[go: up one dir, main page]

WO2002068378A1 - Procede de production d'oxime aliphatique cyclique - Google Patents

Procede de production d'oxime aliphatique cyclique Download PDF

Info

Publication number
WO2002068378A1
WO2002068378A1 PCT/JP2002/001731 JP0201731W WO02068378A1 WO 2002068378 A1 WO2002068378 A1 WO 2002068378A1 JP 0201731 W JP0201731 W JP 0201731W WO 02068378 A1 WO02068378 A1 WO 02068378A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solid catalyst
reaction
oxide
catalyst
Prior art date
Application number
PCT/JP2002/001731
Other languages
English (en)
French (fr)
Inventor
Mitsuji Ono
Hajime Nagahara
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2002567892A priority Critical patent/JP4208574B2/ja
Priority to US10/468,890 priority patent/US6930204B2/en
Priority to KR1020037011184A priority patent/KR100567616B1/ko
Publication of WO2002068378A1 publication Critical patent/WO2002068378A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing a cycloaliphatic oxime. More specifically, the present invention involves oxidizing cycloaliphatic primary amines in a liquid phase under superatmospheric pressure conditions in the presence of molecular oxygen and a solid catalyst.
  • a method characterized by the following According to the present invention, it is possible to produce cycloaliphatic oximes with high selectivity in a liquid phase while using low-risk molecular oxygen as an oxidizing agent, and to use a solid catalyst. Therefore, it is extremely easy to separate the solid catalyst from the reaction solution after the reaction, and there is no need for complicated operations for separating and recovering the catalyst components.
  • Cycloaliphatic oximes are useful compounds as antioxidants and are used as raw materials in the field of organic industrial chemistry such as pharmaceuticals and agricultural chemicals. Cycloaliphatic oximes are obtained by oxidation of cycloaliphatic primary amines, for example, cycloaliphatic secondary amines. When the primary amine is cyclohexylamine, cyclohexanonoxime is obtained as the corresponding cycloaliphatic oxime. Cyclohexanonoxime is an industrially important compound that is used not only as an antioxidant, but also as an intermediate of ⁇ -caprolactam, which is a raw material of nylon 16.
  • Conventional methods of oxidizing alicyclic or aliphatic primary amides to obtain oximes include converting alicyclic or aliphatic primary amines to molybdenum, tungsten or uranium.
  • a method of reacting with hydrogen peroxide in the presence of an inorganic salt catalyst containing as an active metal species a method in which an alicyclic or aliphatic primary amine is treated with titanium, molybdenum, tungsten and vanadium in an organic solvent.
  • a method of reacting with organic hydroperoxide in the presence of a contained catalyst is known.
  • a method of oxidizing primary amine using a catalyst such as an acid or selenous acid see Japanese Patent Publication No. 47-253324).
  • Method (3) is a heterogeneous reaction using a solid catalyst.However, since the reaction is carried out in the gas phase under relatively harsh operating conditions of 120 to 250 ° C, catalyst Is thought to be easily deactivated. As a result of investigations by the present inventors, under the operating conditions of the gas phase at a reaction temperature of 160 ° C. or higher, tar-like by-products and high- It became clear that the boiling point organic compounds accumulated and the catalyst was easily deactivated.
  • oxidation reaction of cycloaliphatic primary amine is an exothermic reaction, and that the desired products, oximes, are thermally unstable. Therefore, for industrially carrying out the oxidation reaction of cycloaliphatic primary amines, a liquid phase reaction, in which the heat removal of the reaction is easier than in a gas phase reaction, is advantageous.
  • a production method that can be carried out under mild low-temperature conditions that can suppress the sequential decomposition of the generated oxime, and that can use a heterogeneous catalyst that facilitates separation and recovery of catalyst components. The development of is desired.
  • cycloaliphatic primary amines can be converted into molecular oxygen and oxygen under a pressure condition exceeding atmospheric pressure in a liquid phase.
  • a solid catalyst containing an oxide of at least one metal (a) selected from the group consisting of metals belonging to Groups 5 and 6 of the Periodic Table is used.
  • cycloaliphatic oximes can be produced with a high selectivity.
  • the solid catalyst as described above for the production of cycloaliphatic oximes in the liquid phase as described above it is usually 50% or more, preferably 70% or more.
  • an object of the present invention is to produce a cycloaliphatic oxime which can produce a cycloaliphatic oxime with high selectivity in a liquid phase while using low-risk molecular oxygen as an oxidizing agent.
  • the idea is to provide a way. Detailed description of the invention
  • a cycloaliphatic method comprising oxidizing a cycloaliphatic primary amine in a liquid phase under superatmospheric pressure in the presence of molecular oxygen and a solid catalyst.
  • Cycloaliphatic oximes which include oxidizing cycloaliphatic primary amines in the liquid phase under superatmospheric pressure and in the presence of molecular oxygen and a solid catalyst.
  • the solid catalyst comprises an oxide of at least one metal (a) selected from the group consisting of metals belonging to Groups 5 and 6 of the Periodic Table. .
  • the solid catalyst further contains an oxide of at least one metal (b) selected from the group consisting of metals belonging to Groups 2, 13, and 14 of the periodic table.
  • the metal (a) is at least one metal selected from the group consisting of niobium and tungsten.
  • the solid catalyst described in the above item characterized in that the solid catalyst further contains at least one oxide of a metal (c) selected from the group consisting of metals belonging to Group 4 of the periodic table.
  • a metal selected from the group consisting of metals belonging to Group 4 of the periodic table.
  • the metal (a) is at least one metal selected from the group consisting of niobium, tantalum and tungsten.
  • metal (c) is at least one metal selected from the group consisting of titanium and zirconium.
  • the atomic ratio of the metal (a) to the metal (c) is
  • the present invention is a method for producing a cycloaliphatic oxime by oxidizing a cycloaliphatic primary amine.
  • the cycloaliphatic primary amine used in the present invention is not particularly limited, but a saturated cycloaliphatic primary amine is preferred. Specifically, cyclohexylamine, cyclooctylamine, cyclopentylamine, cycloheptylamine, cyclododecanylamine, and the like can be used.
  • Methylcyclohexanoxoxime can be produced from oxaxime and cyclodecanilamine.
  • a cyclic aliphatic primary amine for example, methylcyclohexylamine
  • a substituent for example, an alkyl group
  • cyclohexylamine is most preferred.
  • the method for producing cyclohexylamine is not particularly limited.
  • a method for producing cyclohexylamine by a direct amination reaction between cyclohexene and NH 3 Japanese Patent Laid-Open No. 57_ Japanese Patent No. 4948 (corresponding to EP 399 18), Japanese Patent Application Laid-Open No. 645-75453 (corresponding to EP 305 564), Japanese Patent Application Laid-Open No. 9-954 Publication No. 1 9 4 4 3 8 (EP 7 8 5 1 8 5 Japanese Patent Application Laid-open No. Hei 10 — 7249 (corresponding to ⁇ 802-6), Japanese Patent Application Laid-open No. Hei 10 — 291 968 (EP
  • the purity of cyclohexylamine is not particularly limited, and examples thereof include hexanol, dicyclohexylamine, nitrohexane, hexane, N-cyclohexylidene and cyclohexylamine.
  • the total concentration of the by-product organic compound contained in cyclohexylamine is preferably 5 mol% or less.
  • the content of water is preferably such that the liquid phase does not become a heterogeneous phase under the reaction conditions. In other words, when the oxidation reaction of the present invention is carried out using a solvent described below, the liquid phase does not separate into a phase mainly composed of water and a phase mainly composed of the solvent under the reaction conditions. I like it.
  • the solid catalyst used in the production method of the present invention includes Periodic Table No. 5 and It is a solid catalyst containing at least one metal (a) oxide selected from the group consisting of metals belonging to Group 6.
  • Metals of Groups 5 and 6 of the Periodic Table are widely used as catalysts in denitrification and desulfurization reactions as well as in oxidation reactions of organic compounds. Above metal
  • the conventional catalytic oxidation reaction carried out in the gas phase in the presence of a catalyst containing the oxide of (a) and molecular oxygen such as oxygen or air as an oxidizing agent requires a high temperature of 200 ° C or more. Must be done in This is considered to be because large activation energy is required when molecular oxygen is converted to some oxygen active species via the metal oxide catalyst.
  • a catalyst containing the oxide of (a) and molecular oxygen such as oxygen or air
  • an oxidizing agent requires a high temperature of 200 ° C or more. Must be done in This is considered to be because large activation energy is required when molecular oxygen is converted to some oxygen active species via the metal oxide catalyst.
  • a catalyst for aliphatic or alicyclic amines a liquid phase reaction using a compound of a metal belonging to Groups 5 and 6 or 6 of the periodic table is known, but as described above, However, in such known techniques, a strong oxidizing agent such as organic hydroperoxide is required as the oxidizing agent.
  • At least one metal (a) selected from the group consisting of metals belonging to Groups 5 and 6 of the Periodic Table used in the solid catalyst used in the present invention include Cr, Nb, Ta, Mo, W and the like.
  • the solid catalyst that can be used in the present invention preferably further contains an oxide of a metal other than the metal (a).
  • two preferred embodiments of the solid catalyst used in the present invention include the following solid catalysts.
  • ( ⁇ ) a group consisting of at least one metal (a) selected from the group consisting of metals belonging to groups 5 and 6 of the periodic table and a metal belonging to group 4 of the periodic table; At least one metal selected
  • Nb and W are preferable, and W is particularly preferable.
  • the metal (b) used for the solid catalyst ( ⁇ ) is not particularly limited as long as it is at least one metal selected from the group consisting of metals belonging to Groups 2, 13, and 14 of the periodic table. , Mg, C a, B a, B, A 1, G a, S i, etc., and A 1 and S i are particularly preferred. Is an oxide of the metal (b), M g ⁇ , C a O, B A_ ⁇ , A 1 2 0 3, S i ⁇ alone oxide such as 2, S i 0 2 - A 1 2 0 3 , B 2 ⁇ 3 — A l 2 ⁇ 3 , G a 2 ⁇ 3 — S i 0 2 ,
  • Complex oxides such as M g O—S i ⁇ 2 and C a ⁇ S i ⁇ 2 are exemplified.
  • aluminosilicates having various pore structures, synthetic or natural zeolites, and the like can also be mentioned.
  • the solid catalyst ( ⁇ ) may be a simple mixture of an oxide of the metal (a) and an oxide of the metal (b) by a kneading method, but the oxide of the metal (a) may be a metal (a). It is preferable to use a supported catalyst supported on the oxide of b) or a catalyst obtained by the sol-gel method of US Pat. No. 4,624,939.
  • the following method is exemplified.
  • a precursor of an oxide of the metal (a) at least one metal (a) (Cr,
  • Nb, Ta, Mo, W, etc. halides, oxyhalides, alkoxides, nitrates, hydroxides, carboxylates, sulfates, oxide carbonates and the like are used.
  • an oxide of Nb or Ta is used as the oxide of the metal (a)
  • an acidic complex of the metal (a) is used as a precursor thereof.
  • An acidic complex of Nb and oxalic acid or tartaric acid obtained by dissolving a hydrated niobium oxide gel obtained by decomposition in an aqueous solution of oxalic acid or tartaric acid, or an ammonium salt thereof (Japanese Patent Laid-Open No. 7-309) No. 778) can also be used.
  • an oxide of N b as an oxide of a metal (a) is also be used acidic compounds such as the oxalate niobium hydrogen as a precursor [(N b HC 2 0 4 ) 5] it can.
  • an oxide of W When an oxide of W is used as the oxide of the metal (a), its precursor is an oxyammonium salt such as ammonium paratungstate or ammonium metatungstate, and tandas. Alkali metal salts of formic acid and the like can also be used.
  • the precursor of the metal (a) as described above is dissolved in a suitable solvent such as water or alcohol to obtain a solution.
  • Oxide support made of an oxide of the metal (b) to the resulting solution (A 1 2 ⁇ 3, S i ⁇ 2, S i 0 2 one A 1 2 ⁇ 3, etc.) were immersed, known impregnation method (For example, evaporation to dryness method), adsorption method (for example, equilibrium adsorption method), etc.
  • the oxide of (a) is supported on a carrier containing the oxide of metal (b).
  • a drying treatment is performed under reduced pressure at a temperature in the range of room temperature to about 150 ° C to remove the solvent. In the air stream, about 300 ⁇
  • a solid catalyst ( ⁇ ) supported on the oxide is obtained.
  • a preparation method for simultaneously or sequentially supporting two or more kinds of metal (a) oxides can be used.
  • oxide support in such a bearing method A 1 2 ⁇ 3, S i O 2 and S i 0 2 - include A 1 2 O 3.
  • the oxide carrier preferably has a large specific surface area, specifically 100 m 2 Zg or more, more preferably 200 m 2 / g or more. In using A 1 2 0 3 alone, ⁇ one A 1 2 ⁇ 3 favored arbitrariness. ⁇
  • the method for preparing a solid catalyst containing an oxide of a metal (a) and an oxide of a metal (b) by a sol-gel method is as follows. Is mentioned. An aqueous solution containing a soluble salt of at least one metal (a) (Cr, .Nb, Ta, ⁇ and W, etc.) and at least one metal (b) (A1 and Si, etc.) ) Is mixed and hydrolyzed, and then, if necessary, dried under reduced pressure in a temperature range of room temperature to 150 ° C to remove water and alcohol by-produced. A gel is obtained.
  • the obtained gel-like substance is heated and calcined at a high temperature in a gas stream of pure oxygen, air, an oxygen-containing gas or the like in a gas phase to prepare a solid catalyst.
  • a composite of a metal (a) oxide and a metal (b) oxide In other words, it is considered that a metal (a) atom and a metal (b) atom are chemically bonded via an oxygen atom).
  • sol-gel method see, for example, US Pat.
  • the obtained catalyst is used for the oxidation of cycloaliphatic amines using molecular oxygen under high-temperature gas-phase reaction conditions to produce oxime. It was not considered useful for oxidation reactions under relatively low temperature liquid phase conditions such as However, our studies show that this catalyst can also be favorably used in the method of the present invention. Became clear.
  • the content of the metal (a) in the solid metal catalyst is from:: to 60% by weight. More preferably, it is 2 to 40% by weight.
  • the content of the metal (a) is less than the above range, the selectivity of the cycloaliphatic oxime decreases, and when the content of the metal (a) exceeds the above range, the reaction rate becomes remarkable. Lower.
  • the content of the metal (a) can be quantified using an X-ray fluorescence analyzer in accordance with the absolute calibration curve method.
  • the content of the metal (a) in the solid metal catalyst should be 2 to 30% by weight. Is more preferred. In the case of the solid catalyst prepared by the above sol-gel method, the content of the metal (a) in the solid metal catalyst is more preferably 3 to 40% by weight.
  • the atomic ratio of the metal (a) to the metal (b), that is, (a metal atom of Group 5 and / or 6 of the Periodic Table) Z (a metal atom of Group 2 13 and / or 14 of the Periodic Table) is It is preferably in the range of 0.002 to 3.0, and more preferably in the range of 0.05 to 1.0.
  • the solid catalyst ( ⁇ ) will be described.
  • the metal (a) used for the solid catalyst (3) which is another preferred embodiment of the solid catalyst used in the present invention, Nb, Ta and W are preferable, and W is particularly preferable.
  • Examples of the metal (c) used for the solid catalyst (3) include Ti, Zr, and Hf. It is an oxide of the metal (c) contained in the solid catalyst (beta), or a single oxides, such as T i 0 2 and Z r ⁇ 2, T i ⁇ 2 - composite oxides such as Z r ⁇ 2 It is preferable to use In addition, the T i O 2 and Z r 0 2, may be used as the S i 0 2 as part impurity is contained.
  • the solid catalyst ( ⁇ ) may be one obtained by simply physically mixing an oxide of the metal (a) and an oxide of the metal (c) by a kneading method, but the oxide of the metal (a) may be a metal (c). )) Or a composite oxide containing a metal (a) and a metal (c) can be used as a solid catalyst.
  • the following method can be exemplified.
  • the metal (a) oxide As a precursor of the metal (a) oxide, the metal (a)
  • Nb, Ta, W, etc. halides, oxyhalides, alkoxides, hydroxides and the like are used.
  • an oxide of W is used as the oxide of the metal (a)
  • an oxyammonium salt such as ammonium nitrate ammonium or ammonium methastungstate is used as a precursor thereof.
  • Alkali metal salts of tandastenoic acid can also be used.
  • an oxide of Nb and / or Ta is used as the oxide of (a)
  • an acidic complex of the metal (a) for example, obtained by hydrolyzing a halide of Nb
  • a hydrated niobium oxide gel is dissolved in an aqueous solution of oxalic acid or tartaric acid to obtain an acidic complex of Nb with oxalic acid or tartaric acid, or an ammonium salt thereof (Japanese Patent Application Laid-Open No. 7-309787).
  • niobium hydrogen oxalate is used as a precursor thereof.
  • An acidic compound such as [(NbHC2 ⁇ 4) 5] can also be used.
  • the precursor of the metal (a) as described above is dissolved in a suitable solution such as water or alcohol to obtain a solution.
  • a solid oxide, oxide sol or hydroxide of at least one kind of metal (c) (Ti and Zr, etc.) is used alone or in a predetermined ratio in the obtained solution. Or pre-prepared T i ⁇ 2 _
  • the ZrO 2 composite oxide solid is immersed, and the metal (a) is oxidized to the metal (c) by a known impregnation method (for example, evaporation to dryness) or an adsorption method (for example, equilibrium adsorption method). Supported on a material. Thereafter, the solvent is removed by performing a drying treatment in a temperature range of from room temperature to about 150 ° C. (and further under reduced pressure as necessary), and thereafter, pure oxygen in a gas phase. Air, an oxygen-containing gas In a stream of air, etc., it is heated and calcined at a high temperature of about 300 to 500 ° C. to obtain a solid catalyst (
  • a solid catalyst
  • a preparation method in which the oxide (a) is supported simultaneously or sequentially can be used.
  • T i ⁇ 2 as an oxide of the metal (c) in a supporting method
  • T i ⁇ 2 large Ana evening one peptidase type crystalline state and amorphous state of the specific surface area or titanium hydroxide
  • the metal when in the oxide of (c) to produce a catalyst containing Z r ⁇ 2, Z r ⁇ 2 of big monoclinic and tetragonal specific surface area or the general formula,
  • zirconium hydroxide represented by Zr ⁇ (OH) 2 or Zr (OH) 4 is preferable to use zirconium hydroxide represented by Zr ⁇ (OH) 2 or Zr (OH) 4 as a raw material.
  • a composite oxide containing a metal (a) and a metal (c) can be used as a solid catalyst.
  • a composite oxide containing a metal (a) and a metal (c) is a metal oxide containing a metal (a), a metal (c) and oxygen,
  • the oxide has been confirmed by elemental analysis to be a structure in which the atom of (a) and the atom of metal (c) are chemically bonded via an oxygen atom.
  • Part of atoms of metal (c) in oxide (c) is metal
  • (a) may be substituted.
  • catalysts containing tungsten oxide and zirconia are described in JOURNAL OF CATALYSIS 168, 431-441 (1997) and JOURNAL OF THE CHEMICAL SOCIETY FARADAY TRANSACTIONS 90 (1), 193-202 (1994).
  • the composite oxide that can be used as the solid catalyst (/ 3) in the present invention is a simple physical reaction between an oxide of a metal (a) and an oxide of a metal (c) formed separately therefrom. It is considered that it has different acidic properties (the strength and amount of acid sites generated on the solid surface) from that of a typical mixture. For example, it is known that a complex oxide composed of tungsten as the metal (a) and titanium or zirconium as the metal (b) produces a specific acidic property due to chemical interaction. . By utilizing this acidic property, it can be used as a solid catalyst for various heterogeneous reactions such as dehydration of alcohols, hydration of olefins, and skeletal isomerization of alkanes. It has been known.
  • the present inventors have conducted intensive studies on the catalyst and reaction conditions used for the oxidation reaction of cycloaliphatic primary amine in the liquid phase, and as a result, surprisingly, the composite solid oxide described above, namely, At least one metal (a) selected from the group consisting of metals belonging to groups 5 and 6 of the periodic table and selected from the group consisting of metals belonging to group 4 of the periodic table It has been found that a composite oxide containing at least one metal (c) can also be effectively used as a solid catalyst in the method of the present invention.
  • the oxide species in (a) are restricted to a particular valence state It is not. These species may be present in the composite oxide at any positive oxidation value of the species.
  • the method for preparing the composite oxide used as the solid catalyst (13) in the present invention is not particularly limited, and a known catalyst preparation method can be used. Specifically, it can be prepared by the following coprecipitation method / sol-gel method.
  • an aqueous solution is prepared by dissolving at least one metal (a) oxide precursor and at least one metal (c) oxide precursor in an aqueous medium in an arbitrary ratio.
  • a precursor of the metal (a) oxide a soluble salt of the metal (a) (Nb, Ta, W, etc.), preferably a soluble compound soluble in an aqueous medium, can be used.
  • ammonium salts, halides, oxyhalides, nitrates, carboxylate salts, sulfate oxide carbonates and the like can be used.
  • Oxides of metals (c) (T i ⁇ 2, Z r 0 2 or T i ⁇ 2 - Z r 0 2, etc.) as a raw material of a soluble metal compound is preferable to rather soluble in an aqueous medium Used.
  • a catalyst containing T i ⁇ 2 as an oxide of the metal (c) can be used in titanium tetrachloride, sulfuric acid titanium down or titanium oxalate or the like as a raw material, Z r 0 2
  • Z r 0 2 When producing a catalyst containing as a metal (c) oxide, zirconium tetrachloride, zirconium oxychloride or the like is used as a raw material. Can be used.
  • the aqueous solution prepared above is stirred while maintaining the temperature preferably at 60 ° C or lower, and the basic compound is adjusted so that the final pH of the aqueous solution is in the range of 5 to 11.
  • An aqueous solution is added to obtain a precipitate.
  • the basic compound used for neutralization and precipitation include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and the like. That is, an aqueous ammonia solution (ammonia water) is preferably used in view of the handleability of the obtained coprecipitate slurry.
  • the aqueous solution of the metal (a) is basic
  • the aqueous solution containing the metal (a) is added to the aqueous solution in which the precursor of the oxide of the metal (c) is dissolved at the same time as the aqueous ammonia, and the precipitate is formed. Can also be obtained.
  • the precipitate comprising the metal (a) oxide precursor and the metal (c) oxide precursor obtained by the above precipitation operation is separated from the precipitate slurry, and After washing, perform drying treatment at room temperature to about 150 ° C (and further under reduced pressure if necessary).
  • a gaseous phase such as pure oxygen, air, or an oxygen-containing gas stream, heat and bake at a high temperature of about 300 to 700 ° C, and heat the metal (a) and metal (c). Is obtained.
  • At least one alkoxide of the metal (a) and at least one alkoxide of the metal (c) are mixed in a desired ratio and heated in a non-aqueous solvent such as a lower alcohol as required.
  • a non-aqueous solvent such as a lower alcohol as required.
  • the kind of the alkoxide of the metal (a) and the kind of the ligand (alkoxy group) of the alkoxide of the metal (c) may be the same or different.
  • Examples of the kind of the metal alkoxide ligand include a methoxy group, an ethoxy group, an n_propoxy group, an iso-propoxy group, and a sec-butoxy group. Since the solubility of a plurality of different metal alkoxides differs depending on the species of the ligand and the type of the solvent, a combination that can provide a uniform solution may be arbitrarily selected depending on the type of the metal used.
  • Deionized water for hydrolysis or, if necessary, an aqueous solution of a monoalcohol is added to the homogeneous solution prepared above and stirred, and a plurality of metal alkoxides are hydrolyzed to obtain a gel.
  • hydrolysis is completed in a few hours at room temperature, but the reaction system may be heated to shorten the decomposition time.
  • an amount sufficient to act as a catalyst usually, a molar ratio of 0.1 to 1 to the total molar amount of the metal alkoxide is used.
  • the acid or base of 0.01) for example, nitric acid, ammonia water or the like may be used.
  • the resulting gel is then removed and at a temperature ranging from room temperature to about 150 ° C (if necessary under reduced pressure) to remove alcohol, solvent and excess water from the hydrolyzed ligand. Perform drying. Then, it is heated and calcined at a high temperature of about 300 to 700 ° C. to form a composite oxide containing the metal (a) and the metal (c). obtain.
  • the mixture of the alkoxides of the metal (a) and the metal (c) is hydrolyzed without using the above non-aqueous solvent or using a smaller amount of the non-aqueous solvent as compared with the above method.
  • a preparation method of directly decomposing to obtain a solid gel can also be used. Specifically, for example, the use of non-aqueous solvents or the use of
  • a uniform mixture or solution is prepared by mixing the alkoxide of (a) and the alkoxide of metal (c) at a desired ratio in a dried gas phase atmosphere. Subsequently, about 2 equivalents or more of demineralized water with respect to the total alkoxy groups of the metal alkoxide used is added to the prepared homogeneous mixture or solution of metal alkoxide. During the addition, the metal alkoxide mixture or solution is stirred vigorously and the heat is removed. Alkoxides hydrolyze almost instantaneously, resulting in a cake-like solid gel. Next, a drying treatment is carried out in a temperature range from room temperature to about 150 ° C (under reduced pressure as necessary) to remove water and by-product alcohol. Next, the solid gel is heated and fired at a high temperature of about 300 to 700 ° C.
  • a composite oxide containing (a) and a metal (c) is obtained.
  • the complex oxide can also be prepared using a coordination chemical sol-gel method known as one of the above-mentioned sol-gel methods. It is characterized in that a cross-linked complex bonded through a metal is formed, and that a different metal element exists near one of the metal elements. It is also known as a technique for obtaining a more homogeneous and low-crystallinity composite oxide.
  • an alkoxide of a metal (a) (Nb, Ta and W, etc.) and an alkoxy ', metal of a metal (c) (Ti, Zr, etc.) are mixed in a desired ratio.
  • the diols used as crosslinking ligands have two or more methylene groups bonded between two hydroxyl groups, and have a metal atom (N b, T b) of groups 5 and 6 of the periodic table.
  • a and W) and a metal atom of Group 4 of the periodic table are preferably not bonded to form an insoluble complex.
  • pinacol, hexylene glycol, and the like are suitably used as the diol.
  • the solution was stirred at about 70 to 100 ° C and used as deionized water for hydrolysis, or as a monoalcohol or solvent as necessary.
  • Jio An aqueous solution of phenol is added to hydrolyze the complexed metal alkoxide to obtain a gel-like product.
  • the obtained gel-like product is sufficiently aged at a temperature of about 100 ° C. or less.
  • the gel is taken out and subjected to a drying treatment under reduced pressure in a temperature range of about 100 to 150 t, and the dried gel is heated and calcined at a high temperature of about 500 to 700 ° C.
  • a composite oxide that can be used as a solid catalyst (/ 3) can be prepared by a method other than the above.
  • a composite oxide can be prepared by the following method.
  • An alkoxide of a metal (c) is stirred under stirring using an aqueous solution containing a soluble salt of the metal (a).
  • the obtained gel-like compound is heated and fired in a gaseous phase at a temperature of about 400 ° C. or more in a stream of pure oxygen, air, an oxygen-containing gas or the like to obtain a composite oxide.
  • the atomic ratio of (a), that is, (a metal atom of Group 5 and / or 6 of the Periodic Table) / (a metal atom of Group 4 of the Periodic Table) is 0.01 to
  • the atomic ratio of the metal (a) to the metal (c) depends on the combination of the metal oxide, the preparation method and the conditions. Can be arbitrarily selected, but is more preferably from 0.015 to 0.5, most preferably from 0.02 to 0.3.
  • the atomic ratio of the metal (a) to the metal (c) can be determined by measuring the abundance of the metal (a) and the abundance of the metal (c) using an X-ray fluorescence analyzer.
  • the cycloaliphatic primary amine is dissolved in a liquid phase under a pressure condition exceeding atmospheric pressure in the presence of molecular oxygen and the above-mentioned solid catalyst. Oxidize underneath.
  • the oxidation reaction is performed in a liquid phase.
  • the reaction can be carried out without a solvent as long as the cyclic aliphatic primary amine is kept in a liquid state, but it is preferable to carry out the reaction in the presence of a solvent.
  • the use of the solvent can prevent the amine concentration in the liquid phase from becoming too high, and can prevent the coloring of the solid catalyst surface and the decrease in catalytic activity, which become remarkable due to the high amine concentration.
  • Examples of the solvent used in the production method of the present invention include primary, secondary and tertiary alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, isopropyl alcohol and t_butyl alcohol; Ditolyl compounds such as tolyl and benzonitrile; aromatic hydrocarbons such as benzene and toluene; n-aliphatic or alicyclic compounds having 6 to 10 carbon atoms such as hexane and cyclohexane; Hydrocarbon; dimethylformamide; dimethylsulfoxide; triethylamine; dimethoxetane; dioxane; Glyme; water and the like can be used.
  • primary, secondary and tertiary alcohols having 1 to 10 carbon atoms such as methanol, ethanol, isopropyl alcohol and t_butyl alcohol
  • Ditolyl compounds such as tolyl and benzonitrile
  • aromatic hydrocarbons such as benzene and to
  • the concentration of the cycloaliphatic amine as a reaction substrate is determined based on the total weight of the solvent and the cycloaliphatic amine. Usually, it is 1 to 50% by weight, preferably 3 to 30% by weight. Although it depends on the type of cycloaliphatic amine, it is preferable that the concentration of the amine is too high, because the coloration considered to accumulate by-products on the surface of the solid catalyst becomes remarkable, and the catalytic activity is reduced. I don't. On the other hand, if the concentration of amide is too low, the productivity of cycloaliphatic oxime per unit reactor capacity is reduced.
  • a cycloaliphatic primary amine is contacted with a solid catalyst in a liquid phase in the presence of a gas containing molecular oxygen.
  • the gas containing molecular oxygen is pure oxygen or a mixed gas of oxygen and an inert gas.
  • the inert gas nitrogen, argon, helium, or the like can be used.
  • the gas mixture also includes air.
  • the gas containing molecular oxygen is preferably air or a mixed gas of oxygen and an inert gas. A small amount of water or NH 3 may be contained in the gas containing molecular oxygen.
  • molecular oxygen and an inert gas can be supplied to the reaction system at an arbitrary mixing ratio, but the oxygen concentration is formed in the reaction system. It is preferable that the gas phase does not have an explosive composition.
  • the formation of the explosive composition depends on the vapor pressure of cycloaliphatic amines, solvents, etc. and the concentration of oxygen and inert gas. Picture 2/01731
  • the method of the present invention is characterized in that the oxidation reaction of cycloaliphatic primary amine is performed in a liquid phase. Therefore, it is necessary that molecular oxygen introduced into the reaction system as a gas be dissolved at an arbitrary concentration in the liquid phase in which the catalyst exists under the reaction conditions.
  • a method in which an oxygen-containing gas is introduced under reduced pressure or atmospheric pressure under a temperature condition in which a mixture of a reaction substrate, a product, and a solvent is in a reflux state is preferable because the amount of oxygen dissolved in a liquid phase is extremely small. Not good.
  • an oxygen-containing gas may be brought into contact with the liquid phase under a pressurized condition exceeding atmospheric pressure.
  • a preferred pressure range in the reaction system is a total pressure (expressed as absolute pressure) of 500-150,000 kPa, more preferably
  • the reaction when performing a batch reaction using a mixed gas of oxygen and an inert gas, the catalyst to be used and the reaction conditions [according to this, the required reaction amount of cycloaliphatic primary amine (ie, In consideration of the amount of oxygen required for the reaction), the reaction may be carried out by supplying a mixed gas having an arbitrary oxygen concentration at a desired total pressure.
  • the reaction temperature is usually preferably from 50 to 150 ° C, more preferably from 60 to 144 ° C, most preferably from 80 to 140t: It is.
  • the reaction temperature is usually preferably from 50 to 150 ° C, more preferably from 60 to 144 ° C, most preferably from 80 to 140t: It is.
  • the reaction rate tends to decrease.
  • the cycloaliphatic primary amine is oxidized in a liquid phase under a pressurized condition exceeding atmospheric pressure in the presence of molecular oxygen and a solid catalyst, whereby the cycloaliphatic primary amine is oxidized.
  • Manufacture tribal oximes In this case, the state of the catalyst in the reaction system is heterogeneous, and the reaction field is in the liquid phase.
  • oxygen is applied to the reaction system using a gas containing molecular oxygen. Need to be supplied. Therefore, it is preferable that the liquid phase and the oxygen-containing gas be sufficiently contacted in the reaction system under a pressurized condition.
  • the reaction system is not particularly limited, and may be any of a batch system, a semi-batch system, and a continuous system.
  • the molecular oxygen-containing gas may be directly blown into the liquid phase formed in the reaction system, or may be blown into the gas phase existing in contact with the liquid phase. May be introduced.
  • pure oxygen-air or diluted oxygen gas must be supplied to the reaction system continuously or intermittently so as to maintain an arbitrary gaseous oxygen partial pressure. Can be.
  • an oxygen-containing gas that retains a sufficient amount of oxygen in advance with respect to the reaction amount of the target substrate amine is introduced beforehand. The reaction can be continued for an arbitrary time until the target reaction rate is reached without replenishing oxygen consumption.
  • the shape of the solid catalyst used in the method of the present invention may be formed into a powder, or a crushed, particulate, or columnar shape according to the reaction mode to be performed, for example, a fixed bed system, a fluidized bed system, or a suspension catalyst system. Things can be used.
  • the amount of the solid catalyst to be used can be arbitrarily selected depending on the reaction system to be carried out, the reaction mode, the reaction temperature, the type of the solvent used, and the type of the solid catalyst, and is not particularly limited.
  • solid catalyst (a) containing at least one metal (a) oxide and at least one metal (b) oxide
  • solid catalyst ( ⁇ ) is added to the cyclic aliphatic primary amine in a weight ratio of 0.05 to 0.05.
  • the solid catalyst for a cyclic aliphatic primary amine is also used. It is preferable to use an amount of the solid catalyst in which the weight ratio of (/ 3) is in the range of 0.05 to 50.
  • the reaction time can be arbitrarily selected depending on the operating conditions such as the above-described reaction method, reaction temperature, amount of catalyst, and the like, and a practical target value of the yield of the cycloaliphatic oxime to be formed. For example, when a powdery solid catalyst is suspended in a liquid phase in a batch reactor to carry out the reaction, the reaction is usually performed for about 0.5 to 10 hours.
  • conditions are selected so that the conversion of the cycloaliphatic amine is usually kept at 4 to 50%, preferably at 4 to 40%, more preferably at 4 to 30%.
  • the formed cycloaliphatic oxime can be recovered from the mixture in the reactor by conventional means, for example, distillation or extraction.
  • the present invention usually 50% or more, preferably 70% or more Cycloaliphatic oximes can be produced with high selectivity. It is extremely easy to separate the reaction solution from the solid catalyst after the reaction. For example, the catalyst can be recovered by filtration or the like. Therefore, the production method of the present invention does not require a complicated operation related to separation and recovery of a catalyst component, which is essential in a reaction using a homogeneous catalyst.
  • the amount of metal contained in the solid catalyst is determined by a fluorescent X-ray analyzer
  • Spectral crystal Polyethylene terephthalate for A1 and Si measurement, lithium fluoride for other metals Detector: Scintillation counter type 1 detector Sample preparation
  • a mixed powder is obtained by diluting and mixing crystalline cellulose with a known amount of solid catalyst, and the obtained mixed powder is aluminized to form a tablet.
  • An evening bullet was prepared using a mold at a pressure of 20 t.
  • reaction product was performed by gas chromatography.
  • Gas chromatograph is manufactured by J SCIENTIFIC, USA The measurement was carried out using a capillary column (30 cm, trade name: DB-1701) and an FID detector.
  • the concentration of the metal eluted from the solid catalyst into the reaction solution was measured by ICP emission spectroscopy.
  • the measurement was performed using a JY138 model manufactured by Rigaku Denki Kogyo Co., Ltd., Japan as an ICP emission spectrometer, and using a torch for organic solvent at a high frequency output of 1.4 kW.
  • Vacuum drying was performed overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was placed in a glass tubular furnace and calcined at 400 ° C for 4 hours under a normal pressure air stream to obtain a solid catalyst containing tungsten oxide and alumina. .
  • the tungsten content of the obtained solid catalyst was about 9% by weight.
  • Oxidation reaction of hexylamine> A high-pressure autoclave reactor made of SUS316 with a gas self-contained stirring blade and having a total capacity of 100 ml was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol. 0.14 g of the tungsten oxide alumina solid catalyst prepared above was suspended therein. After replacing the inside of the system with nitrogen gas, a mixed gas of nitrogen containing 7% oxygen was introduced into the gas phase to reduce the total pressure in the system.
  • the pressure was raised to 6, OOOkPa.
  • the oxygen partial pressure at this time was 420 kPa.
  • the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce cyclohexanonoxime.
  • the cyclohexylamine oxidation reaction was carried out for 6 hours and 8 hours under the same conditions as above to produce cyclohexanonoxime, respectively.
  • a slurry of the reaction solution in which the catalyst was dispersed was recovered from the reactor, and the catalyst was separated by filtration using a suction filter connected to an aspirator. Specifically, the slurry of the reaction solution was dropped on a filter with quantitative filter paper No. 5C manufactured by Advantech Toyo Co., Ltd., Japan, and the solid catalyst was placed on the filter paper. Was recovered, and the reaction solution was recovered as a filtrate.
  • the recovered reaction solution was analyzed by gas chromatography. The results showed that the conversion rate of hexylamine in the mouth was 8.6% for the reaction for 4 hours, 23.4% for the reaction for 6 hours, and 83.4% for the reaction for 8 hours.
  • the concentration of tungsten eluted from the solid catalyst into the reaction solution was 0.1 P Pm or less.
  • Example 3 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 14 g of n-butyl alcohol was used instead of t-butyl alcohol as a reaction solvent, to produce cyclohexanonoxime.
  • the conversion of cyclohexylamine was 5.5% and the selectivity for cyclohexanonoxime was 50.2%.
  • Example 3
  • Example 4 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 14 g of acetonitrile was used in place of t-butyl alcohol as the reaction solvent, to produce cyclohexanonoxime. .
  • the conversion of cyclohexylamine was 14.8% and the selectivity of cyclohexanone was 74.0%.
  • Example 5 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 14 g of benzonitrile was used instead of t-butyl alcohol as a reaction solvent, to produce cyclohexanoxoxime.
  • the conversion of cyclohexylamine was 10.3%, and the selectivity of cyclohexanonoxime was 67.7%.
  • Example 5 The conversion of cyclohexylamine was 10.3%, and the selectivity of cyclohexanonoxime was 67.7%.
  • Example 7 Preparation of solid catalyst with tungsten oxide supported on alumina>
  • This suspension was placed in a glass flask, placed in a re-evaporator, immersed in an oil bath at 90 ° C under normal pressure, and slowly stirred and mixed for 1.5 hours to obtain a slurry. .
  • the obtained slurry was subjected to the following concentration drying treatment.
  • the temperature of the oil bath was raised from 90 ° C to 120 ° C, and the pressure inside the system was gradually reduced from normal pressure to 2 OkPa over about 2 hours, and Water was evaporated from the rally. As the water evaporates, the slurry becomes cake-like, and finally the cake dries to obtain an agglomerated dried product consisting of powders of different sizes such as broken particles.
  • the obtained coagulated and dried product was further vacuum-dried at 120 ° C. overnight, and then subjected to the next powdering treatment.
  • the agglomerated dried product was placed in a stainless steel mortar, ground with a pestle, and the agglomerated dried product, which had approached a fine powder state, was transferred to an agate mortar and ground to further fineness.
  • the crushed dried product is sieved (mesh size: 75 m), and only those that have passed through the sieve are collected and the particle size is reduced to 75 m or less. The following powder was obtained.
  • the obtained powder is put into a glass tubular furnace, and calcined at 500 ° C. for 4 hours while supplying air under normal pressure to obtain a solid catalyst in which tantalum oxide is supported on alumina. Obtained.
  • the tungsten content of the obtained solid catalyst was about 9% by weight.
  • Example 2 The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylileamin and 14 g of t-butyl alcohol, and 0.3 g of the solid catalyst prepared above was suspended therein. After replacing the inside of the system with nitrogen gas, an oxygen / nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total system pressure was increased to 7, OO OkPa. The oxygen partial pressure at this time was 490 kPa. Subsequently, the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce xanonoxime.
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 7.4%, and the selectivity of cyclohexylonoxime was 65.0%.
  • the concentration of tungsten eluted from the solid catalyst into the reaction solution was 0.1 ppm or less.
  • silica specific surface area: SOOOn ⁇ Zg
  • AER0SIL-300 Commercially available silica (specific surface area: SOOOn ⁇ Zg) (AER0SIL-300, manufactured by Nippon Aerosil, Japan) was vacuum dried overnight at 120 ° C and used as a carrier. After dissolving 1.34 g of ammonium metatungstate in 50 g of water, 10 g of dried silica was added thereto to form a suspension solution. Using this suspension solution, a solid catalyst was prepared in the same manner as in Example 7, to obtain a solid catalyst having tungsten oxide supported on silica. The tungsten catalyst content of the obtained solid catalyst was about 9% by weight. Oxidation reaction of hexylamine>
  • Example 2 The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol, and 0.3 g of the solid catalyst prepared above was suspended therein. It became cloudy. After replacing the inside of the system with nitrogen gas, an oxygen / nitrogen mixed gas containing 7% oxygen is introduced into the gas phase, and the total pressure inside the system is reduced to 7,000 kPa. Pressurized. The oxygen partial pressure at this time was 490 kPa. Then, the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce cyclohexanonoxime.
  • a commercially available silica-alumina compact (specific surface area: 400 m 2 Z g) (N631HN, manufactured by JGC Corporation, Japan) was subjected to powdering treatment in the same manner as in Example 7.
  • a powder was obtained, and the obtained powder was vacuum-dried at 120 ° C. overnight to obtain a dried silica-alumina powder.
  • a solid catalyst was prepared in the same manner as in Example 7, to obtain a solid catalyst in which tungsten oxide was supported on a silica-alumina carrier.
  • the tungsten content of the obtained solid catalyst was about 9% by weight.
  • Oxidation reaction of hexylamine> The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol, and 0.3 g of the solid catalyst prepared above was added thereto. Suspended. After replacing the inside of the system with nitrogen gas, an oxygen / nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total system pressure was increased to 7, OOO kPa. At this time, the oxygen partial pressure was 490 kPa. Then, the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce cyclohexanoxoxime.
  • Example 10 After the reaction, the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered. When the recovered reaction solution was analyzed by gas chromatography 1 and chromatography, the conversion of cyclohexylamine was 6.0%, and the selectivity of cyclohexylonoxime was 57.4%.
  • Example 10
  • This suspension was placed in a glass flask, placed on a rotary evaporator, immersed in an oil bath at a temperature of 90 ° C under normal pressure, and slowly stirred and mixed for 1.5 hours to obtain a slurry.
  • the obtained slurry was subjected to the following concentration drying treatment.
  • the temperature of the oil bath was raised from 90 ° C to 120 ° C, and the pressure inside the system was gradually reduced from normal pressure to 20 kPa over about 2 hours.
  • the water was evaporated from the reel. As the water evaporates, the slurry becomes a cake, and finally the cake dries to obtain an agglomerated and dried product consisting of powders of different sizes such as broken particles.
  • the resulting coagulated and dried product was further vacuum-dried at 120 ° C. overnight, and then subjected to the following powdering treatment.
  • the agglomerated dried product was placed in a stainless steel mortar, ground with a pestle, and the agglomerated dried product, which had approached a fine powder state, was transferred to an agate mortar and ground to further fineness.
  • the crushed dried product was sieved (mesh size: 75 m), and only those that passed through the sieve were collected to obtain powder having a particle size of 75 m or less.
  • the obtained powder is placed in a glass tubular furnace, and calcined at 500 ° C. for 4 hours while supplying air under normal pressure to obtain a solid catalyst in which niobium oxide is supported on alumina. Obtained.
  • the resulting solid catalyst had a niobium content of about 9% by weight.
  • Example 2 The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol, and 0.14 g of the solid catalyst prepared above was suspended therein. .
  • In the system was replaced with nitrogen gas, and an oxygen-Z nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total pressure in the system was raised to 6, OOO kPa. The oxygen partial pressure at this time was 420 kPa.
  • the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce cyclohexanonoxime.
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution was analyzed by gas chromatography, the conversion rate of hexahexylamine in the mouth was 8.2%, and the selectivity of hexanoxoxime in the mouth was 64.4%.
  • the concentration of niobium eluted from the solid catalyst into the reaction solution was 0.1 ppm or less.
  • the obtained slurry was subjected to the following concentration and drying treatment.
  • the temperature of the oil bath was raised from 90 ° C to 120 ° C, and the pressure inside the system was gradually reduced from normal pressure to 20 kPa over about 2 hours, and the The water was evaporated from the slurry inside. As the water evaporates, the slurry becomes a cake, and eventually the cake dries to form an agglomerated dried product consisting of powders of different sizes such as broken particles. Obtained.
  • the obtained agglomerated and dried product was placed in a glass tubular furnace, dried at 120 ° C. for 5 hours under a normal pressure nitrogen stream, and then subjected to powdering treatment in the same manner as in Example 7.
  • a powder having a particle size of 75 m or less was obtained.
  • the obtained powder was again put into a glass tube furnace, and calcined at 500 ° C. for 4 hours under normal pressure while supplying air.
  • a solid catalyst was obtained in which alumina and molybdenum oxide were co-supported on alumina.
  • the tungsten content of the obtained solid catalyst was about 9% by weight, and the content of molybdenum was about 1% by weight.
  • Example 1 2 After the reaction, the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered. When the recovered reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 9.5%, and the selectivity for cyclohexylnonoxime was 58.7%.
  • Example 1 2
  • This suspension slurry was placed in a glass flask, placed in a mouthpiece evaporator, immersed in an oil bath at a temperature of 90 ° C under normal pressure, and slowly stirred and mixed for 1.5 hours.
  • the slurry was subjected to the following concentration drying treatment.
  • Oilba Temperature from 90 ° C to 120 ° C, and the pressure inside the system is gradually reduced from normal pressure to 20 kPa over about 2 hours.
  • Water was evaporated from the slurry. As the water evaporates, the slurry becomes a cake, and finally the cake dries to obtain an agglomerated and dried product consisting of powders of different sizes such as broken particles.
  • the coagulated and dried product was further dried in a vacuum at 120 ° C. overnight, and then subjected to the next powdering treatment.
  • the agglomerated dried product was put into a stainless steel mortar, ground with a pestle, and the agglomerated dried product, which had approached to a fine powder state, was transferred to an agate mortar and ground to further fineness.
  • the dried powder was sifted through a sieve (mesh size: 75 m), and only those that passed through the sieve were collected to obtain powder having a particle size of 75 m or less.
  • the obtained powder was placed in a glass tubular furnace, and calcined at 500 ° C. for 4 hours while supplying air under normal pressure to obtain a solid catalyst containing tungstate oxide and titania.
  • the W Ti atomic ratio of the obtained solid catalyst was about 0.06.
  • Example 2 The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol, and 0.28 g of the solid catalyst prepared above was suspended therein. did. After replacing the inside of the system with nitrogen gas, an oxygen / nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total system pressure was increased to 600 kPa. Pressurized. The oxygen partial pressure at this time was 420 kPa. Next, the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce cyclohexanoxoxime.
  • a catalyst was prepared in the same manner as in Example 12 except that only a commercially available slurry slurry of amorphous titania was used without using ammonium pentahydrate ammonium hydrate, and titania containing no tungsten oxide was used. A solid catalyst was obtained.
  • Example 13 After the reaction, the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered. When the recovered reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 3.6%, and the selectivity of cyclohexylonoxime was 50.2%.
  • Example 13 When the recovered reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 3.6%, and the selectivity of cyclohexylonoxime was 50.2%.
  • Example 14 The reaction was carried out for 4 hours in the same manner as in Example 12 except that 14 g of acetonitrile was used instead of t-butyl alcohol as a reaction solvent, to produce cyclohexanonoxime.
  • the conversion of cyclohexylamine was 22.0%, and the selectivity of cyclohexanonoxime was 71.3%.
  • Example 14
  • Example 15 The reaction was carried out for 4 hours in the same manner as in Example 12 except that 14 g of benzonitrile was used instead of t-butyl alcohol as a reaction solvent, to thereby produce xanopenoxime.
  • the cyclohexylamine conversion was 13.8% and the selectivity for cyclohexanonoxime was 58.7%.
  • Example 15
  • Example 2 The same high-pressure autoclave reactor as in Example 1 was charged with 1.4 g of cyclohexylamine and 14 g of t-butyl alcohol, and 0.30 g of the solid catalyst prepared above was added thereto. Suspended. After replacing the inside of the system with nitrogen gas, an oxygen-nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total pressure in the system was raised to 700 kPa. The oxygen partial pressure at this time was 490 kPa. Then, the temperature was raised to 120 ° C with stirring, and the reaction was continued for 4 hours. Cyclohexanonoxime was produced. .
  • the elution concentrations of W and Zr eluted from the solid catalyst into the reaction solution were each 0.1 ppm or less.
  • a catalyst was prepared in the same manner as in Example 16 except that only a commercially available slurry of zirconia was used without using ammonium metatungstate hydrate, to obtain a zirconia solid catalyst containing no tungsten oxide.
  • Example 17 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 0.30 g of the zirconia solid catalyst prepared by the above method was used as a catalyst, to produce cyclohexanonoxime. After the reaction, the solid catalyst was filtered off, and the reaction solution was analyzed by gas chromatography. At this time, the conversion of cyclohexylamine was 1.2% and the selectivity of cyclohexanonoxime was 29.4%.
  • Example 17 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 0.30 g of the zirconia solid catalyst prepared by the above method was used as a catalyst, to produce cyclohexanonoxime. After the reaction, the solid catalyst was filtered off, and the reaction solution was analyzed by gas chromatography. At this time, the conversion of cyclohexylamine was 1.2% and the selectivity of cyclohexanonoxime was 29.4%.
  • Example 17 Example 17
  • zirconium tetranormal propoxide and titanium tetraisopropoxide are dissolved in about 2.5 times the molar amount of hexylene glycol with respect to the total amount of these alkoxides, and stirred in a glass reactor. While in an oil bath at 120 ° C. for 3 hours. Then, the temperature of the oil bath was raised to 90 ° C, and while stirring, the aqueous ethanol solution was added to an amount such that the amount of water in the aqueous ethanol solution was about 4 times the molar amount of the total amount of alkoxide. Hydrolysis was carried out by dropping to obtain a gel-like product.
  • the resulting gel is aged overnight, it is vacuum-dried at 130 ° C, and the dried gel is placed in a glass tube furnace and heated at 550 ° C for 5 hours while supplying air under normal pressure. A firing treatment was performed to obtain a white zirconium architania composite oxide. The atomic ratio of ZrZTi of the obtained composite oxide was about 1.0.
  • a solid catalyst was prepared in the same manner as in Example 12, to obtain a solid catalyst containing tungsten oxide and a zirconium architania composite oxide.
  • the W Z (T i + Z r) atomic ratio of the obtained solid catalyst was about 0.08.
  • Example 2 The reaction was carried out for 4 hours in the same manner as in Example 1 except that 0.28 g of a zirconium architania composite oxide (containing no tungsten oxide) prepared in the same manner as in Example 17 was used as the solid catalyst. Then, cyclohexanonoxime was produced.
  • Example 18 After the reaction, the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered. When the recovered reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 6.5%, and the selectivity of hexanoxoxime was 48.0%.
  • Example 18
  • Example 2 In the same high-pressure autoclave reactor as in Example 1, 1.4 g of cyclohexylamine and 12 g of t-butyl alcohol were charged, and 0.28 g of the solid catalyst prepared above was added thereto. Suspended. system After the inside was replaced with nitrogen gas, an oxygen / nitrogen mixed gas containing 7% oxygen was introduced into the gas phase, and the total pressure in the system was raised to 600 kPa. The oxygen partial pressure at this time is 420 kPa. Next, the temperature was raised to 120 ° C. with stirring, and the reaction was carried out for 4 hours to produce xanonoxime.
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 18.1% and the selectivity of cyclohexanonoxime was 69.5%.
  • the concentrations of W and Ti eluted from the solid catalyst into the reaction solution were all less than 0.1 ppm.
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution was analyzed by gas chromatography, the conversion of cyclohexylamine was 7.8, and the selectivity of hexahoxanoneoxime was 61.7%.
  • the concentrations of Nb and Ti eluted from the solid catalyst into the reaction solution were each 0.1 ppm or less.
  • a solid catalyst was prepared in the same manner as in Example 19, except that 0.52 g of tantalum pentaethoxide was used instead of niobium pentaethoxide, to obtain a solid catalyst containing tantalum oxide and titania.
  • the Ta / Ti atomic ratio of the obtained solid catalyst is about 0.035 / cm.
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution was analyzed by gas chromatography, the conversion of hexylamine in the mouth was 7.6%, and the selectivity of hexanoxoxime in the mouth was 63.8%.
  • the concentrations of Ta and Ti eluted from the solid catalyst into the reaction solution were each 0.1 ppm or less.
  • Examples 1, 7, 10 and 18 were prepared using the solid catalyst containing tantalum oxide and titania. Cyclohexanonoxime could be produced with a high selectivity of 60% or more, as in the case of Examples 1 and 19. In addition, the reaction solution and the catalyst component could be separated using a simple filtration method. Comparative Example 4
  • the solid catalyst was separated by filtration in the same manner as in Example 1, and the reaction solution was recovered.
  • the reaction solution and the catalyst component could be separated using a simple filtration method, but the selectivity of cyclohexanonoxime was extremely low at 22.5%. .
  • a cycloaliphatic oxime can be produced with a high selectivity in a liquid phase while using molecular oxygen having low risk as an oxidizing agent. Further, in the method of the present invention, since a solid catalyst is used, separation of the reaction liquid from the solid catalyst after the reaction is extremely easy, and a complicated operation related to separation and recovery of the catalyst component is performed. It is industrially very advantageous because it is not required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

明 細 書 環状脂肪族ォキシムの製造方法 技術分野
本発明は、 環状脂肪族ォキシムの製造する方法に関する。 更に詳細には、 本発明は環状脂肪族第一級ァミ ンを、 液相中 で大気圧を越えた加圧条件下において、 分子状酸素及び固体 触媒の存在下で酸化させる ことを包含する環状脂肪族ォキシ ムの製造方法であって、 該固体触媒が周期律表第 5及び 6族 に属する金属からなる群より選ばれた少なく とも 1種の金属 ( a ) の酸化物を含有するこ とを特徴とする方法に関する。 本発明によれば、 危険性の少ない分子状酸素を酸化剤として 用いながら も、 液相中で、 高い選択率で環状脂肪族ォキシム を製造する こ とが可能になり、 また、 固体触媒を用いる こと から、 反応後の固体触媒と反応液との分離が極めて容易であ り、 触媒成分の分離回収に係わる煩雑な操作を必要としない < 従来技術
環状脂肪族ォキシムは、 酸化防止剤などとして有用な化合 物であ り、 医薬や農薬などの有機工業化学の分野において原 料と して利用されている。 環状脂肪族ォキシムは環状脂肪族 第一級ァミ ンの酸化によって得られ、 例えば、 環状脂肪族第 一級ァミ ンがシク ロへキシルァミ ンである時には、 対応する 環状脂肪族ォキシム と してシクロへキサノ ンォキシムが得ら れる。 シク ロへキサノ ンォキシムは、 酸化防止剤としてだけ でなく 、 ナイ ロ ン一 6 の原料である ε —力プロ ラクタムの中 間体と して用い られる工業的に重要な化合物である。
脂環式又は脂肪族の第一級ァミ ンを酸化してォキシムを得 る従来の方法と しては、 脂環式又は脂肪族の第一級ァミ ンを モリ ブデン、 タングステン又はウランを活性金属種として含 有する無機塩触媒の存在下で過酸化水素と反応させる方法、 脂環式又は脂肪族の第一級ァミ ンを有機溶媒中でチタン、 モ リ ブデン、 タ ングステン及びバナジウムを含有する触媒の存 在下にて有機ヒ ドロペルォキシド と反応させる方法が知られ ている。 しかしながら、 過酸化水素や有機ヒ ドロペルォキシ ドを酸化剤として用いる これらの方法を工業的に実施する際 には、 既知の操作にて酸化剤を取扱うが、 この操作には危険 性が伴う。 また、 有機ヒ ドロペルォキシ ドを用いる場合には ヒ ドロペルォキシ ドの還元に由来する副生成物が反応液に含 まれる為、 目的とするォキシムの分離及び精製が煩雑になる 等の問題があった。
上記の問題を解決する為に、 空気又は酸素等の分子状酸素 を酸化剤と して用いる次の方法 ( 1 ) 〜 ( 4 ) が提案されて いる。
( 1 ) モ リ ブデン、 タングステン及び/又はウランの水溶 性塩類を触媒と して用い、 水及び分子状酸素の存在下で水銀 ラ ンプを用いて第一級アミ ンを光酸化させる方法 ( ドイ ツ特 許第 1 0 2 1 3 5 8号公報を参照) 。
( 2 ) 第三級アルコール及び分子状酸素の存在下に、 大気 圧を超えた加圧条件下において好ま しく はアンモニアガスを 存在させ、 タ ングステン酸、 リ ンタ ングステン酸、 モリ ブデ ン酸、 セレン酸、 亜セレン酸等の触媒を用いて第一級ァミ ン を酸化させる方法 (日本国特公昭 4 7 - 2 5 3 2 4号公報を 参照) 。
( 3 ) シリ カゲル又はアルミナ触媒や、 アルミナと共に酸 化タ ングステンを含有する固体触媒及び分子状酸素の存在下. 気相にて第一級ァミ ンを酸化させる方法 (米国特許第 4 3 3 7 3 5 8 号公報、 第 4 5 0 4 6 8 1 号公報、 第 4 5 6 0 7 9 7号公報及び第 4 6 2 4 9 3 9 号公報を参照) 。
( 4 ) 周期律表の 4族に属する金属を含有する均一系又は 不均一系触媒及び分子状酸素の存在下、 大気圧を超えた加圧 条件下において、 液相中で第一級ァミ ンを酸化させる方法
(欧州特許第 3 9 5 0 4 6号公報を参照) 。
上記の方法のうち、 方法 ( 1 ) を実施するためには光が必 要であ り、 その為の電力が多量に必要である上に、 水銀ラン プ等の維持管理が煩雑である。 また、 方法 ( 1 ) 及び ( 2 ) においては、 通常は均一系触媒を用いる為、 反応後の触媒成 分の分離回収ェ程が煩雑になる という問題点がある。 方法 ( 3 ) は固体触媒を用いる不均一系反応であるが、 気 相において、 反応温度が 1 2 0 〜 2 5 0 °Cという比較的過酷 な操作条件下で反応を行っているため、 触媒が容易に失活す る と考えられる。 本発明者等が検討した結果、 反応温度が 1 6 0 °C以上の気相の操作条件下においては、 触媒の表面に 生成ォキシムに由来する と思われるタール状副生成物及び副 生した高沸点の有機化合物が蓄積し、 触媒が容易に失活する こ とが明 らかとなった。
また、 環状脂肪族第一級ァミ ンの酸化反応は発熱反応であ り、 目的生成物であるォキシム類は熱的に不安定であること が知られている。 従って、 環状脂肪族第一級ァミ ンの酸化反 応を工業的に実施する上では、 気相反応に比較して反応除熱 が容易な液相反応が有利である。 更に生成ォキシムの逐次分 解を抑制しう る温和な低温条件下において行う こ とができ、 しかも触媒成分の分離回収が容易な不均一系触媒を用いて反 応を行う こ とのできる製造方法の開発が望まれている。
方法 ( 4 ) に関しては、 上記欧州特許第 3 9 5 0 4 6号公 報には、 周期律表の 4族に属する金属を含有する不均一系触 媒の存在下、 大気圧を超えた加圧条件下において、 液相中で '第一級ァミ ンを反応させる方法が開示されてお り 、 酸化チタ ン等を不均一系触媒として用いた反応が例示されている。 し かし、 生成するォキシムの選択率は低く 、 約 3 0 〜 5 0 %で ある。 上記から明らかなよう に、 従来技術には以下のような問題 があった。 酸化剤と して過酸化物を使用するォキシムの製造 方法には過酸化物の使用 に由来する危険性及び操作の煩雑性 が伴う。 また、 分子状酸素を酸化剤として用いる上記 ( 1 ) 〜 ( 4 ) 項に記載の方法は、 触媒成分の分離回収が煩雑であ り、 しかも触媒が容易に失活する、 ォキシムの選択率が低い などの問題を有している。 従って、 触媒の失活を抑制するこ とができ、 比較的低い温度で反応を行いながら も高いォキシ ム選択率を達成し、 かつ、 反応液と触媒成分の分離が容易な 固体触媒を用いる製造方法の開発が望まれている。 発明の概要
本発明者等は、 前記課題を解決すべく鋭意検討を重ねた結 果、 環状脂肪族第一級ァミ ンを、 液相中で大気圧を越えた加 圧条件下において、 分子状酸素及び固体触媒の存在下で酸化 させる方法において、 周期律表第 5 及び 6族に属する金属か らなる群よ り選ばれた少なく とも 1 種の金属 ( a ) の酸化物 を含有する固体触媒を用いると、 環状脂肪族ォキシムを高選 択率にて製造できる こ とを見い出した。 具体的には、 上記の ような固体触媒を上記のような液相における環状脂肪族ォキ シムの製造に用いる こ とによ り 、 通常 5 0 %以上、 好適には 7 0 %以上の高い選択率で環状脂肪族ォキシムを製造するこ とができるのみならず、 固体触媒を用いる こ とか ら、 反応後 に固体触媒と反応液との分離は極めて容易であ り、 触媒成分 の分離回収に係わる煩雑な操作を必要としない。 本発明は、 このような新たな知見に基いて完成されたものである。
従って、 本発明の目的は、 危険性の低い分子状酸素を酸化 剤と して用いながら も、 液相中で、 高い選択率で環状脂肪族 ォキシムを製造する ことができる環状脂肪族ォキシムの製造 方法を提供する こ とにある。 発明の詳細な説明
本発明によれば、 環状脂肪族第一級ァミ ンを、 液相中で大 気圧を越えた加圧条件下において、 分子状酸素及び固体触媒 の存在下で酸化させることを包含する環状脂肪族ォキシムの 製造方法であって、 該固体触媒が周期律表第 5 及び 6族に属 する金属か らなる群より選ばれた少なく とも 1 種の金属
( a ) の酸化物を含有する ことを特徴とする方法が提供され る。 次に本発明の理解を容易にするために、 まず本発明の基本 的特徴及び好ま しい態様を列挙する。
1 . 環状脂肪族第一級ァミ ンを、 液相中で大気圧を越えた加 圧条件下において、 分子状酸素及び固体触媒の存在下で酸化 させる こ と を包含する環状脂肪族ォキシムの製造方法であつ て、 該固体触媒が周期律表第 5 及び 6族に属する金属か らな る群よ り選ばれた少なく と も 1 種の金属 ( a ) の酸化物を含 有する こ と を特徴とする方法。
2 . 該環状脂肪族第一級ァミ ンがシク ロへキシルァミ ンであ る こ とを特徴とする、 前項 1 に記載の方法。
3 . 該固体触媒が、 周期律表第 2 、 1 3 及び 1 4族に属する 金属か ら なる群よ り選ばれた少な く と も 1 種の金属 ( b ) の 酸化物を更に含有する こ とを特徴とする、 前項 1 又は 2 に記 載の方法。
'4 . 該金属 ( a ) が、 ニオブ及びタ ングステンか らなる群よ り 選ばれる少な く と も 1 種の金属である こ とを特徴とする、 前項 3 に記載の方法。
5 . 該金属 ( a ) がタ ングステンである こ とを特徴とする、 前項 3 に記載の方法。
6 . 該金属 ( b ) がアルミニウム及びシ リ コ ンか らなる群よ り選ばれる少な く と も 1 種の金属である こ とを特徴とする、 前項 3 〜 5 のいずれかに記載の方法。 7 . 該固体触媒中の該金属 ( a ) の含有量が、 1 〜 6 0重 量%である こ と を特徴とする、 前項 1 ~ 6 のいずれかに記載 の方法。
8 . 該固体触媒が、 周期律表第 4族に属する金属からなる群 よ り 選ばれた少な く と も 1 種の金属 ( c ) の酸化物を更に含 有する こ とを特徴とする、 前項 1 又は 2 に記載の方法。
9 . 該金属 ( a ) が、 ニオブ、 タ ンタル及びタ ングステンか らなる群よ り選ばれる少な く と も 1 種の金属である こ とを特 徴とする、 前項 8 に記載の方法。
1 0 . 該金属 ( a ) がタ ングステンである こ と を特徴とする 前項 8 に記載の方法。
1 1 . 該金属 ( c ) がチタ ン及びジルコニウムか らなる群よ り 選ばれる少なく と も 1 種の金属である こ とを特徴とする、 前項 8 〜 1 0 のいずれかに記載の方法。
1 2 . 該金属 ( c ) に対する該金属 ( a ) の原子比が
0 . 0 1 〜 1 . 0 の範囲である こ とを特徴とする、 前項 8〜
1 1 のいずれかに記載の方法。 以下、 本発明について詳細に説明する。
本発明は環状脂肪族第一級ァ ミ ンを酸化させて環状脂肪族 ォキシムを製造する方法である。 本発明で用いる環状脂肪族 第一級ァ ミ ンに特に限定はないが、 飽和の環状脂肪族第一級 ァミ ンが好ま しい。 具体的には、 シク ロへキシルァミ ン、 シ ク ロォクチルアミ ン、 シク 口ペンチルアミ ン、 シク ロへプチ ルァミ ン、 シク ロ ドデカニルァミ ン等を用いる こ とができる。 シク ロへキシルア ミ ンか ら はシク 口へキサノ ンォキシム、 シ ク ロォクチルァミ ンか ら はシク ロォクタ ノ ンォキシム、 シク 口ペンチルァミ ンか らはシク ロペンタ ノ ンォキシム、 シク ロ ヘプチルァミ ンか ら はシク ロ ドデカ ノ ンォキシム、 シク ロ ド デカニルアミ ンか ら はメチルシク 口へキサノ ンォキシムを製 造する こ とができる。 また、 脂肪族環が反応条件下において 不活性な置換基 (例えば、 アルキル基) で置換された環状脂 肪族第一級ァミ ン (例えば、 メチルシク ロへキシルァミ ン) を用いる こ ともできる。
本発明で用いる環状脂肪族第一級ァミ ンと しては、 シク ロ へキシルァミ ンが最も好ま しい。 シク ロへキシルァミ ンの製 造方法に特に限定はないが、 例えば、 シク ロへキセンと N H 3 による直接アミ ノィ匕反応によってシク ロへキシルアミ ンを 製造する方法 [日本国特開昭 5 7 _ 4 9 4 8 号公報 (E P 3 9 9 1 8 に対応)、 日本国特開昭 6 4 — 7 5 4 5 3 号公報(E P 3 0 5 5 6 4 に対応)、 日本国特開平 9 — 1 9 4 4 3 8 号公報(E P 7 8 5 1 8 5 に対応)、 日 本国特開平 1 0 — 7 2 4 0 9 号公報(ΕΡ 802Π 6 に対応)、 日 本国特開平 1 0 — 2 9 1 9 6 8 号公報(EP
846675 に対応)等を参照] ; シク ロへキサノールと N H 3 によ るアミ ノ化反応によってシク ロへキシルアミ ンを製造する方 法 [日本国特公昭 4 1 — 7 5 7 5 号公報、 日本国特公昭 5 1 一 4 1 6 2 7 号公報、 日本国特公昭 5 1 — 3 2 6 0 1 号公報 (USP 3520933 に対応)、 日本国特開平 6 — 1 7 5 8 号公報等 を参照] ; ァニリ ン、 ニ ト ロベンゼン'、 ニ ト ロ シク ロへキサ ン等の水素化反応によってシク 口へキシルアミ ンを製造する 方法などを用 いる こ とができる。
シク ロへキシルァ ミ ンの純度に特に制限は無く 、 例えば、 シク 口へキサノ ール、 ジシク ロへキシルァミ ン、 ニ ト ロシク 口へキサン、 N— シク ロへキシ リ デンー シク ロへキシルアミ ン等の、 上記したシク ロへキシルア ミ ンの製造方法において 副生する有機化合物や水が微量に含まれていても特に問題は ない。 しか しながら、 シク ロへキシルァミ ンに含まれる該副 生有機化合物の総濃度は 5 モル%以下が好ましい。 また、 水 の含有量については、 反応条件下で液相が不均一相にな らな い量であ る こ とが好ましい。 換言すれば、 本発明の酸化反応 を後述する溶媒を用いて実施する際に、 反応条件下で液相が 水を主成分とする相と溶媒が主成分とする相とに分離しない こ とが好ま しい。
本発明の製造方法に用いる固体触媒は、 周期律表第 5 及び 6 族に属する金属からなる群よ り選ばれた少なく とも 1 種の 金属 ( a ) の酸化物を含有する固体触媒である。 周期律表の 第 5 及び 6族の金属は、 脱硝脱硫反応の他、 広く 有機化合物 の酸化反応における触媒と して用いられている。 上記金属
( a ) の酸化物を含有する触媒と、 酸化剤として酸素や空気 等の分子状酸素との存在下、 気相中で行う従来の接触酸化反 応は、 2 0 0 °C以上の高い温度で行う必要がある。 これは、 分子状酸素が金属酸化物触媒を介して何らかの酸素活性種へ 変換される際に、 大きな活性化エネルギーを要する為である と考えられる。 脂肪族又は脂環式ァミ ン類の酸化触媒として は、 周期律表第 5族及びノ又は第 6族に属する金属の化合物 を用いる液相反応が公知であるが、 先に述べたよう に、 この ような公知技術においては酸化剤として有機ヒ ドロペルォキ シ ドのような強酸化剤が必要である。
「従来技術」 に述べた方法 ( 3 ) のよう に、 酸化夕ングス テンを含む固体触媒と分子状酸素を用いて気相中で脂肪族又 は脂環式アミ ン類の酸化を行う不均一系反応も知られている それに対し、 酸化タ ングステンをアルミナと組み合わせた固 体触媒を用いた液相反応も試みられている [I0URNAL OF CATALYSIS 83, 487 -490 ( 1983)]。 この方法においては、 大 気圧以下の低い圧力下で、 酸素を反応系に導入しながらシク 口へキシルアミ ン溶液と固体触媒を還流条件で加熱している が、 酸化反応は進行しなかった。 この結果から、 分子状酸素 を用いる液相における環状脂肪族アミ ンの酸化反応において は、 周期律表第 5 に属する金属及び/又は周期律表第 6族に 属する金属の酸化物を含有する固体触媒は有効な触媒とはな り得ないと考えられていた。
しか しながら、 本発明者等は、 環状脂肪族第一級ァミ ンの 液相酸化反応触媒及び反応条件について鋭意研究を重ねた結 果、 驚く べきこ とに、 周期律表第 5 及び 6族に属する金属か らなる群よ り選ばれた少なく とも 1 種の金属 ( a ) の酸化物 を含有する固体触媒の存在下、 液相中で大気圧を越えた加圧 条件下、 即ち分子状酸素が液相中に存在する条件下に、 環状 脂肪族第一級ァミ ンの酸化反応を行う と、 環状脂肪族ォキシ ムを高選択率にて製造できる こ とを見い出した。
本発明に用いる固体触媒に用いる周期律表第 5 及び 6族に 属する金属からなる群よ り選ばれた少なく とも 1 種の金属 ( a ) の例としては、 C r 、 N b 、 T a 、 M o 、 W等が挙げ られる。
本発明に用いる こ とのできる固体触媒は、 上記金属 ( a ) 以外の金属の酸化物を更に含有する ことが好ましい。 具体的 には、 本発明において用いる固体触媒の好ましい 2つの態様 と して、 以下の固体触媒が挙げられる。
( ) 周期律表第 5 及び 6族に属する金属からなる群より 選ばれた少なく とも 1 種の金属 ( a ) の酸化物と周期律表第 2 、 1 3及び 1 4族に属する金属からなる群よ り選ばれた少 なく とも 1 種の金属 ( b ) の酸化物を含有する固体触媒、 並 びに
( β ) 周期律表第 5及び 6族に属する金属か らなる群よ り 選ばれた少な く と も 1 種の金属 ( a ) と周期律表第 4族に属 する金属か らなる群よ り選ばれた少な く と も 1 種の金属
( c ) の酸化物を含有する固体触媒。 初めに上記固体触媒 ( α ) について説明する。
本発明に用いる固体触媒の好ま しい一つの態様である固体 触媒 ( ひ ) に用い る金属 ( a ) と しては N b及び Wが好まし く 、 特に Wが好ま しい。
固体触媒 ( α ) に用いる金属 ( b ) は周期律表第 2、 1 3 及び 1 4族に属する金属か らなる群よ り選ばれた少なく とも 1 種の金属であれば特に限定はないが、 M g、 C a、 B a、 B、 A 1 、 G a 、 S i などが挙げられ、 特に A 1 と S i が好 ま しい。 金属 ( b ) の酸化物と しては、 M g 〇、 C a O、 B a〇 、 A 1 203 、 S i 〇 2等の単独酸化物、 S i 02— A 1 203 、 B 23— A l 23 、 G a 23— S i 02
M g O— S i 〇 2 、 C a 〇一 S i 〇 2等の複合酸化物が挙げ られる。 また、 各種の細孔構造を有するアルミ ノ シリ ゲー ト 類、 合成又は天然ゼォライ ト類なども挙げられる。 単独酸化 物と しては A 1 23又は S i 〇 2が好ま し く 、 複合酸化物 と しては S i 〇 2 — A 1 23が好ま しい。 固体触媒 ( α ) は、 金属 ( a ) の酸化物と金属 ( b ) の酸 化物とを混練法によ り物理的に単純混合したものでもよいが、 金属 ( a ) の酸化物が金属 ( b ) の酸化物に担持された担持 触媒や、 米国特許第 4 6 2 4 9 3 9 号のゾルーゲル法で得ら れる触媒などを用いる こ とが好ましい。
金属 ( a ) の酸化物を金属 ( b ) の酸化物に担持する方法 の例と しては、 以下の方法が挙げられる。 金属 ( a ) の酸化 物の前駆体として、 少なく とも 1 種の金属 ( a ) ( C r 、
N b 、 T a 、 M o 、 W等) のハロゲン化物、 ォキシハロゲン 化物、 アルコキシ ド、 硝酸塩、 水酸化物、 カルボン酸塩、 硫 酸塩、 酸化物炭酸塩等を用いる。 また、 金属 ( a ) の酸化物 と して N b及び 又ば T a の酸化物を用いる場合には、 その 前駆体として金属 ( a ) の酸性錯体 (例えば、 N b のハロゲ ン化物を加水分解して得られる、 水和型の酸化ニオブゲルを 蓚酸又は酒石酸の水溶液に溶解して得られる N b と蓚酸又は 酒石酸との酸性錯体) 又はそのアンモニゥム塩 (日本国特開 平 7 — 3 0 9 7 8 7 号公報参照) も用いる こ とができる。 更 に、 金属 ( a ) の酸化物として N bの酸化物を用いる場合に は、 その前駆体と して蓚酸水素ニオブ [ ( N b H C 2 0 4 ) 5 ] などの酸性化合物を用いる こともできる。 また、 金属 ( a ) の酸化物と して Wの酸化物を用いる場合には、 その前駆体と して、 パラタ ングステン酸アンモニゥム、 メ タタ ングステン 酸アンモニゥムなどのォキシアンモニゥム塩、 及びタンダス テン酸のアルカ リ金属塩なども用いる ことができる。 上記の よ うな金属 ( a ) の前駆体を水又はアルコール等の適当な溶 媒に溶解して溶液を得る。 得られた溶液に上記金属 ( b ) の 酸化物からなる酸化物担体 ( A 1 23 、 S i 〇 2 、 S i 0 2 一 A 1 23等) を浸漬し、 公知の含浸法 (例えば蒸発乾固 法) 、 吸着法 (例えば平衡吸着法) 等の方法を用いて金属
( a ) の酸化物を金属 ( b ) の酸化物を含む担体に担持させ る。 次に室温〜約 1 5 0 °Cの温度範囲で、 必要に応じて更に 減圧下で乾燥処理を行って溶媒を除去し、 その後、 気相下に て純酸素、 空気、 酸素含有ガス等の気流中、 約 3 0 0 〜
5 0 0 の高温下で加熱焼成し、 金属 ( a ) の酸化物が金属
( b ) の酸化物に担持された固体触媒 ( α ) を得る.。 また、 二種類以上の金属 ( a ) の酸化物を担持せしめる際には、 二 種類以上の金属 ( a ) の酸化物を同時に又は順次に担持せし める調製方法を用いる こ とができる。
このような担持法において好適に用いられる酸化物担体と しては A 1 23 、 S i O 2及び S i 0 2 - A 1 2 O 3が挙げ られる。 酸化物担体は広い比表面積を有する こ とが好ましく 具体的には 1 0 0 m 2 Z g以上、 よ り好ましく は 2 0 0 m 2 / g以上である。 A 1 2 0 3を単独で用いる際には、 ァ 一 A 1 23が好ま しい。 ·
金属 ( a ) の酸化物と金属 ( b ) の酸化物とを含有する固 体触媒をゾルーゲル法で調製する方法と しては、 以下の方法 が挙げられる。 少なく とも 1 種の金属 ( a ) ( C r 、. N b 、 T a 、 Μ ο及び W等) の可溶性塩類を含む水溶液と、 少なく とも 1 種の金属 ( b ) ( A 1 及び S i 等) のアルコキシ ド類 とを混合して加水分解させた後、 室温〜 1 5 0 °Cの温度範囲 で、 必要に応じて減圧下で乾燥処理を行って水及び副生した アルコールを除去し、 ゲル状物を得る。 次いで、 得られたゲ ル状物を気相下にて純酸素、 空気、 酸素含有ガス等の気流中 に高温下で加熱焼成するこ とによ り 固体触媒を調製する。 こ のよう にしてゾルーゲル法によ り得られた固体触媒の構造に ついては未だ明 らかではないが、 金属 ( a ) の酸化物と金属 ( b ) の酸化物とが複合化されたもの (即ち、 金属 ( a ) の 原子と金属 ( b ) の原子とが酸素原子を介して化学的に結合 している構造体) が含まれている と考えられる。
ゾルーゲル法については、 例えば、 米国特許第 4 6 2 4 9
3 9 号の酸素含有タングステン化合物とアルミナを用いた触 媒調製法を参照する ことができ、 こ の方法によって調製され た固体触媒を本発明に用いる こ ともできる。 上記米国特許第
4 6 2 4 9 3 9 号では得られた触媒を高温の気相反応条件下 における分子状酸素を用いた環状脂肪族アミ ンの酸化に用い てォキシムを製造しているが、 本発明の方法のような比較的 低い温度の液相条件下における酸化反応に有用である とは考 え られなかった。 しかし、 本発明者らの研究によって、 この 触媒も本発明の方法に好まし く 用いる こ とが可能であること が明らかとなった。
金属 ( a ) の酸化物と金属 ( b ) の酸化物とを含有する固 体触媒の場合には、 固体金属触媒中の金属 ( a ) の含有量は. :! 〜 6 0 重量%である ことが好ましく 、 2 〜 4 0 重量%であ る ことがよ り好ましい。 金属 ( a ) の含有量が上記範囲未満 の場合には、 環状脂肪族ォキシムの選択率が低下し、 また、 金属 ( a ) の含有量が上記範囲を超える場合には、 反応速度 が著し く 低下する。 本発明においては、 金属 ( a ) の含有量 は蛍光 X線分析装置を用いて絶対検量線法に従って定量する こ とができる。
金属 ( a ) の酸化物が金属 ( b ) の酸化物に担持された固 体触媒である場合には、 固体金属触媒中の金属 ( a ) の含有 量は 2 〜 3 0 重量%であることが更に好ましい。 上記のゾル 一ゲル法によ り調製された固体触媒の場合には、 固体金属触 媒中の金属 ( a ) の含有量は 3 〜 4 0重量%であることが更 に好ま しい。
また、 金属 ( b ) に対する金属 ( a ) の原子比、 即ち、 (周期律表第 5 及び 又は 6族金属原子) Z (周期律表第 2 1 3 及び/又は 1 4族金属原子) 、 が 0 . 0 0 2 〜 3 . 0 の 範囲である こ とが好ましく、 0 . 0 0 5 〜 1 . 0 の範囲であ る こ とが更に好ましい。 次に上記固体触媒 ( β ) について説明する。 本発明に用いる固体触媒のも う一つの好ま しい態様である 固体触媒 ( 3 ) に用いる金属 ( a ) と しては、 N b , T a及 び Wが好ま しく 、 特に Wが好ま しい。
固体触媒 ( 3 ) に用いる金属 ( c ) と しては、 T i 、 Z r 及び H f 等が挙げられる。 固体触媒 ( β ) に含まれる金属 ( c ) の酸化物と しては、 T i 02や Z r 〇 2などの単独酸 化物や、 T i 〇 2— Z r 〇 2などの複合酸化物を用 いる こ と が好ま しい。 また、 T i O 2や Z r 02には、 一部不純物と して S i 02が含有されている ものを用いてもかまわない。
固体触媒 ( β ) は、 金属 ( a ) の酸化物と金属 ( c ) の酸 化物と を混練法によ り物理的に単純混合したものでもよいが 金属 ( a ) の酸化物が金属 ( c ) の酸化物に担持された担持 触媒や、 金属 ( a ) と金属 ( c ) とを含有する複合酸化物を 固体触媒と して用 いる こ と もできる。
金属 ( a ) の酸化物が金属 ( c ) の酸化物に担持された担 持触媒を調製する方法と して、 以下の方法を例示する こ とが できる。 金属 ( a ) の酸化物の前駆体と して、 金属 ( a )
( N b 、 T a及び W等) のハロゲン化物、 ォキシハロゲン化 物、 アルコキシ ド、 水酸化物等を用いる。 また、 金属 ( a ) の酸化物と して Wの酸化物を用いる場合には、 その前駆体と して、 ノ°ラタ ングステン酸アンモニゥム、 メ 夕 タ ングステン 酸ア ンモニゥムな どのォキシア ンモニゥム塩、 及びタ ンダス テン酸のアルカ リ 金属塩なども用いる こ とができる。 金属 ( a ) の酸化物と して N b及び 又は T aの酸化物を用いる 場合には、 その前駆体として金属 ( a ) の酸性錯体 (例えば、 N b のハロゲン化物を加水分解して得られる、 水和型の酸化 ニオブゲルを、 蓚酸又は酒石酸の水溶液に溶解して得られる N b と蓚酸又は酒石酸との酸性錯体) 又はそのアンモニゥム 塩 (日本国特開平 7 — 3 0 9 7 8 7号公報参照) も用いる こ とができる。 更に、 金属 ( a ) の酸化物と して N bの酸化物 を用いる場合には、 その前駆体として蓚酸水素ニオブ
[ ( N b H C 2 〇 4 ) 5 ] などの酸性化合物を用いることも できる。 上記のよ うな金属 ( a ) の前駆体を水又はアルコー ル等の適当な溶液に溶解して溶液を得る。 得られた溶液に少 なく とも 1 種の金属 ( c ) ( T i 及び Z r 等) の固体酸化物、 酸化物ゾル又は水酸化物等を単独にて、 又はこれらを所定の 割合で混合したもの、 もしく は予め調製された T i 〇 2 _
Z r O 2複合酸化物固体を浸漬し、 公知の含浸法 (例えば蒸 発乾固法) 、 吸着法 (例えば平衡吸着法) 等の方法を用いて 金属 ( a ) を金属 ( c ) の酸化物に担持させる。 その後、 室 温〜約 1 5 0 °Cの温度範囲で (必要に応じて更に減圧下で) 乾燥処理を行って溶媒を除去し、 その後、 気相下にて純酸素. 空気、 酸素含有ガス等の気流中、 約 3 0 0 〜 5 0 0 °〇の高温 下で加熱焼成し、 金属 ( a ) の酸化物が金属 ( c ) の酸化物 に担持された固体触媒 ( |3 ) を得る。 また、 二種類以上の金 属 ( a ) の酸化物を担持せしめる際には、 二種類以上の金属 TJP02/01731
20
( a ) の酸化物を同時に又は順次に担持せしめる調製方法を 用いる ことができる。
このような担持法において金属 ( c ) の酸化物として T i 〇 2を用いる場合には、 比表面積の大きなアナ夕一ゼ型 結晶態や無定型態の T i 〇 2、 あるいは水酸化チタニウムを 用いる ことが好ましい。 また、 金属 ( c ) の酸化物と して Z r 〇 2 を含む触媒を製造する場合には、 比表面積の大きな 単斜晶系や正方晶系の Z r 〇 2、 あるいは一般式
Z r 〇 (O H ) 2又は Z r (O H) 4で示される水酸化ジルコ二 ゥムを原料と して用いる ことが好ま しい。
上記したよう に、 本発明の方法においては、 金属 ( a ) と 金属 ( c ) とを含有する複合酸化物を固体触媒として用いる こ ともできる。 「金属 ( a ) と金属 ( c ) とを含有する複合 酸化物」 とは、 金属 ( a ) と金属 ( c ) と酸素を含み、 金属
( a ) の原子と金属 ( c ) の原子とが酸素原子を介して化学 的に結合している構造体である ことが元素分析によって確認 されている酸化物である。
上記構造体の具体例としては、 金属 ( c ) の原子に酸素酸 イオンとして金属 ( a ) の原子が結合されたものや、 金属
( c ) の酸化物における金属 ( c ) の原子の一部が金属
( a ) の原子に置換されたものが考え られる。 例えば、 タン ダステン酸化物とジルコニァを含む触媒について、 JOURNAL OF CATALYSIS 168, 431-441 (1997)や JOURNAL OF THE CHEMICAL SOCIETY FARADAY TRANSACTIONS 90(1) , 193-202 (1994)に記載されている。
本発明で固体触媒 ( /3 ) と して用いる こ とのできる複合酸 化物は、 金属 ( a ) の酸化物と、 これとは別に形成された金 属 ( c ) の酸化物との単なる物理的混合物とは異なる酸性特 性 (固体表面上に生成する酸点の強度とその量) を有する と 考え られる。 例えば、 金属 ( a ) としてのタングステンと、 金属 ( b ) と してのチタニウム又はジルコニウムとからなる 複合酸化物は、 化学的相互作用により特有の酸性特性を生ず る こ とが知られている。 そして、 この酸性特性を利用 し、 固 体触媒と してアルコール類の脱水反応、 ォレフ ィ ン類の水和 反応、 アルカ ン類の骨格異性化反応等のさまざまな不均一系 反応へ適用する例が知られている。
本発明者等は、 環状脂肪族第一級ァミ ンの液相における酸 化反応に用いる触媒及び反応条件について鋭意研究を重ねた 結果、 驚く べき こ とに、 上述した複合固体酸化物、 即ち、 周 期律表第 5 及び 6 族に属する金属からなる群よ り選ばれた少 なく とも 1 種の金属 ( a ) と周期律表第 4族に属する金属か らなる群よ り選ばれた少なく とも 1 種の金属 ( c ) とを含有 する複合酸化物、 も本発明の方法において固体触媒として有 効に利用できる こ とを見出したのである。
固体触媒 ( 3 ) として複合酸化物を用いる場合には、 金属
( a ) の酸化物の化学種はある特定の原子価状態に限定され る ものではない。 これらの化学種は、 複合酸化物において、 その化学種がと り う るいずれのプラスの酸化価で存在しても よい。
本発明で固体触媒 ( 13 ) として用いる複合酸化物を調製す る方法に特に限定はなく 、 公知の触媒調製法を用いることが できる。 具体的には、 以下の共沈法ゃゾル -ゲル法で調製す る こ とができる。
1 ) 共沈法
初めに、 少なく とも 1 種の金属 ( a ) の酸化物の前駆体と . 少なく とも 1 種の金属 ( c ) の酸化物の前駆体を任意の割合 で水性媒体に溶解させた水溶液を調製する。 金属 ( a ) の酸 化物の前駆体としては、 金属 ( a ) ( N b、 T a及び W等) の可溶性塩類、 好ましく は水性媒体に可溶である可溶性化合 物を用いる こ とができ、 例えば、 アンモニゥム塩、 ハロゲン 化物、 ォキシハロゲン化物、 硝酸塩、 カルボン酸塩、 硫酸塩 酸化物炭酸塩等を用いる こ とができる。 金属 ( c ) の酸化物 ( T i 〇 2 、 Z r 02又は T i 〇 2— Z r 02等) の原料とし ては、 好ま し く は水性媒体に可溶である可溶性金属化合物が 用い られる。 例えば、 T i 〇 2を金属 ( c ) の酸化物として 含有する触媒を製造する際には、 四塩化チタン、 硫酸チタ ン 又は蓚酸チタン等を原料と して用いる ことができ、 Z r 02 を金属 ( c ) の酸化物と して含有する触媒を製造する際には 四塩化ジルコニウム、 ォキシ塩化ジルコニウム等を原料と し て用いる こ とができる。
次に、 好ま し く は 6 0 °C以下の温度を保持しながら、 上記 で調製した水溶液を撹拌し、 水溶液の最終 p Hが 5 〜 1 1 の 範囲になる よ う に、 塩基性化合物の水溶液を添加して沈殿物 を得る。 中和、 沈殿させるのに用いる塩基性化合物と しては- アンモニア、 水酸化ナ ト リ ウム、 水酸化カ リ ウム、 炭酸ナ ト リ ウム、 炭酸カ リ ウム等が挙げられるが、 これらのう ち、 得 られる共沈物ス ラ リ ーの取扱い性の点か らアンモニアの水溶 液 (ア ンモニア水) が好適に用い られる。 なお、 金属 ( a ) の水溶液が塩基性の場合は、 金属 ( a ) を含有する水溶液を アンモニア水と 同時に、 金属 ( c ) の酸化物の前駆体を溶解 させた水溶液に添加し、 沈殿物を得る こ と もできる。
上記沈殿操作によ り 得られた金属 ( a ) の酸化物の前駆体 と金属 ( c ) の酸化物の前駆体か らなる沈殿物を、 沈殿物ス ラ リ ーか ら分離し、 よ く 洗浄した後、 室温〜約 1 5 0 °Cの温 度範囲で (必要に応じて更に減圧下で) 乾燥処理を行う。 次 いで、 気相下にて純酸素、 空気、 酸素含有ガス等の気流中、 約 3 0 0 〜 7 0 0 °〇の高温下で加熱焼成レ、 金属 ( a ) と金 属 ( c ) と を含有する複合酸化物を得る。
2 ) ゾル一ゲル法
少な く と も 1 種の金属 ( a ) のアルコキシ ド、 及び少なく とも 1 種の金属 ( c ) のアルコキシ ドを所望の比率で混合し 低級アルコール等の非水性溶媒中で必要に応じて加熱する こ とによ り均一溶液を調製する。 金属 ( a ) のアルコキシ ドと、 金属 ( c ) のアルコキシ ドのリガン ド (アルコキシ基) の種 類は互いに同一でも異なっていてもよい。 金属アルコキシド のリガン ドの種類と しては、 メ トキシ基、 エ トキシ基、 n _ プロポキシ基、 i s o —プロポキシ基、 s e c —ブトキシ基 等が挙げられる。 複数の異種金属アルコキシ ドの溶解性は、 リ ガン ド種及び溶媒種によって異なる為、 使用する金属種に 応じて、 均一な溶液が得られる組み合わせを任意に選択すれ ばよい。
上記で調製した均一溶液に加水分解用の脱イオン水、 又は 必要に応じてモノ アルコールの水溶液を加えて撹拌し、 複数 の金属アルコキシ ドの加水分解を行って、 ゲルを得る。 通常. 加水分解は室温で数時間にて完結するが、 反応系を加熱して 分解時間を短縮させてもよい。 また、 加水分解速度を向上さ せる為に、 触媒と して働く のに十分な量 (通常、 金属アルコ キシ ドの総モル量に対するモル比と して、 0 · 1 〜
0 . 0 1 ) の酸又は塩基、 例えば硝酸、 ア ンモニア水等を用 いてもよい。
次いで、 生成したゲルを取り出し、 加水分解されたリガン ドに由来するアルコール、 溶媒及び過剰の水を除去する為に 室温〜約 1 5 0 °Cの温度範囲で (必要に応じて減圧下で) 乾 燥処理を行う。 次いで、 約 3 0 0 〜 7 0 0 °Cの高温下で加熱 焼成し、 金属 ( a ) と金属 ( c ) とを含有する複合酸化物を 得る。
また、 上記の非水性溶媒を用いないか、 もしく は上記の方 法と比較して少量の非水性溶媒しか用いずに、 金属 ( a ) 及 び金属 ( c ) のアルコキシ ド の混合物を加水分解して直接固 体ゲルを得る調製法を用いる こともできる。 具体的には、 例 えば、 非水性溶媒を用ないか、 もし く は少量用いて金属
( a ) のアルコキシ ド及び金属 ( c ) のアルコキシドを乾燥 させた気相雰囲気下にて所望の比率で混合する こ とで、 均一 な混合液又は溶液を調製する。 次いで、 用いた金属アルコキ シ ド の総アルコキシ基に対して約 2倍当量以上の脱塩水を、 調製した金属アルコキシ ドの均一な混合液又は溶液に添加す る。 添加の際には金属アルコキシ ド混合液又は溶液を強撹拌 し、 かつ除熱する。 アルコキシ ドはほぼ瞬時に加水分解する ので、 ケ一ク状の固体ゲルが得られる。 次いで、 室温〜約 1 5 0 °Cの温度範囲で (必要に応じて減圧下で) 乾燥処理を行 い、 水及び副生したアルコールを除去する。 次いで、 約 3 0 0 〜 7 0 0 °Cの高温下で固体ゲルを加熱焼成し、 金属
( a ) と金属 ( c ) とを含有する複合酸化物を得る。
また、 上記のゾルーゲル法の 1種と して知られる配位化学 的ゾルーゲル法を用いて複合酸化物を調製する こともできる こ の方法は、 均一な溶液中で異種の金属原子が互いにジォ一 ルを介して結合した架橋錯体を形成させる こ とが特徴であり 一方の金属元素の近傍に異種の金属元素が存在するこ とにな り、 よ り均質で結晶化度の低い複合酸化物を得る手法と して 知られている。
具体的には、 金属 ( a ) ( N b 、 T a及び W等) .のアルコ キシ ド、 及び金属 ( c ) ( T i 及び Z r 等) のアルコキシ',ド を所望の比率で混合し、 錯体を形成するためにジオールを加 えて均一な溶液を調製する。 架橋用 リ ガン ドとして用いるジ オール類は、 2 つの水酸基の間に 2個以上のメチレン基が結 合されてお り 、 かつ、 周期律表第 5 及び 6族の金属原子 ( N b 、 T a及び W等) と周期律表第 4族の金属原子 ( T i 及び Z r 等) とを結合して不溶性の錯体を形成しないものである ことが好ましい。 具体的には、 ピナコール、 へキシレンダリ コール等がジオールとして好適に用い られる。
金属 ( a ) のアルコキシド、 及び金属 ( c ) のアルコキシ ドの リ ガン ド (アルコキシ基) をジォ一ル類によ り置換する には、 所望の複数の金属アルコキシ ドをジオールに添加して 得られる均一溶液を約 6 0 〜 1 5 0 °Cの温度に加熱撹拌する 錯体形成の速度を向上させる為には、 遊離したリ ガン ドに由 来するモノ アルコールを連続的に蒸留で除去する方法、 又は 触媒として酸のエステル類、 例えば、 ジメチル硫酸等を少量 添加する方法を選択する こともできる。
上記のよう に錯形成反応液を調製後、 約 7 0 〜 1 0 0 °Cで 溶液を撹拌しながら、 これに加水分解用の脱イオン水、 又は 必要に応じてモノ アルコールあるいは溶媒として用いたジォ —ルの水溶液を添加し、 錯形成された複数の金属アルコキシ ドを加水分解してゲル状の生成物を得る。 次いで、 得られた ゲル状の生成物を約 1 0 0 °c以下の温度条件で十分に熟成さ せる。 次いで、 ゲルを取り 出し、 約 1 0 0 〜 1 5 0 t の温度 範囲において減圧下で乾燥処理を行い、 乾燥したゲルを約 5 0 0 ~ 7 0 0 °Cの高温下で加熱焼成し、 金属 ( a ) と金属
( c ) とを含有する複合酸化物を得る。
上記以外の方法でも固体触媒 ( /3 ) と して用いる ことがで きる複合酸化物を調製する こ とができる。 具体的には、 例え ば、 以下のような方法で複合酸化物を調製する こ ともできる , 金属 ( a ) の可溶性塩類を含む水溶液を用いて、 撹拌下に、 金属 ( c ) のアルコキシ ド類を瞬時に加水分解させた後、 室 温〜約 1 5 0 °Cの温度範囲で (必要に応じて減圧下で) 乾燥 処理を行い、 水及び副生したアルコールを除去してゲル状の 化合物を得る。 次いで、 得られたゲル状化合物を気相中にて 純酸素、 空気、 酸素含有ガス等の気流中で約 4 0 0 °C以上の 高温下で加熱焼成し、 複合酸化物を得る。
固体触媒 ( /3 ) においては、 金属 ( c ) に対する金属
( a ) の原子比、 即ち、 (周期律表第 5 及び/又は 6族金属 原子) / (周期律表第 4族金属原子) 、 が 0 . 0 1 〜
1 . 0 の範囲である こ とが好ましい。 本発明で用いる固体触 媒 ( β ) においては、 金属 ( c ) に対する金属 ( a ) の原子 比は、 金属酸化物の組み合わせ、 調製方法や条件などに併せ て任意に選択する こ とができるが、 0 . 0 1 5 〜 0 . 5 がよ り好ましく 、 0 . 0 2 〜 0 . 3 が最も好ましい。 金属 ( c ) に対する金属 ( a ) の原子比は、 金属 ( a ) の存在量と金属 ( c ) の存在量とをそれぞれ蛍光 X線分析装置を用いて測定 し、 求める こ とができる。
本発明の環状脂肪族ォキシムの製造方法においては、 環状 脂肪族第一級ァミ ンを、 液.相中で大気圧を越えた加圧条件下 において、 分子状酸素及び上記の固体触媒の存在下で酸化さ せる。
本発明の方法においては、 酸化反応は液相で行う。 環状脂 肪族第一級ァミ ンが液状に保たれる条件であれば、 無溶媒で 反応を実施する こ ともできるが、 溶媒の存在下で行う ことが 好ましい。 溶媒を用いる こ とで液相のアミ ン濃度が高く なり すぎる こ とを防ぐことができ、 高いアミ ン濃度によって顕著 になる固体触媒表面の着色及び触媒活性の低下を防止する こ とができる。 本発明の製造方法に用いる溶媒としては、 メタ ノール、 エタノール、 イ ソプロ ピルアルコール、 t _ブチル アルコール等の炭素数 1 〜 1 0 の第一級、 第二級又は第三級 アルコール ; ァセ トニ ト リ ル、 ベンゾニ ト リル等の二 ト リ ル 化合物 ; ベンゼン、 トルエン等の芳香族炭化水素 ; n —へキ サン、 シク ロへキサン等の炭素数 6 〜 1 0 の脂肪族又は脂環 式炭化水素 ; ジメチルホルムアミ ド ; ジメチルスルホキシ ド ; ト リ ェチルァミ ン ; ジメ トキシェタ ン ; ジォキサン ; ジ グリ ム ; 水等を用いる こ とができる。
溶媒の存在下で環状脂肪族ォキシムを製造する際には、 反 応基質である環状脂肪族ァミ ンの濃度は、 該溶媒と該環状脂 肪族ァミ ンとの合計重量に対して、 通常 1 〜 5 0 重量%、 好 ましく は 3 〜 3 0 重量% とする。 環状脂肪族ァミ ンの種類に もよるが、 ァミ ンの濃度が高すぎる と固体触媒表面に副生成 物の蓄積と思われる着色が顕著になり 、 触媒活性の低下を招 く ので好まし くない。 また、 ァミ ンの濃度が低すぎると、 単 位反応器容量当た り の環状脂肪族ォキシムの生産性が低下す る。
本発明の方法では、 分子状酸素を含有する気体の存在下で. 液相中で環状脂肪族第一級ァミ ンを固体触媒と接触させる。 分子状酸素を含有する気体は、 純酸素又は酸素と不活性気体 との混合気体であ り、 不活性気体と しては、 窒素、 アルゴン. ヘリ ウム等を用いる こ とができる。 混合気体には空気も含ま れる。 分子状酸素を含有する気体としては空気や、 酸素と不 活性気体の混合気体が好ましい。 分子状酸素を含有す'る気体 中に少量の水分あるいは N H 3が含まれていてもよい。
酸素と不活性気体の混合気体を用いる場合には、 分子状酸 素と不活性気体とを任意の混合比率にて反応系に供給するこ とができるが、 酸素濃度は反応系内に形成される気相部が爆 発組成とならない範囲が好ましい。 爆発組成の形成は環状脂 肪族ァミ ン、 溶媒等の蒸気圧及び酸素と不活性気体の濃度を 画 2/01731
30 厳密に制御する こ とで回避する ことができるが、 予め爆発限 界酸素濃度以下に調整された酸素と不活性気体の混合気体を 用いる こ とで、 可燃性蒸気の気相部濃度によ らず爆発組成の 形成を回避する ことができる。
本発明の方法は、 環状脂肪族第一級ァミ ンの酸化反応を液 相中で行う ことを特徴とする。 従って、 気体として反応系内 に導入される分子状酸素は反応条件下において、 触媒が存在 している液相中に任意の濃度で溶解している こ とが必要であ る。 例えば、 減圧又は大気圧下で反応基質、 生成物又は溶媒 の混合液が還流状態となる温度条件で酸素含有気体を導入す る方法は、 液相中に溶解する酸素量は極めて少ないために好 まし く ない。 酸素を液相中に任意の濃度で溶解せしめる方法 としては、 大気圧を越えた加圧条件下において、 酸素含有気 体を液相と接触させればよい。
好ま しい反応系内の圧力範囲は、 全圧 (絶対圧力として表 示) が 5 0 0 ~ 1 5 , 0 0 0 k P a、 よ り好ましく は
1 , 0 0 0 - 1 0 , O O O k P a、 且つ酸素分圧が 3 0 ~ 3 , 0 0 0 k P a、 よ り好まし く は 6 0〜 2, O O O k P aの範 囲である。 全圧が 5 0 0 k P a未満であ り、 酸素分圧が 3 0 k P a未満の低圧条件下においては、 反応速度が低下する傾 向にある。 また、 全圧が 1 5 , 0 0 0 k P a を超え、 酸素分 圧が 3 , 0 0 0 k P a を超える高圧条件下においては、 環状 脂肪族ォキシムへの反応選択性が低下する傾向が見られる。 例えば、 酸素と不活性気体の混合気体を用いて回分反応を実 施する際には、 用いる触媒及び反応条件【こ応じて、 必要な環 状脂肪族第一級ァミ ンの反応量 (つま り 、 反応に要する酸素 量) を考慮した上で、 任意の酸素濃度を有する混合気体を所 望の全圧にて供給して反応を実施すればよい。
本発明の方法では、 反応温度は通常 5 0 〜 1 5 0 °Cが好ま しく 、 よ り好まし く は 6 0 〜 1 4 5 °C、 最も好ましく は 8 0 〜 1 4 0 t:の範囲である。 1 5 0 °Cを越えた高温では、 生成 するォキシムの逐次分解反応が進行し、 高沸点状の副生物の 比率が増加して、 ォキシムへの反応選択性が低下する傾向が 見られる。 また、 5 0 °C未満の低温では、 反応速度が低下す る傾向がある。
本発明の方法においては、 環状脂肪族第一級ァミ ンを、 液 相中で大気圧を越えた加圧条件下において、 分子状酸素及び 固体触媒の存在下で酸化させる こ とで環状脂肪族ォキシムを 製造する。 この場合、 反応系における触媒の状態は不均一で あり、 反応場は液相であるが、 反応を行う にあたっては、 上 述した如く 、 分子状酸素を含有する気体を用いて反応系に酸 素を供給する必要がある。 従って、 加圧条件下の反応系内に おいて、 液相と酸素含有気体を十分に接触せしめることが好 ましい。 また、 反応方式に特に制限はなく 、 回分式、 半回分 式、 連続式等のいずれでもよい。
分子状酸素含有気体の供給方法としては、 例えば、 回分式 の混合撹拌槽型反応器を用いる場合には、 分子状酸素含有気 体を反応系内に形成される液相部に直接吹き込んでもよいし , 液相部と接触して存在する気相部に導入してもよい。 反応に よって消費される分子状酸素を補給するためには、 任意の気 相酸素分圧を保持させるよう に連続的又は断続的に、 純酸素- 空気又は希釈酸素ガスを反応系に供給する こ とができる。 こ の他にも、 例えば、 回分式反応を実施する際には、 目的とす る基質ァミ ンの反応量に対して、 予め、 十分な酸素量を保持 する酸素含有気体を導入した後、 消費酸素の補給を行う こと なく 目的の反応率に達するまで任意の時間、 反応を継続させ る こ と もできる。
本発明の方法で用いる固体触媒の形状は、 実施する反応形 態、 例えば、 固定床方式、 流動床方式や懸濁触媒方式に応じ て粉末状、 又は破碎状、 粒子状及び柱状等に成形したものを 使用することができる。 固体触媒の使用量は、 実施する反応 方式、 反応形態、 反応温度、 用いる溶媒の種類、 固体触媒の 種類によって任意に選ぶことができ、 特に限定はない。
例えば、 少なく とも 1 種の金属 ( a ) の酸化物と少なく と も 1 種の金属 ( b ) の酸化物を含有する固体触媒 [固体触媒 ( a ) ] を用い、 回分式反応器にて、 粉末状の固体触媒を液 相に懸濁させて反応を実施する際には、 固体触媒 ( α ) は、 環状脂肪族第一級ァミ ンに対する重量比として、 0 . 0 5 〜
5 0 となる量を用いる こ とが好ましい。 また、 少なく と も 1 種の金属 ( a ) の酸化物と少なく とも 1 種の金属 ( c ) の酸 化物とを含有する固体触媒 ( β ) を用いる場合にも、 環状脂 肪族第一級ァミ ンに対する固体触媒 ( /3 ) の重量比が、 0 . 0 5 〜 5 0 の範囲となる量の固体触媒を用いる ことが好 ま しい。
反応時間は上述した反応方法、 反応温度、 触媒量等の操作 条件によって、 また生成する環状脂肪族ォキシムの収率の実 質的な目標値を決めて任意に選ぶこ とができる。 例えば、 回 分式反応器にて粉末状の固体触媒を液相に懸濁させて反応を 実施する際は、 通常約 0 . 5 〜 1 0時間である。
本発明の方法では、 環状脂肪族ァミ ンの転化率が通常は 4 〜 5 0 %、 好ましく は 4 〜 4 0 %、 よ り好ましく は 4 〜 3 0 % に保たれる条件を選択する ことで、 高い環状脂環族ォ キシムの選択率を達成する こ とができる。 生成した環状脂肪 族ォキシムは、 反応器中の混合物から慣用の手段、 例えば、 蒸留又は抽出によって回収する こ とができる。 通常、 未反応 の環状脂肪族第一級ァミ ンを、 反応器に循環させて再使用す る こ とが好ましい。 未反応の環状脂肪族ァミ ンの再使用を考 慮した際、 工業的に本発明の酸化反応を実施する上で、 目的 生成物である環状脂肪族ォキシムの反応選択率を向上させる こ とはァミ ンの転化率の向上に比して極めて重要、 かつ、 有 効である。
本発明によれば、 通常 5 0 %以上、 好適には 7 0 %以上の 高い選択率で環状脂肪族ォキシムを製造する こ とができる。 反応後の固体触媒と反応液の分離は極めて容易であ り、 例え ば濾過などで触媒を回収する ことができる。 従って、 本発明 の製造方法は、 均一系触媒を用いた反応においては必須とな る触媒成分の分離回収に係わる煩雑な操作を必要としない。
発明を実施するための最良の形態
以下に挙げる実施例及び比較例によ り本発明をよ り具体的 に説明するが、 本発明はこれらによって限定される ものでは ない。 以下の実施例及び比較例において種々の物性は以下の方法 によ り測定した。
( 1 ) 固体触媒に含まれる金属量の測定
固体触媒に含まれる金属の量は、 蛍光 X線分析装置
( R I X— 3 0 0 0 型、 日本国、 理学電気工業製) を用い、 以下の条件で測定した。
X線励起条件
ターゲッ ト元素 : R h
管電圧 : 5 0 k V
管電流 : 5 0 m A
分光結晶 : A 1 と S i の測定にはポリ エチレンテレフ夕 レー ト、 その他の金属には弗化リチウム 検出器 : シンチレ一ショ ンカウンタ一型検出器 サンプルの調製
既知量の固体触媒に結晶性セルロースを希釈混合して混合 粉体を得、 得られた混合粉体をアルミ リ ングにと り 、 錠剤成 型器を用いて圧力 2 0 t の条件で夕ブレッ ト を作製した。
検量線の作製 固体触媒の代り に異なる量の金属酸化物を含有するタブレ ッ ト を上記と同様に作製し、 金属の波長強度を測定して検量 線を作成した。
( 2 ) シク ロへキシルァミ ンの添加率及びシク ロへキサノ ン ォキシムの選択率 実施例及び比較例においてシク 口へキシルアミ ンの酸化反 応の結果を評価するために用いるシク ロへキシルァミ ンの転 化率及びシク ロへキサノ ンォキシムの選択率は、 それぞれ下 記の式によって定義される。
シク 口へキシルアミ ンの転化率 ( % )
反応したシク 口へキシルアミ ンのモル数
X 1 0 0 仕込んだシク 口へキシルアミ ンのモル数.
シク ロへキサノ ンォキシムの選択率 (% )
生成したシク ロへキサノ ンォキシムのモル数
X 1 0 0 反応したシク 口へキシルア ミ ンのモル数
反応生成物の分析はガスク ロマ ト グラ フ ィ ーで行った。 ガ スク ロマ ト グラ フィ ーは、 米国、 J SCIENTIFIC社製の キヤ ビ ラ リ 一カ ラム ( 3 0 c m、 商品名 : D B — 1 7 0 1 ) を用い、 F I D検出器を用いて行った。
( 3 ) 溶出金属濃度の測定
固体触媒か ら反応液に溶出した金属の濃度を I C P発光分 光分析法にて測定した。 I C P発光分光分析装置と して 日本 国、 理学電気工業製の J Y 1 3 8型を用い、 高周波出力が 1 . 4 k Wの条件で有機溶媒用 トーチを用いて測定した。 実施例 1
ぐ酸化タ ングステンとアルミ ナを含有する固体触媒の調製 > 市販のアルミ ニウムブ トキシ ド 1 0 g をガラス ビーカーに 入れ、 メタ タ ングステン酸ア ンモニゥム水溶液 (メタタ ンダ ステン酸ア ンモニゥム 0 . 3 1 g を 5 gの水に溶解させたも の) をガラス棒で撹拌しながら少量ずつ滴下した。 生成した ゲル状生成物を常温下で約 1 時間風乾した後、 さ らに
1 2 0 °Cにて一夜真空乾燥させて乾燥物を得た。 得られた乾 燥物をガラス製管状炉に入れ、 常圧空気気流下で 4 0 0 °Cに て 4時間の焼成処理に付し、 酸化タ ングステンとアルミ ナを 含有する固体触媒を得た。 得られた固体触媒のタ ングステン 含有量は約 9重量%だつた。 くシク 口 へキシルアミ ンの酸化反応 > ガス自給式撹拌翼を備えた S U S 3 1 6 製の総容量 1 0 0 m l の高圧オー ト ク レープ式反応器にシク ロへキシルァミ ン 1 . 4 g と t 一ブチルアルコール 1 4 g を仕込み、 そこに上 記で調製した酸化タ ングステン アルミナ固体触媒 0 . 1 4 g を懸濁した。 系内を窒素ガスで置換した後、 7 %の酸素を 含有する窒素の混合ガスを気相部に導入し、 系内全圧を
6 , O O O k P a まで昇圧した。 この時の酸素分圧は 4 2 0 k P aだった。 次いで、 撹拌しながら 1 2 0 °Cまで昇温した 後、 4時間反応を行い、 シク ロへキサノ ンォキシムを製造し た。
上記と同じ条件でシク ロへキシルァミ ンの酸化反応を 6時 間及び 8時間行い、 それぞれシク ロへキサノ ンォキシムを製 造した。
反応後、 触媒の分散した反応液のスラ リ ーを反応器から回 収し、 ァス ピレーターと接続した吸引濾過器を用いて触媒を 濾別した。 具体的には、 濾紙として、 日本国、 ァ ドバンテツ ク東洋 (株) 製の定量濾紙 N o . 5 Cをおいたロー ト上に反 応液のスラ リ ーを滴下し、 濾紙上に固体触媒を回収し、 反応 液を濾液と して回収した。
回収した反応液をガスク ロマ トグラフィ 一で分析した結果 シク 口へキシルアミ ンの転化率はそれぞれ 4時間の反応で 8 . 6 % 、 6 時間の反応で 2 3 . 4 % 、 8 時間の反応で
3 9 . 5 %であ り 、 シク 口へキサノ ンォキシムの選択率はそ れぞれ 4 時間の反応で 7 4 . 5 % 、 6 時間の反応で
6 8 . 3 % 、 8 時間の反応で 6 5 . 2 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒か ら反応液に溶出したタ ングステンの濃度は 0 . 1 P P m 以下であっ た。
上記の結果か ら明 らかなよ う に、 本発明の方法を用いる と 6 0 %以上の高い選択率でシク 口へキサノ ンォキシムを製造 する こ とができた。 また、 簡便な濾過法を用いて反応液と固 体触媒を分離する こ とができた。 実施例 2
反応溶媒と して、 t — プチルアルコールの代 り に n — プチ ルアルコール 1 4 g を用 いた以外は実施例 1 と同様に 4時間 反応を行い、 シク ロへキサノ ンォキシムを製造した。 シク ロ へキシルァミ ンの転化率は 5 . 5 %、 シク ロへキサノ ンォキ シムの選択率は 5 0 . 2 %だっ た。 実施例 3
反応溶媒と して、 t — プチルアルコールの代 り にァセ トニ ト リ リレ 1 4 g を用いた以外は実施例 1 と同様に 4 時間反応反 応を行い、 シク ロへキサノ ンォキシムを製造した。 シク ロへ キシルァミ ンの転化率は 1 4 . 8 %、 シク ロへキサノ ン才キ シムの選択率は 7 4 . 0 %だっ た。 実施例 4
反応溶媒と して、 t 一ブチルアルコールの代り にべンゾニ ト リル 1 4 g を用いた以外は実施例 1 と同様に 4時間反応を 行い、 シク ロへキサノ ンォキシムを製造した。 シク ロへキシ ルァミ ンの転化率は 1 0 . 3 %、 シク ロへキサノ ンォキシム の選択率は 6 7 . 7 %だった。 実施例 5
反応溶媒と して、 t 一ブチルアルコールの代り にシク 口へ キサン 1 4 g を用いた以外は実施例 1 と同様に 4時間反応を 行い、 シク ロへキサノ ンォキシムを製造した。 シクロへキシ ルァミ ンの転化率は 4 . 4 %、 シク ロへキサノ ンォキシムの 選択率は 6 3 . 3 %だった。 実施例 6
反応溶媒と して、 t 一プチルアルコールの代り に水 1 4 g を用いた以外は実施例 1 と同様に 4時間反応を行い、 シク ロ へキサノ ンォキシムを製造した。 シク ロへキシルァミ ンの転 化率は 5 . 8 %、 シク 口へキサノ ンォキシムの選択率は 6 2 . 5 %だった。 実施例 7 <酸化タングステンがアルミナに担持されてなる固体触媒の 調製 >
市販のァ ーアルミナ (比表面積 : 2 8 2 m 2 / g ) (日本 国、 西尾工業製) を 1 2 0 ^にて一夜真空乾燥し、 担体とし て用いた。 パラタングステン酸アンモニゥム 5 水和物
1 . 4 2 g を 6 0 g の水に溶解した後、 乾燥した ァ ーアルミ ナ 1 0 g をそこに添加して懸濁溶液とした。
この懸濁溶液をガラスフラスコに入れ、 口一夕 リーエバポ レーターに設置し、 常圧下に温度 9 0 °Cのオイルバスに浸し て 1 . 5時間ゆっ く り撹拌混合してスラ リ ーを得た。
次いで得られたスラ リ ーを以下の濃縮乾固処理に付した。 オイルバスの温度を 9 0 Cから 1 2 0 °Cに昇温し、 系内圧力 は約 2 時間かけて常圧から 2 O k P a までゆつ く り と減圧し てフ ラスコ内のス ラ リ ーから水分を蒸発させた。 水分の蒸発 に伴い、 スラ リ ーはケ一ク状になり、 最終的にはケークが乾 燥して破壊粒のよ うな大きさの異なる粉体からなる凝集乾燥 物を得た。
得られた凝集乾燥物を更に 1 2 0 °Cにて一夜真空乾燥させ てか ら次の粉体化処理に付した。 凝集乾燥物をステンレス製 の乳鉢に入れて乳棒で粉壊し、 微粉状に近づいた凝集乾燥物 をめのう製の乳鉢に移して更に細かく なるよう に粉壊した。 粉壊した乾燥物をふるい (メ ッ シュサイズ : 7 5 m ) にか け、 ふるいを通過したもののみを回収して粒径が 7 5 m以 下の粉体を得た。
次いで、 得られた粉体をガラス製の管状炉に入れ、 常圧下、 空気を供給しながら 5 0 0 °Cにて 4時間焼成し、 酸化タンダ ステンがアルミナに'担持されてなる固体触媒を得た。 得られ た固体触媒のタ ングステン含有量は約 9重量%だつた。
<シク ロへキシルァミ ンの酸化反応〉
実施例 1 と同じ高圧オー トク レープ式反応器にシクロへキ シリレアミ ン 1 . 4 g と t 一ブチルアルコール 1 4 g を仕込み, そこに上記で調製した固体触媒 0 . 3 g を懸濁した。 系内を 窒素ガスで置換した後、 7 %の酸素を含有する酸素/窒素混 合ガスを気相部に導入し、 系内全圧を 7 、 O O O k P a まで 昇圧した。 この時の酸素分圧は 4 9 0 k P aだった。 次いで, 撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反応を行い、 シク 口へキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラ フィ ーで分析し たと ころ、 シク ロへキシルァミ ンの転化率は 7 . 4 %、 シク 口へキサノ ンォキシムの選択率は 6 5 . 0 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒か ら反応液に溶出したタングステンの濃度は 0 . 1 p p m 以下であった。
上記の結果から明らかなよう に、 酸化タングステンがアル ミナに担持されてなる固体触媒を用いた場合にも、 実施例 1 と同様に 6 0 %以上の高い選択率でシク ロへキサノ ンォキシ ムを製造する こ とができた。 また、 簡便な濾過法を用いて反 応液と固体触媒を分離する こ とができた。 実施例 8
く酸化タ ングステンがシリ カ に担持されてなる固体触媒の調 製 >
市販のシリ カ (比表面積 : S O O n^ Z g ) (AER0SIL- 3 0 0 、 日本国、 日本ァエロジル製) を 1 2 0 °Cにて一夜真 空乾燥し、 担体と して用いた。 メタタ ングステン酸アンモニ ゥム 1 . 3 4 g を 5 0 g の水に溶解した後、 乾燥したシリ カ 1 0 g をそ こ に添加 して懸濁溶液と した。 この懸濁溶液を用 いて実施例 7 と同様に固体触媒を調製し、 酸化タ ングステン がシ リ カ に担持されてなる固体触媒を得た。 得られた固体触 媒のタ ングステン含有量は約 9重量%だった。 くシク 口へキシルア ミ ンの酸化反応 >
実施例 1 と 同 じ高圧ォ一 ト ク レーブ式反応器にシク ロへキ シルァミ ン 1 . 4 g と t —ブチルアルコール 1 4 gを仕込み そこ に上記で調製した固体触媒 0 . 3 g を懸濁した。 系内を 窒素ガスで置換した後、 7 %の酸素を含有する酸素/窒素混 合ガス を気相部に導入し、 系内全圧を 7 , 0 0 0 k P a まで 昇圧した。 この時の酸素分圧は 4 9 0 k P a だった。 次いで 撹拌しながら 1 2 0 °Cまで昇温した後、 4 時間反応を行い、 シク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラフ ィ ーで分析し たと こ ろ、 シク ロへキシルァミ ンの転化率は 6 . 5 %、 シク 口へキサノ ンォキシムの選択率は 5 1 . 7 %だっ た。 実施例 9
<酸化タ ングステンがシリ カ—アルミ ナ担体に担持されてな る固体触媒の調製 >
市販のシ リ カ 一アルミナ成形体 (比表面積 4 0 0 m 2 Z g ) ( N 6 3 1 H N、 日本国、 日揮化学製) を実施例 7 と同 様に粉体化処理に付して粉体を得、 得られた粉体を 1 2 0 °C にて一夜真空乾燥し、 シリ カ一アルミ ナの乾燥粉体を得た。 メタタ ングステン酸ア ンモニゥム 1 . 3 4 g を 5 0 g の水に 溶解した後、 シ リ カ 一アルミナの乾燥粉体 1 0 g をそこに添 加して懸濁溶液と した。 この懸濁溶液を用いて実施例 7 と同 様に固体触媒を調製し、 酸化タ ングステンがシ リ カ—アルミ ナ担体に担持されてなる固体触媒を得た。 得られた固体触媒 のタ ングステン含有量は約 9 重量%だつ た。 くシク 口へキシルア ミ ンの酸化反応〉 実施例 1 と同 じ高圧オー ト ク レープ式反応器にシク ロへキ シルァ ミ ン 1 . 4 g と t 一ブチルアルコール 1 4 g を仕込み. そこ に上記で調製した固体触媒 0 . 3 g を懸濁させた。 系内 を窒素ガスで置換した後、 7 %の酸素を含有する酸素/窒素 混合ガス を気相部に導入し、 系内全圧を 7 , O O O k P aま で昇圧した。 この時の酸素分圧は 4 9 0 k P a だっ た。 次い で撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反応を行な い、 シク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ 1、 グラ フィ 一で分析し たと こ ろ、 シク ロへキシルァミ ンの転化率は 6 . 0 %、 シク 口へキサノ ンォキシムの選択率は 5 7 . 4 %だっ た。 実施例 1 0
ぐ酸化ニオブがアルミ ナに担持されてなる固体触媒の調製 > 市販の ァ — アルミ ナ (比表面積 : S S S n^ Z g ) (日本 国、 西尾工業製) を 1 2 0 °Cにて一夜真空乾燥した。 蓚酸水 素ニオブ 1 0 . 6 8 g を 4 5 gの蓚酸水溶液に溶解した後、 乾燥した r 一アルミナ 1 0 g をそこ に添加して懸濁溶液と し た。
この懸濁溶液をガラスフ ラスコ に入れ、 ロータ リ ーエバポ レーターに設置し、 常圧下に温度 9 0 °Cのオイルバスに浸し て 1 . 5 時間ゆっ く り撹拌混合させてスラ リ ーを得た。 次いで得られたスラ リ ーを以下の濃縮乾固処理に付した。 オイルバスの温度を 9 0 °Cから 1 2 0 °Cに昇温し、 系内圧力 は約 2 時間かけて常圧から 2 0 k P a までゆつ く り と減圧し てフラスコ内のスラ リ ーから水分を蒸発させた。 水分の蒸発 に伴い、 スラ リ ーはケ一ク状になり、 最終的にはケークが乾 燥して破壊粒のよう な大きさの異なる粉体からなる凝集乾燥 物を得た。
得られた凝集乾燥物を更に 1 2 0 °Cにて一夜真空乾燥させ てから次の粉体化処理に付した。 凝集乾燥物をステンレス製 の乳鉢に入れて乳棒で粉壊し、 微粉状に近づいた凝集乾燥物 をめのう製の乳鉢に移して更に細かく なるよう に粉壊した。 粉壊した乾燥物をふるい (メ ッシュサイズ : 7 5 m ) にか け、 ふるいを通過したもののみを回収して粒径が 7 5 m以 下の粉体を得た。
次いで、 得られた粉体をガラス製の管状炉に入れ、 常圧下 空気を供給しながら 5 0 0 °Cにて 4時間焼成処理を実施し、 酸化ニオブがアルミナに担持されてなる固体触媒を得た。 得 られた固体触媒のニオブ含有量は約 9重量%だつた。
<シク 口へキシルアミ ンの酸化反応〉
実施例 1 と同じ高圧オー トク レープ式反応器にシク ロへキ シルァミ ン 1 . 4 g と t —プチルアルコール 1 4 g を仕込み そこに上記で調製した固体触媒 0 . 1 4 g を懸濁した。 系内 を窒素ガスで置換した後、 7 %の酸素を含有する酸素 Z窒素 混合ガスを気相部に導入し、 系内全圧を 6 , O O O k P a ま で昇圧した。 この時の酸素分圧は 4 2 0 k P a だった。 次い で、 撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反応を行 い、 シク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィ ーで分析し たと ころ、 シク 口へキシルアミ ンの転化率は 8 . 2 %、 シク 口へキサノ ンォキシムの選択率は 6 4. 4 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒から反応液に溶出したニオブの濃度はいずれも 0 . 1 p p m以下であった。
上記の結果から明 らかなよう に酸化ニオブがアルミナに担 持されてなる固体触媒を用いても、 実施例 1 や 7 と同様に 6 0 %以上の高い選択率でシクロへキサノ ンォキシムを製造 する こ とができた。 また、 簡便な濾過法を用いて反応液と触 媒成分を分離する こ とができた。 実施例 1 1
<酸化タ ングステン及び酸化モリ ブデンがアルミナに担持さ れてなる固体触媒の調製 > .
市販の γ —アルミナ (比表面積 : 2 8 2 m 2 / g ) (日本 国、 西尾工業製) を 1 2 0 °Cにて一夜真空乾燥した。 メタ夕 ングステン酸ア ンモニゥム 1 . 3 7 g とパラモ リ ブデン酸ァ ンモニゥム 0 . 1 8 5 g を 6 0 g の水に溶解させた後、 乾燥 した ァ 一アルミ ナ 1 0 g をそこに添加して懸濁溶液と した。
この懸濁溶液をガラスフ ラスコに入れ、 口一タ リ 一エバポ レーターに設置し、 常圧下に温度 9 0 °Cのオイ ルバスに浸し て 2 時間ゆつ く り 撹拌混合させてス ラ リ ーを得た。
次いで得られたス ラ リ ーを以下の濃縮乾固処理に付した。 オイルバスの温度を 9 0 °Cか ら 1 2 0 °Cに昇温し、 系内圧力 は約 2 時間かけて常圧か ら 2 0 k P a までゆつ く り と減圧し てフ ラスコ 内のス ラ リ ーか ら水分を蒸発させた。 水分の蒸発 に伴い、 ス ラ リ 一はケ一ク状にな り 、 最終的にはケ一クが乾 燥して破壊粒のよ う な大きさ の異なる粉体か らなる凝集乾燥 物を得た。
得られた凝集乾燥物をガラス製管状炉に入れ、 常圧窒素気 流下で 1 2 0 °Cにて 5 時間乾燥処理を行っ た後、 実施例 7 と 同様に粉体化処理に付し、 粒径が 7 5 m以下の粉体を得た , 得られた粉体を再度ガラス製管状炉に入れ、 常圧下、 空気を 供給しながら 5 0 0 °Cにて 4時間焼成し、 酸化タ ングステン と酸化モ リ ブデンがアルミナに共担持されてなる固体触媒を 得た。 得られた固体触媒のタ ングステン含有量は約 9 重量% であ り 、 モ リ ブデンの含有量は約 1 重量%だつ た。
<シク 口へキシルアミ ンの酸化反応〉 実施例 1 と同じ高圧オー トク レープ式反応器にシクロへキ シルァミ ン 1 . 4 g と t 一プチルアルコール 1 4 g を仕込み、 そこに上記で調製した固体触媒 0 . 3 gを懸濁した。 系内を 窒素ガスで置換した後、 7 %の酸素を含有する酸素ノ窒素混 合ガスを気相部に導入し、 系内全圧を 7 , O O O k P a まで 昇圧した。 この時の酸素分圧は 4 9 0 k P aだった。 次いで 撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反応を行い、 シク ロへキ'サノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィ 一で分析し たと ころ、 シク ロへキシルァミ ンの転化率は 9 . 5 %、 シク 口へキサノ ンォキシムの選択率は 5 8 . 7 %だった。 実施例 1 2
く酸化タ ングステンとチタニアを含有する固体触媒の調製〉 メタタ ングステン酸ア ンモニゥム水和物を 2 0 0 g の水に 溶解した後、 市販のアモルフ ァス型チタニア ( T i 02 : 9 9 . 9 % ) (日本国、 和光純薬製) 4 0 g をそこに添加して 懸濁ス ラ リ ーと した。
この懸濁スラ リ ーをガラスフラスコに入れ、 口一タ リ一ェ バポレーターに設置し、 常圧下に温度 9 0 °Cのオイルバスに 浸して、 1 . 5 時間ゆっ く り撹拌混合させた。
次いでスラ リ ーを以下の濃縮乾固処理に付した。 オイルバ スの温度を 9 0 °Cか ら 1 2 0 °Cに昇温し、 系内圧力は約 2時 間かけて常圧から 2 0 k P a までゆつ く り と減圧してフラス コ内のスラ リーから水分を蒸発させた。 水分の蒸発に伴い、 スラ リ ーはケ一ク状にな り 、 最終的にはケークが乾燥して破 壊粒のような大きさの異なる粉体からなる凝集乾燥物を得た , 得られた凝集乾燥物を更に 1 2 0 °Cにて一夜真空乾燥させ てから次の粉体化処理に付した。 凝集乾燥物をステンレス製 の乳鉢に入れて乳棒で粉壌し、 微粉状に近づいた凝集乾燥物 をめのう製の乳鉢に移して更に細かく なるよう に粉壊した。 粉壊した乾燥物をふるい (メ ッ シュサイズ : 7 5 m ) にか け、 ふるいを通過したもののみを回収して粒径が 7 5 m以 下の粉体を得た。
次いで、 得られた粉体をガラス製の管状炉に入れ、 常圧下 空気を供給しながら 5 0 0 °Cにて 4時間焼成し、 酸化タンダ ステンとチタニアを含有する固体触媒を得た。 得られた固体 触媒の W T i 原子比は約 0 . 0 6 だった。
<シク 口へキシルアミ ンの酸化反応〉
実施例 1 と同じ高圧ォ一 トク レーブ式反応器にシク ロへキ シルァミ ン 1 . 4 g と t 一ブチルアルコール 1 4 g を仕込み そこに上記で調製した固体触媒 0 . 2 8 g を懸濁した。 系内 を窒素ガスで置換した後、 7 %の酸素を含有する酸素/窒素 混合ガスを気相部に導入し、 系内全圧を 6 0 0 0 k P aまで 昇圧した。 この時の酸素分圧は 4 2 0 k P aだった。 次いで、 撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反応を行い、 シク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィ 一によって 分析したと ころ、 シク ロへキシルァミ ンの転化率は
1 1 . 5 %、 シク ロへキサノ ンォキシムの選択率は
7 1 . 8 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒か ら反応液に溶出した W及び T i の濃度はいずれも 0 . 1 p p m 下であった。
上記の結果から明らかなよう に、 酸化タングステンとチタ ニァを含有する固体触媒を用いても、 Ί 0 %以上の高い選択 率でシク 口へキサノ ンォキシムを製造することができた。 ま た、 簡便な濾別法を用いて反応液と触媒成分を分離する こと ができた。 比較例 1
メ タタ ングステン酸アンモニゥム水和物を用いず、 市販の アモルフ ァス型チタニアの懸濁スラ リーのみを用いる こと以 外は実施例 1 2 と同様に触媒を調製し、 酸化タ ングステンを 含有しないチタニア固体触媒を得た。
上記の方法で調製したチタニア固体触媒 0 . 2 8 g を触媒 と して用いる以外は実施例 1 と同様に 4時間反応を行い、 シ ク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラフィ ーで分析し たと こ ろ、 シク ロへキシルァ ミ ンの転化率は 3 . 6 %、 シク 口へキサノ ンォキシムの選択率は 5 0 . 2 %だっ た。 実施例 1 3
反応溶媒と して、 t 一 ブチルアルコールの代り にァセ トニ ト リ リレ 1 4 g を用いた以外は実施例 1 2 と同様に 4時間反応 を行い、 シク ロへキサノ ンォキシム を製造した。 シク ロへキ シルァミ ンの転化率は 2 2 . 0 %、 シク 口へキサノ ンォキシ ムの選択率は 7 1 . 3 %だっ た。 実施例 1 4
反応溶媒と して、 t 一 ブチルアルコールの代 り にベンゾ二 ト リ リレ 1 4 g を用いた以外は実施例 1 2 と同様に 4時間反応 を行い、 シク 口へキサノ ンォキシムを製造した。 シク ロへキ シルァ ミ ンの転化率は 1 3 . 8 %、 シク ロへキサノ ンォキシ ムの選択率は 5 8 . 7 %だっ た。 実施例 1 5
反応溶媒と して、 t — プチルアルコールの代り に水 1 4 g を用いた以外は実施例 1 2 と同様に 4時間反応を行い、 シク 口へキサノ ンォキシムを製造した。 シク ロへキシルァミ ンの 転化率は 1 7 . 1 %、 シク ロへキサノ ンォキシムの選択率は 7 0 . 5 %だった。 実施例 1 6
ぐ酸化タ ングステンとジルコニァを含有する固体触媒の調製 > メタタ ングステン酸アンモニゥム水和物を 2 0 0 gの水に 溶解した後、 市販のジルコニァ (商標 : R C— 1 0 0 ) (日 本国、 第一希元素化学工業製) 3 0 g をそこに添加して懸濁 スラ リ ーと した。 上記の懸濁スラ リーを用いて実施例 1 2 と 同様に固体触媒を調製し、 酸化タ ングステンとジルコニァを 含有する固体触媒を得た。 得られた固体触媒の W / Z r原子 比は約 0 . 0 9 だつた。
<シク 口へキシルアミ ンの酸化反応 >
実施例 1 と同じ高圧ォー トク レーブ式反応器にシク ロへキ シルァ ミ ン 1 · 4 g と t 一ブチルアルコール 1 4 g を仕込み、 そこに上記で調製した固体触媒 0 . 3 0 g を懸濁した。 系内 を窒素ガスを用いて置換した後、 7 %の酸素を含有する酸素 ノ窒素混合ガスを気相部に導入し、 系内全圧を 7 0 0 0 k P a まで昇圧した。 この時の酸素分圧は 4 9 0 k P aだつ た。 次いで撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反 応を行い、 シク ロへキサノ ンォキシムを製造した。 .
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィーによって 分析したと ころ、 シクロへキシルアミ ンの転化率は 8 . 8 % , シク ロへキサノ ンォキシムの選択率は 7 3 . 6 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒から反応液に溶出した W及び Z r の溶出濃度はいずれも 0 . l p p m以下であった。
上記の結果か ら明らかなよう に、 酸化タングステンとジル コニァを含有する固体触媒を用いても、 実施例 1 2 と同様に 7 0 %以上の高い選択率でシク ロへキサノ ンォキシムを製造 する こ とができた。 また、 簡便な濾別法を用いて反応液と触 媒成分を分離する ことができた。 比較例 2
メタタ ングステン酸アンモニゥム水和物を用いず、 市販の ジルコニァの懸濁スラ リ ーのみを用いる以外は実施例 1 6 と 同様に触媒の調製し、 酸化タングステンを含有しないジルコ ニァ固体触媒を得た。
上記の方法で調製したジルコニァ固体触媒 0 . 3 0 g を触 媒と して用いる以外は実施例 1 と同様に 4時間反応を行い、 シク ロへキサノ ンォキシムを製造した。 反応後、 固体触媒を 濾別した後に、 反応液をガスク ロマ トグラフィ ーで分析した と ころ、 シク ロへキシルァミ ンの転化率は 1 . 2 %、 シク ロ へキサノ ンォキシムの選択率は 2 9 . 4 %だった。 実施例 1 7
<ジルコ二アーチタニア複合酸化物担体の調製〉
市販のジルコニウムテ トラノルマルプロボキシ ドとチタ二 ゥムテ ト ライ ソプロボキシ ドを、 これらアルコキシ ドの合計 量に対して約 2 . 5倍モル量のへキシレンダリ コールに溶解 し、 ガラス反応器中で撹拌しながら、 1 2 0 °Cの油浴中で 3 時間処理した。 次いで油浴温度を 9 0 °Cに昇温し、 撹拌下に、 エタノール水溶液を、 エタ ノ ール水溶液中の水の量がアルコ キシ ドの合計量に対して約 4倍モルとなる量を滴下して加水 分解を行い、 ゲル状の生成物を得た。 生成したゲルを一夜熟 成させた後、 1 3 0 °Cで真空乾燥させ、 乾燥したゲルをガラ ス製管状炉に入れ、 常圧下で空気を供給しながら 5 5 0 °Cに て 5 時間焼成処理を実施し、 白色のジルコ二アーチタニア複 合酸化物を得た。 得られた複合酸化物の Z r Z T i 原子比は 約 1 . 0 だった。
<酸化タ ングステンとジルコ二アーチタニア複合酸化物を含 有する固体触媒の調製〉
メタタ ングステン酸アンモニゥム水和物を 2 0 0 g の水に 溶解した後、 上記で調製したジルコ二アーチタニア複合酸化 物 3 0 g をそこ に添加して懸濁ス ラ リ ーと した。
上記の懸濁ス ラ リ ーを用いて実施例 1 2 と同様に固体触媒 を調製し、 酸化タ ングステン とジルコ二アーチタニア複合酸 化物を含有する固体触媒を得た。 得られた固体触媒の W Z ( T i + Z r ) 原子比は約 0 . 0 8 だっ た。 ぐシク 口へキシルァミ ンの酸化反応 >
固体触媒と して上記で製造した固体触媒 0 . 2 8 g を用い る以外は実施例 1 と同様に 4 時間反応を行い、 シク ロへキサ ノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラフィ ーで分析し た と こ ろ、 シク ロへキシルァ ミ ンの転化率は 1 0 . 9 %、 シ ク ロへキサノ ンォキシムの選択率は 7 2 . 2 %だった。
上記の結果か ら明 らかなよ う に、 酸化タ ングステンとジル コニア ーチタニア複合酸化物を含有する固体触媒を用いても 実施例 1 2 及び 1 6 と同様に 7 0 %以上の高い選択率でシク 口へキサノ ンォキシムを製造する こ とができた。 比較例 3
実施例 1 7 と同様の方法で調製したジルコ二アーチタニア 複合酸化物 (酸化タ ングステンを含有しない) 0 . 2 8 g を 固体触媒と して用いる以外は実施例 1 と同様に 4時間反応を 行い、 シク ロへキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラ フ ィ 一で分析し たと こ ろ、 シク ロへキシルァミ ンの転化率は 6 . 5 %、 シク 口へキサノ ンォキシムの選択率は 4 8 . 0 %だっ た。 実施例 1 8
<酸化タ ングステンとチタニア を含有する固体触媒の調製 > 市販のチタニウムテ ト ライ ソ プロボキシ ド 1 0 . 5 g をガ ラス ビ一力一に入れ、 ガラス棒で撹拌しながら、 メタタ ンダ ステン酸ア ンモニゥム水溶液 (メ タタ ングステン酸アンモニ ゥム 0 . 9 3 g を 1 3 . 2 g の熱水に溶解させたもの) を少 量ずつ滴下してゲル状の生成物を得た。 生成したゲルを室温 で約 4 時間風乾した後、 さ ら に 1 2 0 °Cにて一夜真空乾燥さ せた。 次いで、 乾燥したゲルをガラス製管状炉に入れ、 常圧 下、 空気気流下で 4 0 0 °Cにて 4 時間焼成処理を実施し、 酸 化タ ングステンとチタニアを含有する固体触媒を得た。 得ら れた固体触媒の W Z T i 原子比は約 0 . 1 0 だっ た。 ぐシク 口へキシルアミ ンの酸化反応〉
実施例 1 と同じ高圧オー ト ク レープ式反応器にシク ロへキ シルァ ミ ン 1 . 4 g と t 一ブチルアルコール 1 2 g を仕込み そ こ に上記で調製した固体触媒 0 . 2 8 g を懸濁させた。 系 内を窒素ガスを用いて置換した後、 7 %の酸素を含有する酸 素/窒素混合ガスを気相部に導入し、 系内全圧を 6 0 0 0 k P a まで昇圧した。 この時の酸素分圧は 4 2 0 k P aであ る。 次いで撹拌しながら 1 2 0 °Cまで昇温した後、 4時間反 応を行い、 シク 口へキサノ ンォキシムを製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィ 一で分析し たと ころ、 シク ロへキシルァミ ンの転化率は 1 8 . 1 %、 シ ク ロへキサノ ンォキシムの選択率は 6 9 . 5 %だった。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒から反応液に溶出した W及び T i の濃度はいずれも 0 . 1 p p m以" でめった。
上記の結果から明らかなよう に、 酸化タングステンとチタ ニァを含有する固体触媒を用いても、 実施例 1 、 7や 1 0 と 同様に、 6 0 %以上の高い選択率でシク ロへキサノ ンォキシ ムを製造する こ とができた。 また、 簡便な濾別法を用いて反 応液と触媒成分を分離することができた。 実施例 1 9
く酸化ニオブとチタニアを含有する固体触媒の調製 >
市販のチタニウムテ トライ ソプロボキシ ド 1 0 . 5 g と二 ォブペンタエ 卜キシ ド 0 . 4 g をガラスビーカーに入れて混 合し、 均一な混合アルコキシ ド溶液を調製した。 次いで、 脱 イオン水 1 3 . 8 g をガラス棒で撹拌しながら少量ずつ滴下 してゲル状の生成物を得た。 ゲル状生成物を室温で約 4時間 風乾した後、 さ ら に 1 2 0 °Cにて一夜真空乾燥させた。 次い で、 乾燥したゲルをガラス製管状炉に入れ、 常圧下、 空気気 流下で 4 0 0 °Cにて 4時間焼成処理を実施し、 酸化ニオブと チタニアを含有する固体触媒を得た。 得られた固体触媒の N bノ T i 原子比は約 0 . 0 3 5 だった。 くシク 口へキシルアミ ンの酸化反応〉
上記で調製した固体触媒 0 . 2 8 g を用いた以外は実施例 1 と同様に 4時間反応を行い、 シク ロへキサノ ンォキシムを 得た。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ トグラフィ ーで分析し たと ころ、 シク ロへキシルァミ ンの転化率は 7 . 8 シク 口へキサノ ンォキシムの選択率は 6 1 . 7 %だっ た。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒から反応液に溶出した N b及び T i の濃度はいずれも 0 . l p p m以下であった。
上記の結果か ら明らかなよう に、 酸化ニオブとチタニアを 含有する固体触媒を用いても、 実施例 1 、 7 、 1 0及び 1 8 と同様に 6 0 %以上の高い選択率でシク ロへキサノ ンォキシ ムを製造する こ とができた。 また、 簡便な漉別法を用いて反 応液と触媒成分を分離する こ とができた。 実施例 2 0
<酸化タ ンタルとチタニアを含有する固体触媒の調製 >
ニオブペンタエ トキシ ドの代り にタ ンタルペンタエ トキシ ド 0 . 5 2 g を用いた以外は、 実施例 1 9 と同様に固体触媒 を調製し、 酸化タ ンタルとチタニアを含有する固体触媒を得 た。 得られた固体触媒の T aノ T i 原子比は約 0 . 0 3 5 だ つ /こ。
<シク 口へキシルアミ ンの酸化反応〉
上記で調製した固体触媒 0 . 2 8 g を用いた以外は実施例 1 8 と同様に 4 時間反応を行い、 シク ロへキサノ ンォキシム を製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラ フ ィ ーで分析し たと こ ろ、 シク 口 へキシルァミ ンの転化率は 7 . 6 %、 シク 口へキサノ ンォキシムの選択率は 6 3 . 8 %だっ た。
I C P発光分光分析装置で反応液を分析した結果、 固体触 媒か ら反応液に溶出 した T a及び T i の濃度はいずれも 0 . 1 p p m以下であっ た。
上記の結果か ら 明 らかなよう に、 酸化タ ンタルとチタニア を含有する固体触媒を用いても、 実施例 1 、 7 、 1 0 、 1 8 及び 1 9 と同様に 6 0 %以上の高い選択率でシク ロへキサノ ンォキシムを製造する こ とができた。 また、 簡便な濾別法を 用いて反応液と触媒成分を分離する こ とができた。 比較例 4
くチタニア固体触媒の調製 >
市販のチタニウムテ ト ライ ソプロボキシ ド 1 0 . 5 g をガ ラス ビ一カーに入れ、 ガラス棒で撹拌しながら、 脱イ オン水 1 3 . 8 g を少量ずつ滴下してゲル状の生成物を得た。 得ら れたゲル状生成物を もちいて実施例 1 8 と同様に固体触媒を 調製し、 チタニア固体触媒を得た。
<シク 口へキシルア ミ ンの酸化反応〉
上記で調製した固体触媒 0 . 2 8 g を用いた以外は実施例 1 8 と同様に 4時間反応を行い、 シク ロへキサノ ンォキシム を製造した。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラ フ ィ ーで分析し たと こ ろ、 シク ロへキシルァミ ンの転化率は 4 . 3 %、 シク 口へキサノ ンォキシムの選択率は 4 5 . 5 %だった。 比較例 5
(欧 小1特許第 3 9 5 0 4 6 号公報に記載の方法) ぐチタニア固体触媒の調製 >
市販のチタニウムテ ト ライ ソプロボキシ ド 1 0 g をガラス ビーカーに入れ、 水 1 0 g をゆつ く り滴下しながら撹拌し、 さ ら に室温にて約 4時間混合を継続して沈殿物を得た。 得ら れた沈殿物を水で洗浄した後、 ガラス製管状炉に入れ常圧窒 素気流下で 1 2 0 °Cにて 1 2時間乾燥し、 さ ら に 2 0 0 で 2 時間乾燥した。 乾燥した沈殿物を実施例 7 と同様に粉体化 処理に付し、 粒径が 7 5 m以下の粉状の固体触媒を得た。
<シク ロへキシルアミ ンの酸化反応〉
マグネチッ ク ス夕一ラーを備えた S U S 3 1 6製の高圧ォ 一トク レーブ式反応器 (総容量 1 0 O m l ) にシク ロへキシ ルァミ ン 2 . 9 7 g とジグリ ム 7 m 1 を仕込み、 上記で得ら れた固体触媒 0 . .4 g を懸濁した。 系内を窒素ガスで置換し た後、 純酸素を気相部に導入し、 系内全圧を 3 1 4 0 k P a まで昇圧した。 次いで、 撹拌しながら 1 2 0 °Cまで昇温した 後、 4時間反応を行い、 シク ロへキサノ ンォキシムを製造し た。
反応後、 実施例 1 と同様に固体触媒を濾別して反応液を回 収した。 回収した反応液をガスク ロマ ト グラ フ ィ ーで分析し たと こ ろ、 シク ロへキシルァ ミ ンの転化率は 3 1 . 2 %、 シ ク ロへキサノ ンォキシムの選択率は 2 2 . 5 %だった。 本比較例に示す方法では、 簡便な濾過法を用いて反応液と 触媒成分を分離する こ とができたものの、 シク ロへキサノ ン ォキシムの選択率は 2 2 . 5 % と非常に低かった。
産業上の利用可能性
本発明の方法によれば、 危険性の少ない分子状酸素を酸化 剤と して用いながら も、 液相中で、 高い選択率で環状脂肪族 ォキシムを製造する こ とができる。 また、 本発明の方法にお いては、 固体触媒を用いる こ とから、 反応後の固体触媒と反 応液との分離が極めて容易であ り、 触媒成分の分離回収に係 わる煩雑な操作を必要と しないため工業的に非常に有利であ る。

Claims

請 求 の 範 囲
1 . 環状脂肪族第一級ァミ ンを、 液相中で大気圧を越えた加 圧条件下において、 分子状酸素及び固体触媒の存在下で酸化 させる ことを包含する環状脂肪族ォキシムの製造方法であつ て、 該固体触媒が周期律表第 5及び 6族に属する金属からな る群よ り選ばれた少なく とも 1 種の金属 ( a ) の酸化物を含 有する ことを特徵とする方法。
2 . 該環状脂肪族第一級ァミ ンがシクロへキシルァミ ンであ る こ とを特徴とする、 請求項 1 に記載の方法。
3 . 該固体触媒が、 周期律表第 2 、 1 3及び 1 4族に属する 金属からなる群よ り選ばれた少なく とも 1 種の金属 ( b ) の 酸化物を更に含有する こ とを特徴とする、 請求項 1 又は 2 に 記載の方法。
4 . 該金属 ( a ) が、 ニオブ及びタ ングステンからなる群よ り選ばれる少なく とも 1 種の金属である こ とを特徴とする、 請求項 3 に記載の方法。
5 . 該金属 ( a ) がタ ングステンである こ とを特徴とする、 請求項 3 に記載の方法。
6 . 該金属 ( b ) がアルミ ニウム及びシリ コ ンか らなる群よ り選ばれる少な く と も 1 種の金属である こ と を特徴とする、 請求項 3 〜 5 のいずれかに記載の方法。
7 . 該固体触媒中の該金属 ( a ) の含有量が、 1 〜 6 0 重 量%である こ とを特徴とする、 請求項 1 〜 6 のいずれかに記 載の方法。
8 . 該固体触媒が、 周期律表第 4族に属する金属か らなる群 よ り 選ばれた少な く とも 1 種の金属 ( c ) の酸化物を更に含 有する こ と を特徴とする、 請求項 1 又は 2 に記載の方法。
9 . 該金属 ( a ) が、 ニオブ、 タ ンタル及びタ ングステンか らなる群よ り選ばれる少なく とも 1 種の金属である こ とを特 徴とする、 請求項 8 に記載の方法。
1 0 . 該金属 ( a ) がタ ングステンである こ と を特徴とする 請求項 8 に記載の方法。
1 1 . 該金属 ( c ) がチタ ン及びジルコニウムからなる群よ り選ばれる少なく と も 1 種の金属である こ とを特徴とする、 請求項 8 〜 1 0 のいずれかに記載の方法。
1 2 . 該金属 ( c ) に対する該金属 ( a ) の原子比が
0 . 0 1 〜 1 . 0 の範囲である こ とを特徴とする、 請求項 8
〜 1 1 のいずれかに記載の方法。
PCT/JP2002/001731 2001-02-26 2002-02-26 Procede de production d'oxime aliphatique cyclique WO2002068378A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002567892A JP4208574B2 (ja) 2001-02-26 2002-02-26 環状脂肪族オキシムの製造方法
US10/468,890 US6930204B2 (en) 2001-02-26 2002-02-26 Process for producing a cyclic aliphatic oxime
KR1020037011184A KR100567616B1 (ko) 2001-02-26 2002-02-26 고리형 지방족 옥심의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001050220 2001-02-26
JP2001-50220 2001-02-26
JP2001-186773 2001-06-20
JP2001186773 2001-06-20

Publications (1)

Publication Number Publication Date
WO2002068378A1 true WO2002068378A1 (fr) 2002-09-06

Family

ID=26610089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001731 WO2002068378A1 (fr) 2001-02-26 2002-02-26 Procede de production d'oxime aliphatique cyclique

Country Status (6)

Country Link
US (1) US6930204B2 (ja)
JP (1) JP4208574B2 (ja)
KR (1) KR100567616B1 (ja)
CN (1) CN1257887C (ja)
TW (1) TW562794B (ja)
WO (1) WO2002068378A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015381A (ja) * 2003-06-26 2005-01-20 Asahi Kasei Chemicals Corp 環状脂肪族オキシムの製造法
US9493386B2 (en) * 2003-07-14 2016-11-15 Mitsubishi Rayon Co., Ltd. Method for supplying reaction gases in catalytic vapor phase oxidation process
JPWO2014103850A1 (ja) * 2012-12-27 2017-01-12 住友化学株式会社 オキシムの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278487B2 (en) * 2010-02-04 2012-10-02 Dsm Ip Assets B.V. Catalytic process for the ammoximation of carbonyl compounds
US9656950B2 (en) 2013-03-27 2017-05-23 Sumitomo Chemical Company, Limited Method for producing oxime
CN103641740B (zh) * 2013-12-19 2015-10-07 湖南师范大学 一种分子氧气相氧化环己胺制环己酮肟和己内酰胺的方法
CN109206339B (zh) * 2017-06-29 2021-04-27 湘潭大学 一种环己胺氧化制备环己酮肟的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504681A (en) * 1982-12-20 1985-03-12 Allied Corporation Catalytic oxidation of primary amines to oximes by elemental oxygen
EP0395046A2 (en) * 1989-04-27 1990-10-31 ENICHEM S.p.A. Process for oxidizing saturated primary amines to oximes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4421928A1 (de) * 1994-06-23 1996-01-04 Basf Ag Verfahren zur Herstellung von aliphatischen und cycloaliphatischen Oximen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504681A (en) * 1982-12-20 1985-03-12 Allied Corporation Catalytic oxidation of primary amines to oximes by elemental oxygen
EP0395046A2 (en) * 1989-04-27 1990-10-31 ENICHEM S.p.A. Process for oxidizing saturated primary amines to oximes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015381A (ja) * 2003-06-26 2005-01-20 Asahi Kasei Chemicals Corp 環状脂肪族オキシムの製造法
US9493386B2 (en) * 2003-07-14 2016-11-15 Mitsubishi Rayon Co., Ltd. Method for supplying reaction gases in catalytic vapor phase oxidation process
JPWO2014103850A1 (ja) * 2012-12-27 2017-01-12 住友化学株式会社 オキシムの製造方法

Also Published As

Publication number Publication date
JPWO2002068378A1 (ja) 2004-09-24
CN1505608A (zh) 2004-06-16
TW562794B (en) 2003-11-21
KR100567616B1 (ko) 2006-04-04
JP4208574B2 (ja) 2009-01-14
US20040116746A1 (en) 2004-06-17
KR20030092002A (ko) 2003-12-03
US6930204B2 (en) 2005-08-16
CN1257887C (zh) 2006-05-31

Similar Documents

Publication Publication Date Title
US6514902B1 (en) Method for producing an oxide catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
RU2342991C2 (ru) Каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции
EP2550100B1 (en) Improved mixed metal oxide ammoxidation catalysts
EP1808227B1 (en) Process for producing metal oxide catalyst
EP2550097B1 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
EP1871522B1 (en) Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
RU2486006C2 (ru) Устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
US20080103325A1 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
JP3497558B2 (ja) アンモ酸化用触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JP4081824B2 (ja) アクリル酸の製造方法
US20020128152A1 (en) Sol-gel supported catalysts containing a platinum group
WO2002068378A1 (fr) Procede de production d&#39;oxime aliphatique cyclique
EP1503856A1 (en) Method for preparing a catalyst for partial oxidation of propylene
JP4344057B2 (ja) N−エチル−ジイソプロピルアミンの製造方法
US7754910B2 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
US7531681B2 (en) Process for the ammoxidation of propane and isobutane
RU2451548C2 (ru) Способ окислительного аммонолиза пропана и изобутана в присутствии смешанных металлоксидных катализаторов
US20080103326A1 (en) Lithium containing mixed metal oxide catalysts for ammoxidation of propane and isobutane
JP2003064038A (ja) 環状脂肪族オキシムの製造法
JP4243933B2 (ja) 環状脂肪族オキシムを製造する方法
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
JP2002212139A (ja) α−ケト酸エステルの製造方法
US6242632B1 (en) Supported catalysts containing a platinum group metal and method for producing diarylcarbonates
JP2003212832A (ja) 環状脂肪族オキシムを製造する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002567892

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037011184

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028088808

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037011184

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10468890

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020037011184

Country of ref document: KR