WO2003004143A1 - Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate - Google Patents
Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate Download PDFInfo
- Publication number
- WO2003004143A1 WO2003004143A1 PCT/EP2002/004693 EP0204693W WO03004143A1 WO 2003004143 A1 WO2003004143 A1 WO 2003004143A1 EP 0204693 W EP0204693 W EP 0204693W WO 03004143 A1 WO03004143 A1 WO 03004143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- chamber
- flow
- particle size
- fluidized bed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000008187 granular material Substances 0.000 title description 15
- 239000002245 particle Substances 0.000 claims abstract description 70
- 239000007787 solid Substances 0.000 claims abstract description 27
- 239000000725 suspension Substances 0.000 claims abstract description 22
- 238000001035 drying Methods 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 7
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 238000010099 solid forming Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 21
- 239000000126 substance Substances 0.000 abstract description 6
- 239000002912 waste gas Substances 0.000 abstract 2
- 238000011437 continuous method Methods 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 19
- 238000005469 granulation Methods 0.000 description 18
- 230000003179 granulation Effects 0.000 description 18
- 238000009826 distribution Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 229910002018 Aerosil® 300 Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 229910002019 Aerosil® 380 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B15/00—Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/16—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/38—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
- B01J8/384—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
- B01J8/388—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/145—After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
- C01F7/025—Granulation or agglomeration
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3009—Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3009—Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
- C09C1/3036—Agglomeration, granulation, pelleting
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
- C09C1/3607—Titanium dioxide
- C09C1/3615—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
- C09C1/3607—Titanium dioxide
- C09C1/3615—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
- C09C1/3638—Agglomeration, granulation, pelleting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
- B01J2208/00371—Non-cryogenic fluids gaseous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
- B29B2009/166—Deforming granules to give a special form, e.g. spheroidizing, rounding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Definitions
- the invention relates to a method for granulation in a circulating fluidized bed, a device for carrying out this method and granules obtained by this method and their use.
- the products produced should be dust-free and free-flowing, and should have a narrow particle size distribution 20 and the highest possible bulk density.
- the particle size distribution can be varied within limits by the choice and setting of the atomizing device. Depending on the atomizer used achieved a more or less broad particle size distribution. The particle size distribution always depends on the properties of the products used.
- the minimum possible grain size is determined by the performance of the atomizer and is in the range of approx. 5 - 10 ⁇ m.
- the maximum possible drying time specified by the size / geometry of the spray dryer limits the size of the spray drops that can just be dried (approx. 500 ⁇ m). Due to the width of the grain size distributions, a dust content is always to be expected.
- fluidized-bed spray granulation can produce approximately spherical, massive particles for a wide range of applications.
- An overview of known methods and devices for continuous fluidized bed spray granulation is in Hans Uhlemann, Chem. -Ing.-Tech. 62 (1990) pp. 822-834.
- An essential feature of fluidized bed spray granulation is the formation of a stable fluidized bed within the granulator. This means that the velocity of the inflow medium must be selected so that the particles to be dried are fluidized, but pneumatic conveyance is avoided. This ensures that no particles formed are discharged, but the particles constantly change their place so that drops have an even probability of impact.
- the proportion of fines discharged and possibly returned is less than 10 times the mass (hold up) per hour that is constantly in the granulator.
- the fines discharged can be separated from the exhaust air and fed back to the granulator as germs.
- Achievable particle sizes are in the range from approx. 300 ⁇ m to approx. 30 mm. If this method is operated with an integrated classifier, the one obtained is also the one obtained Grain size distribution is particularly narrow and free of fines.
- the lower limit of the particle size is essentially determined by material properties such as solid density, tendency to stick and swirl behavior. It must also be noted that very fine particles can only be flowed at at very low speed if they are not to be removed from the granulator. Since the flow medium is the energy source in these processes, the performance decreases extremely. As a result, the build-up rates that can be achieved are so low that the granulation process can then no longer be operated economically.
- the known fluidized bed agglomeration is the combination of spray drying and fluidized bed.
- the spray jet which is not completely dry, is intercepted by a drying fluidized bed. Due to the tendency of the solid, which is still moist, to stick, individual particles combine to form agglomerates, which then grow and dry.
- the process can be done through the
- Operating parameters of the fluidized bed and the residual moisture can be controlled in the dried spray jet.
- the object of the invention is to develop a method for producing approximately spherical, massive particles with a narrow particle size distribution in the particle size range of less than 100 ⁇ m from a relatively low-concentration solid suspension or solution. This object is achieved by a continuous process for the production of at least approximately spherical, essentially solid particles, in which the particles are granulated in a circulating fluidized bed.
- a drying gas flows through the chamber at a speed sufficient to effect pneumatic conveyance of already partially dried or agglomerated particles
- the dry gas advantageously flows through the chamber counter to the force of gravity and is introduced into the chamber via an inflow floor.
- Fluidized bed spray granulation is not a stationary fluidized bed, but a circulating fluidized bed (Circulating Fluidized Bed CFB).
- the flow rate of the dry gas flow is chosen so that it is above the limit at which the transition from the stable fluidized bed to the pneumatic Funding takes place. This means that the flow velocity of the gas stream is set so high that a considerable part of the solid mass leaves the granulator upwards, whereby it is separated from the gas stream and returned to the granulator.
- the inflow velocity is preferably 2 to 10 times, particularly preferably 3 to 6 times the velocity that is necessary to discharge particles of the desired particle size with the dry gas stream.
- the process according to the invention can achieve high build-up rates and that particles in the size range less than 100 ⁇ m can also be accessed by spray granulation.
- the solid can be an inorganic or organic material or a mixture of several such materials, optionally with the addition of one or more additional binders or others
- Act auxiliaries It is preferably an inorganic oxide or a mixture of several inorganic oxides.
- the inorganic oxides can be selected from the following group: A1 2 0 3 , Si0 2 , Ti0 2 , Zr0 2 , Nb 2 ⁇ 5, zeolites, aluminosilicates. In a preferred one
- Embodiment of the invention can be used as a suspension medium water.
- the particles are calcined at 100-1200 ° C. after separation.
- the dried and optionally calcined particles thus produced are very particularly suitable for use as a catalyst support in fluidized bed or suspension processes, in particular in olefin polymerization.
- Another object of the invention is a device for performing the method according to the invention, which has the following features:
- a solids separation system (2) which is connected to the chamber via this discharge opening and which contains an exhaust pipe, optionally provided with a filter unit, for discharging the gas stream,
- FIG. 1 The device according to the invention, in which the method according to the invention can be carried out, is shown in FIG. 1.
- the device consists of a preferably cylindrical and high granulation chamber 1 with a diameter to height ratio of 1: 1 to 1: 5, preferably 1: 2.5. It is provided with a suitable inflow floor at the lower end. The pressure drop in the floor must be such that the inflow medium is distributed evenly over the full cross-section of the apparatus and there are no dead zones.
- the cylindrical part of the exhaust gas duct of the granulator opens into the separating system 2, for example via one or more separating cyclones connected in series and an exhaust air filter in the exhaust gas chimney.
- the solids separators are with solids return lines in the
- the granulation chamber is supplied with hot drying gas (e.g. flue gas, air, nitrogen) via a fan and a suitable gas heater.
- hot drying gas e.g. flue gas, air, nitrogen
- a visible discharge tube 3 which can have various shapes, is preferably attached in the center at the lower end of the granulation chamber and opens into a recess in the inflow base. It can be equipped with internals to enhance the classifier performance, or can be connected to a classifier.
- a defined upward sifting flow can be set in the classifier tube via a gas supply that is independent of the main flow. Contrary to this flow, the solid can be discharged via a further pneumatic seal.
- Pneumatic nozzles and pressure nozzles can be used to atomize the suspension or solution.
- a combined dual-substance pressure nozzle is preferably used, the suspension being conveyed to the nozzle via a multi-stage, low-pulsation high-pressure pump.
- a three-substance nozzle or a multi-substance nozzle can also be used.
- the pressure used by this nozzle should be such that a high pressure drop is achieved with the flow rates under operating conditions.
- the Pressure atomization overlaid by an additional two-substance atomization using compressed air.
- the nozzle is preferably located at the bottom above the inflow floor, centrally in the middle of the granulation chamber above the classifier opening with the spray direction upwards.
- the nozzle jet and thus the opening angle can be adjusted with an adjustable air cap.
- the inflow speed of the hot dry gas in the granulation chamber is significantly higher than the discharge speed of the particles to be produced.
- the nozzle is used to spray a suspension or solution containing solids into the granulation chamber which is operated with hot drying gas but is still free of solids.
- the liquid evaporates there and solids remain.
- the particle stream forming in the granulation chamber is completely discharged from this chamber and is separated, for example with the aid of cyclones, and recycled into the chamber. This is preferably done with a very high circulation rate.
- Preferred circulation rates are 10-1000 times, particularly preferably 100-1000 times the mass hold-up in the granulator per hour.
- a pressure loss measurement for example via the first cyclone, can be used as a measurement for the circulating mass flow be used. With higher solids loading, the pressure drop across the cyclone increases under otherwise identical operating conditions. If the cyclone is overloaded and breaks down, the differential pressure then reaches a maximum value that does not increase any further. The desired operating point is slightly below this level.
- the recycled solid In the upward flow of the drying chamber, the recycled solid is conveyed upwards past the nozzle. Solid particles and spray droplets meet in the jet stream. The liquid dries on the
- the particles grow in the circulation layer.
- the spray drops In order to achieve granules that are as spherical as possible, the spray drops must be significantly smaller than the granules which are circulated.
- the circulating mass must be kept constant, so that after building up a sufficient mass hold-up in the granulator, part of the mass contained therein must be continuously discharged.
- the classifier is controlled so that the mass circulating in the system remains constant.
- the grain size to be achieved in the discharge is of
- Germ balance in the granulator dependent This is largely determined by the equilibrium of nucleation due to abrasion or spray drops not falling and the granulate build-up.
- the grain size can be targeted either by choosing the drying parameters or. on the other hand, can be increased by adding binders.
- binders increases the granulate strength, which reduces abrasion. This creates fewer germs. Again, the average grain size of the granules increases.
- the process according to the invention can be supplemented by product drying integrated in the process.
- An aqueous suspension with 10% by weight of Aerosil 380 is atomized in the device according to the invention.
- An aqueous suspension with 5% by weight of Aerosil 300 and approximately 5% by weight of Aerosil 200 is atomized in the device according to the invention.
- the settings supply air volume flow 500 m N 3 / h, supply air temperature 230 ° C and suspension mass flow 65 kg / h lead to a
- An aqueous suspension with 10% by weight of Aerosil 300 and 0.05% by weight of tylose is atomized in the device according to the invention.
- Example 1 The particles described in Example 1 are treated at 500 ° C. for 6 hours under nitrogen. Using these particles as catalyst supports, a catalyst is prepared according to the method described in US 4,427,573.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10132177.5 | 2001-07-03 | ||
DE10132177A DE10132177A1 (de) | 2001-07-03 | 2001-07-03 | Verfahren zur Herstellung von Granulaten in einer zirkulierenden Wirbelschicht, Vorrichtung zur Durchführung dieses Verfahrens und nach diesem Verfahren erhaltene Granulate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003004143A1 true WO2003004143A1 (de) | 2003-01-16 |
Family
ID=7690424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/004693 WO2003004143A1 (de) | 2001-07-03 | 2002-04-27 | Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate |
Country Status (3)
Country | Link |
---|---|
US (1) | US20030037415A1 (de) |
DE (1) | DE10132177A1 (de) |
WO (1) | WO2003004143A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007076990A2 (de) | 2005-12-23 | 2007-07-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung |
EP3033168A4 (de) * | 2013-08-12 | 2016-09-21 | United Technologies Corp | Pulverkugelglühen über wirbelschicht |
US9555474B2 (en) | 2013-08-12 | 2017-01-31 | United Technologies Corporation | High temperature fluidized bed for powder treatment |
EP3384980A1 (de) * | 2017-04-06 | 2018-10-10 | SASOL Germany GmbH | Verfahren zur herstellung von verschleissstabilen granulierten materialien |
CN116272652A (zh) * | 2023-04-11 | 2023-06-23 | 江苏金旺智能科技有限公司 | 干悬浮剂造粒系统及方法 |
CN118925594A (zh) * | 2024-09-02 | 2024-11-12 | 山东奥诺能源科技股份有限公司 | 一种流化床造粒干燥方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10256530A1 (de) * | 2002-12-04 | 2004-06-24 | Degussa Ag | Verfahren zur Herstellung von wasserfreiem Alkalisulfid |
DE10331366A1 (de) * | 2003-07-11 | 2005-01-27 | Degussa Ag | Verfahren zur Granulation eines Tierfuttermittel-Zusatzes |
KR101310130B1 (ko) * | 2012-02-10 | 2013-09-24 | 나노인텍 주식회사 | 원료의 미립자 가공을 위한 분쇄 및 분산장치 |
CN109502553B (zh) * | 2019-01-19 | 2023-08-22 | 广西晶联光电材料有限责任公司 | 一种制备金属氧化物粉体的装置和方法 |
CN112624806B (zh) * | 2020-12-23 | 2022-10-21 | 嘉施利(宜城)化肥有限公司 | 一种复合肥中微量元素的配制方法 |
KR102736432B1 (ko) * | 2021-12-28 | 2024-11-28 | 씨제이제일제당 (주) | 유동성이 개선된 바이오매스 과립 제조방법 |
GB202314398D0 (en) * | 2023-09-20 | 2023-11-01 | Johnson Matthey Plc | Method for preparing catalyst supports |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3884645A (en) * | 1970-04-13 | 1975-05-20 | Stauffer Chemical Co | Production of anhydrous sodium metasilicate in a fluidized bed |
US4946654A (en) * | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
US5165998A (en) * | 1984-09-17 | 1992-11-24 | Bp Chemicals Limited | Prepolymers of olefins containing a chromiumoxide and a granular refractory oxide support |
WO1996014927A1 (en) * | 1994-11-09 | 1996-05-23 | G.S. S.R.L. Coating System | Method and apparatus for coating particles |
DE19719481A1 (de) * | 1997-05-07 | 1998-11-12 | Metallgesellschaft Ag | Verfahren zur Einstellung einer zirkulierenden Wirbelschicht und Verwendung des Verfahrens |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025448A (en) * | 1989-08-31 | 2000-02-15 | The Dow Chemical Company | Gas phase polymerization of olefins |
DE19520411C1 (de) * | 1995-06-09 | 1996-12-19 | Metallgesellschaft Ag | Verfahren zum Erzeugen eines Meta-Kaolin-Weißpigments aus Kaolinit |
-
2001
- 2001-07-03 DE DE10132177A patent/DE10132177A1/de not_active Ceased
-
2002
- 2002-04-27 WO PCT/EP2002/004693 patent/WO2003004143A1/de not_active Application Discontinuation
- 2002-07-03 US US10/188,113 patent/US20030037415A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3884645A (en) * | 1970-04-13 | 1975-05-20 | Stauffer Chemical Co | Production of anhydrous sodium metasilicate in a fluidized bed |
US4946654A (en) * | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
US5165998A (en) * | 1984-09-17 | 1992-11-24 | Bp Chemicals Limited | Prepolymers of olefins containing a chromiumoxide and a granular refractory oxide support |
WO1996014927A1 (en) * | 1994-11-09 | 1996-05-23 | G.S. S.R.L. Coating System | Method and apparatus for coating particles |
DE19719481A1 (de) * | 1997-05-07 | 1998-11-12 | Metallgesellschaft Ag | Verfahren zur Einstellung einer zirkulierenden Wirbelschicht und Verwendung des Verfahrens |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007076990A2 (de) | 2005-12-23 | 2007-07-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung |
WO2007076990A3 (de) * | 2005-12-23 | 2007-12-06 | Fraunhofer Ges Forschung | Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung |
EP3033168A4 (de) * | 2013-08-12 | 2016-09-21 | United Technologies Corp | Pulverkugelglühen über wirbelschicht |
US9555474B2 (en) | 2013-08-12 | 2017-01-31 | United Technologies Corporation | High temperature fluidized bed for powder treatment |
US10376961B2 (en) | 2013-08-12 | 2019-08-13 | United Technologies Corporation | Powder spheroidizing via fluidized bed |
EP3384980A1 (de) * | 2017-04-06 | 2018-10-10 | SASOL Germany GmbH | Verfahren zur herstellung von verschleissstabilen granulierten materialien |
WO2018185194A1 (en) * | 2017-04-06 | 2018-10-11 | Sasol Germany Gmbh | Process for production of attrition stable granulated material |
CN116272652A (zh) * | 2023-04-11 | 2023-06-23 | 江苏金旺智能科技有限公司 | 干悬浮剂造粒系统及方法 |
CN116272652B (zh) * | 2023-04-11 | 2023-10-27 | 江苏金旺智能科技有限公司 | 干悬浮剂造粒系统及方法 |
CN118925594A (zh) * | 2024-09-02 | 2024-11-12 | 山东奥诺能源科技股份有限公司 | 一种流化床造粒干燥方法 |
Also Published As
Publication number | Publication date |
---|---|
DE10132177A1 (de) | 2003-01-23 |
US20030037415A1 (en) | 2003-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69712226T2 (de) | Methode und vorrichtung zur sprühtrocknung sowie reinigungsmethode für eine solche vorrichtung | |
DE69325595T2 (de) | Verfahren und sprühtrocknungsgerät zum erzeugen von agglomeriertem pulver | |
EP0087039B1 (de) | Verfahren zum gleichzeitigen Sichten und geregelten, kontinuierlichen Austrag von körnigem Gut aus Wirbelbettreaktoren | |
EP0141437B1 (de) | Verfahren zum Herstellen von Granulaten | |
DE69000378T2 (de) | Verfahren und vorrichtung zum agglomerieren von pulver. | |
DE69312941T2 (de) | Verfahren und Vorrichtung zur Trocknung von festem Material aus einer Suspension | |
WO2003004143A1 (de) | Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate | |
EP2707127B2 (de) | Vorrichtung zur kontinuierlichen behandlung von feststoffen in einem wirbelschichtapparat | |
DE3116778C2 (de) | Verfahren zur Herstellung von aus einem Kern und einer Hülle aufgebauten Körnern | |
DE2230158A1 (de) | Verfahren zur Herstellung von granalienförmigem wasserhaltigem Natriumsilikat | |
DE2908136A1 (de) | Verfahren und vorrichtung zur herstellung von harnstoffkoernchen | |
WO1996033009A1 (de) | Verfahren und vorrichtung zur herstellung von granulaten durch wirbelschicht-sprühgranulation | |
EP1126017B1 (de) | Verfahren zur Herstellung von Vollwaschmitteln und Vollwaschmittelkomponenten | |
DE69100807T2 (de) | Verfahren und vorrichtung zur herstellung eines granulates durch sprühtrocknen. | |
DE69424036T2 (de) | Verfahren ZUR KLASSIFIZIERUNG FEINER TEILCHEN | |
DE69404045T2 (de) | Sprühtrocknungsvorrichtung | |
WO2004108911A2 (de) | Enzym-granulat-herstellungsverfahren und erhältliche enzym-granulate | |
DE10326231B4 (de) | Verfahren zur Herstellung von Enzym-Granulaten | |
DE10146778B4 (de) | Verfahren und Wirbelschichtanlage zur Herstellung von kompakten Feststoffpartikeln | |
EP1407814B1 (de) | Verfahren und Vorrichtung mit Wirbelschichtanlage zur Herstellung von Granulaten | |
DE60204035T2 (de) | Verfahren zur Herstellung oder Beschichtung von Granulaten, Vorrichtung zur Durchführung des Verfahrens und hiernach erhältliche Granulate | |
EP0112521B1 (de) | Verfahren und Anlage zur Herstellung von Alkalipolyphosphaten | |
DE4201615C2 (de) | Verfahren zur Herstellung von keramischen Kugeln | |
DE3031088C2 (de) | ||
DE19904657B4 (de) | Verfahren zur Herstellung von Vollwaschmitteln und Vollwaschmittelkomponenten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WD | Withdrawal of designations after international publication |
Free format text: AP (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW); EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM); OA (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG) |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |