によ り、 吸入室 114 の低い圧力で均圧しよう と して低下される。 その結果、 シリ ンダポア 113 とクランク室 102 との圧力差が過大に 拡大される。 Here, for example, when the compressor is rotated at the maximum discharge capacity, the force at which the friction clutch 105 is turned off in response to the operation of turning off the air conditioner switch (not shown), or the vehicle engine E g Stops and the compressor operation stops. In such a case, the power supply to the control valve 121 is also stopped (the input current value is set to zero), and the air supply passage 120 is suddenly fully opened. Therefore, the supply amount of the high-pressure refrigerant gas from the discharge chamber 115 to the crank chamber 102 is rapidly increased, and the pressure in the crank chamber 102 is excessively increased because the bleed passage 119 cannot fully escape the rapid increase. To rise. Further, the pressure in the cylinder bore 113 is reduced by trying to equalize the pressure in the suction chamber 114 due to the stoppage of the compressor. As a result, the pressure difference between the cylinder pore 113 and the crankcase 102 is excessively increased.
このため、 傾斜角度を最小と した斜板 110 (図 7において二点鎖 線で示す) は、 最小傾斜角度規定部 112 に過大な力で押しつけられ る う えに、 ヒ ンジ機構 111 を介して回転支持体 109 を後方 (図面右
方) 側に強く 引っ張ることにもなる。 その結果、 駆動軸 103 が軸線 L後方側に向かう強い移動力を受け、 駆動軸付勢パネ 118 の付勢力 に抗してスライ ド移動してしまう。 このため、 次のよ うな問題を生 ずるおそれがある。 For this reason, the swash plate 110 with the minimum inclination angle (indicated by a two-dot chain line in FIG. 7) is pushed through the hinge mechanism 111 so as to be pressed against the minimum inclination angle defining portion 112 with excessive force. Rotating support 109 backward (right drawing) )) It will also pull strongly to the side. As a result, the driving shaft 103 receives a strong moving force toward the rear side of the axis L, and slides against the urging force of the driving shaft urging panel 118. This may cause the following problems.
( a ) 駆動軸 103 が軸線 L方向にスライ ド移動すると、 そのリ ッ ブシール 104 との摺動位置が、 コンタク トラインと呼ばれる所定の 位置を逸脱することがある。 駆動軸 103 の外周面において、 コンタ ク トラインから外れた箇所には、 スラッジ等の異物が付着している ことが多い。 このため、 リ ップシール 104 は、 駆動軸 103 との間に スラ ッジが嚙み込まれて軸封性能が低下し、 ガス漏れ等の不具合が 生じる。 (a) When the drive shaft 103 slides in the direction of the axis L, the sliding position with the rib seal 104 may deviate from a predetermined position called a contact line. Foreign matter such as sludge often adheres to a portion of the outer peripheral surface of the drive shaft 103 deviating from the contact line. For this reason, the lip seal 104 has a sludge penetrating between the lip seal 104 and the drive shaft 103, and the shaft sealing performance is reduced, thereby causing problems such as gas leakage.
( b ) 摩擦クラッチ 105 がオフされた場合、 言い換えれば、 車輛 エンジン E g と駆動軸 103 との間での動力伝達が遮断された場合、 駆動軸 103 が軸線 L後方側にスライ ド移動すると、 駆動軸 103 に固 定されたァーマチヤ 107 がロータ 106 側に移動する。 摩擦クラッチ 105 のオフ状態におけるロータ 106 とァーマチヤ 107 との間のタ リ ァラ ンスは微小 (例えば、 0. 5mm ) に設定されている。 従って、 前 述した駆動軸 103 の軸線 L後方側へのスライ ド移動によって、 ロー タ 106 とァーマチヤ 107 との間のク リアランスが容易に消滅してし まい、 ァーマチヤ 107 が回転状態にあるロータ 106 に摺接して異音 や振動を生じたり、 さ らには動力伝達を許容してしま う。 (b) When the friction clutch 105 is turned off, in other words, when the power transmission between the vehicle engine Eg and the drive shaft 103 is cut off, when the drive shaft 103 slides rearward on the axis L, The armature 107 fixed to the drive shaft 103 moves to the rotor 106 side. When the friction clutch 105 is in the off state, the talliance between the rotor 106 and the armature 107 is set to a very small value (for example, 0.5 mm). Therefore, the clearance between the rotor 106 and the armature 107 is easily lost due to the slide movement of the drive shaft 103 to the rear side of the axis L, and the rotor 106 in which the armature 107 is rotating is easily lost. It may make noise and vibration due to sliding contact, and allow power transmission.
( c ) 駆動軸 103 が軸線 L後方側にスライ ド移動すると、 この駆 動軸 103 に斜板 110 を介して連結されているピス ト ン 116 が、 シリ ンダポア 113 内を後方側にスライ ド移動して、 その死点が弁 ' ポー ト形成体 117 側にずれよう とする。 また、 駆動軸 103 は、 摩擦クラ ツチ 105 のオフ直後や車輛エンジン E gが停止した直後は、 慣性に よって多少は回り続けている。 従って、 この慣性回転時において、
ピス ト ン 116 が上死点に位置する際に弁 ' ポート形成体 117 に対し て衝撃的に衝突し、 この衝突に起因して振動ゃ騷音が発生する。 なお、 駆動軸 103 のスライ ド移動を防止するため、 駆動軸付勢パ ネ 118 の付勢力を大きくする対策が考えられるが、 この大きな荷重 を受承するこ ととなるスラス トベアリ ング 123 の耐久性の低下及び 動力損失の増大という新たな問題が発生してしまう。 (c) When the drive shaft 103 slides rearward on the axis L, the piston 116 connected to the drive shaft 103 via the swash plate 110 slides rearward inside the cylinder pore 113. Then, the dead center tends to shift to the valve port forming body 117 side. Further, immediately after the friction clutch 105 is turned off or immediately after the vehicle engine Eg is stopped, the drive shaft 103 continues to rotate slightly due to inertia. Therefore, during this inertial rotation, When the piston 116 is located at the top dead center, the piston 116 impacts against the valve port forming body 117, and the collision generates vibration and noise. In order to prevent the slide movement of the drive shaft 103, measures to increase the urging force of the drive shaft urging panel 118 can be considered. However, the durability of the thrust bearing 123, which can receive this large load, is considered. A new problem arises in that power is reduced and power loss is increased.
ところで、 前記圧縮機では、 該圧縮機内の可動部品の円滑な動作 のために、 各可動部品の潤滑を行う必要がある。 そのため、 該圧縮 機では、 霧状の潤滑油を前記冷媒と混在させて前記冷媒の前記圧縮 機及び前記外部冷媒回路間の循環とともに該潤滑油を循環させるよ うにしている。 該圧縮機では、 前記可動部品が前記冷媒に曝される 構造となっている。 そのため、 前記可動部品は、 前記霧状の潤滑油 にも曝されることになり、 該可動部品の潤滑が可能になる。 By the way, in the compressor, it is necessary to lubricate each of the movable parts in order to smoothly operate the movable parts in the compressor. Therefore, the compressor mixes the mist-like lubricating oil with the refrigerant so that the lubricating oil circulates together with the circulation of the refrigerant between the compressor and the external refrigerant circuit. The compressor has a structure in which the movable parts are exposed to the refrigerant. Therefore, the movable part is also exposed to the mist lubricating oil, and the movable part can be lubricated.
ところが、 この霧状の潤滑油は、 前記冷媒循環によって前記外部 冷媒回路内にも導入されることになる。 該潤滑油は、 前記外部冷媒 回路内では、 該回路内で行われる熱交換の効率をダウンさせる方向 に作用する。 更に、 前記圧縮機の内部から外部に潤滑油が排出され ることになるため該圧縮機内の潤滑油量が減少し、 該圧縮機内の潤 滑効率が低下する。 However, the atomized lubricating oil is also introduced into the external refrigerant circuit by the refrigerant circulation. The lubricating oil acts in the external refrigerant circuit in a direction to reduce the efficiency of heat exchange performed in the circuit. Further, since the lubricating oil is discharged from the inside of the compressor to the outside, the amount of the lubricating oil in the compressor decreases, and the lubricating efficiency in the compressor decreases.
前記クランク室 102 の圧力上昇による各問題は、 例えば、 特開平 1 1 - 3 1 5 7 8 5公報に開示された構成によって解決可能になる 。 該構成では、 吐出室と外部冷媒回路との間に冷媒流方向を規制す る逆止弁が設けられ、 前記外部冷媒回路側から前記吐出室側への冷 媒の逆流が阻止されるよ うになつている。 この冷媒の逆流阻止によ つて、 前述のような給気通路 120 の全開状態において、 前記外部冷 媒回路側に存在する高圧な冷媒ガスが該給気通路 120 を介してクラ ンク室 102 に導入されることがなくなる。 これによ り該クランク室
102 の内圧が過大に上昇することがなくなる。 The various problems caused by the increase in the pressure of the crank chamber 102 can be solved by, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 11-315875. In this configuration, a check valve that regulates the refrigerant flow direction is provided between the discharge chamber and the external refrigerant circuit, so that the reverse flow of the refrigerant from the external refrigerant circuit side to the discharge chamber side is prevented. I'm sorry. By preventing the backflow of the refrigerant, the high-pressure refrigerant gas present on the side of the external refrigerant circuit is introduced into the crank chamber 102 through the air supply passage 120 when the air supply passage 120 is fully opened as described above. Will not be done. As a result, the crank chamber The internal pressure of 102 does not rise excessively.
また、 前記潤滑油の前記外部冷媒回路への排出による問題は、 例 えば、 特開平 1 0— 2 8 1 0 6 0公報に開示された構成によって解 決可能になる。 該構成では、 吐出室内に、 前記冷媒と混在する霧状 の前記潤滑油を前記冷媒と分離するオイルセパレータが設けられ、 前記外部冷媒回路への前記潤滑油の排出が抑止されるようになって いる。 Further, the problem due to the discharge of the lubricating oil to the external refrigerant circuit can be solved by, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. H10-280160. In this configuration, an oil separator that separates the mist of the lubricating oil mixed with the refrigerant from the refrigerant is provided in the discharge chamber, and discharge of the lubricating oil to the external refrigerant circuit is suppressed. I have.
しかしながら、 前者の公報では、 冷媒の逆流阻止に関してのみで 前記外部冷媒回路内への潤滑油の排出問題に関しての配慮がなされ ていない。 また、 逆に、 後者の公報では、 前記外部冷媒回路内への 潤滑油の排出問題に関してのみで前記クランク室の圧力上昇問題に 関しては配慮がなされていない。 発明の開示 However, in the former publication, no consideration is given to the problem of discharge of the lubricating oil into the external refrigerant circuit only with respect to the prevention of the backflow of the refrigerant. Conversely, in the latter publication, no consideration is given to the problem of increasing the pressure in the crank chamber, but only to the problem of discharging the lubricating oil into the external refrigerant circuit. Disclosure of the invention
本発明の目的は、 外部冷媒回路から吐出室への冷媒の逆流を防止 するとともに該外部冷媒回路への潤滑油の排出を抑えることができ る圧縮機を提供することにある。 An object of the present invention is to provide a compressor capable of preventing a backflow of refrigerant from an external refrigerant circuit to a discharge chamber and suppressing discharge of lubricating oil to the external refrigerant circuit.
上記問題点を解決するために、 本発明は、 ハウジング内に、 圧縮 室から吐出された冷媒が通過する吐出室と、 前記圧縮室に吸入され る冷媒が通過する吸入室とを備え、 前記吐出室と外部冷媒回路とを 吐出経路で接続すると ともに前記吸入室と前記外部冷媒回路とを吸 入経路で接続し、 前記外部冷媒回路との間で前記冷媒を循環させる 圧縮機において、 前記吐出室または前記吐出経路に、 前記外部冷媒 回路から前記吐出室に前記冷媒が逆流することを防止する逆止弁と 、 前記冷媒と混在する霧状の潤滑油を分離するオイルセパレータと 、 該オイルセパレータが分離した潤滑油を低圧領域に導入する給油 通路とを備えたことを特徴とする。
この発明によれば、 オイルセパレータが冷媒と潤滑油を分離して 、 外部冷媒回路への前記潤滑油の排出を抑止する。 前記潤滑油は前 記外部冷媒回路での熱交換効率低下の原因となるものであるため、 この分離によつて該熱交換効率の低下を抑えることができる。 前述 の冷媒と分離された潤滑油は、 給油通路を介して低圧領域に導入さ れる。 本発明における低圧領域は、 前記吸入室、 前記吸入経路、 及 び、 前記ハウジング内に形成されたクランク室等を指している。 こ れによ り、 前記吸入経路を含む圧縮機内の潤滑油量の減少を抑える と ともに該圧縮機内を良好に潤滑することができるようになる。 ま た、 前記逆止弁により、 前記外部冷媒回路から前記吐出室への冷媒 の逆流が防止される。 In order to solve the above problems, the present invention provides, in a housing, a discharge chamber through which refrigerant discharged from a compression chamber passes, and a suction chamber through which refrigerant sucked into the compression chamber passes; A compressor that connects the suction chamber and the external refrigerant circuit with a suction path while connecting the chamber and the external refrigerant circuit with a discharge path, and circulates the refrigerant with the external refrigerant circuit. Or a check valve for preventing the refrigerant from flowing back from the external refrigerant circuit to the discharge chamber in the discharge path; an oil separator for separating mist-like lubricating oil mixed with the refrigerant; And an oil supply passage for introducing the separated lubricating oil into the low-pressure region. According to the present invention, the oil separator separates the refrigerant and the lubricating oil, and suppresses the discharge of the lubricating oil to the external refrigerant circuit. Since the lubricating oil causes a decrease in the heat exchange efficiency in the external refrigerant circuit, the separation can suppress the decrease in the heat exchange efficiency. The lubricating oil separated from the refrigerant described above is introduced into the low-pressure region via the oil supply passage. The low pressure region in the present invention refers to the suction chamber, the suction path, a crank chamber formed in the housing, and the like. As a result, it is possible to suppress a decrease in the amount of lubricating oil in the compressor including the suction path and to lubricate the inside of the compressor satisfactorily. Further, the check valve prevents the backflow of the refrigerant from the external refrigerant circuit to the discharge chamber.
以下、 添付図面と本発明の好適な実施形態の記載から、 本発明を 一層十分に理解できるであろう。 図面の簡単な説明 Hereinafter, the present invention will be more fully understood from the accompanying drawings and the description of preferred embodiments of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1の実施形態の圧縮機の概要を示す断面図で ある。 FIG. 1 is a sectional view showing an outline of a compressor according to a first embodiment of the present invention.
図 2は、 図 1の圧縮機の要部であるュニッ ト 4 0の拡大部分断面 図 (閉弁状態) である。 FIG. 2 is an enlarged partial cross-sectional view (with a valve closed) of a unit 40, which is a main part of the compressor of FIG.
図 3は、 図 2中の弁体を上方から見た状態を示す拡大上面図であ る。 FIG. 3 is an enlarged top view showing a state where the valve body in FIG. 2 is viewed from above.
図 4は、 図 1の圧縮機の要部であるュニッ ト 4 0の拡大部分断面 図 (開弁状態) である。 FIG. 4 is an enlarged partial cross-sectional view (valve-opened state) of a unit 40, which is a main part of the compressor in FIG.
図 5は、 本発明の第 2の実施形態の圧縮機の要部であるュニッ ト 7 0の拡大断面図 (開弁状態) である。 FIG. 5 is an enlarged sectional view (in a valve-opened state) of a unit 70, which is a main part of a compressor according to a second embodiment of the present invention.
図 6は、 図 5の要部であるユニッ ト 7 0の拡大断面図 (閉弁状態 ) である。
図 7は、 従来技術における圧縮機の概要を示す断面図である 発明を実施するための最良の形態 FIG. 6 is an enlarged sectional view (in a valve-closed state) of a unit 70 which is a main part of FIG. FIG. 7 is a cross-sectional view showing an outline of a compressor according to the related art.
(第 1 の実施形態) (First Embodiment)
以下、 本発明の一実施形態を図 1〜図 4に従って説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
図 1 に示すように可変容量圧縮機 (以下、 単に圧縮機という) C は、 シリ ンダプロ ック 1 と、 その前端に接合されたフ ロ ン トハウジ ング 2 と、 シリ ンダブロ ック 1 の後端に弁形成体 3を介して接合さ れたリャハウジング 4 とを備えている。 これらシリ ンダブ口 ック 1 、 フロントハウジング 2、 弁形成体 3及びリャハウジング 4は、 複 数本の通しポルト 1 0 (図 1では一本のみ図示) によ り相互に接合 固定されて圧縮機 Cのハウジングを構成する。 シリ ンダブ口 ック 1 とフロントハウジング 2 とに囲まれた領域にはクランク室 5が区画 されている。 クランク室 5内には駆動軸 6が前後一対のラジアル軸 受け 8 A, 8 Bによって回転可能に支持されている。 シリ ンダブ口 ック 1 の中央に形成された収容凹部内には、 パネ 7及び後側スラス ト軸受け 9 Bが配設されている。 他方、 クランク室 5において駆動 軸 6上にはラグプレー ト 1 1がー体回転可能に固定され、 ラグプレ ート 1 1 とフ ロ ン トハウジング 2の内壁面との間には前側スラス ト 軸受け 9 Aが配設されている。 一体化された駆動軸 6及びラグプレ ート 1 1 は、 パネ 7で前方付勢された後側スラス ト軸受け 9 Bと前 側スラス ト軸受け 9 Aとによってスラス ト方向 (駆動軸軸線方向) に位置決めされている。 ラジアル軸受け 8 Aよ り も前側において、 駆動軸 6 とフ ロ ン トハウジング 2 との間には、 リ ップシール 2 Aが 配設されている。 リ ツブシール 2 Aは駆動軸 6 とフ ロ ン トハウジン グ 2 との隙間を封止して圧縮機 Cの内部と外部とを圧力的に隔絶す るよ うになっている。
駆動軸 6の前端部は、 動力伝達機構 P Tを介して外部駆動源とし ての車輛エンジン Eに作動連結されている。 動力伝達機構 P Tは、 外部からの電気制御によって動力の伝達 Z遮断を選択可麁なクラッ チ機構 (例えば電磁クラッチ) であってもよく、 又は、 そのような クラツチ機構を持たない常時伝達型のクラツチレス機構 (例えばべ ルト /プーリの組合せ) であってもよい。 尚、 本実施形態では、 ク ラッチレスタイプの動力伝達機構を採用している。 As shown in Fig. 1, the variable capacity compressor (hereinafter simply referred to as the compressor) C is a cylinder block 1, a front housing 2 joined to its front end, and a rear end of cylinder block 1. And a rear housing 4 joined to the housing via a valve forming body 3. The cylinder hook 1, the front housing 2, the valve forming body 3, and the rear housing 4 are joined and fixed to each other by a plurality of through-ports 10 (only one is shown in FIG. 1), and a compressor is provided. Construct C housing. A crank chamber 5 is defined in a region surrounded by the cylinder opening 1 and the front housing 2. In the crank chamber 5, a drive shaft 6 is rotatably supported by a pair of front and rear radial bearings 8A and 8B. A panel 7 and a rear thrust bearing 9B are arranged in a housing recess formed in the center of the cylindrical hook 1. On the other hand, a lug plate 11 is fixed on the drive shaft 6 in the crank chamber 5 so as to be rotatable, and a front thrust bearing 9 is provided between the lug plate 11 and the inner wall surface of the front housing 2. A is provided. The integrated drive shaft 6 and lug plate 11 are moved in the thrust direction (drive shaft axis direction) by the rear thrust bearing 9B and the front thrust bearing 9A urged forward by the panel 7. Positioned. A lip seal 2A is provided between the drive shaft 6 and the front housing 2 on the front side of the radial bearing 8A. The rib seal 2A seals a gap between the drive shaft 6 and the front housing 2 so that the inside and the outside of the compressor C are pressure-isolated. The front end of the drive shaft 6 is operatively connected to a vehicle engine E as an external drive source via a power transmission mechanism PT. The power transmission mechanism PT may be a clutch mechanism (for example, an electromagnetic clutch) capable of selecting the transmission of power by an external electric control, or may be a constant transmission type that does not have such a clutch mechanism. It may be a clutchless mechanism (for example, a belt / pulley combination). In this embodiment, a clutchless type power transmission mechanism is employed.
図 1 に示すよ うに、 クランク室 5内にはカムプレートとしての斜 板 1 2が収容されている。 斜板 1 2の中央部には揷通孔が貫設され 、 この揷通孔を貫通して駆動軸 6が配置されている。 斜板 1 2は、 連結案内機構と してのヒンジ機構 1 3を介してラグプレー ト 1 1及 び駆動軸 6に作動連結されている。 ヒ ンジ機構 1 3は、 ラグプレー ト 1 1 のリ ャ面から突設された二つの支持アーム 1 4 (一つのみ図 示) と、 斜板 1 2のフロント面から突設された二本のガイ ドビン 1 5 (一本のみ図示) とから構成されている。 支持アーム 1 4 とガイ ドビン 1 5 との連係および斜板 1 2の中央揷通孔内での駆動軸 6 と の接触によ り、 斜板 1 2はラグプレー ト 1 1及び駆動軸 6 と同期回 転可能であると共に駆動軸 6の軸方向へのスライ ド移動を伴いなが ら駆動軸 6に対し傾動可能となっている。 なお、 斜板 1 2は、 駆動 軸 6 を挟んで前記ヒ ンジ機構 1 3 と反対側に力ゥンタウヱイ ト部 1 2 a を有している。 As shown in FIG. 1, a swash plate 12 as a cam plate is accommodated in the crank chamber 5. The swash plate 12 has a through hole formed in the center thereof, and the drive shaft 6 is disposed through the through hole. The swash plate 12 is operatively connected to the lug plate 11 and the drive shaft 6 via a hinge mechanism 13 as a connection guide mechanism. The hinge mechanism 13 has two support arms 14 (only one is shown) protruding from the rear surface of the lag plate 11, and two support arms 14 protruding from the front surface of the swash plate 12. Guide bin 15 (only one is shown). The swash plate 12 is synchronized with the lug plate 11 and the drive shaft 6 by the linkage between the support arm 14 and the guide bin 15 and the contact with the drive shaft 6 in the central through hole of the swash plate 12. It is rotatable and tiltable with respect to the drive shaft 6 with sliding movement in the axial direction of the drive shaft 6. Note that the swash plate 12 has a power weight section 12 a on the opposite side of the hinge mechanism 13 across the drive shaft 6.
ラグプレー ト 1 1 と斜板 1 2 との間において駆動軸 6の周囲には 傾角減少パネ 1 6が設けられている。 この傾角減少パネ 1 6は斜板 1 2をシリ ンダブロ ック 1 に接近する方向 (傾角減少方向) に付勢 する。 又、 駆動軸 6に固着された規制リ ング 1 8 と斜板 1 2 との間 において駆動軸 6の周囲には復帰パネ 1 7が設けられている。 この 復帰パネ 1 7は、 斜板 1 2が大傾角状態 (二点鎖線で示す) にある
ときには駆動軸 6に単に卷装されるのみで斜板その他の部材に対し ていかなる付勢作用も及ぼさないが、 斜板 1 2が小傾角状態 (実線 で示す) に移行すると、 前記規制リ ング 1 8 と斜板 1 2 との間で圧 縮されて斜板 1 2をシリ ンダブロ ック 1から離間する方向 (傾角増 大方向) に付勢する。 なお、 本件では、 斜板 1 2の傾斜角度 (傾角 ) を、 駆動軸 6に直交する仮想平面と斜板 1 2 とがなす角度として いる。 An inclination reducing panel 16 is provided around the drive shaft 6 between the lag plate 11 and the swash plate 12. The inclination decreasing panel 16 urges the swash plate 12 in a direction approaching the cylinder block 1 (the inclination decreasing direction). In addition, a return panel 17 is provided around the drive shaft 6 between the restriction ring 18 fixed to the drive shaft 6 and the swash plate 12. In this return panel 17, the swash plate 12 is in the state of large inclination (indicated by the two-dot chain line). Sometimes the swash plate 12 is simply wound around the drive shaft 6 and does not exert any urging action on the swash plate or other members. It is compressed between 18 and the swash plate 12 to urge the swash plate 12 in the direction away from the cylinder block 1 (increase in tilt angle). In the present case, the inclination angle (inclination angle) of the swash plate 12 is defined as the angle between the virtual plane orthogonal to the drive shaft 6 and the swash plate 12.
シリ ンダブロ ック 1 には、 駆動軸 6を取り囲んで複数のシリ ンダ ボア l a (図 1では一つのみ図示) が形成され、 各シリ ンダポア 1 aのリャ側端は前記弁形成体 3で閉塞されている。 各シリ ンダボア l aには片頭型のピス ト ン 2 0が往復動可能に収容されており、 各 シリ ンダポア 1 a内にはビス ト ン 2 0の往復動に応じて体積変化す る圧縮室 1 bが区画されている。 各ビス トン 2 0の前端部は一対の シユ ー 1 9を介して斜板 1 2の外周部に係留され、 これらのシユ ー 1 9を介して各ビス ト ン 2 0は斜板 1 2に作動連結されている。 こ のため、 斜板 1 2が駆動軸 6 と同期回転するこ とで、 斜板 1 2の回 転運動がその傾角に対応するス ト ロークでのピス ト ン 2 0の往復直 線運動に変換される。 In the cylinder block 1, a plurality of cylinder bores la (only one is shown in FIG. 1) are formed around the drive shaft 6, and the cylinder-side end of each cylinder pore 1a is closed by the valve forming body 3. Have been. Each cylinder bore la contains a single-headed piston 20 in a reciprocating manner. Each cylinder pore 1a has a compression chamber 1 whose volume changes according to the reciprocating movement of the piston 20. b is partitioned. The front end of each biston 20 is moored to the outer periphery of the swash plate 12 via a pair of showers 19, and via this shower 19 each of the toner 20 is connected to the swash plate 12. It is operatively connected. Therefore, when the swash plate 12 rotates synchronously with the drive shaft 6, the rotational motion of the swash plate 12 is changed to the reciprocating linear motion of the piston 20 in the stroke corresponding to the tilt angle. Is converted.
更に弁形成体 3 と リャハウジング 4 との間には、 中心域に位置す る吸入室 2 1 と、 それを取り囲む吐出室 2 2 とが区画形成されてい る。 弁形成体 3は、 吸入弁形成板、 ポート形成板、 吐出弁形成板お よびリテーナ形成板を重合してなるものである。 この弁形成体 3に は各シリ ンダボア 1 aに対応して、 吸入ポー ト 2 3及び同ポート 2 3を開閉する吸入弁 2 4、 並びに、 吐出ポート 2 5及び同ポート 2 5を開閉する吐出弁 2 6が形成されている。 吸入ポー ト 2 3を介し て吸入室 2 1 と各シリ ンダボア 1 a とが連通され、 吐出ポー ト 2 5 を介して各シリ ンダポア 1 a と吐出室 2 2 とが連通される。
吸入室 2 1 とクランク室 5 とは、 抽気通路 2 7で接続されている 。 また、 吐出室 2 2 とクランク室 5 とは、 後述するユニッ ト 4 0を 介して連通路 2 8で接続されており、 該連通路 2 8の途中には制御 弁 3 0が設けられている。 Further, a suction chamber 21 located in the central area and a discharge chamber 22 surrounding the suction chamber 21 are formed between the valve forming body 3 and the rear housing 4. The valve forming body 3 is formed by stacking a suction valve forming plate, a port forming plate, a discharge valve forming plate, and a retainer forming plate. The valve forming body 3 has a suction valve 24 for opening and closing the suction port 23 and the port 23, and a discharge valve for opening and closing the discharge port 25 and the port 25 corresponding to each cylinder bore 1a. Valve 26 is formed. The suction chamber 21 communicates with each cylinder bore 1 a via the suction port 23, and the cylinder pore 1 a communicates with the discharge chamber 22 via the discharge port 25. The suction chamber 21 and the crank chamber 5 are connected by a bleed passage 27. Further, the discharge chamber 22 and the crank chamber 5 are connected by a communication path 28 via a unit 40 described later, and a control valve 30 is provided in the middle of the communication path 28. .
制御弁 3 0は、 ソレノィ ド部 3 1 と、 ソレノィ ド部 3 1にロ ッ ド を介して作動連結された弁体 3 2 とを備えている。 図示しない制御 コンピュータからの信号に基づいて図示しない駆動回路が出力する 電流により ソレノイ ド部 3 1が駆動されて弁体 3 2の位置が変更さ れ、 連通路 2 8の開度が調節されるようになっている。 弁体 3 2は 、 前記駆動回路から給電されていない状態では、 連通路 2 8を開放 する位置に配置され、 給電されている状態では、 連通路 2 8の開度 を調節するよ うになつている。 The control valve 30 includes a solenoid part 31 and a valve element 32 operatively connected to the solenoid part 31 via a rod. Control (not shown) A solenoid circuit 31 is driven by a current output from a drive circuit (not shown) based on a signal from a computer to change the position of the valve body 32 and adjust the opening of the communication passage 28. It has become. The valve element 32 is arranged at a position that opens the communication path 28 when power is not supplied from the drive circuit, and adjusts the opening degree of the communication path 28 when power is supplied. I have.
制御弁 3 0の開度を調節することで連通路 2 8を介したクランク 室 5への高圧ガスの導入量と抽気通路 2 7を介したクランク室 5か らのガス導出量とのパランスが制御され、 クランク圧 P cが決定さ れる。 クランク圧 P cの変更に応じて、 ピス トン 2 0を介してのク ランク圧 P c とシリ ンダポア 1 aの内圧との差が変更され、 斜板 1 2の傾角が変更される結果、 ビス ト ン 2 0のス ト ロークすなわち吐 出容量 (冷媒循環量) が調節される。 この場合においては、 連通路 2 8及び制御弁 3 0は、 吐出室 2 2側の冷媒をクランク室 5に導入 するための給気通路の一部として機能している。 By adjusting the opening of the control valve 30, the balance between the amount of high-pressure gas introduced into the crankcase 5 through the communication passage 28 and the amount of gas discharged from the crankcase 5 through the bleed passage 27 is increased. It is controlled to determine the crank pressure Pc. In accordance with the change in the crank pressure P c, the difference between the crank pressure P c via the piston 20 and the internal pressure of the cylinder pore 1 a is changed, and as a result, the inclination angle of the swash plate 12 is changed. The stroke of the ton 20, that is, the discharge capacity (refrigerant circulation amount) is adjusted. In this case, the communication passage 28 and the control valve 30 function as a part of an air supply passage for introducing the refrigerant in the discharge chamber 22 into the crank chamber 5.
なお、 斜板 1 2の最大傾角は、 斜板 1 2のカウンタウェイ ト部 1 2 aがラグプレート 1 1に当接するこ とで規制される。 他方、 最小 傾角は、 前記ビス トン 2 0を介してのクランク圧 P c とシリ ンダボ ァ 1 aの内圧との差が傾角減少方向にほぼ最大化した状態のもとで の傾角減少パネ 1 6 と復帰パネ 1 7 との付勢力パランスを支配的要 因として決定される。
リャハウジング 4には、 吸入室 2 1へ冷媒を導入する際の入口と なる吸入口 2 1 Aが設けられている。 また、 リャハウジング 4には 吐出室 2 2に連通する取付口 2 2 Aが設けられ、 該取付口 2 2 Aに は、 後述する吐出口 4 2 Fを備えたユニッ ト 4 0が装着されている 吸入口 2 1 Aと、 吐出口 4 2 Fとの間には、 外部冷媒回路 5 0が 介在されている。 Note that the maximum inclination angle of the swash plate 12 is regulated by the contact of the counterweight portion 12 a of the swash plate 12 with the lug plate 11. On the other hand, the minimum tilt angle is the tilt reduction panel 16 in a state where the difference between the crank pressure Pc via the biston 20 and the internal pressure of the cylinder bore 1a is almost maximized in the tilt reduction direction. And the return balance of the return panel 17 are determined as the dominant factors. The rear housing 4 is provided with a suction port 21A serving as an inlet for introducing a refrigerant into the suction chamber 21. Further, the rear housing 4 is provided with a mounting port 22 A communicating with the discharge chamber 22, and a unit 40 having a discharge port 42 F described later is mounted on the mounting port 22 A. An external refrigerant circuit 50 is interposed between the suction port 21A and the discharge port 42F.
図 1, 図 2及び図 4に示すよ うに、 ユニッ ト 4 0は、 リ ャハウジ ング 4の取付口 2 2 Aに装着された略有底円筒状のケース 4 2 と、 該ケース 4 2に収容された逆止弁 4 1 とを備えている。 逆止弁 4 1 は、 吐出口 4 2 Fに圧入された円板 4 4 と、 円板 4 4に開口側端面 が接合固定された略有底円筒状のケーシング 4 3 とを備えている。 ケーシング 4 3内には、 該ケーシング 4 3の開口側端面が円板 4 4 に覆われるこ とで弁室 4 3 Aが形成されている。 ケーシング 4 3の 底部には冷媒入口としての弁入口 4 3 Bが、 円板 4 4には冷媒出口 と しての弁出口 4 4 Aが形成されている。 弁室 4 3 Aには、 弁体 4 5が弁入口 4 3 Bと弁出口 4 4 Aとの間を往復動可能に収納されて いる。 弁体 4 5は、 閉弁パネ 4 6によつて弁入口 4 3 B側に付勢さ れるよ うになっている。 As shown in FIGS. 1, 2, and 4, the unit 40 is a cylindrical case 42 with a substantially bottomed shape attached to the mounting opening 22A of the rear housing 4, and is housed in the case 42. Check valve 41 is provided. The check valve 41 includes a disc 44 press-fitted into the discharge port 42F, and a substantially bottomed cylindrical casing 43 having an open end face joined and fixed to the disc 44. In the casing 43, a valve chamber 43A is formed by covering the opening-side end face of the casing 43 with a disk 44. A valve inlet 43B as a refrigerant inlet is formed at the bottom of the casing 43, and a valve outlet 44A as a refrigerant outlet is formed at the disc 44. In the valve chamber 43A, a valve body 45 is housed so as to be able to reciprocate between a valve inlet 43B and a valve outlet 44A. The valve body 45 is urged toward the valve inlet 43 B by a valve closing panel 46.
弁体 4 5は、 略有底円筒状を呈し、 底部側の一部がテーパ状に形 成され、 先端ほど径が小さくなるようになつている。 弁体 4 5が弁 入口 4 3 B側に押し付けられたとき、 このテーパ状部分の一部が弁 入口 4 3 Bに入り込んで該弁入口 4 3 Bを塞ぐようになつている。 弁体 4 5の外周面には、 該弁体 4 5の軸方向に沿う溝 4 5 Aが複数 (本実施形態では 4本) 形成されている (図 3参照。 なお、 図 3は 、 弁体 4 5を該弁体 4 5の開口側から見た図である。 ) 。 溝 4 5 A の弁体 4 5の前記開口側端面には切欠部 4 5 Bが形成され、 弁体 4
5の外側と内側とが連通されるようになっている。 弁体 4 5を閉弁 パネ 4 6の付勢力に抗して円板 4 4側に移動したとき、 弁体 4 5の 開口側が円板 4 4に当接してそれ以上の移動が規制されるよ うにな つている。 このとき、 弁出口 4 4 Aは弁体 4 5の開口側によって覆 われるよ うになっているが、 弁入口 4 3 Bと弁出口 4 4 Aとは溝 4 5 A及び切欠部 4 5 Bを介して連通されている (図 4参照) 。 The valve body 45 has a substantially cylindrical shape with a bottom, a part of the bottom side is formed in a tapered shape, and the diameter becomes smaller toward the tip. When the valve body 45 is pressed against the valve inlet 43B, a part of this tapered portion enters the valve inlet 43B to close the valve inlet 43B. A plurality of (four in the present embodiment) grooves 45 A are formed on the outer peripheral surface of the valve body 45 along the axial direction of the valve body 45 (see FIG. 3. It is the figure which looked at the body 45 from the opening side of the said valve body 45.). A notch 45B is formed in the opening end face of the valve body 45 of the groove 45A, and the valve body 4 The outside and inside of 5 are communicated. When the valve body 45 moves to the disk 44 side against the urging force of the panel 46, the opening side of the valve body 45 comes into contact with the disk 44 and further movement is restricted. It is now. At this time, the valve outlet 44A is covered by the opening side of the valve body 45, but the valve inlet 43B and the valve outlet 44A are formed by the groove 45A and the notch 45B. (See Figure 4).
逆止弁 4 1では、 該逆止弁 4 1の上流側の冷媒圧力による弁体 4 5への付勢力と、 該逆止弁 4 1の下流側の冷媒圧力による弁体 4 5 への付勢力と、 閉弁パネ 4 6による付勢力とのパラ ンスによって弁 入口 4 3 Bの開閉動作が行われて、 冷媒の逆流防止が行われるよ う になっている。 前記上流側圧力による付勢力が、 前記下流側圧力に よる付勢力と前記閉弁パネ 4 6による付勢力との和よ り も大きく な つたとき、 逆止弁 4 1 は冷媒の流れを許容する。 逆に、 前記上流側 圧力による付勢力が、 前記下流側圧力による付勢力と前記閉弁パネ 4 6による付勢力との和よ りも小さくなつたとき、 逆止弁 4 1は冷 媒の流れを許容しない。 つまり、 逆止弁 4 1 は、 下流側 (外部冷媒 回路 5 0側) から上流側 (吐出室 2 2側) への冷媒の逆流を防止で きるようになつている。 In the check valve 41, the urging force on the valve body 45 by the refrigerant pressure on the upstream side of the check valve 41 and the urging force on the valve body 45 by the refrigerant pressure on the downstream side of the check valve 41 are determined. The opening and closing operation of the valve inlet 43B is performed by the balance between the biasing force and the biasing force by the valve closing panel 46, and the backflow of the refrigerant is prevented. When the urging force due to the upstream pressure becomes larger than the sum of the urging force due to the downstream pressure and the urging force due to the valve closing panel 46, the check valve 41 allows the flow of the refrigerant. . Conversely, when the biasing force due to the upstream pressure becomes smaller than the sum of the biasing force due to the downstream pressure and the biasing force due to the valve closing panel 46, the check valve 41 flows the coolant. Does not allow. That is, the check valve 41 prevents the backflow of the refrigerant from the downstream side (the external refrigerant circuit 50 side) to the upstream side (the discharge chamber 22 side).
逆止弁 4 1 をケース 4 2に収納した状態では、 ケース 4 2 の開口 側が円板 4 4に覆われて分離室 4 2 Aが区画形成される。 また、 ケ ース 4 2の円板 4 4よ り も下流側 (開口側) は、 冷媒の排出口と し ての吐出口 4 2 Fと して機能する。 なお、 図 1, 図 2及び図 4では 、 便宜上、 吐出口 4 2 Fと流通管 2 2 Bとを接続固定する機構の図 示を省略している。 ケース 4 2には、 吐出室 2 2内の冷媒を分離室 4 2 Aに導入する導入口 4 2 Bが形成されている。 導入口 4 2 Bと 吐出室 2 2 とは、 導入通路 4 2 Cで接続されている。 導入口 4 2 B は、 分離室 4 2 Aに導入された冷媒が該分離室 4 2 A内で旋回する
よ うにケース 4 2 の円周方向に沿って形成されている。 分離室 4 2 A内には逆止弁 4 1のケーシング 4 3が配置されているため、 実際 には、 導入口 4 2 Bから該分離室 4 2 Aに導入された冷媒は、 ケー ス 4 2の内周面とケーシング 4 3の外周面との隙間を旋回する。 こ の旋回によ り、 前記冷媒と混在する潤滑油が遠心分離され、 ケース 4 2 の前記内周面に付着するよ うになつている。 When the check valve 41 is housed in the case 42, the opening side of the case 42 is covered with the disk 44 to define the separation chamber 42A. The downstream side (opening side) of the disk 42 of the case 42 functions as a discharge port 42F as a refrigerant discharge port. In FIGS. 1, 2 and 4, for convenience, illustration of a mechanism for connecting and fixing the discharge port 42F and the flow pipe 22B is omitted. The case 42 has an inlet 42B for introducing the refrigerant in the discharge chamber 22 into the separation chamber 42A. The inlet 42B and the discharge chamber 22 are connected by an inlet passage 42C. In the inlet 42B, the refrigerant introduced into the separation chamber 42A swirls inside the separation chamber 42A. Thus, it is formed along the circumferential direction of case 42. Since the casing 43 of the check valve 41 is disposed in the separation chamber 42A, the refrigerant introduced into the separation chamber 42A from the inlet 42B is actually a case 4. It turns in the gap between the inner peripheral surface of 2 and the outer peripheral surface of the casing 43. By this swirling, the lubricating oil mixed with the refrigerant is centrifuged and adheres to the inner peripheral surface of the case 42.
また、 ケース 4 2の底部には、 テーパ状の傾斜凹部 4 2 Dが設け られており、 ケース 4 2 の前記内周面に付着して垂下した前記潤滑 油が該傾斜凹部 4 2 Dの最奥部に集まりやすくなっている。 傾斜凹 部 4 2 Dの前記最奥部には、 前記潤滑油をユニッ ト 4 0外に排出す る排出通路 4 2 Eが形成されている。 図 1に示すように、 排出通路 4 2 Eによってユニッ ト 4 0外に排出された前記潤滑油は、 連通路 2 8及び制御弁 3 0介して低圧領域と してのクランク室 5に導入さ れるよ うになっている。 なお、 ケース 4 2、 ケーシング 4 3及び円 板 4 4によって、 冷媒と混在する霧状の潤滑油を分離するオイルセ パレータが構成される。 この場合においては、 排出通路 4 2 E、 連 通路 2 8及び制御弁 3 0は、 前記オイルセパレータが分離した潤滑 油をクランク室 5に供給する給油通路と して機能している。 また、 ユニッ ト 4 0 の導入通路 4 2 C、 導入口 4 2 B、 分離室 4 2 A及び 排出通路 4 2 Eは、 吐出室 2 2 の冷媒をク ラ ンク室 5側に供給する 給気通路の一部と して機能している。 A tapered inclined recess 42D is provided at the bottom of the case 42, and the lubricating oil attached to the inner peripheral surface of the case 42 and drooping is provided at the bottom of the inclined recess 42D. It is easy to gather in the back. A discharge passage 42E for discharging the lubricating oil out of the unit 40 is formed in the innermost portion of the inclined concave portion 42D. As shown in FIG. 1, the lubricating oil discharged out of the unit 40 through the discharge passage 42E is introduced into the crank chamber 5 as a low pressure region through the communication passage 28 and the control valve 30. It is supposed to be. The case 42, the casing 43, and the disk 44 constitute an oil separator for separating mist-like lubricating oil mixed with the refrigerant. In this case, the discharge passage 42 E, the communication passage 28 and the control valve 30 function as an oil supply passage for supplying the lubricating oil separated by the oil separator to the crank chamber 5. In addition, the inlet passage 42C, the inlet 42B, the separation chamber 42A and the discharge passage 42E of the unit 40 supply the refrigerant in the discharge chamber 22 to the crank chamber 5 side. It functions as a part of the passage.
また、 取付口 2 2 A、 ュニッ ト 4 0及び流通管 2 2 Bによって、 吐出室 2 2 と外部冷媒回路 5 0 とを接続する吐出経路が構成され、 吸入口 2 1 A及び流通管 2 1 Bによって、 吸入室 2 1 と外部冷媒回 路 5 0 とを接続する吸入経路が構成される。 Further, a discharge path connecting the discharge chamber 22 and the external refrigerant circuit 50 is constituted by the mounting port 22 A, the unit 40 and the flow pipe 22 B, and the suction port 21 A and the flow pipe 21 are formed. B forms a suction path connecting the suction chamber 21 and the external refrigerant circuit 50.
次に、 前述のよ うに構成された圧縮機の作用について説明する。 車輛エンジン Eから動力伝達機構 P Tを介して駆動軸 6に動力が
供給されると、 駆動軸 6 と ともに斜板 1 2が回転する。 斜板 1 2の 回転に伴って各ビス ト ン 2 0が斜板 1 2の傾角に対応したス トロー クで往復動され、 各シリ ンダポア 1 aにおいて冷媒の吸入、 圧縮及 び吐出が順次繰り返される。 Next, the operation of the compressor configured as described above will be described. Power is transmitted from the vehicle engine E to the drive shaft 6 via the power transmission mechanism PT. When supplied, the swash plate 12 rotates with the drive shaft 6. As the swash plate 12 rotates, each piston 20 reciprocates in a stroke corresponding to the tilt angle of the swash plate 12, and the suction, compression, and discharge of refrigerant are sequentially repeated in each of the cylinder pores 1a. It is.
冷房負荷が大きい場合には、 前記制御コンピュータは、 前記駆動 回路に対して、 ソ レノイ ド部 3 1への供給電流値を大きくするよ う に指令信号を発する。 この信号に基づく前記駆動回路からの電流値 の変化により、 ソレノィ ド部 3 1は弁体 3 2が連通路 2 8の開度を よ り小さくするよ うに付勢力を増加させる。 その結果、 弁体 3 2が 移動して連通路 2 8の開度が小さくなる。 これにより、 吐出室 2 2 から連通路 2 8を経由してクランク室 5へ供給される高圧冷媒ガス の量が少なく なり、 クランク室 5の圧力が低下し、 斜板 1 2の傾角 が大きく なつて、 圧縮機 Cの吐出容量が大きくなる。 連通路 2 8が 全閉した状態となると、 ク ランク室 5の圧力が大きく低下し、 斜板 1 2の傾角が最大となって圧縮機 Cの吐出容量 (冷媒循環量) は最 大となる。 When the cooling load is large, the control computer issues a command signal to the drive circuit to increase the value of the current supplied to the solenoid unit 31. Due to a change in the current value from the drive circuit based on this signal, the solenoid portion 31 increases the urging force so that the valve body 32 further reduces the opening of the communication passage 28. As a result, the valve element 32 moves and the opening degree of the communication passage 28 decreases. As a result, the amount of high-pressure refrigerant gas supplied from the discharge chamber 22 to the crank chamber 5 via the communication path 28 decreases, the pressure in the crank chamber 5 decreases, and the inclination angle of the swash plate 12 increases. As a result, the discharge capacity of the compressor C increases. When the communication passage 28 is fully closed, the pressure in the crank chamber 5 drops significantly, the inclination angle of the swash plate 12 becomes maximum, and the discharge capacity (refrigerant circulation amount) of the compressor C becomes maximum. .
逆に、 冷房負荷が小さい場合には、 ソ レノイ ド部 3 1は弁体 3 2 が連通路 2 8 の開度をより大きくするように付勢力を減少させる。 その結果、 弁体 3 2が移動して連通路 2 8の開度が大きくなる。 こ れにより、 クランク室 5の圧力が上昇し、 斜板 1 2の傾角が小さく なって、 圧縮機 Cの吐出容量 (冷媒循環量) が小さくなる。 連通路 2 8が全開した状態となると、 クランク室 5の圧力が大きく上昇し 、 斜板 1 2の傾角が最小となって圧縮機 Cの吐出容量は最小となる シリ ンダポア 1 aから吐出室 2 2に吐出された冷媒は、 導入通路 4 2 C及び導入口 4 2 Bを介して分離室 4 2 Aに導入される。 この とき、 分離室 4 2 Aには、 前記冷媒とともに、 該冷媒と混在する霧
状の潤滑油が導入される。 これら冷媒及び潤滑油は、 ケース 4 2の 内周面と逆止弁 4 1のケーシング 4 3の外周面との隙間に沿って旋 回する。 ごの旋回中に、 前記潤滑油が遠心分離され、 傾斜凹部 4 2 Dに集約された後に排出通路 4 2 E、 連通路 2 8及び制御弁 3 0を 介してクランク室 5に導入される。 クランク室 5に導入された前記 潤滑油は、 該クランク室 5内の機構部品 (軸受やヒ ンジ機構など) の潤滑を行う。 Conversely, when the cooling load is small, the solenoid portion 31 reduces the urging force so that the valve body 32 increases the opening of the communication passage 28. As a result, the valve element 32 moves and the opening degree of the communication passage 28 increases. As a result, the pressure in the crank chamber 5 increases, the inclination angle of the swash plate 12 decreases, and the discharge capacity (refrigerant circulation amount) of the compressor C decreases. When the communication passage 28 is fully opened, the pressure in the crank chamber 5 rises greatly, the inclination angle of the swash plate 12 is minimized, and the discharge capacity of the compressor C is minimized. The refrigerant discharged to 2 is introduced into the separation chamber 42A via the introduction passage 42C and the introduction port 42B. At this time, in the separation chamber 42A, the mist mixed with the refrigerant together with the refrigerant Lubricating oil is introduced. These refrigerant and lubricating oil circulate along the gap between the inner peripheral surface of the case 42 and the outer peripheral surface of the casing 43 of the check valve 41. During the turning, the lubricating oil is centrifuged, collected in the inclined recess 42D, and then introduced into the crank chamber 5 via the discharge passage 42E, the communication passage 28 and the control valve 30. The lubricating oil introduced into the crankcase 5 lubricates mechanical components (bearings, hinge mechanisms, etc.) in the crankcase 5.
潤滑油と分離された前記冷媒は、 弁入口 4 3 Bを介して弁室 4 3 A内に入り込もう とする。 このとき、 前記冷媒は弁体 4 5を押し上 げ、 該弁体 4 5の底部と弁入口 4 3 Bとの間にできた隙間を通過し て弁室 4 3 A内に入り、 溝 4 5 Aを通過して弁出口 4 4 Aに至る。 冷媒に押し上げられることによつて弁体 4 5が円板 4 4に当接して いるときには、 前記冷媒は溝 4 5 Aを通過した後に円板 4 4 と切欠 部 4 5 Bとで形成される隙間を介して弁出口 4 4 Aに至る。 弁出口 4 4 Aを介して弁室 4 3 Aの外部に至った冷媒は、 流通管 2 2 Bを 介して外部冷媒回路 5 0に入り、 熱交換作用を行う。 The refrigerant separated from the lubricating oil tries to enter the valve chamber 43A through the valve inlet 43B. At this time, the refrigerant pushes up the valve body 45, passes through a gap formed between the bottom of the valve body 45 and the valve inlet 43B, enters the valve chamber 43A, and forms the groove 4 Pass 5 A to reach valve outlet 44 A. When the valve body 45 is in contact with the disk 44 by being pushed up by the refrigerant, the refrigerant is formed by the disk 44 and the notch 45B after passing through the groove 45A. It reaches the valve outlet 4 4 A through the gap. The refrigerant that has reached the outside of the valve chamber 43A through the valve outlet 44A enters the external refrigerant circuit 50 through the circulation pipe 22B, and performs a heat exchange action.
本実施形態では、 以下のような効果を得ることができる。 In the present embodiment, the following effects can be obtained.
( 1 ) 吐出室 2 2 と外部冷媒回路 5 0 との間に逆止弁 4 1 を設 けたため、 外部冷媒回路 5 0側から吐出室 2 2への冷媒の逆流を防 止することができる。 即ち、 圧縮機 Cをオフしたときなどに、 制御 弁 3 0のソレノイ ド部 3 1への給電が停止されて違通路 2 8が全開 状態になり外部冷媒回路 5 0側の高圧な冷媒が吐出室 2 2、 ュニッ ト 4 0及び連通路 2 8を介してクランク室 5に至ってクランク圧 P c を異常に急上昇させることがない。 従って、 前述の駆動軸 6のス ライ ド移動及びこの移動に起因する不具合を防止することができる 。 この不具合としては、 例えば、 従来技術における ( a ) , ( b ) 及び ( c ) があげられる。
( 2 ) 逆止弁 4 1 を設けて制御弁 3 0への給電停止時のクラン ク圧 P c の異常上昇を防止したため、 リ ッブシール 2 Aの劣化促進 が抑えられ、 圧縮機 Cの耐久性の向上が可能になる。 (1) Since the check valve 41 is provided between the discharge chamber 22 and the external refrigerant circuit 50, the backflow of the refrigerant from the external refrigerant circuit 50 to the discharge chamber 22 can be prevented. . That is, for example, when the compressor C is turned off, the power supply to the solenoid portion 31 of the control valve 30 is stopped, the abnormal passage 28 is fully opened, and the high-pressure refrigerant in the external refrigerant circuit 50 is discharged. The crank pressure P c does not rise abnormally suddenly to the crank chamber 5 via the chamber 22, the unit 40 and the communication passage 28. Therefore, it is possible to prevent the slide movement of the drive shaft 6 and the trouble caused by the movement. This defect includes, for example, (a), (b) and (c) in the prior art. (2) A check valve 41 is provided to prevent abnormal increase of the crank pressure P c when power supply to the control valve 30 is stopped, so that accelerated deterioration of the rib seal 2A is suppressed and durability of the compressor C is reduced. Can be improved.
( 3 ) 吐出室 2 2 と外部冷媒回路 5 0 との間にオイルセパレー タを設け、 外部冷媒回路 5 0側に排出される潤滑油量を抑えたため 、 外部冷媒回路 5 0 での冷媒の熱交換効率を上昇させることができ ると ともに、 圧縮機 C内の潤滑効率を上昇させることができる。 (3) An oil separator is provided between the discharge chamber 22 and the external refrigerant circuit 50 to suppress the amount of lubricating oil discharged to the external refrigerant circuit 50 side, so that the heat of the refrigerant in the external refrigerant circuit 50 is reduced. The exchange efficiency can be increased, and the lubrication efficiency in the compressor C can be increased.
( 4 ) ュニッ ト 4 0において分離された潤滑油をクランク室 5 に導入したため、 この潤滑油によって、 該クランク室 5を潤滑する ことができる。 クランク室 5には、 駆動軸 6の回転運動をピス ト ン 2 0の往復運動に変換する機構の摺動部 (例えば、 前側スラス ト軸 受け 9 A、 ヒ ンジ機構 1 3、 斜板 1 2及びシユ ー 1 9など) が比較 的多く存在する。 そのため、 クランク室 5の前記搢動部の潤滑効率 がよくなれば、 圧縮機 Cの作動効率をも向上させることが可能にな る。 (4) Since the lubricating oil separated at the unit 40 is introduced into the crankcase 5, the lubricating oil can lubricate the crankcase 5. In the crank chamber 5, sliding portions of a mechanism that converts the rotational motion of the drive shaft 6 into the reciprocating motion of the piston 20 (for example, the front thrust bearing 9A, the hinge mechanism 13, the swash plate 12) And Show 19) are relatively large. For this reason, if the lubrication efficiency of the moving part of the crank chamber 5 is improved, the operation efficiency of the compressor C can be improved.
( 5 ) オイルセパレータを、 逆止弁 4 1 の上流側に配設した。 これによ り 、 前記オイルセパレータと ともに該オイルセパレータが 分離した潤滑油をク ラ ンク室 5に導入する給油通路も逆止弁 4 1 の 上流側に配設される。 つまり、 逆止弁 4 1の下流側が上流側よ り も 高圧になっても、 前記給油通路を介して下流側の冷媒が上流側に逆 流することがない。 したがって、 前記給油通路にこの通路の開閉手 段等を設けることなく、 前記冷媒の逆流を防止することができる。 (5) The oil separator is arranged upstream of the check valve 41. As a result, an oil supply passage for introducing the lubricating oil separated by the oil separator into the crank chamber 5 together with the oil separator is also arranged upstream of the check valve 41. That is, even if the downstream side of the check valve 41 has a higher pressure than the upstream side, the downstream side refrigerant does not flow backward to the upstream side through the oil supply passage. Therefore, the backflow of the refrigerant can be prevented without providing a means for opening and closing this passage in the oil supply passage.
( 6 ) 逆止弁 4 1及びオイルセパレータをュニッ ト 4 0に一体 化したため、 両者をそれぞれ別体と して設けた場合に比較して、 両 者の設置スペースを全体として減らすことができる。 また、 このュ ニッ ト 4 0をリャハウジング 4側に組み付けるよ うにしたため、 組 立性及びメ ンテナンス性が向上する。
( 7 ) ケース 4 2内に逆止弁 4 1 を配置して、 ケーシング 4 3 の外周側では潤滑油の分離を行い、 内周側では冷媒の逆流防止を行 う ようにした。 即ち、 潤滑油分離作用と冷媒逆流防止作用との両方 においてケーシング 4 3を共用するようにした。 従って、 部品点数 を減らすことができ、 コス トダウンを図ることが可能になる。 (6) Since the check valve 41 and the oil separator are integrated into the unit 40, the installation space for both can be reduced as a whole as compared with the case where both are provided separately. In addition, since the unit 40 is assembled to the rear housing 4, the assemblability and the maintainability are improved. (7) The check valve 41 is arranged in the case 42 to separate the lubricating oil on the outer peripheral side of the casing 43 and prevent the refrigerant from flowing back on the inner peripheral side. That is, the casing 43 is commonly used for both the lubricating oil separating function and the refrigerant backflow preventing function. Therefore, the number of parts can be reduced, and the cost can be reduced.
( 8 ) 弁体 4 5を、 有底円筒状のケーシング 4 3の内周側の案 内によって往復動できるよ うに配置し、 弁体 4 5の外周に溝 4 5 A を形成し、 弁体 4 5の下方に形成された弁入口 4 3 Bからの冷媒が 該溝 4 5 Aを通過して弁体 4 5の上方に形成された弁出口 4 4 Aに 至るよ うにした。 弁体 4 5の前記外周に溝 4 5 Aが設けられていな い場合には、 弁体 4 5の下方から上方に冷媒が通過することができ ないため、 冷媒がケ一シング 4 3の内部から外部に抜け出るための 孔がケ一シング 4 3の周面に設けられる必要がある。 しかし、 この 場合には、 導入口 4 2 Bからの冷媒が前記孔を介してケーシング 4 3内に侵入しないように、 ケーシング 4 3を収納する外部ケーシン グを更に設けてこの外部ケーシングの外周を冷媒及び潤滑油が旋回 するようにする必要がある。 それに対して、 この実施形態では、 弁 体 4 5に溝 4 5 Aを形成して弁体 4 5の下方から上方に冷媒が通過 できるよ うにすることで、 部品点数を低減し、 コス トダウンを図る ことを可能にしている。 (8) The valve body 45 is arranged so as to be able to reciprocate within the inner peripheral side of the bottomed cylindrical casing 43, and a groove 45A is formed on the outer periphery of the valve body 45, and the valve body is formed. Refrigerant from a valve inlet 43 B formed below 45 was passed through the groove 45 A to reach a valve outlet 44 A formed above the valve body 45. If the groove 45 A is not provided on the outer circumference of the valve body 45, the refrigerant cannot pass from below to above the valve body 45, so that the refrigerant flows inside the casing 43. It is necessary to provide a hole on the peripheral surface of the casing 43 to escape from the outside. However, in this case, an external casing for housing the casing 43 is further provided so that the refrigerant from the inlet 42B does not enter the casing 43 through the hole, and the outer periphery of the outer casing is provided. It is necessary to make the refrigerant and lubricating oil swirl. On the other hand, in this embodiment, the groove 45A is formed in the valve body 45 so that the refrigerant can pass from below to above the valve body 45, thereby reducing the number of parts and reducing the cost. It is possible to achieve.
( 9 ) 弁体 4 5に溝 4 5 Aと ともに切欠部 4 5 Bを設けたため 、 弁体 4 5が持ち上げられて円板 4 4に当接しても、 冷媒が該切欠 部 4 5 Bを通過して弁出口 4 4 Aに至ることができる。 (9) Since the notch 45B is provided in the valve element 45 along with the groove 45A, even if the valve element 45 is lifted and abuts against the disk 44, the refrigerant passes through the notch 45B. It can pass through to the valve outlet 44 A.
( 1 0 ) 円板 4 4を、 分離室 4 2 Aを形成すると ともに弁室 4 3 Aを形成する部材と して共用したため、 部品点数の低減によるコ ス トダウンを図ることが可能になる。 (10) The disk 44 is formed as the separation chamber 42A and is commonly used as the member forming the valve chamber 43A, so that the cost can be reduced by reducing the number of parts.
( 1 1 ) ケース 4 2に傾斜凹部 4 2 Dを設け、 分離室 4 2 Aの
壁面 (ケース 4 2の内周面) を垂下した潤滑油を排出通路 4 2 Eに 案内するようにした。 このため、 排出通路 4 2 Eに潤滑油が集ま り やすくなると ともに圧縮機 Cの所定角度範囲内での傾斜設置が可能 になる。 (1 1) Provide an inclined recess 4 2 D in the case 4 2, and The lubricating oil hanging from the wall surface (the inner peripheral surface of the case 42) is guided to the discharge passage 42E. For this reason, lubricating oil is easily collected in the discharge passage 42E, and the compressor C can be installed at an angle within a predetermined angle range.
( 1 2 ) 逆止弁 4 1 のケーシング 4 3の外周側を冷媒及び潤滑 油が旋回するようにしたため、 オイルセパレータを逆止弁に対して 上流側に直列配置した場合に比較して、 ユニッ ト 4 0の長さを短く でき、 配置スペースを小さくすることができる。 (1 2) Since the refrigerant and the lubricating oil are swirled around the outer periphery of the casing 43 of the check valve 41, the unit is compared with the case where the oil separator is arranged in series upstream of the check valve. G 40 can be shortened, and the arrangement space can be reduced.
( 1 3 ) ユニッ ト 4 0を、 可変容量圧縮機である圧縮機 Cに設 けたため、 冷媒循環量 (吐出容量) が減少した場合に、 逆止弁 4 1 が吐出室 2 2 と外部冷媒回路 5 0 との間の冷媒の経路を閉鎖するこ とにより、 該外部冷媒回路 5 0への潤滑油の流出が抑制される。 (13) Since the unit 40 was installed in the compressor C, which is a variable displacement compressor, when the refrigerant circulation amount (discharge capacity) decreased, the check valve 41 connected the discharge chamber 22 to the external refrigerant. By closing the refrigerant passage to and from the circuit 50, the outflow of lubricating oil to the external refrigerant circuit 50 is suppressed.
( 1 4 ) 吐出室 2 2の冷媒をクランク室 5に供給するための給 気通路の一部を、 オイルセパレ一タが分離した潤滑油をクランク室 5へ供給する給油通路と し、 前記給気通路 (給油通路) の途中に、 該通路の開度を調節する制御弁 3 0を設けた。 さらに、 冷媒循環量 (14) A part of an air supply passage for supplying the refrigerant in the discharge chamber 22 to the crank chamber 5 is an oil supply passage for supplying lubricating oil separated by an oil separator to the crank chamber 5, A control valve 30 for adjusting the opening degree of the passage was provided in the middle of the passage (oil supply passage). In addition, the amount of refrigerant circulation
(吐出容量) が減少すると ともに、 シリ ンダボア 1 a とピス トン 2 0 との隙間を介した圧縮室 1 bからクランク室 5への冷媒のリーク 量が減少する小容量運転時には、 制御弁 3 0の弁開度が大きくなる ように構成した。 これによ り、 クランク室 5への潤滑油供給量が不 足しがちな前記小容量運転時にも、 弁開度が大きく なつた前記通路 を介して、 潤滑油をクランク室 5に効率よく供給することができる 。 また、 前記給気通路と前記給油通路との共用化によ り、 圧縮機 C の構造を簡略化することが可能になる。 (Discharge capacity) decreases and the amount of refrigerant leaking from the compression chamber 1b to the crank chamber 5 through the gap between the cylinder bore 1a and the piston 20 decreases. The valve was designed to have a large opening. Thus, even during the small-volume operation in which the amount of lubricating oil supplied to the crank chamber 5 tends to be insufficient, the lubricating oil is efficiently supplied to the crank chamber 5 through the passage having a large valve opening. be able to . Further, by sharing the air supply passage and the oil supply passage, the structure of the compressor C can be simplified.
(第 2の実施形態) (Second embodiment)
この第 2の実施形態の圧縮機 Cは、 前記第 1の実施形態において ュニッ ト 4 0の構成を変更したものであり、 その他の点では第 1 の
実施形態の圧縮機 Cと同一の構成になっている。 従って、 第 1の実 施形態と共通する構成部分については図面上に同一符号を付して重 複した説明を省略する。 The compressor C of the second embodiment is obtained by changing the configuration of the unit 40 in the first embodiment. It has the same configuration as the compressor C of the embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals in the drawings, and duplicate description will be omitted.
取付口 2 2 Aには、 ユニッ ト 7 0が装着されている。 図 5及び図 6に示すように、 ユニッ ト 7 0は、 逆止弁 7 1 と、 該逆止弁 7 1 を 収納する略有底円筒状のュニッ トケース 7 2 とを備えている。 逆止 弁 7 1は、 略円筒状のケーシング 7 3 と、 円板 7 4 とを備えている 。 ケーシング 7 3には、 該ケーシング 7 3の軸線方向においての中 程から下方に、 上方よ り も小径になるように形成された円筒状部と しての入側円筒部 7 3 Aが設けられている。 ケーシング 7 3内の前 記小径でない部分 (入側円筒部 7 3 Aの上方) には、 該ケーシング 7 3の上端部分が円板 7 4に覆われることで弁室 7 3 Bが形成され ている。 ケーシング 7 3には、 弁室 7 3 Bと、 ケーシング 7 3 の外 周側とを連通する弁出口 7 3 Cが形成されている。 ケーシング 7 3 の弁室 7 3 Bと入側円筒部 7 3 Aとの間の部分には段部 7 3 Dが形 成されている。 円板 7 4には連通孔 7 4 Aが形成されており、 弁室 7 3 Bの外部と内部とが連通されるようになつている。 弁室 7 3 B には、 弁体 7 5がケーシング 7 3 の軸線方向に往復動可能に収納さ れている。 弁体 7 5は、 閉弁パネ 7 6によって入側円筒部 7 3 A側 に付勢されるようになっている。 The unit 70 is attached to the mounting port 22A. As shown in FIGS. 5 and 6, the unit 70 includes a check valve 71 and a substantially bottomed cylindrical unit unit 72 that houses the check valve 71. The check valve 71 includes a substantially cylindrical casing 73 and a disk 74. The casing 73 is provided with an entry-side cylindrical portion 73A as a cylindrical portion formed to have a smaller diameter than the upper portion, from the middle to the lower part in the axial direction of the casing 73. ing. A valve chamber 73B is formed in a portion of the casing 73 not having the small diameter (above the inlet cylindrical portion 73A) by covering the upper end portion of the casing 73 with a disk 74. I have. The casing 73 has a valve outlet 73C communicating the valve chamber 73B with the outer peripheral side of the casing 73. A step 73D is formed in a portion of the casing 73 between the valve chamber 73B and the inlet cylindrical portion 73A. A communication hole 74A is formed in the disk 74 so that the outside and the inside of the valve chamber 73B can communicate with each other. A valve body 75 is housed in the valve chamber 73B so as to be able to reciprocate in the axial direction of the casing 73. The valve body 75 is urged toward the inlet cylindrical portion 73A by the valve closing panel 76.
弁体 7. 5は、 有底円筒状を呈している。 弁体 7 5は、 閉弁パネ 7 6によつて段部 7 3 Dに押し付けられると、 該弁室 7 3 Bと入側円 筒部 7 3 Aとの間の通路を塞ぐようになつている (図 6参照) 。 逆止弁 7 1 においても、 第 1の実施形態における逆止弁 4 1 と同 様に、 逆止弁 7 1 の上流側の冷媒圧力による弁体 7 5への付勢力と 、 逆止弁 7 1の下流側の冷媒圧力による弁体 7 5への付勢力と、 閉 弁パネ 7 6による付勢力とのパラ ンスによって、 下流側 (外部冷媒
回路 5 0側) から上流側 (吐出室 2 2側) への冷媒の逆流が規制さ れるようになってレヽる。 The valve body 7.5 has a bottomed cylindrical shape. When the valve body 75 is pressed against the stepped portion 73D by the valve closing panel 76, it closes the passage between the valve chamber 73B and the inlet cylindrical portion 73A. (See Figure 6). In the check valve 71 as well, similarly to the check valve 41 in the first embodiment, the urging force to the valve element 75 due to the refrigerant pressure on the upstream side of the check valve 71 and the check valve 7 Due to the balance between the urging force of the valve body 75 due to the refrigerant pressure on the downstream side of 1 and the urging force of the valve closing panel 76, the downstream side (external refrigerant The backflow of the refrigerant from the circuit 50 side) to the upstream side (discharge chamber 22 side) is regulated, and the flow starts.
ュニッ トケース 7 2は、 内部に分離室 7 2 Aが形成されており、 該分離室 7 2 Aの上方には円筒状の突壁 7 2 Bが延設されている。 分離室 7 2 Aの上側には揷入孔 7 2 Cが形成されており、 該挿入孔 7 2 Cには逆止弁 7 1が装着されている。 突壁 7 2 Bの上端の開口 部は、 冷媒を排出するための吐出口 7 2 Hとして機能する。 なお、 図 5及び図 6では、 便宜上、 吐出口 7 2 Hと流通管 2 2 Bとを接続 固定する機構の図示を省略している。 The unit case 72 has a separation chamber 72A formed therein, and a cylindrical projecting wall 72B extends above the separation chamber 72A. An insertion hole 72C is formed above the separation chamber 72A, and a check valve 71 is mounted in the insertion hole 72C. The opening at the upper end of the protruding wall 72B functions as a discharge port 72H for discharging the refrigerant. 5 and 6, a mechanism for connecting and fixing the discharge port 72H and the flow pipe 22B is omitted for convenience.
揷入孔 7 2 Cには逆止弁 7 1の入側円筒部 7 3 Aが圧入固定され 、 入側円筒部 7 3 Aの下端開口が分離室 7 2 Aの底部近傍まで至る ように配置されている。 ユニッ トケース 7 2には、 吐出室 2 2内の 冷媒を分離室 7 2 Aに導入する導入口 7 2 Dが形成されている。 導 入口 7 2 Dと吐出室 2 2 とは、 導入通路 7 2 Eで接続されている。 導入口 7 2 Dは、 分離室 7 2 Aに導入された冷媒が該分離室 7 2 A 内で旋回するようにュニッ トケース 7 2の円周方向に沿って形成さ れている。 分離室 7 2 A内には入側円筒部 7 3 Aが配置されている ため、 実際には、 導入口 7 2 Dから該分離室 7 2 Aに導入された冷 媒は、 該分離室 7 2 Aの周面と入側円筒部 7 3 · Aの外周面との隙間 を旋回する。 この旋回によ り、 前記冷媒と混在する潤滑油が遠心分 離され、 分離室 7 2 Aの周面に付着するようになっている。 入 The inlet side cylindrical portion 73 A of the check valve 71 is press-fitted and fixed in the inlet hole 72 C, and is arranged so that the lower end opening of the inlet side cylindrical portion 73 A reaches near the bottom of the separation chamber 72 A. Have been. In the unit case 72, an inlet 72D for introducing the refrigerant in the discharge chamber 22 into the separation chamber 72A is formed. The inlet 72D and the discharge chamber 22 are connected by an inlet passage 72E. The inlet 72D is formed along the circumferential direction of the unit case 72 so that the refrigerant introduced into the separation chamber 72A swirls inside the separation chamber 72A. Since the inlet cylindrical portion 73A is disposed in the separation chamber 72A, the coolant introduced into the separation chamber 72A from the inlet 72D is actually supplied to the separation chamber 72A. Swivel the gap between the peripheral surface of 2 A and the outer peripheral surface of the entry cylindrical part 73 · A. By this swirling, the lubricating oil mixed with the refrigerant is centrifugally separated and adheres to the peripheral surface of the separation chamber 72A.
また、 分離室 7 2 Aの底部には、 傾斜凹部 7 2 Fが設けられてお り、 分離室 7 2 Aの前記周面に付着して垂下した前記潤滑油が該傾 斜凹部 7 2 Fの最奥部に集ま りやすくなつている。 傾斜凹部 7 2 F の前記最奥部には、 前記潤滑油をュニッ ト 7 0外に排出する排出通 路 7 2 Gが形成されており、 該潤滑油がこの排出通路 7 2 G、 連通 路 2 8及び制御弁 3 0を介して低圧領域と してのクランク室 5に導
入されるようになっている。 なお、 ユニッ トケース 7 2の下側及び 入側円筒部 7 3 Aによって、 冷媒と混在する霧状の潤滑油を分離す るオイルセパレータが構成される。 この場合においては、 排出通路 7 2 G、 連通路 2 8及び制御弁 3 0は、 前記オイルセパレータが分 離した潤滑油をクランク室 5に供給する給油通路として機能してい る。 また、 ユニッ ト 7 0の導入通路 7 2 E、 導入口 7 2 D、 分離室 7 2 A及び排出通路 7 2 Gは、 吐出室 2 2の冷媒をクランク室 5側 に供給する給気通路の一部として機能している。 Further, an inclined recess 72 F is provided at the bottom of the separation chamber 72 A, and the lubricating oil attached to the peripheral surface of the separation chamber 72 A and drooping is formed by the inclined recess 72 F. It is easy to gather at the innermost part of the building. A discharge passage 72 G for discharging the lubricating oil out of the unit 70 is formed in the innermost portion of the inclined recess 72 F, and the lubricating oil is discharged through the discharge passage 72 G and the communication passage. 28 and the control valve 30 to the crankcase 5 as a low pressure area. Is to be entered. The lower part of the unit case 72 and the inlet cylindrical part 73 A constitute an oil separator for separating mist-like lubricating oil mixed with the refrigerant. In this case, the discharge passage 72 G, the communication passage 28 and the control valve 30 function as an oil supply passage for supplying the lubricating oil separated from the oil separator to the crank chamber 5. In addition, the inlet passage 72 E, inlet 72 D, separation chamber 72 A, and discharge passage 72 G of the unit 70 serve as an air supply passage for supplying the refrigerant in the discharge chamber 22 to the crank chamber 5 side. Functioning as a part.
また、 取付口 2 2 A、 ユニッ ト 7 0及び流通管 2 2 Bによって、 吐出室 2 2 と外部冷媒回路 5 0 とを接続する吐出経路が構成される シリ ンダポア 1 aから吐出室 2 2に吐出された冷媒は、 導入通路 7 2 E及び導入口 7 2 Dを介して分離室 7 2 Aに導入される。 冷媒 と潤滑油との混合気は、 分離室 7 2 Aの周面と逆止弁 7 1 の入側円 筒部 7 3 Aの外周面との隙間を旋回する。 この旋回により、 前記潤 滑油が遠心分離され、 傾斜凹部 7 2 Fによって排出通路 7 2 Gに案 内されて連通路 2 8及び制御弁 3 0を介してクランク室 5に導入さ れる。 Also, a discharge path for connecting the discharge chamber 22 and the external refrigerant circuit 50 is formed by the mounting port 22A, the unit 70, and the flow pipe 22B from the cylinder pore 1a to the discharge chamber 22. The discharged refrigerant is introduced into the separation chamber 72A via the introduction passage 72E and the introduction port 72D. The mixture of the refrigerant and the lubricating oil swirls in the gap between the outer peripheral surface of the separation chamber 72A and the outer peripheral surface of the inlet cylindrical portion 73A of the check valve 71. Due to this swirling, the lubricating oil is centrifuged, drawn into the discharge passage 72G by the inclined recess 72F, and introduced into the crank chamber 5 via the communication passage 28 and the control valve 30.
潤滑油と分離された前記冷媒は、 入側円筒部 7 3 Aの内周側を介 して弁室 7 3 B内に入り込もう とする。 このとき、 前記冷媒は弁体 7 5を押し上げ、 該弁体 7 5の底部と段部 7 3 Dとの間にできた隙 間を通過して弁室 7 3 B内に入り、 弁出口 7 3 C通過して弁室 7 3 Bの外部に至った後、 流通管 2 2 Bを介して外部冷媒回路 5 0に入 り、 熱交換作用を行う。 The refrigerant separated from the lubricating oil tries to enter the valve chamber 73B via the inner peripheral side of the inlet cylindrical portion 73A. At this time, the refrigerant pushes up the valve body 75, passes through a gap formed between the bottom of the valve body 75 and the stepped portion 73D, enters the valve chamber 73B, and the valve outlet 7 After passing through 3C and reaching the outside of the valve chamber 73B, it enters the external refrigerant circuit 50 via the circulation pipe 22B to perform a heat exchange action.
逆止弁 7 1 の上流側から入側円筒部 7 3 Aの内側を介して伝えら れる冷媒圧力による弁体 7 5に対する付勢力が、 下流側から連通孔 7 4 Aを介して伝えられる冷媒圧力による弁体付勢力と閉弁パネ 4
6による付勢力との和より も小さくなつたとき、 弁体 7 5が弁室 7 3 Bと入側円筒部 7 3 Aとの間を遮断する。 つまり、 逆止弁 7 1 は 、 下流側 (外部冷媒回路 5 0側) から上流側 (吐出室 2 2側) への 冷媒の逆流を防止する。 Refrigerant in which the urging force on the valve element 75 due to the refrigerant pressure transmitted from the upstream side of the check valve 71 through the inside of the inlet cylindrical portion 73A is transmitted from the downstream side through the communication hole 74A. Valve urging force due to pressure and valve closing panel 4 When it becomes smaller than the sum of the biasing force by 6, the valve body 75 shuts off the space between the valve chamber 73B and the inlet cylindrical portion 73A. That is, the check valve 71 prevents the backflow of the refrigerant from the downstream side (the external refrigerant circuit 50 side) to the upstream side (the discharge chamber 22 side).
本実施形態では、 上記の ( 1 ) 〜 ( 6 ) , ( 1 1 ) , ( 1 3 ) 及 び ( 1 4 ) に相当する効果の他に、 以下のような効果を得ることが できる。 In the present embodiment, the following effects can be obtained in addition to the effects corresponding to the above (1) to (6), (11), (13), and (14).
( 1 5 ) 冷媒と潤滑油とを分離するための旋回動作を、 ケーシ ング 7 3に一体形成した入側円筒部 7 3 Aを利用して行わせた。 即 ち、 前記旋回動作に逆止弁 7 1 の一部を利用した。 従って、 部品点 数の低減によるコス トダウンを図ることができる。 (15) The swirling operation for separating the refrigerant and the lubricating oil was performed using the inlet-side cylindrical portion 73A integrally formed with the casing 73. That is, a part of the check valve 71 was used for the turning operation. Therefore, cost can be reduced by reducing the number of parts.
実施の形態は前記に限定されるものではなく、 例えば、 以下の様 態と してもよい。 Embodiments are not limited to the above, and may be, for example, in the following modes.
〇 ユニッ ト 4 0 (または 7 0 ) を、 リャハウジング 4の外側に 向けて突出するよ うにではなく、 該リャハウジング 4内に納まるよ うに設置してもよい。 〇 The unit 40 (or 70) may be installed so as to fit inside the housing 4 instead of protruding toward the outside of the housing 4.
〇 ユニッ ト 4 0 (または 7 0 ) は、 吐出室 2 2内に設けられて もよい。 即ち、 ユニッ ト 4 0 (または 7 0 ) を、 リャハウジング 4 を弁形成体 3側に接合する前に該リャハウジング 4に組み付けて、 ハウジング完成後の着脱が不能な構成としてもよい。 逆に、 リャハ ウジング 4をシリ ンダブ口 ック 1、 フロントハウジング 2及び弁形 成体 3 と組み付けて圧縮機 Cのハウジングを形成した後に該ハゥジ ング外部から後付した構成でもよい。 前記後付可能と した場合は、 メ ンテナンス性が良好となる。 〇 The unit 40 (or 70) may be provided in the discharge chamber 22. That is, the unit 40 (or 70) may be assembled to the rear housing 4 before joining the rear housing 4 to the valve forming body 3 side so that the housing 40 cannot be attached or detached after the housing is completed. Conversely, the rear housing 4 may be assembled with the cylinder hook 1, the front housing 2, and the valve body 3 to form a housing of the compressor C, and then retrofitted from outside the housing. When the retrofitting is possible, the maintainability is improved.
〇 冷媒と分離した潤滑油を、 低圧領域と しての吸入室 2 1、 吸 入口 2 1 Aまたは流通管 2 1 Bに供給してもよい。 この場合、 連通 路 2 8の上流部分を吐出室 2 2に連通させればよい。 吸入室 2 1、
吸入口 2 1 Aまたは流通管 2 1 Bに供給された潤滑油は、 ビス トン 2 0の往復動によ りシリ ンダボア 1 aに冷媒とともに吸入されて該 シリ ンダポア 1 a内の潤滑を行う。 その後、 前記潤滑油の一部はシ リ ンダボア 1 a とビス トン 2 0 との隙間を介してクランク室 5側に リーク し、 該クランク室 5内の機構の摺動部の潤滑を行う。 潤滑 The lubricating oil separated from the refrigerant may be supplied to the suction chamber 21, the suction inlet 21 A or the circulation pipe 21 B as a low-pressure region. In this case, the upstream portion of the communication path 28 may be connected to the discharge chamber 22. Inhalation chamber 2 1, The lubricating oil supplied to the suction port 21A or the distribution pipe 21B is sucked into the cylinder bore 1a together with the refrigerant by the reciprocating motion of the biston 20 to lubricate the inside of the cylinder pore 1a. Then, a part of the lubricating oil leaks to the crank chamber 5 side through a gap between the cylinder bore 1a and the biston 20 to lubricate a sliding portion of a mechanism in the crank chamber 5.
〇 冷媒と分離した潤滑油を、 制御弁 3 0を介さずに、 クランク 室 5に直接的に供給してもよい。 この場合、 制御弁 3 0を介して給 油した場合に比較して、 クランク室 5内の機構の摺動部の潤滑を行 う潤滑油量が増加して潤滑効率が向上する。 潤滑 The lubricating oil separated from the refrigerant may be directly supplied to the crankcase 5 without passing through the control valve 30. In this case, the amount of lubricating oil for lubricating the sliding portion of the mechanism in the crank chamber 5 increases, and the lubricating efficiency improves, as compared with the case where oil is supplied via the control valve 30.
〇 給油通路と、 給気通路とを共用化せず、 それぞれ別個に設け てもよい。 油 The oil supply passage and the air supply passage may not be shared and may be provided separately.
〇 傾斜凹部 4 2 D (または 7 2 F ) は設けられていなくてもよ い。 〇 The inclined recess 42D (or 72F) may not be provided.
〇 ケース 4 2 (またはユニッ トケース 7 2 ) をリャハウジング 4 と別体と したが、 一体化されたものと してもよい。 即ち、 ケース 4 2 (またはユニッ トケース 7 2 ) をリャハウジング 4に一体形成 してもよい。 .この場合においても、 逆止弁 4 1 (または 7 1 ) をケ ース 4 2 (またはユニッ トケース 7 2 ) 内にリャハウジング 4の外 側から組み付け可能に構成すれば、 組立性及びメ ンテナンス性が低 下することを防止することができる。 が The case 42 (or the unit case 72) is made separate from the rear housing 4, but it may be integrated. That is, the case 42 (or the unit case 72) may be formed integrally with the rear housing 4. Even in this case, if the check valve 41 (or 71) can be assembled into the case 42 (or the unit case 72) from the outside of the rear housing 4, assemblability and maintenance can be achieved. Can be prevented from deteriorating.
〇 逆止弁 7 1 と、 オイルセパレータとを共用部品を用いずに別 体化してユニッ トケース 7 2内に設けてもよい。 例えば、 ケーシン グ 7 3から入側円筒部 7 3 Aを分離し、 該入側円筒部 7 3 Aを挿入 孔 7 2 Cに逆止弁 7 1 とは別に固定する。 〇 The check valve 71 and the oil separator may be provided separately in the unit case 72 without using common parts. For example, the inlet cylindrical portion 73A is separated from the casing 73, and the inlet cylindrical portion 73A is fixed to the insertion hole 72C separately from the check valve 71.
〇 逆止弁 4 1 (または 7 1 ) と、 オイルセパレータとを、 ュニ ッ ト 4 0 (または 7 0 ) に一体化しなくてもよい。 〇 The check valve 41 (or 71) and the oil separator do not have to be integrated with the unit 40 (or 70).
〇 圧縮機 Cを、 カムプレート (斜板 1 2 ) が駆動軸 6 と一体回
転する構成に代えて、 カムプレー トが駆動軸に対して相対回転可能 に支持されて揺動するタイプ、 例えば、 揺動 (ヮップル) 式圧縮機 としてもよい。 を Turn the compressor C so that the cam plate (swash plate 12) Instead of a rotating configuration, a type in which the cam plate is supported so as to be rotatable relative to the drive shaft and swings, for example, a swinging (Pipple) compressor may be used.
〇 ヒ ンジ機構 1 3を、 斜板 1 2に設けた第 1アーム と、 ラグプ レート 1 1 に設けた第 2アームと、 前記第 1及び前記第 2アームの 一方のアームに設けた案内孔と、 他方のアームに設けた取付孔と、 該取付孔を貫通すると共に突出部を前記案内孔に揷入したピンとを 備えたものと してもよい。 ヒ The hinge mechanism 13 includes a first arm provided on the swash plate 12, a second arm provided on the lug plate 11, a guide hole provided on one of the first and second arms. The vehicle may further include a mounting hole provided in the other arm, and a pin penetrating the mounting hole and having a protruding portion inserted into the guide hole.
〇 制御弁 3 0は、 例えば前記制御コ ンピュータや前記駆動回路 などの外部装置にコントロールされる外部制御タイプではなく、 完 全自律制御を行う内部制御タイプであってもよい。 The control valve 30 may not be an external control type controlled by an external device such as the control computer or the drive circuit, but may be an internal control type that performs completely autonomous control.
〇 圧縮機 Cは、 ピス ト ン 2 0 のス ト ロークを変更不能な固定容 量タイプであってもよい。 ' 圧 縮 The compressor C may be a fixed capacity type in which the stroke of the piston 20 cannot be changed. '
〇 オイルセパレータは、 逆止弁 4 1 の下流側に配設されていて もよい。 その場合、 給油通路に開閉手段を設けることが望ましい。 オ イ ル The oil separator may be provided downstream of the check valve 41. In that case, it is desirable to provide an opening / closing means in the oil supply passage.
〇 前記逆止弁と前記オイルセパレータとを別ュニッ トとしても よい。 この場合、 それぞれのユニッ トが別体になることで各ュニッ トの配置自由度が上がる。 〇 The check valve and the oil separator may be separate units. In this case, since each unit is separate, the degree of freedom of arrangement of each unit increases.
〇 前記逆止弁に略円筒状のケーシングと断面略円形の弁体とを 備え、 該弁体を前記ケーシングに該ケーシングの軸線方向に往復動 可能に収納し、 該ケーシングの上下両側の一方に冷媒入口を、 他方 に冷媒出口を設け、 前記弁体の外周に該弁体の軸方向に延びる溝を 形成し、 前記冷媒入口から前記ケーシング内に入った冷媒が前記溝 を介して前記冷媒出口に至るよ うにしてもよい。 この場合、 前記ケ 一シングの周面に冷媒出口を設ける必要がないため、 該ケーシング の外周側を冷媒及び潤滑油が旋回するように構成することが可能に なる。
以上詳述したよ うに、 本発明によれば、 圧縮機において、 外部冷 媒回路から吐出室への冷媒の逆流を防止するとともに該外部冷媒回 路への潤滑油の排出を抑えることができる。
〇 The check valve includes a substantially cylindrical casing and a valve body having a substantially circular cross section, and the valve body is housed in the casing so as to reciprocate in the axial direction of the casing, and is provided on one of upper and lower sides of the casing. A coolant inlet is provided on the other side, and a coolant outlet is provided on the other side. A groove extending in an axial direction of the valve body is formed on an outer periphery of the valve body, and a coolant that has entered the casing from the coolant inlet through the groove has the coolant outlet. May be reached. In this case, since there is no need to provide a coolant outlet on the peripheral surface of the casing, it is possible to configure the casing so that the coolant and the lubricating oil swirl around the outer peripheral side of the casing. As described above in detail, according to the present invention, in the compressor, it is possible to prevent the backflow of the refrigerant from the external refrigerant circuit to the discharge chamber and to suppress the discharge of the lubricating oil to the external refrigerant circuit.
Claims
1 . ハウジング内に、 圧縮室から吐出された冷媒が通過する吐出 室と、 前記圧縮室に吸入される冷媒が通過する吸入室とを備え、 前 記吐出室と外部冷媒回路とを吐出経路で接続するとともに前記吸入 室と前記外部冷媒回路とを吸入経路で接続し、 前記外部冷媒回路と の間で前記冷媒を循環さョー卩せる圧縮機において、 1. Inside the housing, there is provided a discharge chamber through which the refrigerant discharged from the compression chamber passes, and a suction chamber through which the refrigerant sucked into the compression chamber passes, and the discharge chamber and the external refrigerant circuit are connected by a discharge path. A compressor that connects and connects the suction chamber and the external refrigerant circuit through a suction path, and circulates the refrigerant between the compressor and the external refrigerant circuit.
前記吐出室または前記吐出経路に、 前記外部冷媒回路から前記吐 出室に前記冷媒が逆流することを防止する逆止弁と、 前記冷媒と混 在する霧状の潤滑油を分離するオイルセパレータと、 該オイルセパ レータが分離した潤滑油を低圧領域に導入する給油通路とを備えた 囲 A check valve for preventing the refrigerant from flowing back from the external refrigerant circuit to the discharge chamber in the discharge chamber or the discharge path; and an oil separator for separating mist-like lubricating oil mixed with the refrigerant. An oil supply passage through which the oil separator introduces the separated lubricating oil into a low pressure region.
ことを特徴とする圧縮機。 A compressor characterized by the above-mentioned.
2 . 前記オイルセパレータは、 前記逆止弁の上流側に配設されて いる請求項 1に記載の圧縮機。 2. The compressor according to claim 1, wherein the oil separator is disposed upstream of the check valve.
3 . 前記逆止弁と前記オイルセパレータとはュニッ トに一体化さ れている請求項 1 に記載の圧縮機。 3. The compressor according to claim 1, wherein the check valve and the oil separator are integrated with a unit.
4 . 前記ユニッ トは、 前記逆止弁と、 該逆止弁を収納するほぼ円 筒状のケースとで構成され、 前記ケースには、 冷媒が前記逆止弁の 外周面と前記ケース内面との間を旋回するように該ケース内に導入 する導入口と、 前記潤滑油と分離されて前記逆止弁を通過した冷媒 の排出口とが設けられている請求項 3に記載の圧縮機。 4. The unit is composed of the check valve and a substantially cylindrical case that houses the check valve, and the case includes a refrigerant in which an outer peripheral surface of the check valve and an inner surface of the case are disposed. 4. The compressor according to claim 3, wherein an inlet is provided to be introduced into the case so as to swirl between the lubricating oil, and a discharge outlet for the refrigerant separated from the lubricating oil and passing through the check valve.
5 . 前記ユニッ トは、 前記逆止弁と、 該逆止弁の入口側に形成さ れた円筒状部とを備え、 冷媒と混在する霧状の潤滑油が前記円筒状 部の回りを旋回して遠心分離された後、 前記潤滑油と分離された前 記冷媒が前記逆止弁に導入される請求項 3に記載の圧縮機。 5. The unit includes the check valve and a cylindrical portion formed on the inlet side of the check valve, and a mist of lubricating oil mixed with refrigerant swirls around the cylindrical portion. 4. The compressor according to claim 3, wherein the refrigerant separated from the lubricating oil is introduced into the check valve after the centrifugal separation.
6 . 前記逆止弁に略円筒状のケーシングと断面略円形の弁体とを 備え、 該弁体を前記ケーシングに該ケーシングの軸線方向に往復動
可能に収納し、 該ケーシングの上下両側の一方に冷媒入口を、 他方 に冷媒出口を設け、 前記弁体の外周に該弁体の軸方向に延びる溝を 形成し、 前記冷媒入口から前記ケーシング内に入った冷媒が前記溝 を介して前記冷媒出口に至る請求項 4に記載の圧縮機。 6. The check valve includes a substantially cylindrical casing and a valve element having a substantially circular cross section, and the valve element is reciprocated in the casing in the axial direction of the casing. The casing is provided so that a refrigerant inlet is provided at one of upper and lower sides of the casing, and a refrigerant outlet is provided at the other. A groove extending in an axial direction of the valve body is formed on an outer periphery of the valve body. 5. The compressor according to claim 4, wherein the refrigerant that has entered reaches the refrigerant outlet via the groove.
7 . 前記圧縮機は、 前記ハウジングに形成されたクランク室と、 該クランク室に回転可能に支持された駆動軸と、 該駆動軸に回転駆 動されると ともに該駆動軸に対し傾斜角度を変更可能に支持された 斜板と、 該斜板に作動連結されたピス ト ンと、 該ピス ト ンを往復動 可能に収容すると ともに該ピス トンによ り前記圧縮室が形成される シリ ンダボアと、 前記吸入室と前記クランク室とを連通する抽気通 路と、 前記クランク室の内圧を制御して前記ビス トンのス トローク を変更する制御弁とを備えた可変容量圧縮機である請求項 1〜 6の うちいずれか一項に記載の圧縮機。 7. The compressor comprises: a crank chamber formed in the housing; a drive shaft rotatably supported by the crank chamber; and a rotary shaft driven by the drive shaft and having an inclination angle with respect to the drive shaft. A swash plate variably supported, a piston operatively connected to the swash plate, and a piston bore for reciprocatingly accommodating the piston and forming the compression chamber with the piston. A variable displacement compressor comprising: a bleed passage communicating the suction chamber and the crank chamber; and a control valve that controls an internal pressure of the crank chamber to change a stroke of the biston. The compressor according to any one of 1 to 6.
8 . 前記低圧領域は前記ク ラ ンク室であり、 前記オイルセパレー タが分離した潤滑油は前記給油通路を介して前記クランク室に供給 される請求項 7に記載の圧縮機。 8. The compressor according to claim 7, wherein the low pressure region is the crank chamber, and the lubricating oil separated from the oil separator is supplied to the crank chamber via the oil supply passage.
9 . 前記制御弁は、 前記給油通路の開度を調節し、 前記オイルセ パレータが分離した潤滑油を前記クランク室へ供給すると ともに、 該クランク室の圧力を変更して前記ビス ト ンのス トロークを変更す る請求項 7に記載の圧縮機。
9. The control valve adjusts the opening degree of the oil supply passage, supplies the lubricating oil separated by the oil separator to the crank chamber, and changes the pressure of the crank chamber to reduce the stroke of the piston. The compressor according to claim 7, wherein the compressor is changed.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000192341A JP3864673B2 (en) | 2000-06-27 | 2000-06-27 | Compressor |
US09/886,170 US6511297B2 (en) | 2000-06-27 | 2001-06-21 | Compressor having check valve and oil separator unit |
EP01115264A EP1167762B1 (en) | 2000-06-27 | 2001-06-23 | Lubrication system for swash plate compressor |
CN01809988.2A CN1250873C (en) | 2001-12-27 | 2001-12-27 | Compressor |
PCT/JP2001/011598 WO2003060325A1 (en) | 2000-06-27 | 2001-12-27 | Compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000192341A JP3864673B2 (en) | 2000-06-27 | 2000-06-27 | Compressor |
PCT/JP2001/011598 WO2003060325A1 (en) | 2000-06-27 | 2001-12-27 | Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003060325A1 true WO2003060325A1 (en) | 2003-07-24 |
Family
ID=28793347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/011598 WO2003060325A1 (en) | 2000-06-27 | 2001-12-27 | Compressor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003060325A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009006281A (en) * | 2007-06-28 | 2009-01-15 | Sanden Corp | Centrifugal separation apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835485A (en) * | 1994-07-25 | 1996-02-06 | Toyota Autom Loom Works Ltd | Oil recovery structure for compressor |
JPH09177671A (en) * | 1995-10-26 | 1997-07-11 | Toyota Autom Loom Works Ltd | Cam plate type variable displacement compressor |
US5823294A (en) * | 1996-06-06 | 1998-10-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Lubrication mechanism in compressor |
JP2000027756A (en) * | 1998-07-09 | 2000-01-25 | Toyota Autom Loom Works Ltd | Compressor |
JP2001153042A (en) * | 1999-11-25 | 2001-06-05 | Toyota Autom Loom Works Ltd | Air conditioning system and control valve of variable displacement type compressor |
-
2001
- 2001-12-27 WO PCT/JP2001/011598 patent/WO2003060325A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835485A (en) * | 1994-07-25 | 1996-02-06 | Toyota Autom Loom Works Ltd | Oil recovery structure for compressor |
JPH09177671A (en) * | 1995-10-26 | 1997-07-11 | Toyota Autom Loom Works Ltd | Cam plate type variable displacement compressor |
US5823294A (en) * | 1996-06-06 | 1998-10-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Lubrication mechanism in compressor |
JP2000027756A (en) * | 1998-07-09 | 2000-01-25 | Toyota Autom Loom Works Ltd | Compressor |
JP2001153042A (en) * | 1999-11-25 | 2001-06-05 | Toyota Autom Loom Works Ltd | Air conditioning system and control valve of variable displacement type compressor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009006281A (en) * | 2007-06-28 | 2009-01-15 | Sanden Corp | Centrifugal separation apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3864673B2 (en) | Compressor | |
US5173032A (en) | Non-clutch compressor | |
US6149398A (en) | Variable capacity piston- operated refrigerant compressor with an oil separating means | |
JPH08189464A (en) | Variable displacement type compressor | |
EP1167764A2 (en) | Variable displacement swash plate compressor | |
US7458785B2 (en) | Compressor with lubrication structure | |
JP2002031050A (en) | Compressor | |
US6203284B1 (en) | Valve arrangement at the discharge chamber of a variable displacement compressor | |
US6572341B2 (en) | Variable displacement type compressor with suction control valve | |
JP2017150438A (en) | Piston type swash plate compressor | |
US6192699B1 (en) | Variable capacity compressor | |
JP5999622B2 (en) | Variable capacity compressor | |
WO2003060325A1 (en) | Compressor | |
WO2019151191A1 (en) | Variable capacity compressor | |
JP6097051B2 (en) | Compressor | |
WO2019176476A1 (en) | Compressor | |
JP2007205165A (en) | Variable displacement type clutch-less compressor | |
JP7213700B2 (en) | compressor | |
JP7213709B2 (en) | compressor | |
JP7052964B2 (en) | Variable capacity compressor | |
US20180202424A1 (en) | Compressor | |
JP2017150315A (en) | Variable displacement swash plate compressor | |
WO2020004168A1 (en) | Variable-capacity compressor | |
JP5584476B2 (en) | Compressor | |
JP2002070729A (en) | Swash plate compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 01809988.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN |