WO2002076379A2 - Medicated tattoos - Google Patents
Medicated tattoos Download PDFInfo
- Publication number
- WO2002076379A2 WO2002076379A2 PCT/US2001/043422 US0143422W WO02076379A2 WO 2002076379 A2 WO2002076379 A2 WO 2002076379A2 US 0143422 W US0143422 W US 0143422W WO 02076379 A2 WO02076379 A2 WO 02076379A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drug substance
- skin
- base
- adhesive layer
- tattoo
- Prior art date
Links
- 239000003814 drug Substances 0.000 claims abstract description 92
- 239000010410 layer Substances 0.000 claims abstract description 66
- 239000012790 adhesive layer Substances 0.000 claims abstract description 47
- 238000013461 design Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000012384 transportation and delivery Methods 0.000 claims abstract description 22
- 239000000853 adhesive Substances 0.000 claims abstract description 18
- 238000007639 printing Methods 0.000 claims abstract description 10
- 238000009792 diffusion process Methods 0.000 claims abstract description 9
- 239000012528 membrane Substances 0.000 claims abstract description 9
- 230000035699 permeability Effects 0.000 claims abstract description 7
- 229940088679 drug related substance Drugs 0.000 claims description 63
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 58
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 239000000017 hydrogel Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 239000002502 liposome Substances 0.000 claims description 9
- 238000013270 controlled release Methods 0.000 claims description 7
- 238000002386 leaching Methods 0.000 claims description 5
- 239000002353 niosome Substances 0.000 claims description 5
- 238000003795 desorption Methods 0.000 claims description 4
- 239000004530 micro-emulsion Substances 0.000 claims description 4
- 239000003094 microcapsule Substances 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims 7
- 239000012982 microporous membrane Substances 0.000 claims 2
- 229940079593 drug Drugs 0.000 abstract description 38
- 230000008569 process Effects 0.000 abstract description 19
- 230000001070 adhesive effect Effects 0.000 abstract description 13
- 230000037317 transdermal delivery Effects 0.000 abstract description 8
- 230000000007 visual effect Effects 0.000 abstract description 7
- 230000008021 deposition Effects 0.000 abstract description 2
- 238000007776 silk screen coating Methods 0.000 abstract description 2
- 210000003491 skin Anatomy 0.000 description 40
- 239000000976 ink Substances 0.000 description 16
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000975 dye Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 238000012377 drug delivery Methods 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229960005489 paracetamol Drugs 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000000699 topical effect Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- -1 polyoxyethylene sulfate Polymers 0.000 description 5
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 4
- 229930003268 Vitamin C Natural products 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 235000019154 vitamin C Nutrition 0.000 description 4
- 239000011718 vitamin C Substances 0.000 description 4
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000013271 transdermal drug delivery Methods 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 239000002417 nutraceutical Substances 0.000 description 2
- 235000021436 nutraceutical agent Nutrition 0.000 description 2
- 229960000482 pethidine Drugs 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 210000000434 stratum corneum Anatomy 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- DDXORDQKGIZAME-UHFFFAOYSA-N 1-[2-[(4-chlorophenyl)methoxy]-2-(2,4-dichlorophenyl)ethyl]imidazole;nitric acid Chemical group O[N+]([O-])=O.C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 DDXORDQKGIZAME-UHFFFAOYSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 239000004821 Contact adhesive Substances 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 229960002512 anileridine Drugs 0.000 description 1
- LKYQLAWMNBFNJT-UHFFFAOYSA-N anileridine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC1=CC=C(N)C=C1 LKYQLAWMNBFNJT-UHFFFAOYSA-N 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229960001113 butorphanol Drugs 0.000 description 1
- IFKLAQQSCNILHL-QHAWAJNXSA-N butorphanol Chemical compound N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 IFKLAQQSCNILHL-QHAWAJNXSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 1
- 229960004193 dextropropoxyphene Drugs 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229940057941 fd &c yellow #6 aluminum lake Drugs 0.000 description 1
- 229940083280 fd&c blue #1 aluminum lake Drugs 0.000 description 1
- 229940078737 fd&c yellow #5 aluminum lake Drugs 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000001034 iron oxide pigment Substances 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 229960003406 levorphanol Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 229960000805 nalbuphine Drugs 0.000 description 1
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 239000000820 nonprescription drug Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229960002085 oxycodone Drugs 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 229960005301 pentazocine Drugs 0.000 description 1
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 230000037384 skin absorption Effects 0.000 description 1
- 231100000274 skin absorption Toxicity 0.000 description 1
- 230000037380 skin damage Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000036561 sun exposure Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 235000013759 synthetic iron oxide Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
Definitions
- the present invention relates to transdermal drug and nutraceutical delivery and, more particularly, to a transdermal medicament delivery device in the form of a printed temporary tattoo.
- Topical drug delivery is well-known for the treatment of local skin disorders, but the use of the skin as a route for systemic drug delivery is a more recent development.
- Very few transdermal products have been approved to date, largely because of the complexities involved in achieving a consistent delivery rate.
- Systematic studies have led to compilations of permeability data for a range of drugs through skin, both stratum corneum and dermis. These studies reflect the large variability and slowness of the process for most drugs. Consequently, only a few drug candidates are currently available in dosage forms for transdermal drug delivery.
- the structure of existing transdermal devices may be simple two-layer designs.
- US Patent No. 4,598,004 to Heinecke shows a drug delivery bandage including a pressure sensitive adhesive on a liner, the liner in turn being securely adhered to a drug delivery strip.
- transdermal designs may include more complex materials and structures to accomplish drug delivery, depending on the particular application.
- U.S. Patent No. 4,666,441 to Andriola et al. shows an original transdermal patch construction with multiple pockets.
- U.S. Patent No. 5,788,983 to Chien et al. shows a controlled-delivery transdermal patch in which medicaments are held in micro-reservoirs and diffuse through a permeable membrane to the skin.
- Microencapsulation of substances is another recognized transdermal delivery approach.
- U.S. Patent No. 4,597,960 to Cohen teaches microencapsulated astringents for transdermal delivery.
- All of the foregoing and other known transdermal devices are formed as multi- layer laminated "patches" that contain a drug reservoir.
- a drug reservoir For example, more than 75 percent of the patches in the world contain 3M components which include a protective backing, an underlying drug reservoir, a controlled release membrane for leaching the drug, and an underlying skin adhesive.
- a wide variety of skin contact adhesives may be used including silicone, acrylate, polyisobutylene (PIB) and rubber based adhesives.
- 3M employs a proprietary lamination process to bond the foregoing, and the net result presents a number of significant problems. First of all, the intricate lamination process is not well-suited for mass production as the drug must be injected into the reservoir, and such patches are quite expensive to manufacture.
- the patches do not maintain a low profile on the skin and are susceptible to being dislodged.
- the cloth generally absorbs moisture and this detracts from the efficacy and facilitates dislodgement.
- the current way of preventing premature dislodgment is to increase the strength of the adhesive, but those who have used nicotine patches will agree that this makes intentional removal difficult and painful, and often leaves irritable skin marking. Aside from cost, there are serious practical disadvantages.
- the patches are unsightly and advertise the fact that the wearer is taking a drug, thereby providing a disincentive to wear them. Moreover, aside from blood tests, there is absolutely no way to monitor whether the drug is being absorbed or not.
- tattoos are printed they can easily be made to display simulative child appealing characters or other indicia, thereby providing a great incentive for children to take their medicine. Moreover, by this process the printed tattoo can be made with ink that disappears or changes color as the medicine is absorbed, for the first time giving a positive indication of the rate and efficacy of transdermal delivery.
- transdermal medicament delivery device that looks like a tattoo so as not to advertise the fact that the wearer is taking a drug, the ornamental appearance actually providing an incentive for wear. It is another object to provide a transdermal device that displays ornamental simulative child appealing characters (fixed, appearing over time, or disappearing) or other indicia in order to give children an incentive to take their medicine without a fight.
- a transdermal medicament delivery device in the form of a printed temporary tattoo, and a process for making the same.
- the medicate tattoo includes a section of cardstock base paper, a clear base bearing an ink design on one side, the clear base being attached to the cardstock base paper on the other side by a release base that dissolves when wet to allow detachment of the base paper, and an adhesive layer coated over the ink design on the clear base for adhesion to the skin.
- a medicament or drug is incorporated into the adhesive layer for diffusion therefrom into the skin of the wearer, and the adhesive layer has pre-determined permeability characteristics to ensure effective transdermal delivery of the medicament.
- the process for making the transdermal tattoos includes the steps of lithographic printing of the ink design on top of a clear base, silk screening a drug substance layer onto said the clear base opposite said ink design, and adhering a cardstock base to the drug substance layer.
- FIG. 1 is an exploded diagram of the transdermal tattoo 2 according to the present invention.
- FIG. 2 illustrates an embodiment in which the underlying adhesive layer 20 is specially-formed with microscopic pores to control the leaching out of the active medicament from the drug substance layer 30.
- FIGs. 3 and 4 illustrates two steps in a process for applying a paste/solution form of the medicament and adhesive by silk screening to leave pattern deposits 120 of medicament on the transdermal tattoo 2.
- FIG. 5 illustrates a transdermal tattoo 2 incorporating a color-scale 23 for visual comparison to give the user an indication of absorption progress.
- FIG. 6 illustrates a transdermal tattoo 2 with thermometer-like gradient scale indicator 43 to give the user an indication of absorption progress.
- FIG. 7 illustrates a transdermal tattoo 2 with disappearing character spots 33 to reinforcing useage by children.
- transdermal tattoo according to various embodiments of the present invention is herein described, along with preferred production methods, and various candidate drug substances that can be delivered.
- the description includes the manner of applying the medicated tattoo 2, and optional absorption progress indicators and child reinforcement features that can be incorporated to increase the utility of the invention.
- FIG. 1 is an exploded diagram of the transdermal tattoo 2 according to the present invention.
- the transdermal tattoo 2 generally comprises the following seven layers: 20.
- Adhesive layer
- the base paper 70 is conventional cardstock.
- a 10 point thickness is preferred, although anywhere from 6 to 15 point thicknesses are acceptable.
- a 10 point recycled content base paper 70 with excellent water absorption, and no lamination, is best suited.
- a matte-finish holds the inked design very well.
- Base paper 70 is coated with a release base 60 that dissolves when wet to allow detachment of the base paper 70 from the functional (skin-attached) portion of the transdermal tattoo 2.
- the release base 60 preferably comprises nonyl phenol polyoxyethylene sulfate and/or ammonium polyoxyethylene alkylphenylether sulfate.
- the release base 60 is preferably screen-printed onto the base paper 70 before the colored layer 40 is printed thereon, as this helps to prevent the colored ink from absorbing into the paper 70.
- a clear base 50 is adhered by the release base 60 to the base paper 70 to provide a flexible skin-attachable substrate that preserves the quality of the ink colored layer 40.
- the colored design layer 40 is an inked design that is printed atop the clear base 50 (opposite base paper 70) in mirror-image fashion. This way, when the clear base 50 is applied to the skin of the wearer, the colored design layer 40 shows upward there through and appears as a tattoo design. Thus, the device 2 does not advertise the fact that the wearer is taking a drug, and the ornamental appearance provides an incentive for wear.
- the colored design layer 40 preferably comprises non-toxic printing inks, and preferably any standard Food & Drug approved dyes such as FD&C yellow #5 aluminum lake, FD&C yellow #6 aluminum lake, FD&C blue #1 aluminum lake, FD&C red #7 aluminum lake, synthetic iron oxide pigment(black), and/or other inks of vegetable origin. For example, Colorcon® produces acceptable regulated printing inks for the medical industry, and specifically for narrow-web pouch and label applications.
- the drug substance layer 30 comprises an active medicament to be delivered transdermally.
- the drug substance may be incorporated as a separate layer 30 as shown in FIG. 1, or alternatively may be mixed in with an adhesive layer 20 as will be described.
- Any number of drug substances may be delivered transdermally by use of the present device 2, inclusive of over-the counter drugs such as acetominaphen, prescription drugs such as insulin, and vitamins and dietary supplements such as vitamin C.
- the drug substance layer 30 is coated with an adhesive layer 20 for bonding with the skin.
- the adhesive layer 20 is preferably an acrylic resin adhesive such as Tegaderm (3M) ® , Bioclosure (Johnson & Johnson) ® , Op-site (Smith & Nephew - England) ® , or Unifex (Howmedica) ® .
- the drug substance may be incorporated directly into the adhesive layer 20. Both embodiments are described more fully below.
- FIG.2 illustrates one embodiment for accomplishing the above, the underlying adhesive layer 20 being specially-formed with microscopic pores 22 to control the leaching out of the active medicament from the drug substance layer 30.
- the single-ply micro-porous adhesive layer can be replaced with a porous membrane coated with adhesive.
- suitable porous skin- contacting absorption papers including a skin interface called Macroflux® by Etrans that will serve this purpose.
- microscopic channels or other designs may be used rather than pores to likewise control the leaching out of the active medicament from the drug substance layer 30.
- the size and number of the pores 22 and/or channels will largely determine the permeation rate of active medicament from the drug substance layer 30 through the underlying adhesive layer 20.
- the drug substance is incorporated directly into the adhesive layer 20 for time-release therefrom.
- the medicament can be added into the adhesive layer 20 in a controlled or sustained release form in a number of different ways described below.
- Step 1 Original artwork such as photographs, illustrations and text, are entered and/or scanned into a conventional computer, and the elements are combined into a 5 singular tattoo design using existing design layout software.
- Step 2 Full size films are output using a high-resolution imagesetter. These can either positives or negatives.
- Step 3 Printing plates are made from the films using a known photochemical process.
- the plates are designed to cause ink to adhere only to the image or artwork 0 on the plate, and this is accomplished by exposing them to high-intensity light through the films, and then chemically treating the plates so that non-image areas are water absorbent.
- Step 4 The flexible plates are attached to the plate cylinders of a conventional lithographic press and the colored layer 40 is printed onto clear base 50.
- Lithography 5 is a method of printing by which the ink adheres only to the image or artwork on the printing plate. Water is used to wash the ink away from all areas except the image area and that is where the ink adheres. The inked image is then transferred or offset to a rotating blanket cylinder which in turn transfers the image directly onto the clear base
- the colored layer 40 is printed atop the base-paper 70 backed clear base 50 during a first run, and then the drug substance layer 60 is coated or silk-screened onto the opposing side of the clear base 50 (over the colored layer 40) during a second run.
- a higher degree of uniformity can be achieved by use of a conventional reverse roll coater such as is available from Kroenert and Egan machinery.
- the silk-screen printing is more time consuming but can be accomplished in a known manner by forcing the drug substance layer 60 through a photographically treated screen.
- Solvents are commonly used as needed during the above-described manufacturing process as drying retarders, and these may include butyl cellosolve, ethyl acetate, hexane, toluene, etc.
- the drug substance layer 30 may be incorporated as a separate layer as shown in Fig. 1 for permeation through the microscopic pores of FIG. 2 or the microscopic channels. In both of these cases the drug substance layer 30 is prepared by mixing the medicament in a water based paste followed by drying.
- the drug substance may be incorporated directly into the adhesive layer 20 in a variety of time-release forms.
- METHOD 1 Discrete drug substance layer 30 (for controlled desorption through adhesive layer 20).
- the medicament is mixed in a water based paste, followed by drying, then applying adhesive layer 20 to produce an approximately 3.0 ml dry film layer. Since acetaminophen is not water soluble, a water emulsion can be made, then thickened to produce a runnable paste. To disperse the acetaminophen in water a surface active agent compatible with the drug substance(lauryl sulfate, for example) is needed.
- the dispersion can be made by use of a high speed dispersator which will provide a stable dispersion of micron sized micelles (structures made up of long polymeric molecules whose two ends have differing polarity, a polar or "hydrophilic” end and a nonpolar or “hydrophobic” end).
- the hydrophobic ends come together to form a central, nonpolar core or chamber.
- the central core can accept a wide variety of organic molecules and carry them into solution in polar solvents.
- a thickening agent e.g., pectin, agar, gelatin, hydroxypropyl cellulose to name a few
- pectin e.g., pectin, agar, gelatin, hydroxypropyl cellulose to name a few
- the drug substance layer 30 is then partially dried and can be applied by a conventional reverse roll coater or silk screen process. Using this method, the adhesive layer 20 serves directly as a permeable membrane for release of the drug substance layer 30.
- the size of the microscopic pores (Fig. 2) or channels may be varied to control the release rate of the medicament.
- the medicament diffuses out of the adhesive layer 20 directly into the skin.
- a 3.0 mil dry adhesive layer containing 80mg of drug substance 11.5 lbs of acetaminophen per 100 lbs of adhesive is required.
- a 2.0 ml dry adhesive layer 17.1 lbs of drug substance per lOOlbs of adhesive is required.
- the estimated weight of adhesive is 0.260 g for the 2.0 mil dry layer and 0.380 g for the 3.0 mil dry layer, so the drug substance makes up about 30.25% of the former and 20.5% of the latter.
- Acetaminophen is not soluble in water, but is soluble in ethyl acetate and butyl cellosolve.
- a solution of acetaminophen in ethyl acetate and/or butyl cellosolve can be made, then thoroughly mixed into the adhesive (e.g., planetary mixer or similar mixer).
- Ethyl acetate is more desirable since it also acts as a skin-penetration enhancer and is safe. After partial drying to a paste/solution form, the medicament will desorb directly out of the adhesive layer 20, thereby eliminating the need for a separate drug substance layer 30.
- the medicament can be infused or mixed into the adhesive layer 20 in a number of ways. For one, using an adhesive layer 20 as in FIG.2 that is specially-formed with microscopic pores 22, the medicament can be infused into the pores 22. This is best accomplished by a silk-screening process depicted in FIGs. 3 and 4.
- the transdermal tattoo 2 inclusive of clear base 50 with colored design layer 40 is overlay ed by a silk screen 56 selectively coated with an emulsion 54.
- the paste/solution form of the medicament 30 is squeegeed onto the silk screen 56 and penetrates the screen 56 in patterns defined by the emulsion 54.
- the silk screen 56 and emulsion 54 are removed and the product is dried to leave pattern deposits 30 of medicament on the transdermal tattoo 2.
- the size and number of the pattern deposits 30 will largely determine the permeation rate of active medicament into the skin.
- the adhesive layer 20 is then applied around the pattern deposits 30, filling in the open space, by squeegee or by reverse roll coating.
- the active medicament can be incorporated in the adhesive layers in a number of known controlled or sustained release forms, inclusive of i) microcapsules; ii) microemulsion (containing droplets in the size range of approximately 100-1000 angstroms; iii) liposomes; iv) niosomes; v) hydrogel.
- microcapsules containing droplets in the size range of approximately 100-1000 angstroms
- liposomes iv) niosomes
- hydrogel hydrogel
- Microencapsulation is a process by which tiny parcels of the medicament are enclosed in capsules which range in size from one micron (one-thousandth of a millimeter) to seven millimeters.
- the capsules are dispersed throughout the adhesive layer 20 and release their contents over time.
- the capsule wall material is preferably an organic polymer.
- the drug may be encapsulated in ethyl cellulose or hydroxypropyl methylcellulose and starch.
- the acetominaphen diffuses through the shell in a slow, sustained dose.
- Other pharmaceuticals, vitamins, and minerals can be encapsulated, and their delivery can be controlled and targeted in this manner.
- ii. Microemulsion It has been shown that a small amount of monomer can be added to vesicles formed from ionic surfactants without disrupting the structure of the vesicles. John D. Morgan, Christopher A. Johnson, Eric W. Kaler, "Polymerization of Equilibrium Vesicles", Langmuir, 1997, v. 13, pp. 6447-6451. Once polymerized these solutions yield a suspension of semi-rigid hollow polymer spheres. These spheres can be used as nanoencapsulation devices for transdermal delivery, their polymeric nature allowing the desired controlled and sustained drug release. Drugs or any biologically active compound can be dissolved, entrapped or encapsulated into the nanoparticle, or simply adsorbed onto its surface.
- Liposomes are lyotropic liquid crystals composed mainly of amphiphillic bilayers that have dispersing capabilities. Research into the use of acetominaphensomes for topical skin application was pioneered in the early 1980's. Mezei M. and Gulusekharam V., Liposomes, a selective drug delivery system for the topical route of administration, Life Sci. 26: 1473-1477 (1980), Mezei M. and Gulusekharam V., Liposomes, a selective drug delivery system for the topical route of administration: Gel dosage form, J. Pharm. Pharmacol. 34: 473-474 (1982).
- liposo al encapsulation could be beneficial for treating disorders such as acne, alopecias and various cancers, as well mediating accelerated systemic delivery via transport through the shunt pathway.
- Lauer A. C Lieb L. M., Ramachandran C, Flynn G. L., and Weiner N. D., Transfollicular Drug
- Liposomal carriers have been successful in enhancing the clinical efficacy of a number of drugs. These have included tretinoin for the treatment of acne, glucocorticoids for the treatment of atop ic eczema, lignocaine and tetracaine as anesthetics.
- the first marketed topical liposomal drug, Pevaryl Lipogel is produced by Cilag AG. This product contains 1% econazole in a liposomal gel form. This liposomal gel form is suitable for use directly as the drug substance layer 30 of the medicated tattoo of the present invention.
- liposome-skin interactions There are two types of liposome-skin interactions: 1) adsorption and fusion of loaded vesicles on the surface of the skin leading to increased thermodynamic activity and enhanced penetration of lipophilic drugs; and 2) interaction of the vesicles within the deeper layers of the stratum corneum promoting impaired barrier function of these strata for the drug.
- the most suitable liposome for the present application will depend on the desired liposome-skin interaction, which in turn will depend on the desired pharmacological effect.
- Niosomes or non-ionic surfactant vesicles are now widely studied as an alternative to liposomes.
- An increasing number of non-ionic surfactants have been found to form vesicles capable of entrapping hydrophobic and hydrophilic solutes.
- These non-ionic surfactant vesicles appear to be similar in terms of their physical properties to liposomes, being prepared in the same way and under a variety of conditions, forming unilamellar or multilamellar structures. They are an inexpensive alternative, of non-biological origin, to liposomes.
- Hydrogel polymers have the ability to absorb fluid and swell, and as it swells an incorporated drug is released in a controlled manner. By varying the physical and chemical properties of the polymer, as well as the shape, drug release can be controlled over a range of time periods, from a few hours to several days. A precise amount of medicament is incorporated into the polymer by immersing the hydrogel in a solution of the drug for a predetermined time. The hydrogel is then dried with the drug in place. The drug-loaded hydrogel polymer is used directly as drug substance layer 30. When the tattoo is wetted and inserted onto the skin drug release begins immediately.
- skin penetration enhancers can also be added to control the rate of absorption. See, for instance, US Patents Nos. 4,537,776, 4,973,468, 4,820,720, 5,006,342, and 4,863,970 disclose known penetration enhancers.
- the transdermal tattoo 2 can be used for delivery of nutraceuticals, and even cosmetic compounds for skin care and rejuvenation. More specifically, there is an ongoing evaluation of the topical delivery of vitamin C to prevent or reverse skin damage due to sun exposure or aging. Vitamin C stimulates the production of collagen in the skin.
- the transdermal tattoo 2 is capable of effectively delivering concentrations of Vitamin C into the skin. It is also possible to deliver natural progesterone to designated receptor sites throughout the body, thereby affording long-term relief for pre-menstrual symptoms.
- the 1) viscosity of paste solution form; 2) size of micropores/microchannels; and/or 3) control over time-release vehicle, or combination thereof will determine the rate of diffusion of medicament out of the adhesive layer to the skin.
- the rate of absorption into the skin will depend on the concentration gradient existing between the saturated solution of drug reaching the skin and the lower concentration in the skin, as this gradient drives absorption.
- K is the partition coefficient and h is the skin thickness
- the medicated tattoo 2 is held against the skin at the desired location and water is applied to the base paper 70 to wet it and to soften or dissolve the release layer 60.
- the base paper 70 and any residue is removed, leaving the functional portion (layers 20-40) in place.
- the clear layer 50 with underlying colored design layer 30 and underlying drug substance layer 30 bonds to the skin, and the medicament in the drug substance layer 30 begins to gradually diffuse (directly or through discrete adhesive layer 30) into the skin.
- the transdermal tattoo 2 should be applied to dry, hairless skin
- the transdermal tattoo 2 appears to be an ordinary tattoo and the colored layer 30 may take the form of any of various designs. Contrary to conventional transdermals, the present device 2 conceals the fact that the wearer is taking a drug. In fact, the ornamental appearance provides an incentive for wear. Moreover, the utility can be increased further by the addition of a progress indicator that provides an outward visual indication of the progress of delivery. Using any of the above-described construction alternative it becomes possible to incorporate an indicator dye system that will produce a color change. The color change can be effected by the passage of time, or by the absorption of drug substance. Either case provides tremendous utility because the transdermal tattoo 2 can give a self- monitoring feature to indicate dosage progress.
- the indicator dye is incorporated into the drug substance layer 30 and migrates toward the skin along with the medicament. As the indicator dye moves toward the skin and away from the colored design layer 40, the outward appearance of the colored design layer 40 lightens, thereby indicating absorption progress.
- FIG. 5 illustrates a transdermal tattoo 2 incorporating this feature wherein the base paper 70 is printed and labeled with a color-scale 23 for visual comparison to give the user a reference. As the medicine is absorbed the color fades, and the percent absorption is readily apparent by a simple comparison with color-scale 23. The effect is accentuated by the use of complementary colors for the indicator dye and the translucent colored design layer 40, e.g., yellow and green show a distinct tonal change.
- the color change feature can be implemented in the drug substance layer 30 by use of photochromic or luminescent liquid dyes or crystals.
- photochromic dyes becomes excited and the molecular structure is changed, allowing a color to appear (or disappear).
- a variety of colors and effects can be achieved depending on the desired effect.
- PPG® produces Photosol® photochromic dyes crystalline organic dyes four base colors: blue, yellow, purple and orange/red. When combined, additional colors such as green, brown and gray can be produced.
- luminescent organic fluorophers can be used to yield a luminescent effect. These properties can be controlled such that an image will fade or diminish over time, thereby indicating a measure of the effective lifetime of the transdermal tattoo 2.
- FIG. 6 illustrates a transdermal tattoo 2 gradient index feature wherein drug substance layer 30 is dye-encoded and contained within a reservoir adjoining a thermometer-like gradient scale indicator 43 labeled with a gradient scale 43 for visual comparison to give the user a reference.
- drug substance layer 30 is dye-encoded and contained within a reservoir adjoining a thermometer-like gradient scale indicator 43 labeled with a gradient scale 43 for visual comparison to give the user a reference.
- the level of medicine in the channel 43 is lowered by capillary action, and the percent absorption is readily apparent by a simple comparison with the gradient scale.
- transdermal device 2 that displays ornamental simulative child appealing characters (fixed, appearing over time, or disappearing) or other indicia in order to give children an incentive to take their medicine without a fight.
- color-change feature can also be employed to provide a significant incentive to children to wear the transdermal tattoo 2.
- indicator dye combinations as described above can be used that cause a character to appear, or the spots 33 of a character to disappear over time, thereby reinforcing useage.
- the color producing ingredient used in the drug substance layer 30 may comprise any from among the following list:
- thermochromic substances 1. liquid crystals 2. thermochromic substances
- Topical drug and vitamin delivery is a well-known approach to the treatment of local skin disorders, and as the technology advances it is becoming more feasible as a route for systemic drug delivery.
- very few transdermal products have been approved to date, largely because of the complexities involved in achieving a consistent delivery rate.
- There are many variables that influence the absorption of drugs across the skin and presently there is no known mechanism for monitoring the rate of absorption.
- there is another consumer oriented technology vastly different in context yet relevant in substance, that offers untapped benefits to the transdermal industry.
- Temporary tattoos are popular due to the variety of aesthetic and visual effects that they create.
- the melding of temporary tattoo technology with transdermal drug delivery promises an array of advantages, including economy of manufacture (using standard lithographic and silk screen printing processes), ease of application, temporary effect, and motivation to wear the transdermals for their aesthetic appeal. Since tattoos are printed they can easily be made to display simulative child appealing characters or other indicia, thereby providing a great incentive for children to take their medicine. Moreover, by this process the printed tattoo can be made with ink that disappears or changes color as the medicine is absorbed, for the first time giving a positive indication of the rate and efficacy of transdermal delivery. There is a great industrial need to adapt temporary tattoos and their lithographic/silk screen production processes to transdermal medicament delivery, and to thereby introduce all of the potential aesthetic and display advantages of temporary tattoos in the transdermal field.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002246515A AU2002246515A1 (en) | 2000-11-16 | 2001-11-16 | Medicated tattoos |
EP01994084A EP1341498A4 (en) | 2000-11-16 | 2001-11-16 | Medicated tattoos |
CA002429181A CA2429181A1 (en) | 2000-11-16 | 2001-11-16 | Medicated tattoos |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71406000A | 2000-11-16 | 2000-11-16 | |
US09/714,060 | 2000-11-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002076379A2 true WO2002076379A2 (en) | 2002-10-03 |
WO2002076379A3 WO2002076379A3 (en) | 2003-05-30 |
Family
ID=24868618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/043422 WO2002076379A2 (en) | 2000-11-16 | 2001-11-16 | Medicated tattoos |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1341498A4 (en) |
CN (1) | CN1479615A (en) |
AU (1) | AU2002246515A1 (en) |
CA (1) | CA2429181A1 (en) |
WO (1) | WO2002076379A2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005102294A3 (en) * | 2004-04-21 | 2006-05-18 | Gruenenthal Gmbh | Transdermal system secured against misuse |
GB2440679A (en) * | 2006-08-03 | 2008-02-06 | Dewan Fazlul Hoque Chowdhury | Transdermal drug delivery device with temporal control |
US7635488B2 (en) | 2001-03-13 | 2009-12-22 | Dbv Technologies | Patches and uses thereof |
WO2013126513A1 (en) * | 2012-02-22 | 2013-08-29 | Ljmc, Llc | Skin-adhesive decals |
JP2015016612A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet and method of producing nano thin film transfer sheet |
JP2015016614A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet, method for producing nano thin film transfer sheet, and method for transferring nano thin film layer to adherend |
JP2015016613A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet and method of producing nano thin film transfer sheet |
US8968743B2 (en) | 2007-12-03 | 2015-03-03 | Dbv Technologies | Method and compositions for cutaneous immunisation |
US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
US9199012B2 (en) | 2008-03-13 | 2015-12-01 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US9446178B2 (en) | 2003-10-28 | 2016-09-20 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US9539318B2 (en) | 2007-12-03 | 2017-01-10 | Dbv Technologies | Allergen desensitization method |
US9545465B2 (en) | 2012-05-15 | 2017-01-17 | Smith & Newphew Plc | Negative pressure wound therapy apparatus |
DE102015218193A1 (en) * | 2015-09-22 | 2017-03-23 | Ccl Label Gmbh | Sheet with crosslinked hydrophilic polymer |
US9642955B2 (en) | 2006-09-28 | 2017-05-09 | Smith & Nephew, Inc. | Portable wound therapy system |
US9662246B2 (en) | 2012-08-01 | 2017-05-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9877872B2 (en) | 2011-07-14 | 2018-01-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
US9907703B2 (en) | 2012-05-23 | 2018-03-06 | Smith & Nephew Plc | Apparatuses and methods for negative pressure wound therapy |
US9962474B2 (en) | 2007-11-21 | 2018-05-08 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10076449B2 (en) | 2012-08-01 | 2018-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US20180360739A1 (en) * | 2017-06-16 | 2018-12-20 | Celeste Joy Kirsten Lorenz | Non-Invasive Applications for Bioactive Agents |
US10201644B2 (en) | 2005-09-07 | 2019-02-12 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
JP2019043860A (en) * | 2017-08-30 | 2019-03-22 | 大日本印刷株式会社 | External patches with time indicator |
US10610414B2 (en) | 2014-06-18 | 2020-04-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10682446B2 (en) | 2014-12-22 | 2020-06-16 | Smith & Nephew Plc | Dressing status detection for negative pressure wound therapy |
GB2582162A (en) * | 2019-03-13 | 2020-09-16 | Singh Arwinder | Transdermal patch |
WO2022140480A1 (en) * | 2020-12-23 | 2022-06-30 | GameChanger Patch Co. | Transdermal patches for hangover minimization and/or recovery, and/or sleep improvement |
US11517656B2 (en) | 2006-05-11 | 2022-12-06 | Smith & Nephew, Inc. | Device and method for wound therapy |
US11559437B2 (en) | 2016-10-28 | 2023-01-24 | Smith & Nephew Plc | Multi-layered wound dressing and method of manufacture |
US12324851B2 (en) | 2022-05-31 | 2025-06-10 | BIC Violex Single Member S.A. | Drawing substrate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102389590A (en) * | 2011-07-11 | 2012-03-28 | 庞彪 | Novel body tattooing technology manifesting natural beauty |
CN104442166A (en) * | 2014-11-03 | 2015-03-25 | 天津融鑫生物科技有限公司 | Tattoo sticky film used through sunbath |
CN113069682A (en) * | 2021-04-07 | 2021-07-06 | 济南澜亿未来生物科技有限公司 | Semi-permanent tattoo patch, preparation method and use method thereof |
CN117462836B (en) * | 2023-12-26 | 2024-04-26 | 山东百多安医疗器械股份有限公司 | Functionalized ultrasonic controlled-release puncture dressing patch and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2217206A (en) * | 1988-04-13 | 1989-10-25 | Jeffrey Noble Wilson | First aid dressing |
US5776586A (en) * | 1996-03-26 | 1998-07-07 | Lipper; Chris | Promotional hang-tag with integral removable tattoo |
DE19709606C1 (en) * | 1997-03-08 | 1998-10-15 | Beiersdorf Ag | Patches with long afterglow printing and process for its manufacture |
CN1325290A (en) * | 1998-10-02 | 2001-12-05 | 强生消费者公司 | Decorative adhesive bandage kit |
-
2001
- 2001-11-16 EP EP01994084A patent/EP1341498A4/en not_active Withdrawn
- 2001-11-16 WO PCT/US2001/043422 patent/WO2002076379A2/en not_active Application Discontinuation
- 2001-11-16 AU AU2002246515A patent/AU2002246515A1/en not_active Abandoned
- 2001-11-16 CN CNA018203957A patent/CN1479615A/en active Pending
- 2001-11-16 CA CA002429181A patent/CA2429181A1/en not_active Abandoned
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7635488B2 (en) | 2001-03-13 | 2009-12-22 | Dbv Technologies | Patches and uses thereof |
US10278869B2 (en) | 2002-10-28 | 2019-05-07 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10842678B2 (en) | 2002-10-28 | 2020-11-24 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9446178B2 (en) | 2003-10-28 | 2016-09-20 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
WO2005102294A3 (en) * | 2004-04-21 | 2006-05-18 | Gruenenthal Gmbh | Transdermal system secured against misuse |
US10201644B2 (en) | 2005-09-07 | 2019-02-12 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US11278658B2 (en) | 2005-09-07 | 2022-03-22 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US11737925B2 (en) | 2005-09-07 | 2023-08-29 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US12128169B2 (en) | 2006-05-11 | 2024-10-29 | Smith & Nephew, Inc. | Device and method for wound therapy |
US11517656B2 (en) | 2006-05-11 | 2022-12-06 | Smith & Nephew, Inc. | Device and method for wound therapy |
GB2440679B (en) * | 2006-08-03 | 2008-12-03 | Dewan Fazlul Hoque Chowdhury | Transdermal drug delivery with temporal control |
GB2440679A (en) * | 2006-08-03 | 2008-02-06 | Dewan Fazlul Hoque Chowdhury | Transdermal drug delivery device with temporal control |
US9642955B2 (en) | 2006-09-28 | 2017-05-09 | Smith & Nephew, Inc. | Portable wound therapy system |
US10130526B2 (en) | 2006-09-28 | 2018-11-20 | Smith & Nephew, Inc. | Portable wound therapy system |
US11141325B2 (en) | 2006-09-28 | 2021-10-12 | Smith & Nephew, Inc. | Portable wound therapy system |
US12115302B2 (en) | 2006-09-28 | 2024-10-15 | Smith & Nephew, Inc. | Portable wound therapy system |
US11974902B2 (en) | 2007-11-21 | 2024-05-07 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US12285318B1 (en) | 2007-11-21 | 2025-04-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11701266B2 (en) | 2007-11-21 | 2023-07-18 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11045598B2 (en) | 2007-11-21 | 2021-06-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US9962474B2 (en) | 2007-11-21 | 2018-05-08 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11202826B2 (en) | 2007-12-03 | 2021-12-21 | Dbv Technologies | Allergen desensitization method |
US8968743B2 (en) | 2007-12-03 | 2015-03-03 | Dbv Technologies | Method and compositions for cutaneous immunisation |
US11931411B2 (en) | 2007-12-03 | 2024-03-19 | Dbv Technologies | Allergen desensitization method |
US9539318B2 (en) | 2007-12-03 | 2017-01-10 | Dbv Technologies | Allergen desensitization method |
US10022439B2 (en) | 2007-12-03 | 2018-07-17 | Dbv Technologies | Allergen desensitization method |
US11523943B2 (en) | 2008-03-13 | 2022-12-13 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US12295814B2 (en) | 2008-03-13 | 2025-05-13 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US9199012B2 (en) | 2008-03-13 | 2015-12-01 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US10188555B2 (en) | 2008-03-13 | 2019-01-29 | Smith & Nephew, Inc. | Shear resistant wound dressing for use in vacuum wound therapy |
US10159604B2 (en) | 2010-04-27 | 2018-12-25 | Smith & Nephew Plc | Wound dressing and method of use |
US11090195B2 (en) | 2010-04-27 | 2021-08-17 | Smith & Nephew Plc | Wound dressing and method of use |
US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
US11058587B2 (en) | 2010-04-27 | 2021-07-13 | Smith & Nephew Plc | Wound dressing and method of use |
US9808561B2 (en) | 2010-04-27 | 2017-11-07 | Smith & Nephew Plc | Wound dressing and method of use |
US10231874B2 (en) | 2010-11-08 | 2019-03-19 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11510819B2 (en) | 2011-07-14 | 2022-11-29 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10039673B2 (en) | 2011-07-14 | 2018-08-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
US12127912B2 (en) | 2011-07-14 | 2024-10-29 | Smith & Nephew Plc | Wound dressing and method of treatment |
US9877872B2 (en) | 2011-07-14 | 2018-01-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10130519B2 (en) | 2011-07-14 | 2018-11-20 | Smith & Nephew Plc | Wound dressing and method of treatment |
USRE48535E1 (en) | 2011-07-14 | 2021-04-27 | Smith & Nephew Plc | Wound dressing and method of treatment |
WO2013126513A1 (en) * | 2012-02-22 | 2013-08-29 | Ljmc, Llc | Skin-adhesive decals |
US11129931B2 (en) | 2012-03-12 | 2021-09-28 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US12186163B2 (en) | 2012-03-12 | 2025-01-07 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11903798B2 (en) | 2012-03-12 | 2024-02-20 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10660994B2 (en) | 2012-03-12 | 2020-05-26 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US12116991B2 (en) | 2012-05-15 | 2024-10-15 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US9545465B2 (en) | 2012-05-15 | 2017-01-17 | Smith & Newphew Plc | Negative pressure wound therapy apparatus |
US10702418B2 (en) | 2012-05-15 | 2020-07-07 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US9907703B2 (en) | 2012-05-23 | 2018-03-06 | Smith & Nephew Plc | Apparatuses and methods for negative pressure wound therapy |
USD866756S1 (en) | 2012-05-23 | 2019-11-12 | Smith & Nephew Plc | Flexible port used to connect a wound dressing to a source of negative pressure |
US10507141B2 (en) | 2012-05-23 | 2019-12-17 | Smith & Nephew Plc | Apparatuses and methods for negative pressure wound therapy |
USD914887S1 (en) | 2012-08-01 | 2021-03-30 | Smith & Nephew Plc | Wound dressing |
US11801338B2 (en) | 2012-08-01 | 2023-10-31 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10076449B2 (en) | 2012-08-01 | 2018-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10667955B2 (en) | 2012-08-01 | 2020-06-02 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11864981B2 (en) | 2012-08-01 | 2024-01-09 | Smith & Nephew Plc | Wound dressing and method of treatment |
US9662246B2 (en) | 2012-08-01 | 2017-05-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
JP2015016612A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet and method of producing nano thin film transfer sheet |
JP2015016614A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet, method for producing nano thin film transfer sheet, and method for transferring nano thin film layer to adherend |
JP2015016613A (en) * | 2013-07-10 | 2015-01-29 | 日立化成株式会社 | Nano thin film transfer sheet and method of producing nano thin film transfer sheet |
US10610414B2 (en) | 2014-06-18 | 2020-04-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
US11596552B2 (en) | 2014-06-18 | 2023-03-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
US10682446B2 (en) | 2014-12-22 | 2020-06-16 | Smith & Nephew Plc | Dressing status detection for negative pressure wound therapy |
US11654228B2 (en) | 2014-12-22 | 2023-05-23 | Smith & Nephew Plc | Status indication for negative pressure wound therapy |
US10973965B2 (en) | 2014-12-22 | 2021-04-13 | Smith & Nephew Plc | Systems and methods of calibrating operating parameters of negative pressure wound therapy apparatuses |
US10737002B2 (en) | 2014-12-22 | 2020-08-11 | Smith & Nephew Plc | Pressure sampling systems and methods for negative pressure wound therapy |
US10780202B2 (en) | 2014-12-22 | 2020-09-22 | Smith & Nephew Plc | Noise reduction for negative pressure wound therapy apparatuses |
DE102015218193A1 (en) * | 2015-09-22 | 2017-03-23 | Ccl Label Gmbh | Sheet with crosslinked hydrophilic polymer |
US11559437B2 (en) | 2016-10-28 | 2023-01-24 | Smith & Nephew Plc | Multi-layered wound dressing and method of manufacture |
US20180360739A1 (en) * | 2017-06-16 | 2018-12-20 | Celeste Joy Kirsten Lorenz | Non-Invasive Applications for Bioactive Agents |
JP2019043860A (en) * | 2017-08-30 | 2019-03-22 | 大日本印刷株式会社 | External patches with time indicator |
GB2582162A (en) * | 2019-03-13 | 2020-09-16 | Singh Arwinder | Transdermal patch |
WO2022140480A1 (en) * | 2020-12-23 | 2022-06-30 | GameChanger Patch Co. | Transdermal patches for hangover minimization and/or recovery, and/or sleep improvement |
US12324851B2 (en) | 2022-05-31 | 2025-06-10 | BIC Violex Single Member S.A. | Drawing substrate |
Also Published As
Publication number | Publication date |
---|---|
CN1479615A (en) | 2004-03-03 |
AU2002246515A1 (en) | 2002-10-08 |
EP1341498A4 (en) | 2005-01-19 |
EP1341498A2 (en) | 2003-09-10 |
WO2002076379A3 (en) | 2003-05-30 |
CA2429181A1 (en) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1341498A2 (en) | Medicated tattoos | |
US6024975A (en) | Method of transdermally administering high molecular weight drugs with a polymer skin enhancer | |
US5614212A (en) | Method of transdermally administering high molecular weight drugs with a polymer skin enhancer | |
EP0593746B1 (en) | Transdermal drug delivery system | |
JP2708391B2 (en) | Printed skin permeable drug delivery device | |
DE60033935T2 (en) | EXOTHERMIC SUPPLY DEVICE | |
EP3311762B1 (en) | Permeant delivery system and methods for use thereof | |
JP4086317B2 (en) | Transdermal treatment system with thin application area and high flexibility, and method for manufacturing the same | |
EP1225951B1 (en) | A dual adhesive transdermal drug delivery system | |
JPH09507230A (en) | Transdermal drug delivery formulation | |
JPS63227521A (en) | Skin penetration accelerator composition using sucrose ester | |
DD268869A5 (en) | MULTIPLE DIVIDED TRANSDERMALE AND DERMALE PAVE | |
JPS61145113A (en) | Percutaneous system for thymolol | |
CA2010225C (en) | Therapeutic system for the retarded and controlled transdermal or transmucous administration of active substances (1) | |
WO1987001938A1 (en) | Liposome transdermal drug delivery system | |
DE19708674A1 (en) | Transdermal therapeutic system with low application thickness and high flexibility as well as manufacturing processes | |
EP1216035A2 (en) | Preparation containing active ingredients and/or auxiliary agents with a controlled release of these substances and the use and production of the same | |
Sahu et al. | Medicated transdermal therapeutic systems: An updated overview | |
AU2016231468A1 (en) | Permeant delivery system and methods for use thereof | |
KR100490269B1 (en) | Small and flexible transdermal treatment system and its manufacturing method | |
KR820000111B1 (en) | Therapeutic system for administering clonidine | |
JPH05112447A (en) | Long-acting percutaneous antiphlogistic analgesic | |
KR20200045208A (en) | A sheet on which a functional ingredient is mounted on a capsule and a method for manufacturing the sheet | |
NZ240096A (en) | Fragrance releasing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2429181 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001994084 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018203957 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2001994084 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001994084 Country of ref document: EP |