WO2002068318A1 - Heat transport device - Google Patents
Heat transport device Download PDFInfo
- Publication number
- WO2002068318A1 WO2002068318A1 PCT/JP2002/001853 JP0201853W WO02068318A1 WO 2002068318 A1 WO2002068318 A1 WO 2002068318A1 JP 0201853 W JP0201853 W JP 0201853W WO 02068318 A1 WO02068318 A1 WO 02068318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- transport device
- heat transport
- pump
- micropump
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 40
- 239000003507 refrigerant Substances 0.000 claims abstract description 40
- 230000032258 transport Effects 0.000 claims description 64
- 239000004071 soot Substances 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 9
- 238000005086 pumping Methods 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 3
- 238000010438 heat treatment Methods 0.000 description 16
- 238000001816 cooling Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 239000012530 fluid Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 239000010408 film Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 101100533726 Homo sapiens SMR3B gene Proteins 0.000 description 1
- 102100025729 Submaxillary gland androgen-regulated protein 3B Human genes 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a technique for reducing the thickness of a heat transport device using a microchannel and a micropump.
- Heat pipes and heat sinks are widely used as devices for heat dissipation and cooling.Basically, heat exchange and cooling are performed by repeating the flow of steam and the return of fluid after heat dissipation. .
- MEMS Micro Electro-Mechanical System
- a device called a “micro-channel” is used for a cooling element, etc., corresponding to a local high-density heat source, and has a width of several tens of meters (microns) and a depth of about 100 m. Cooling can be performed by forming a large number of fins on the silicon substrate and passing refrigerant fluid through each channel (passage).
- the apparent thermal conductivity is much higher than that of copper.
- the thickness lmm, a width 1 O mm require a large heat dissipation area and the heat transfer area by the ability limit of 1 cm 2 per number Wa Tsu DOO in heating Topai flop like length 5 O mm, the device of the super compact It cannot be applied.
- a device having a pumping function (a microphone port pump) is required to perform forced circulation of the refrigerant in a device using a microchannel, but the microchannel and the microphone port pump are provided independently. If the circulation channels for the refrigerant are formed individually, it is difficult to reduce the space for disposing the entire heat transport system, and it is difficult to increase the heat density related to the heat transport.
- an object of the present invention is to reduce the thickness and improve the heat transfer characteristics of a heat transport device using a microchannel and a micropump. Disclosure of the invention
- the present invention has a structure in which a microchannel for passing a refrigerant and a micropump for transporting the refrigerant are integrated.
- a microchannel is formed.
- the channel layer thus formed and the pump layer on which the minute pump is formed are laminated, or a unit structure is provided in which the minute channel and the minute pump are integrated.
- the device can be made thin by integrating the microchannel and the micropump and arranging them in a laminated structure or an integrated structure.
- it is included in the microchannel group included in the channel layer and the pump layer.
- the thermal conductivity can be easily increased by increasing the number of micro-pump groups or the number of layers, or when employing an integrated structure, by increasing the number of unit structures including micro-channels and micro-pumps.
- FIG. 1 is a diagram showing a configuration example of a heat transport device according to the present invention, wherein (A) is a diagram showing a laminated structure, (B) is a top view of each layer, and (C) is a side surface viewed from a direction D.
- FIG. 1 is a diagram showing a configuration example of a heat transport device according to the present invention, wherein (A) is a diagram showing a laminated structure, (B) is a top view of each layer, and (C) is a side surface viewed from a direction D.
- 2A to 2C are explanatory diagrams of the basic configuration of the bubble-driven pump.
- FIGS. 3A to 3F are explanatory diagrams of a method for forming a flow channel of a microchannel or a micropump.
- 4A to 4D are explanatory views related to a method of forming a piezoelectric drive pump.
- 5A to 5B are diagrams schematically showing a micropump array.
- FIG. 6 is a diagram schematically showing a configuration example of a heat transport device, and also shows a configuration viewed from a side, shapes of respective parts, and the like.
- FIG. 7 is a diagram showing a configuration example of a heat transport device formed by repeating arrangement of unit structures.
- FIG. 8 is a diagram showing an example of use of the heat transport device according to the present invention.
- FIG. 9 is a diagram showing another example of use of the heat transport device according to the present invention.
- FIG. 10 is a diagram showing an example of use of a micropump array.
- FIG. 11 is a conceptual diagram showing a configuration in which microchannels are formed in a closed loop.
- FIG. 12 shows an example of a closed-circuit type configuration together with FIGS. 13 and 14, and
- FIG. 12 is a schematic diagram viewed from a plane.
- FIG. 13 is an enlarged view showing a part of a microchannel and a microphone pump in the heat transport device.
- FIG. 14 is a diagram showing a main part of the micropump.
- FIG. 15 is a perspective view showing an example of an embodiment in which a heat transport device is provided for each of a plurality of heat sources and connected.
- the present invention relates to a thin heat transport device using a micro channel (micro channel) for passing a refrigerant and a micro pump (micro pump) for transporting the refrigerant, such as a cooling element or a heat exchanger.
- a micro channel for passing a refrigerant
- a micro pump for transporting the refrigerant, such as a cooling element or a heat exchanger.
- the following forms can be given for integrating the microchannel and the micropump.
- Fig. 1 shows an example of form II. This example has a structure in which a channel layer in which a microchannel is formed and a pump layer in which a micropump is formed are stacked, and a heat transport device 1 for a heat source HG (for example, a cooling or heat removal device) Used as Fig. 1 (A) is a side view.
- a heat transport device 1 for a heat source HG for example, a cooling or heat removal device
- Heat transport device 1 has microchannel layer 2, microvia It has a laminated structure of one hole layer 3 and micropump layer 4, and each layer is connected by fusion or the like.
- FIG. 1 (B) shows a top view of each layer.
- FIG. 1 (C) is a side view of the heat transport device 1 as viewed from the direction of arrow D.
- the microchannel layer 2 is in direct contact with the heat source HG, and a number of microchannels 2a, 2a, ... are formed in a parallel relationship with each other.
- Refrigerant eg, FC72, FC75, etc., but not limited thereto, but may be air, water, ethanol, etc.
- Heat is transferred.
- a microphone opening via hole layer 3 is formed on the upper layer of the micro channel layer 2, and the through holes 3a, 3a,. , Via holes 3 b, 3 b,... Shown by white circles are formed.
- Each through-hole 3a is formed at a position near both ends in the longitudinal direction of the heat transport device 1 (the direction along the direction in which the microchannel is formed), and connects the microchannel and the flow path of the micropump. .
- Each via hole 3b is used for supplying heat necessary for driving the micropump, and a material having good heat conductivity such as copper is buried in the hole.
- a plurality of micropumps 4 a, 4 a,... are formed in the micropump layer 4.
- a bubble-driven thermal pump (a micropump that can be driven only by thermal effects) is used for each micropump.
- FIGS. 2A to 2C are explanatory views of the basic configuration, and a micropump 4a is formed by a configuration in which a part of a flow path is narrowed down.
- a heater 5 is provided in front of the fluid outlet, and the heating of the heater generates bubbles 6 as shown in FIG. 2B.
- the fluid can be sent out as shown in Fig. 2C by utilizing the pumping action utilizing the vibration of the bubbles.
- the refrigerant is circulated between the microchannel layer 2 and the micropump layer 4 and between the two layers via the through holes 3a, whereby the heat from the heat source HG passes through each microchannel.
- a cooling system transported by the refrigerant is formed.
- FIGS. 3A to 3F show an example of a method of forming the microchannel layer and the microphone port pump layer.
- a base material 7 such as plastic is prepared (Fig. 3A), and both surfaces are subjected to ion implantation treatment (PBII treatment) as shown in Fig. 3B.
- PBII treatment ion implantation treatment
- mask patterning is performed as shown in FIG. 3C.
- a photoresist resin, metal, ceramic or the like is used for the mask MP.
- FIG. 3D through the formation of the opening 9 by dry etching such as O 2 (oxygen) beam etching, etc., as shown in FIG. 3E, to limonene (d—C 1 () H 16 ) and the like.
- Yo The base material is partially removed from the opening by chemical etching. That is, by immersing and dissolving in an etching solution tank,
- a channel, a pump flow path, and the like are formed as the passage 10.
- the base material constituting the channel layer and the pump layer is made of a material having high flexibility (for example, a polymer film, a resin material used for a flexible substrate, or the like), so that a micro material having high flexibility is obtained.
- Channels and micropumps can be formed. That is, each device can be formed on the film layer. Therefore, it is possible to use the heat transport device by bending it, or to use the heat transport device along a desired curved surface, thereby expanding the applicable range. In particular, it is effective for a device where the arrangement space is not enough for miniaturization and thinning.
- 4A to 4D show an example of an outline of a method for forming such a pump.
- FIG. 4A ion-implanted layers 12 and 12 are formed on both surfaces of a base material 11, and thin films 13 and 13 are formed thereon.
- FIG. 4B after the opening 14 is formed by ion beam etching, as shown in FIG. 4C, a tapered circular hole 15 (to be precise, almost conical) is formed by limonene etching. A trapezoidal bottomed hole) is formed.
- FIG. 4C ' is a view of the circular hole 15 viewed from below.
- a piezoelectric body 16 (or a piezoelectric thin film) is fixed (or formed) in the circular hole 15 and its driving electrode is formed.
- the piezoelectric drive pump 18a is formed by attaching 17 and 17 to the piezoelectric drive pump 18a.
- the piezoelectric drive pump 18a drives the piezoelectric body 16 by an external signal to vibrate the thin film 13
- the refrigerant can be pumped. That is, the refrigerant is sent out along the flow path facing the pump.
- FIG. 5A to 5B show a micropump array 18 in which a plurality of piezoelectric drive pumps 18a, 18a,... Are formed on a base material.
- Figure 5B shows a side view, as viewed from the direction of the hole.
- reference numerals 19, 19,... Denote refrigerant flow paths, respectively.
- FIG. 6 shows a configuration example 20 of a heat transport device using the micropump array 18.
- the heat source HG is provided with a microchannel layer 2, and a microvia layer (a layer formed with only via holes 21 a, 21 a,...) 21 is provided on the channel layer. Further, fluid flat pipes 22 and 23 using a flexible base material or the like are arranged. In FIG. 6, for convenience of explanation, each layer is not shown in a stacked manner. However, in an actual configuration, a layer composed of the microchannel layer 2 and the fluid flat pipe 23 and a micropump layer 24 and the fluid flat pipe are formed. A thin heat transport device 20 is formed by laminating the layers comprising 22 from each other. These fluid flat pipes are channels for a refrigerant (such as FC75) and also function as heat radiating parts.
- FC75 refrigerant
- the pump layer 24 including the micropump array 18 has a function of drawing refrigerant from the fluid flat pipe 22 and sending it to the fluid flat pipe 23.
- a forced circulation system for the refrigerant is formed by providing a micropump layer 24 on the refrigerant flow path using 23, and heat is transmitted from the heat source HG to the fluid flat pipe via the microchannel layer 2. The heat is dissipated and the heat is also dissipated from the micro via layer 21.
- the unit has a unit (unit) structure in which the microchannel and the micropump are integrated, and by arranging the structure in parallel or regularly, so-called multi-unit and expandability can be obtained. I can go.
- FIG. 7 shows a heat transport device 25 having such a configuration, in which a micropump 27 is placed on a microchannel 26 (simplified simply as an elongated rectangular parallelepiped in the figure). It has a unit structure with. Since a bubble-driven micropump is used in this example, a via hole forming portion 28 is provided between the pump and the microchannel 26 for supplying heat to the micropump. . In the case of using the piezoelectric-driven micropump as described above, such a portion is unnecessary. Instead, a wiring substrate (flexible substrate, etc.) for connecting the piezoelectric drive electrodes is required.
- one of the heat transport units including the microchannel 26 and the micropump 27 is shifted upward for convenience, and the flow of the refrigerant in the unit is schematically indicated by an arrow. are doing.
- each channel, pump, and the like can be formed on a flexible base material using a flexible material.
- FIG. 7 shows a configuration in which the microchannel and the micropump are integrated in the stacking direction.
- the present invention is not limited to this, and one or more microchannels may be provided in a part of the refrigerant channel formed by the microchannel.
- a unit structure in which a pump is formed may be used.
- a loop is formed in an annular shape on a thin flat base material (flexible base material), and a refrigerant flow path including a pump portion and a channel portion is arranged on the same plane. This will be described in detail later.
- FIG. 8 shows an example of use of the heat transport device according to the present invention, in which a heat transport device '29 in the form of a film sheet is arranged over a heating element 30 and a heat radiating plate 31.
- the heat transfer device 29 includes the microchannel layer 2 and the micropump layer 4 or the pump layer and the via-through-hole layer as shown in an enlarged cross-sectional structure in a large circle in FIG. It has a multi-layered structure in which the layers containing layers are alternately laminated. Since the base material of each layer is made of a flexible material (polymer material, etc.), it is easy to use in terms of flexibility, and also has bending stress. There is an advantage that it can withstand deformation due to the like.
- the thickness of each layer is several tens / X m to about 100 m Therefore, the total film thickness does not become so large even if the number of layers is increased. For example, the entire thickness can be suppressed to 1 mm or less, so that the thickness can be sufficiently reduced.
- FIG. 9 shows another example of use, in which a heating element 33 and a heat sink 3 are placed on a film-sheet-shaped heat transport device 32 including a microchannel layer and a micropump layer. 4 shows an example in which each is attached. Also in this case, since a material having high flexibility is used for the base material of each layer, it is possible to flexibly cope with bending of the refrigerant flow path '.
- a heat transport device 32 is provided for a heating element such as a CPU (central processing unit).
- the heat transport device is particularly effective for heat removal and cooling of a heating element having a high heat density.
- a device using a multilayer structure using the laminated structure of the embodiment 1 or a unit of the embodiment 2 Multi-layering using a structure can be mentioned.
- a micro-pump layer an example using a piezoelectric-driven micro-pump array 18 is shown in FIG. Drive pumps may be used.
- Flexible pumps 35, 35, ... formed in a film shape are fixed to the heat sink 34 to increase the heat dissipation efficiency. Since the form can be considered, a very wide range of applications can be expected.
- microchannel forming the refrigerant flow path includes an embodiment in which this is an open type configuration and an embodiment in which this is a closed type configuration.
- FIG. 11 is a conceptual diagram showing a case where a micro-channel is formed in a closed loop shape (endless annular shape) to obtain a closed circuit configuration.
- the closed curve 36 shown in the figure indicates the circulation channel by the microchannel, and the part indicated by the symbol “P” indicates the micropump in the middle.
- This micropump may be a bubble-driven type or a piezoelectric-driven type, but the former is preferable from the viewpoint that no driving power is required. Then, in that case, a micropump is formed as a narrowed part of the microchannel.
- a circulation channel is formed by forming a microchannel and a micropump formed as a narrowed portion by narrowing a part of the channel into a closed loop, and a plurality of such channels are arranged in the same plane.
- the micropump P is provided in the vicinity of the heat source HG indicated by a dashed-dotted box in the figure.However, the temperature distribution of the heat source HG is not uniform.For example, it is assumed that the temperature becomes high locally at the point ⁇ H s ''. Then, in the case of the bubble drive type, the flow of the refrigerant is determined in the direction from the pump position to the point H s (the direction indicated by arrow Y in the figure). Therefore, the refrigerant moves in the flow path, is cooled by a heat removal means such as a heat sink or a cooling means at a place away from the heat source HG, and then circulates along a path of returning to the micropump again.
- a heat removal means such as a heat sink or a cooling means at a place away from the heat source HG
- the refrigerant to be filled in the flow channel is preferably water or ethanol in consideration of ease of handling and safety.
- the refrigerant receives heat near a pump formed as a narrow-diameter portion in a microchannel, and the refrigerant receives heat. The cycle of gas phase, then cooling to liquid phase, and returning to near the heat source is repeated.
- one micropump is provided in the circulation channel, but a configuration in which a plurality of pumps are formed may be used.
- FIG. 12 to FIG. 14 show examples of the closed-circuit type configuration.
- a heating element 37 such as CPU is disposed on a substrate, and a heat transfer device 38 in the form of a film sheet is attached to the heating element.
- a large number of closed-loop microchannels that do not intersect with each other are formed by forming minute grooves in a base material using a flexible material such as a polymer material. Then, a structure in which the grooved surface of the base material is covered with a cover member (film material) have.
- a closed curve group 39 in a track-like arrangement represents a circulation flow path for a refrigerant (such as water).
- a part of the heat transport device 38 is in contact with the high temperature portion 37 a of the heating element 37, and the micropumps are located at the portions indicated by the dashed-dotted line frame 40 in the individual circulation channels. Are formed respectively.
- a heat radiating plate, a heat removing plate, a heat transfer plate, and the like, which are not shown, are arranged. ing.
- FIG. 13 and FIG. 14 schematically show the cross-sectional structure of the heat transport device.
- Each circulation channel indicated by the closed curve group 39 includes a microchannel 41 formed as a groove having a constant width and a predetermined depth, and a narrow portion (a portion having a reduced width or depth) of the channel. It is constituted by a micropump 42 formed as:
- FIG. 13 shows an enlarged view of a part of the microchannel and the micropump, and here, they are schematically shown as transparent members.
- FIG. 14 shows only the main part of the micropump (the groove formed in the base material).
- a pump section 42a is formed as a portion where a part of a channel forming the closed loop is narrowed down, and a channel having a constant width is formed in other portions.
- the width (w) and depth (d) of the groove formed on the base material are simple except for the pump part, although it is easy to prepare. Is changed continuously or stepwise according to the position on the flow path, so that the cross-sectional area of the flow path varies locally. You may design so that.
- the refrigerant is moved in a direction approaching the heat source.
- the left side of the pump portion indicated by the round frame 40 in FIG. When a hot spot exists in the flow path, the refrigerant moves counterclockwise in the flow path indicated by the closed curve group 39.
- the position of the pump section (the narrow-diameter portion of the channel) is It is sufficient to adopt an arrangement deliberately shifted from the above. This eliminates the need to provide an active heat source for the bombing action.
- the heat transport device 38 is formed in a very thin sheet shape, it is possible to conduct heat transfer more effectively by stacking and using this in multiple layers. Less space is required.
- the circulation flow path of the refrigerant can be formed relatively freely, so that the degree of design freedom is high.
- the concentric semi-circular parts were connected by two sets of straight paths, and the flow path was shaped like a “track of the stadium”, but it is limited to such a shape. It does not mean that it does not matter whether or not there is a branch. The shape of the flow path over the heat source is possible.
- FIG. 15 shows an example in which a heat transport device provided for each of a plurality of heat sources is connected to each other to form a flow path.
- the heat transport device is connected to a branched flow path.
- a plurality of ICs are mounted on each of the circuit boards 43 and 44, and among them, the IC having the largest calorific value is defined as a heating element (heat source).
- a heating element heat source
- a heat transport device 45 is provided for the IC 43 a, and the IC 43 A heat transport device 46 is attached to a 2.
- the heat transport device 47 is attached to the IC 44a1, and the substrate is also provided.
- a heat radiator (or heat sink) 48 is provided on 44.
- the heat transport devices 45 to 47 have a basic structure in which the channels including the channels formed in a plane on the surface of the base material and the flow path including the pump portion (bubble driven type) are formed in a loop shape. I have. Therefore, a plurality of flow paths are formed on the same plane, and the pump is driven by the heat of the heating element I C as power.
- the heat transport device 46 has two flow passage portions 46 A and 46 A each composed of a plurality of micro-channels, and heat is exchanged with the heat radiating portion 48.
- a part of the heat transport device 46 is attached to the surface of the IC 43 a 2, which is a heat-generating portion, and the refrigerant (water, etc.) heated here passes through the negative flow path portion 46 A
- the heat returns to the portion attached to the surface of the IC 43a2 again.
- Some of the flow path portions connected to the heat radiating section 48 are branched and connected to the heat transport devices 45 and 47, respectively.
- one of the flow portions 47 A is branched in a T shape on the way and is directed to the substrate 43 side. It extends to the flow path portions 45 A and 45 A extending from the heat transport device 45 to the substrate 44 side. Accordingly, heat is exchanged between each heat transport device and the heat radiating section 48 through the microchannels formed in these flow path portions (that is, the refrigerant heated at the mounting position of the IC on the substrate is not heated). After arriving at the heat radiating part via each flow path part and releasing heat here, it returns to the mounting position of each IC again.)
- the minute space and the pump are integrated to arrange the space and occupied surface of the entire heat transport system. Since the product and the like can be reduced, the device can be made thinner.
- a laminated structure is adopted as in the invention according to claim 2 of the claim, the number of channel groups and pump groups is increased, and an integrated structure as in the invention according to claim 3 is provided. If you take it, The thermal conductivity can be easily increased by increasing the number of unit structures including the pump.
- the minute pump can be formed by narrowing a part of the passage for the minute channel, the configuration is simple.
- the refrigerant can be circulated in the closed loop flow path by the minute channel and the minute pump to carry out heat transfer, a number of such closed loops are provided in parallel. Thus, the efficiency of heat removal and cooling can be increased.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Micromachines (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Reciprocating Pumps (AREA)
Abstract
In a heat transport device using microchannels and micropumps, thinning is attained and heat transfer characteristics are improved. A heat transfer device (1) has a construction in which microchannels for a refrigerant to pass therethrough and micropumps for pumping the refrigerant are integrated. For example, a multiple layer construction is used in which a channel layer (2) formed with microchannels (2a) and a pump layer (4) formed with micropumps (4a) are laminated to each other, or another construction is used in which a number of unit structures are arranged, each unit structure including a microchannel and a micropump which are integrated. And, pliability is imparted in that the microchannels and micropumps are formed on a resin base material using a flexible material.
Description
明細書 熱輸送装置 技術分野 Description Heat transport equipment Technical field
本発明は、 マイクロチャンネル及びマイクロポンプを用いた熱 輸送装置の薄型化を図るための技術に関する。 背景技術 The present invention relates to a technique for reducing the thickness of a heat transport device using a microchannel and a micropump. Background art
放熱や冷却用のデバイスとして、 ヒートパイプやヒートシンク 放熱フィ ン等が広く使用されており、 基本的には、 蒸気の流れや 放熱後の流体の戻り等が繰り返されて熱交換や冷却が行われる。 Heat pipes and heat sinks are widely used as devices for heat dissipation and cooling.Basically, heat exchange and cooling are performed by repeating the flow of steam and the return of fluid after heat dissipation. .
ところで、 近時の電子デバイス技術やマイクロマシン技術の発 達を受けて、 これまでよりもコンパク トで熱伝導特性が良いデバ イスを目指し、 半導体シリコンプロセスを利用した、 所謂 M E M S (Micro Electro-Mechanical System) 技術が着目されている。 例えば、 局所的な高密度の熱源に対応した冷却素子等には、 「マ イク口チャンネル」 と称するデバイスが用いられており、 幅数十 m (ミクロン)、 深さ 1 0 0 m程度の微小フィ ンをシリコン基 盤に多数形成して各チャンネル (通路) に冷媒流体を通過させる ことで冷却を行える。 また、 この他、 流体強制振動板を用いた閉 鎖型マイク ロチャンネル等ではみかけの熱伝導率が銅の熱伝導 率より も遥かに上回る性能.をもっている。 By the way, in response to recent developments in electronic device technology and micromachine technology, we have been aiming for devices that are more compact and have better heat conduction characteristics, and have used semiconductor silicon processes, so-called MEMS (Micro Electro-Mechanical System). ) Technology is attracting attention. For example, a device called a “micro-channel” is used for a cooling element, etc., corresponding to a local high-density heat source, and has a width of several tens of meters (microns) and a depth of about 100 m. Cooling can be performed by forming a large number of fins on the silicon substrate and passing refrigerant fluid through each channel (passage). In addition, in a closed-type microchannel or the like using a fluid-forced diaphragm, the apparent thermal conductivity is much higher than that of copper.
しかしながら、 従来の装置にあっては、 放熱デバイスや冷却デ バイスの薄型化やコンパク ト化に関して一定の限界があり、 その 結果、 熱源に対して当該デバイスを付設した場合に装置の小型化
を妨げる要因になってしまう という問題がある。 However, conventional equipment has certain limitations with regard to thinning and compacting of heat dissipation devices and cooling devices.As a result, when the device is attached to a heat source, the equipment becomes smaller. There is a problem that it becomes a factor that hinders.
例えば、 厚さ l m m、 幅 1 O m m、 長さ 5 O m mのヒー トパイ プ等では 1 c m 2 当たり数ヮッ トという能力限界によって大きな 放熱面積や伝熱面積を必要とし、 超小型の装置には適用できなく なってしまう。 For example, the thickness lmm, a width 1 O mm, require a large heat dissipation area and the heat transfer area by the ability limit of 1 cm 2 per number Wa Tsu DOO in heating Topai flop like length 5 O mm, the device of the super compact It cannot be applied.
また、 マイクロチャンネルを用いたデバイスにおいて冷媒の強 制的な循環を行うには何らかのボンピング作用をもった素子 (マ イク口ポンプ) が必要になるが、 マイクロチャンネル及びマイク 口ポンプを独立に設けて冷媒の循環流路をそれぞれに形成した のでは、 熱輸送系全体としての配置スペースを少なくすることが 困難であり、 熱輸送に係る熱密度を高めることが難しい。 In addition, a device having a pumping function (a microphone port pump) is required to perform forced circulation of the refrigerant in a device using a microchannel, but the microchannel and the microphone port pump are provided independently. If the circulation channels for the refrigerant are formed individually, it is difficult to reduce the space for disposing the entire heat transport system, and it is difficult to increase the heat density related to the heat transport.
そこで、 本発明は、 マイクロチャンネル及びマイクロポンプを 用いた熱輸送装置において、 薄型化を図り、 伝熱特性'を向上させ ることを課題とする。 発明の開示 Therefore, an object of the present invention is to reduce the thickness and improve the heat transfer characteristics of a heat transport device using a microchannel and a micropump. Disclosure of the invention
本発明は、 上記した課題を解決するために、 冷媒を通過させる ための微小チャンネルと、 冷媒を輸送するための微小ポンプとが 一体化された構造を有するものであり、 例えば、 微小チャンネル が形成されたチャンネル層と、 微小ポンプが形成されたポンプ層 とを積層したり、 あるいは微小チャンネルと微小ポンプとを一体 化した単位構造を備えている。 In order to solve the above-mentioned problems, the present invention has a structure in which a microchannel for passing a refrigerant and a micropump for transporting the refrigerant are integrated. For example, a microchannel is formed. The channel layer thus formed and the pump layer on which the minute pump is formed are laminated, or a unit structure is provided in which the minute channel and the minute pump are integrated.
従って、 本発明によれば、 微小チャンネルと微小ポンプを一体 化させて、 積層構造又は一体構造に配列させることでデバイスを 薄型にすることができる。 そして、 積層構造を採る場合には、 チ ヤンネル層に含まれる微小チャンネル群やポンプ層に含まれる
微小ポンプ群を増やしたり層数を増やすことにより、 また、 一体 構造を採る場合には、 微小チヤンネルと微小ポンプを含む単位構 造の数を増やすことで簡単に熱伝導性を高めることができる。 図面の簡単な説明 Therefore, according to the present invention, the device can be made thin by integrating the microchannel and the micropump and arranging them in a laminated structure or an integrated structure. In the case of adopting a laminated structure, it is included in the microchannel group included in the channel layer and the pump layer. The thermal conductivity can be easily increased by increasing the number of micro-pump groups or the number of layers, or when employing an integrated structure, by increasing the number of unit structures including micro-channels and micro-pumps. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明に係る熱輸送装置の構成例を示す図であり、 ( A ) は積層構造を示す図、 (B ) は各層の上面図、 (C ) は方向 Dから見た側面図である。 FIG. 1 is a diagram showing a configuration example of a heat transport device according to the present invention, wherein (A) is a diagram showing a laminated structure, (B) is a top view of each layer, and (C) is a side surface viewed from a direction D. FIG.
第 2 A図乃至第 2 C図は、 気泡駆動型ポンプの基本構成の説明 図である。 2A to 2C are explanatory diagrams of the basic configuration of the bubble-driven pump.
第 3 A図乃至第 3 F図は、 マイ クロチャンネルやマイクロボン プの流路形成方法についての説明図である。 FIGS. 3A to 3F are explanatory diagrams of a method for forming a flow channel of a microchannel or a micropump.
第 4 A図乃至第 4 D図は、 圧電駆動型ポンプの形成方法に関す る説明図である。 4A to 4D are explanatory views related to a method of forming a piezoelectric drive pump.
第 5 A図乃至第 5 B図は、 マイクロポンプアレイを概略的に示 す図である。 5A to 5B are diagrams schematically showing a micropump array.
第 6図は、 熱輸送装置の構成例を概略的に示す図であり、 側方 からみた構成及び各部の形状等を併せて示す。 FIG. 6 is a diagram schematically showing a configuration example of a heat transport device, and also shows a configuration viewed from a side, shapes of respective parts, and the like.
第 7図は、 単位構造の繰り返し配列によ り形成される熱輸送装 置の構成例を示す図である。 FIG. 7 is a diagram showing a configuration example of a heat transport device formed by repeating arrangement of unit structures.
第 8図は、 本発明による熱輸送装置の使用例を示す図である。 第 9図は、 本発明による熱輸送装置の別の使用例を示す図であ る。 FIG. 8 is a diagram showing an example of use of the heat transport device according to the present invention. FIG. 9 is a diagram showing another example of use of the heat transport device according to the present invention.
第 1 0図は、 マイクロポンプアレイの使用例を示す図である。 第 1 1 図は、 マイクロチャンネルを閉ループ状に形成した構成 形態を示す概念図である。
第 1 2図は、 第 1 3図及び第 1 4図とともに、 閉路型の構成例 について示したものであ り、 本図は平面から見た概略図である。 第 1 3図は、 熱輸送装置におけるマイクロチャンネルとマイク 口ポンプの一部を拡大して示す図である。 FIG. 10 is a diagram showing an example of use of a micropump array. FIG. 11 is a conceptual diagram showing a configuration in which microchannels are formed in a closed loop. FIG. 12 shows an example of a closed-circuit type configuration together with FIGS. 13 and 14, and FIG. 12 is a schematic diagram viewed from a plane. FIG. 13 is an enlarged view showing a part of a microchannel and a microphone pump in the heat transport device.
第 1 4図は、 マイクロポンプの要部を示す図である。 FIG. 14 is a diagram showing a main part of the micropump.
第 1 5図は、 複数の熱源に対してそれぞれに熱輸送装置を設け て繋いだ実施形態の一例を示す斜視図である。 発明を実施するための最良の形態 FIG. 15 is a perspective view showing an example of an embodiment in which a heat transport device is provided for each of a plurality of heat sources and connected. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 冷媒を通過させるための微小チャンネル(マイクロ チャンネル)と冷媒を輸送するための微小ポンプ (マイクロボン プ) を使用した薄型の熱輸送装置に関するものであり、 冷却素子 や熱交換器等に幅広く適用することができる。 The present invention relates to a thin heat transport device using a micro channel (micro channel) for passing a refrigerant and a micro pump (micro pump) for transporting the refrigerant, such as a cooling element or a heat exchanger. Can be widely applied to.
そして、 本発明に係る熱輸送装置については、 微小チャンネル と微小ポンプを一体化させるに当たって、 下記のような形態が挙 げられる。 In the heat transport device according to the present invention, the following forms can be given for integrating the microchannel and the micropump.
①チャンネル層とポンプ層を積層し、 あるいは積層したものを 多層化する形態。 (1) A mode in which a channel layer and a pump layer are stacked, or a multilayer of the stacked layers.
②チャンネルとポンプとを一体化して 1 つの単位構造とし、 当 該構造を複数並設させた形態。 · 先ず、 形態①の例を第 1 図に示す。 本例はマイク ロチャンネル が形成されたチャンネル層と、 マイクロポンプが形成されたボン プ層とを積層した構造を備えており、 熱源 H Gに対する熱輸送装 置 1 (例えば、 冷却や除熱装置) として用いられる。 第 1 図 (A ) はその側面図である。 (2) The channel and pump are integrated into a single unit structure, and multiple such structures are juxtaposed. · First, Fig. 1 shows an example of form II. This example has a structure in which a channel layer in which a microchannel is formed and a pump layer in which a micropump is formed are stacked, and a heat transport device 1 for a heat source HG (for example, a cooling or heat removal device) Used as Fig. 1 (A) is a side view.
熱輸送装置 1 はマイク ロチャンネル層 2、 マイクロビア ' スル
一ホール層 3、 マイクロポンプ層 4の積層構造を有しており、 各 層は融着等により結合されている。 Heat transport device 1 has microchannel layer 2, microvia It has a laminated structure of one hole layer 3 and micropump layer 4, and each layer is connected by fusion or the like.
第 1 図 ( B ) には各層の上面図を示す。 また、 第 1 図 ( C ) は 熱輸送装置 1 を矢印 Dの方向から見た際の側面図である。 3層の うち、 熱源 H Gに直接接触しているのがマイクロチャンネル層 2 であり、 多数のマイクロチャンネル 2 a 、 2 a、 …が互いに平行 な関係をもって形成されている。各チャンネルには冷媒(例えば、 F C 7 2 、 F C 7 5等、 フロン系のものが挙げられるが、 これに 限らず空気や水、 エタノール等でも良い。) が通過することで、 熱源 H Gからの熱が伝達される。 Fig. 1 (B) shows a top view of each layer. FIG. 1 (C) is a side view of the heat transport device 1 as viewed from the direction of arrow D. Of the three layers, the microchannel layer 2 is in direct contact with the heat source HG, and a number of microchannels 2a, 2a, ... are formed in a parallel relationship with each other. Refrigerant (eg, FC72, FC75, etc., but not limited thereto, but may be air, water, ethanol, etc.) passes through each channel. Heat is transferred.
マイクロチャンネル層 2の上層にはマイク口ビア ·スル一ホ一 ル層 3が形成されており、 熱絶縁材料で形成された基材に対して 黒丸で示すスルーホール 3 a、 3 a、 …と、 白丸で示すビアホー ル 3 b 、 3 b、 ···が形成されている。 尚、 各スルーホール 3 aは 熱輸送装置 1 の長手方向 (マイク ロチャンネルの形成方向に沿う 方向) における両端寄りの場所に形成されていて、 マイクロチヤ ンネルとマイクロポンプの流路を繋いでいる。 また、 各ビアホー ル 3 bは、 マイクロポンプの駆動に必要な熱供給のために用いら れ、 銅等の熱伝導性の良い材料が孔内に埋設されている。 A microphone opening via hole layer 3 is formed on the upper layer of the micro channel layer 2, and the through holes 3a, 3a,. , Via holes 3 b, 3 b,... Shown by white circles are formed. Each through-hole 3a is formed at a position near both ends in the longitudinal direction of the heat transport device 1 (the direction along the direction in which the microchannel is formed), and connects the microchannel and the flow path of the micropump. . Each via hole 3b is used for supplying heat necessary for driving the micropump, and a material having good heat conductivity such as copper is buried in the hole.
マイクロポンプ層 4には、 複数のマイクロポンプ 4 a 、 4 a …が形成されている。 本例においては、 各マイクロポンプには気 泡駆動型のサーマルポンプ (熱的効果だけで駆動することができ るマイクロポンプ) が用いられている。 A plurality of micropumps 4 a, 4 a,... Are formed in the micropump layer 4. In this example, a bubble-driven thermal pump (a micropump that can be driven only by thermal effects) is used for each micropump.
第 2 A図乃至第 2 C図はその基本構成についての説明図であ り、 流路の一部を絞り込んで細く した構成によりマイクロポンプ 4 aが形成されている。
そして、 第 2 A図では、 流体出口の手前にヒ一夕 5が設けられ ていて、 当該ヒータの加熱によって第 2 B図に示すように、 気泡 6が発生する。 この気泡の振動を利用したボンピング作用を利用 することで、 第 2 C図のように流体を送り出すことができる。 FIGS. 2A to 2C are explanatory views of the basic configuration, and a micropump 4a is formed by a configuration in which a part of a flow path is narrowed down. In FIG. 2A, a heater 5 is provided in front of the fluid outlet, and the heating of the heater generates bubbles 6 as shown in FIG. 2B. The fluid can be sent out as shown in Fig. 2C by utilizing the pumping action utilizing the vibration of the bubbles.
尚、 このようなマイクロポンプで発生する最大圧については、 表面張力及び流路の最大半径、 最小半径から決まるラプラスの式 によって良く説明されることが知られている。 ここで、 加熱源と して第 2 A図乃至第 2 C図に示すようにヒ一タを利用すると、 外 部からの電力の供給が必要になり効率が落ちるという問題があ る。 そこで第 1 図に示すように当該ヒ一夕の代わりに熱源 H Gか らの熱そのものを利用することが好ましい。 本例においては、 マ イク口チャ ンネル 2 aからビアホール 3 b を介してマイク ロポ ンプ 4 aに直接熱を伝達させている。 It is known that the maximum pressure generated by such a micropump is well explained by Laplace's equation determined by the surface tension and the maximum and minimum radii of the flow path. Here, if a heater is used as a heating source as shown in FIGS. 2A to 2C, there is a problem that power supply from outside is required and efficiency is reduced. Therefore, as shown in Fig. 1, it is preferable to use the heat itself from the heat source HG instead of the heat source. In this example, heat is directly transmitted from the microphone channel 2a to the micro pump 4a via the via hole 3b.
従って、 本例では、 冷媒がマイクロチャンネル層 2 とマイクロ ポンプ層 4 との間やスルーホール 3 a を介して両層の間で循環 され、 これにより、 熱源 HGからの熱が各マイクロチャンネルを 介して冷媒により輸送される冷却系が形成されることになる。 Therefore, in this example, the refrigerant is circulated between the microchannel layer 2 and the micropump layer 4 and between the two layers via the through holes 3a, whereby the heat from the heat source HG passes through each microchannel. Thus, a cooling system transported by the refrigerant is formed.
マイクロチャンネル層とマイク口ポンプ層の形成方法の例を 第 3 A図乃至第 3 F図に示す。 プラスチック等の基材 7を用意し (第 3 A図)、 その両面には、 第 3 B図に示すようにイオン注入 処理 ( P B I I 処理) でス トップ層 (あるいは表面改質層) 8、 8 を形成する。 そして、 第 3 C図に示すようにマスクパターニン グを行う。 マスク M Pには、 フォ トレジス ト樹脂、 金属やセラミ ック等が用いられる。 その後第 3 D図に示すように 02 (酸素) ビームエッチング等の ドライエッチングによる開口 9の形成を 経て、 第 3 E図に示すように、 リモネン ( d— C 1()H16) 等によ
る化学エッチングにより 当該開口から基材を部分的に除去する。 すなわち、 エッチング溶液槽に浸して溶解させることにより、 第FIGS. 3A to 3F show an example of a method of forming the microchannel layer and the microphone port pump layer. A base material 7 such as plastic is prepared (Fig. 3A), and both surfaces are subjected to ion implantation treatment (PBII treatment) as shown in Fig. 3B. To form Then, mask patterning is performed as shown in FIG. 3C. For the mask MP, a photoresist resin, metal, ceramic or the like is used. Thereafter, as shown in FIG. 3D, through the formation of the opening 9 by dry etching such as O 2 (oxygen) beam etching, etc., as shown in FIG. 3E, to limonene (d—C 1 () H 16 ) and the like. Yo The base material is partially removed from the opening by chemical etching. That is, by immersing and dissolving in an etching solution tank,
3 F図に示すように、 通路 1 0 としてチャンネルやポンプ流路等 を形成する。 As shown in FIG. 3F, a channel, a pump flow path, and the like are formed as the passage 10.
また、 チャンネル層及びポンプ層を構成する基材が可撓性に富 む材料 (例えば、 ポリマーフィルムや、 フレキシブル基板等に使 用される樹脂材料等) を用いることによって、 柔軟性に富むマイ クロチャンネルやマイクロポンプを形成することができる。 すな わち、 フィルム層に各デバイスを形成することができる。 したが つて、 熱輸送装置を曲げて使用したり、 あるいは所望の曲面に沿 う使用形態が可能となり、 適用範囲を拡大させることができる。 特に、 小型化や薄型化のために配置スペースに余裕のない装置等 において有効である。 In addition, the base material constituting the channel layer and the pump layer is made of a material having high flexibility (for example, a polymer film, a resin material used for a flexible substrate, or the like), so that a micro material having high flexibility is obtained. Channels and micropumps can be formed. That is, each device can be formed on the film layer. Therefore, it is possible to use the heat transport device by bending it, or to use the heat transport device along a desired curved surface, thereby expanding the applicable range. In particular, it is effective for a device where the arrangement space is not enough for miniaturization and thinning.
. 上記の例では、 気泡駆動型のマイクロポンプを用いた構成を示 したが、 これに限らず、 圧電駆動型 (あるいはピエゾ駆動型) の ポンプを用いることもできる。 In the above example, a configuration using a bubble-driven micropump has been described, but the present invention is not limited to this, and a piezoelectric-driven (or piezo-driven) pump can also be used.
第 4 A図乃至第 4 D図はそのようなポンプの形成方法の概要 について一例を示したものである。 4A to 4D show an example of an outline of a method for forming such a pump.
先ず、 第 4 A図に示すように、 基材 1 1 の両面にイオン注入層 1 2 、 1 2 をそれぞれ形成してその上に薄膜 1 3、 1 3 を形成す る。 そして、 第 4 B図に示すように、 イオンビームエッチングに より開口 1 4を形成した後、 第 4 C図に示すように、 リモネンェ ツチングでテーパー状の円穴 1 5 (正確には、 ほぼ円錐台状をし た有底穴) を形成する。 第 4 C ' 図は円穴 1 5 を下面かち見た図 である。そして、第 4 D図に示すように円穴 1 5 に圧電体 1 6 (あ るいは圧電薄膜) を固定し (あるいは形成し)、 その駆動用電極
1 7 、 1 7 を付設することで圧電駆動型ポンプ 1 8 aを形成する 圧電駆動型ポンプ 1 8 aは外部からの信号によって圧電体 1 6 を駆動することにより薄膜 1 3 を振動させることで、 冷媒のボン ピングを行う ことができる。 すなわち、 ポンプに面した流路に沿 つて冷媒が送り出される。 First, as shown in FIG. 4A, ion-implanted layers 12 and 12 are formed on both surfaces of a base material 11, and thin films 13 and 13 are formed thereon. Then, as shown in FIG. 4B, after the opening 14 is formed by ion beam etching, as shown in FIG. 4C, a tapered circular hole 15 (to be precise, almost conical) is formed by limonene etching. A trapezoidal bottomed hole) is formed. FIG. 4C 'is a view of the circular hole 15 viewed from below. Then, as shown in Fig. 4D, a piezoelectric body 16 (or a piezoelectric thin film) is fixed (or formed) in the circular hole 15 and its driving electrode is formed. The piezoelectric drive pump 18a is formed by attaching 17 and 17 to the piezoelectric drive pump 18a.The piezoelectric drive pump 18a drives the piezoelectric body 16 by an external signal to vibrate the thin film 13 In addition, the refrigerant can be pumped. That is, the refrigerant is sent out along the flow path facing the pump.
第 5 A図乃至第 5 B図は複数の圧電駆動型ポンプ 1 8 a 、 1 8 a、 …を基材に形成したマイクロポンプアレイ 1 8 を示している 第 5 A図は圧電体の配 S穴の方向からみた図を示し、 第 5 B図は 側面図を示す。 尚、 ここで 1 9 、 1 9、 …は冷媒流路をそれぞれ 示している。 5A to 5B show a micropump array 18 in which a plurality of piezoelectric drive pumps 18a, 18a,... Are formed on a base material. Figure 5B shows a side view, as viewed from the direction of the hole. Here, reference numerals 19, 19,... Denote refrigerant flow paths, respectively.
第 6 図は上記マイクロポンプアレイ 1 8 を使った熱輸送装置 の構成例 2 0を示すものである。 FIG. 6 shows a configuration example 20 of a heat transport device using the micropump array 18.
熱源 H Gにはマイクロチャンネル層 2が付設されており、 当該 チャンネル層の上にはマイクロビア層 (ビアホール 2 1 a 、 2 1 a、 …だけを形成した層) 2 1が設けられている。 そして、 フレ キシブル基材等を用いた流体平板パイプ 2 2 、 2 3が配置されて いる。 なお、 第 6図では説明の便宜上、 各層を積層して描いてい ないが、 実際の構成では、 マイクロチャンネル層 2及び流体平板 パイプ 2 3からなる層と、 マイクロポンプ層 2 4及び流体平板パ イブ 2 2からなる層とを積層した構造にして薄型の熱輸送装置 2 0 を構成する。 これらの流体平板パイプは冷媒 ( F C 7 5等) の流路であって、 かつ放熱部分としても機能する。 The heat source HG is provided with a microchannel layer 2, and a microvia layer (a layer formed with only via holes 21 a, 21 a,...) 21 is provided on the channel layer. Further, fluid flat pipes 22 and 23 using a flexible base material or the like are arranged. In FIG. 6, for convenience of explanation, each layer is not shown in a stacked manner. However, in an actual configuration, a layer composed of the microchannel layer 2 and the fluid flat pipe 23 and a micropump layer 24 and the fluid flat pipe are formed. A thin heat transport device 20 is formed by laminating the layers comprising 22 from each other. These fluid flat pipes are channels for a refrigerant (such as FC75) and also function as heat radiating parts.
上記マイクロポンプアレイ 1 8 を含むポンプ層 2 4は、 流体平 板パイプ 2 2から冷媒を引き込んで流体平板パイプ 2 3 に対し て送り出す役目を有している。 The pump layer 24 including the micropump array 18 has a function of drawing refrigerant from the fluid flat pipe 22 and sending it to the fluid flat pipe 23.
本構成では、 マイクロチャンネル層 2 と流体平板パイプ 2 2 、
2 3 を用いた冷媒の流路上にマイ クロポンプ層 2 4を設けるこ とで冷媒の強制循環系を形成しており、 熱源 H Gからマイクロチ ヤ ンネル層 2 を介して流体平板パイプに熱が伝わって放熱され るとともに、 マイクロビア層 2 1からも放熱がなされる。 In this configuration, the microchannel layer 2 and the flat fluid pipe 2 2, A forced circulation system for the refrigerant is formed by providing a micropump layer 24 on the refrigerant flow path using 23, and heat is transmitted from the heat source HG to the fluid flat pipe via the microchannel layer 2. The heat is dissipated and the heat is also dissipated from the micro via layer 21.
また、 以上の説明では、 マイクロチャンネル層とマイクロボン プ層とをそれぞれ 1 つずつ組み合わせた基本例についてだけ説 明したが、 複数の層を積層する とにより多層構造のデバイスを 容易に形成することができる。 In the above description, only the basic example in which one microchannel layer and one micropump layer are combined is described.However, a multilayer device can be easily formed by laminating a plurality of layers. Can be.
次に、 上述した形態②の構成について説明する。 Next, the configuration of the above-described embodiment I will be described.
本形態では、 マイクロチャンネルとマイクロポンプが一体化さ れた単位 (ュニッ 卜) 構造を有しており、 当該構造を並列的又は 規則的に配置する ことで所謂マルチ化や拡張性を得ることがで ぎる。 In this embodiment, the unit has a unit (unit) structure in which the microchannel and the micropump are integrated, and by arranging the structure in parallel or regularly, so-called multi-unit and expandability can be obtained. I can go.
第 7図は、 そのような構成をとる熱輸送装置 2 5 を示したもの であり、 マイクロチャンネル 2 6 (図には単に細長い直方体とし て簡略化して示す。) の上に、 マイクロポンプ 2 7 を配置した単 位構造を持っている。 尚、 本例では気泡駆動型のマイクロポンプ を使用しているため、 当該ポンプとマイクロチャンネル 2 6 との 間には、 マイクロポンプへの熱供給用にビアホールの形成部 2 8 が設けられている。 上述したような圧電駆動型のマイクロポンプ 'を使用する場合には、 このような部分は不要である。 代わりに、 圧電体の駆動電極との配線用基板 (フレキシブル基板等) が必要 になる。 FIG. 7 shows a heat transport device 25 having such a configuration, in which a micropump 27 is placed on a microchannel 26 (simplified simply as an elongated rectangular parallelepiped in the figure). It has a unit structure with. Since a bubble-driven micropump is used in this example, a via hole forming portion 28 is provided between the pump and the microchannel 26 for supplying heat to the micropump. . In the case of using the piezoelectric-driven micropump as described above, such a portion is unnecessary. Instead, a wiring substrate (flexible substrate, etc.) for connecting the piezoelectric drive electrodes is required.
尚、 第 7図においてはマイクロチャンネル 2 6及びマイクロポ ンプ 2 7 を含む熱輸送ュニッ トのうちの 1 つを便宜的に上方に ずらして、 当該ュニッ トに関する冷媒の流れを模式的に矢印で示
している。 このような構造をもった熱輸送ユニッ トを並列的に配 置することにより、 熱輸送路のマルチ化を図ることができる。 In FIG. 7, one of the heat transport units including the microchannel 26 and the micropump 27 is shifted upward for convenience, and the flow of the refrigerant in the unit is schematically indicated by an arrow. are doing. By arranging heat transport units having such a structure in parallel, it is possible to achieve multiple heat transport paths.
また、図示の便宜上、熱輸送ユニッ トの基材を省略しているが、 可撓性材料を用いたフレキシブル基材に各チャンネルやポンプ 等を形成することができる。 Although the base material of the heat transport unit is omitted for convenience of illustration, each channel, pump, and the like can be formed on a flexible base material using a flexible material.
第 7図では、 マイクロチャンネルとマイクロポンプとを積層方 向において一体化した構成を示したが、 これに限らず、 マイクロ チャンネルにより形成される冷媒流路の一部に 1個又は複数個 のマイクロポンプを形成した単位構造を採用しても構わない。 例 えば、 薄い平面基材 (フレキシブル基材) 上で環状にループを形 成して、 ポンプ部分とチャンネル部分とから成る冷媒流路を同一 平面上に配置した構成形態が挙げられる。 これについては後で詳 述する。 FIG. 7 shows a configuration in which the microchannel and the micropump are integrated in the stacking direction. However, the present invention is not limited to this, and one or more microchannels may be provided in a part of the refrigerant channel formed by the microchannel. A unit structure in which a pump is formed may be used. For example, there is a configuration in which a loop is formed in an annular shape on a thin flat base material (flexible base material), and a refrigerant flow path including a pump portion and a channel portion is arranged on the same plane. This will be described in detail later.
そして、 本形態②と上記形態①については、 それぞれ独立に用 いることができるが、 用途に応じて両者を併用することによって 実施形態の幅を広げることも可能である。 Although the present embodiment I and the above embodiment I can be used independently, it is also possible to widen the scope of the embodiment by using both according to the application.
第 8図は本発明による熱輸送デバイスの使用例を示したもの であり、 フィルムシート状をした熱輸送デバイス' 2 9が発熱体 3 0 と、 放熱板 3 1 とに跨がって配置されている。 この場合の熱輸 送デバイス 2 9は、 同図の大円枠内においてその断面構造を拡大 して示すように、 マイクロチャンネル層 2 とマイクロポンプ層 4 あるいは当該ポンプ層及びビア ·スルーホール層を含む層とを交 互に積層した多層構造になっており、 各層の基材には可撓性材料 (ポリマー材等) が使用されているので、 フレキシビリティの面 で使い易く、 また、 曲げ応力による変形等にも耐えられるという 利点がある。 このとき、 各層の厚みは数十 / X m〜 1 0 0 m程度
であるため、 多層化しても全フィルム厚がそれほど大きく はなら ない。 例えば、 全体で 1 m m以下の厚みに抑えることができるの で、 充分に薄型化が図られる。 FIG. 8 shows an example of use of the heat transport device according to the present invention, in which a heat transport device '29 in the form of a film sheet is arranged over a heating element 30 and a heat radiating plate 31. ing. In this case, the heat transfer device 29 includes the microchannel layer 2 and the micropump layer 4 or the pump layer and the via-through-hole layer as shown in an enlarged cross-sectional structure in a large circle in FIG. It has a multi-layered structure in which the layers containing layers are alternately laminated. Since the base material of each layer is made of a flexible material (polymer material, etc.), it is easy to use in terms of flexibility, and also has bending stress. There is an advantage that it can withstand deformation due to the like. At this time, the thickness of each layer is several tens / X m to about 100 m Therefore, the total film thickness does not become so large even if the number of layers is increased. For example, the entire thickness can be suppressed to 1 mm or less, so that the thickness can be sufficiently reduced.
また、 第 9図は別の使用例を示したものであり、 マイクロチヤ ンネル層とマイクロポンプ層とを含むフィルムシー ト状の熱輸 送デバイス 3 2の上に発熱体 3 3 と放熱板 3 4 をそれぞれ取り 付けた例を示している。 そして、 この場合にも、 各層の基材には 可撓性に富む材料が使用されているので、 冷媒流路 'の曲げ等に対 して柔軟に対処することができる。 例えば、 携帯用のコンピュー 夕一装置等において、 2つの筐体部がヒンジ結合された構造を有 する場合に、 C P U (中央処理装置) 等の発熱体に対して熱輸送 デバイス 3 2 を設け、 当該発熱体とは別の筐体内に放熱板 3 4を 配置して当該熱輸送デバイスによ り発熱体と放熱板とを熱的に 結合させた放熱構造や冷却構造を実現することができる。 FIG. 9 shows another example of use, in which a heating element 33 and a heat sink 3 are placed on a film-sheet-shaped heat transport device 32 including a microchannel layer and a micropump layer. 4 shows an example in which each is attached. Also in this case, since a material having high flexibility is used for the base material of each layer, it is possible to flexibly cope with bending of the refrigerant flow path '. For example, in a portable computer device, etc., when two housings have a structure in which hinges are connected, a heat transport device 32 is provided for a heating element such as a CPU (central processing unit). By disposing the heat radiating plate 34 in a housing separate from the heat generating element, a heat radiating structure or a cooling structure in which the heat generating element and the heat radiating plate are thermally coupled by the heat transport device can be realized.
尚、 熱輸送デバイスについては、 特に熱密度の高い発熱体の除 熱や冷却に効果的であり、 前記したように、 形態①の積層構造を 用いた多層化によるもの、 あるいは、 形態②の単位構造を用いた マルチ化によるものが挙げられるが、 例えば、 第 1 0図に示すよ うに、 マイクロポンプ層 (図には圧電駆動型のマイクロポンプァ レイ 1 8 を用いた例を示すが、 気泡駆動型ポンプを使用しても良 い。)をフィルム状に形成したフレキシブルなポンプ 3 5、 3 5 、 …を放熱板 3 4に固定して放熱効率を高めるといった、 各種の組 み合わせによる実施形態が考えられるので非常に幅広い応用が 期待できる。 その応用範囲の全てを示すことは困難であるが、 例 えば、 高温発熱のモータに付設して使用できるようにした放熱用 デバイスや、 小型ハードディスク ドライブ装置において、 脱着可
能なカー ト リ ッジ式ディスク (回転時に高温となる) を冷却する ためのデバイス等への各種適用が挙げられる。 The heat transport device is particularly effective for heat removal and cooling of a heating element having a high heat density. As described above, a device using a multilayer structure using the laminated structure of the embodiment 1 or a unit of the embodiment 2 Multi-layering using a structure can be mentioned. For example, as shown in FIG. 10, a micro-pump layer (an example using a piezoelectric-driven micro-pump array 18 is shown in FIG. Drive pumps may be used.) Flexible pumps 35, 35, ... formed in a film shape are fixed to the heat sink 34 to increase the heat dissipation efficiency. Since the form can be considered, a very wide range of applications can be expected. It is difficult to show the full range of applications, but for example, it can be attached and detached in a heat-dissipating device that is attached to a motor that generates heat and can be used, or in a small hard disk drive. There are various applications to devices for cooling efficient cartridge type disks (which become hot when rotating).
また、 冷媒流路を形成するマイクロチャンネルについては、 こ れを開放型の構成とする実施形態と、 閉路型の構成とする実施形 態が挙げられる。 Further, the microchannel forming the refrigerant flow path includes an embodiment in which this is an open type configuration and an embodiment in which this is a closed type configuration.
第 1 1 図は、 マイクロチャンネルを閉ル一プ状 (無端環状) に 形成することで、 閉路型の構成とした場合を示す概念図である。 FIG. 11 is a conceptual diagram showing a case where a micro-channel is formed in a closed loop shape (endless annular shape) to obtain a closed circuit configuration.
図中に示す閉曲線 3 6がマイクロチャンネルによる循環流路 を示しており、 その途中において、 記号 「 P」 で示す部分がマイ クロポンプを示している。 The closed curve 36 shown in the figure indicates the circulation channel by the microchannel, and the part indicated by the symbol “P” indicates the micropump in the middle.
このマイクロポンプについては、 気泡駆動型でも圧電駆動型で も良いが、 駆動電力を必要としないという観点からは前者が望ま しい。 そして、 その場合には、 マイクロチャンネルの一部を絞り 込んで狭く した部分としてマイクロポンプを形成する。 つまり、 微小チャンネルと、 その一部を絞り込んで狭く した部分として形 成される微小ポンプを閉ループ状に形成することで循環流路が 形成され、 このような流路を、 同一平面内において複数配置した 構造を用いることで熱輸送の効率を高めることができる。 This micropump may be a bubble-driven type or a piezoelectric-driven type, but the former is preferable from the viewpoint that no driving power is required. Then, in that case, a micropump is formed as a narrowed part of the microchannel. In other words, a circulation channel is formed by forming a microchannel and a micropump formed as a narrowed portion by narrowing a part of the channel into a closed loop, and a plurality of such channels are arranged in the same plane. By using such a structure, the efficiency of heat transport can be increased.
マイクロポンプ Pは、 図に一点鎖線の四角枠で示す熱源 H Gの 近辺に設けられるが、 当該熱源 H Gの温度分布が均一ではなく、 例えば、 点 「 H s 」 において局所的に高温となるものとすると、 気泡駆動型の場合、 ポンプの位置から当該点 H s に向かう方向 (図の矢印 Yに示す方.向) に冷媒の流れが決定される。 よって、 冷媒は流路内を移動して、 熱源 H Gから離れた場所で放熱板等の 除熱手段や冷却手段によって冷やされた後に、 再びマイクロボン プに戻ってく るという経路に従って循環される。
尚、 流路に充填する冷媒としては、 取り扱い易さや安全性等を 考慮すると、 水やエタノール等が好ましく、 例えば、 マイクロチ ヤ ンネルにおける狭径部分として形成されるポンプ付近で熱を 受けて冷媒が気相状態となり、 その後に冷やされて液相状態とな つて再び熱源の付近まで戻るというサイ クルが繰り返されるこ とになる。 The micropump P is provided in the vicinity of the heat source HG indicated by a dashed-dotted box in the figure.However, the temperature distribution of the heat source HG is not uniform.For example, it is assumed that the temperature becomes high locally at the point `` H s ''. Then, in the case of the bubble drive type, the flow of the refrigerant is determined in the direction from the pump position to the point H s (the direction indicated by arrow Y in the figure). Therefore, the refrigerant moves in the flow path, is cooled by a heat removal means such as a heat sink or a cooling means at a place away from the heat source HG, and then circulates along a path of returning to the micropump again. The refrigerant to be filled in the flow channel is preferably water or ethanol in consideration of ease of handling and safety. For example, the refrigerant receives heat near a pump formed as a narrow-diameter portion in a microchannel, and the refrigerant receives heat. The cycle of gas phase, then cooling to liquid phase, and returning to near the heat source is repeated.
また、 気泡駆動型ポンプの場合、 第 2 A図乃至第 2 C図に示し たように、 チャンネルの狭径部分において、 その中央位置からや やずれた位置に熱を加えているが、 これに限らず当該狭径部分か ら離れたチャンネル部分を加熱しても、 同様のボンピング作用が 得られることが分かっている。 よって、 マイクロチャンネルにお ける狭径部分に限らず、 一定径のチャンネル部分を加熱する構成 形態でも構わない。 このとき冷媒の流れは、 狭径部分と加熱部分 との位置関係によって規定され、 狭径部分から加熱部分へ向かう 方向となる。 In the case of the bubble-driven pump, as shown in FIGS. 2A to 2C, heat is applied to the narrow diameter portion of the channel at a position slightly deviated from the center position. It is known that a similar pumping action can be obtained even if the channel portion apart from the narrow diameter portion is heated. Therefore, a configuration in which the channel portion having a constant diameter is heated, not limited to the narrow portion in the microchannel, may be used. At this time, the flow of the refrigerant is defined by the positional relationship between the narrow-diameter portion and the heating portion, and is in a direction from the narrow-diameter portion to the heating portion.
尚、 第 1 1 図では、 循環流路においてマイクロポンプを一箇所 設けているが、 複数のポンプを形成した構成でも良い。 In FIG. 11, one micropump is provided in the circulation channel, but a configuration in which a plurality of pumps are formed may be used.
第 1 2図乃至第 1 4図は、 上記閉路型の構成例について示した ものである。 FIG. 12 to FIG. 14 show examples of the closed-circuit type configuration.
第 1 2図において、 C P U等の発熱体 3 7が基板上に配置され ており、 当該発熱体に対してフィルムシー ト状の熱輸送装置 3 8 が貼り付けられている。 In FIG. 12, a heating element 37 such as CPU is disposed on a substrate, and a heat transfer device 38 in the form of a film sheet is attached to the heating element.
熱輸送装置 3 8 は、 ポリマー材等の可撓性材料を用いた基材に 微小な溝を形成することで、 互いに交差しない閉ル一プ状のマイ クロチャンネルが多数形成されている。 そして、 当該基材のうち 溝が形成された面がカバー部材 (フィルム材) で被覆された構成
を有している。 第 1 2図や第 1 3図において、 トラック状配置の 閉曲線群 3 9が冷媒 (水等) の循環流路を表している。 In the heat transport device 38, a large number of closed-loop microchannels that do not intersect with each other are formed by forming minute grooves in a base material using a flexible material such as a polymer material. Then, a structure in which the grooved surface of the base material is covered with a cover member (film material) have. In FIGS. 12 and 13, a closed curve group 39 in a track-like arrangement represents a circulation flow path for a refrigerant (such as water).
第 1 2図において、 熱輸送装置 3 8 の一部が発熱体 3 7の高温 部 3 7 aに接触しており、 一点鎖線の枠 4 0で示す部分にはマイ クロポンプが個々の循環流路にそれぞれ形成されている。 また、 同図に示す縦線 Tの右側には、 図示しない放熱板や除熱板、 伝熱 板等が配置されており、 これらに対して熱輸送装置の一部 (右側 部分) が接触している。 In FIG. 12, a part of the heat transport device 38 is in contact with the high temperature portion 37 a of the heating element 37, and the micropumps are located at the portions indicated by the dashed-dotted line frame 40 in the individual circulation channels. Are formed respectively. On the right side of the vertical line T shown in the figure, a heat radiating plate, a heat removing plate, a heat transfer plate, and the like, which are not shown, are arranged. ing.
第 1 3図、 第 1 4図は熱輸送装置における断面構造を概略的に 示したものである。 FIG. 13 and FIG. 14 schematically show the cross-sectional structure of the heat transport device.
閉曲線群 3 9で示す各循環流路は、 一定幅で所定の深さをもつ た溝として形成されるマイクロチャンネル 4 1 と、 当該チャンネ ルの狭径部分 (幅又は深さを小さく した部分) として形成される マイクロポンプ 4 2 によって構成されている。 Each circulation channel indicated by the closed curve group 39 includes a microchannel 41 formed as a groove having a constant width and a predetermined depth, and a narrow portion (a portion having a reduced width or depth) of the channel. It is constituted by a micropump 42 formed as:
第 1 3図には、 マイクロチャンネルとマイクロポンプについて それらの一部を拡大して示しており、 ここでは模式的に透明部材 として示す。 また、 第 1 4図にはマイクロポンプの要部 (基材に 形成された溝部) だけを示している。 FIG. 13 shows an enlarged view of a part of the microchannel and the micropump, and here, they are schematically shown as transparent members. FIG. 14 shows only the main part of the micropump (the groove formed in the base material).
例えば、 1つの閉ループについては、 それを形成するチャンネ ルの一部を絞り込んで狭く した部分としてポンプ部 4 2 aが形 成され、 当該部分以外については一定幅のチャンネルが形成され ている。 For example, with respect to one closed loop, a pump section 42a is formed as a portion where a part of a channel forming the closed loop is narrowed down, and a channel having a constant width is formed in other portions.
尚、 基材に形成された溝部についてはポンプ部を除いて、 その 幅 (w ) や深さ ( d ) を一定に規定する形態が作成上は簡単であ るが、 場合によっては深さ等を、 流路上での位置に応じて連続的 に又は段階的に変化させることで局所的に流路の断面積が異な
るように設計しても良い。 The width (w) and depth (d) of the groove formed on the base material are simple except for the pump part, although it is easy to prepare. Is changed continuously or stepwise according to the position on the flow path, so that the cross-sectional area of the flow path varies locally. You may design so that.
また、 上記したように、 気泡駆動型ポンプの場合、 熱源に近づ く方向に向けて冷媒が移動されるので、 例えば、 第 1 2図におい て、 丸い枠 4 0で示すポンプ部分より も左側にホッ トスポッ 卜が 存在する場合には、 閉曲線群 3 9で示す流路内を、 冷媒が反時計 回り方向に移動することになる。 例えば、 C P U等では、 その表 面において均一な温度分布をもたず、 局所的に高温となる箇所が 存在しているので、 ポンプ部 (チャンネルの狭径部) の位置を、 当該高温の箇所から故意にずらした配置を採れば良い。 これによ り、 ボンビング作用のための積極的な熱源を設ける必要がなくな る。 Further, as described above, in the case of the bubble-driven pump, the refrigerant is moved in a direction approaching the heat source. For example, in FIG. 12, the left side of the pump portion indicated by the round frame 40 in FIG. When a hot spot exists in the flow path, the refrigerant moves counterclockwise in the flow path indicated by the closed curve group 39. For example, in a CPU or the like, the surface does not have a uniform temperature distribution, and there are locally high temperatures. Therefore, the position of the pump section (the narrow-diameter portion of the channel) is It is sufficient to adopt an arrangement deliberately shifted from the above. This eliminates the need to provide an active heat source for the bombing action.
しかして、 本例では、 マイクロポンプによって輸送される冷媒 が、 発熱体によって加熱された後、 循環流路に沿って移動し、 放 熱板等で冷やされてから再びポンプに戻る というサイクルが繰 り返されることで、 発熱体から放熱板等への熱伝達を効率良く行 う ことができる。 However, in this example, a cycle in which the refrigerant transported by the micropump is heated by the heating element, moves along the circulation flow path, is cooled by the heat release plate, and returns to the pump again is repeated. By returning the heat, heat can be efficiently transferred from the heating element to the heat sink or the like.
そして、 熱輸送装置 3 8 については、 非常に薄いシート状に形 成されているので、 これを幾重にも積み重ねて使用することで、 さ らに効果的に熱伝達を行う ことが可能となり、 配置スペースも 少なくて済む。 Since the heat transport device 38 is formed in a very thin sheet shape, it is possible to conduct heat transfer more effectively by stacking and using this in multiple layers. Less space is required.
また、 微小チヤンネル及び微小ポンプを含む流路を閉ループ状 に形成することで冷媒の循環流路を比較的自由に形成すること ができるので、 設計自由度が高い。 上記した例では、 それぞれ同 心半円状をなした部分を、 2組の直線路で繋いだ、 「競技場の ト ラック」 の如き形状の流路を示したが、 そのような形状に限られ る訳ではなく、 また分岐の有無を問わないので、 例えば、 複数の
熱源に跨がる流路形状等が可能である。 Further, by forming the flow path including the micro-channel and the micro-pump in a closed loop, the circulation flow path of the refrigerant can be formed relatively freely, so that the degree of design freedom is high. In the above example, the concentric semi-circular parts were connected by two sets of straight paths, and the flow path was shaped like a “track of the stadium”, but it is limited to such a shape. It does not mean that it does not matter whether or not there is a branch. The shape of the flow path over the heat source is possible.
第 1 5図は、 複数の熱源に対してそれぞれに設けられる熱輸送 装置を互いに繋いで流路を形成した例を示すものであり、 分岐し た流路をもって熱輸送装置が接続されている。 FIG. 15 shows an example in which a heat transport device provided for each of a plurality of heat sources is connected to each other to form a flow path. The heat transport device is connected to a branched flow path.
本例において、 各回路基板 4 3、 4 4上には複数の I C (集積 回路) がそれぞれ実装されており、 それらの中でも発熱量が多い I Cが発熱体 (熱源) とされる。 例えば、 一方の基板 4 3上に配 置された I C 4 3 a、 4 3 a、 …のうち、 I C 4 3 a l に対して 熱輸送装置 (デバイス) 4 5が付設され、 また、 I C 4 3 a 2 に 対して熱輸送装置 4 6が付設されている。 In this example, a plurality of ICs (integrated circuits) are mounted on each of the circuit boards 43 and 44, and among them, the IC having the largest calorific value is defined as a heating element (heat source). For example, among the ICs 43 a, 43 a,... Disposed on one substrate 43, a heat transport device (device) 45 is provided for the IC 43 a, and the IC 43 A heat transport device 46 is attached to a 2.
また、 他方の基板 4 4上に配置された I C 4 4 a、 4 4 a、 ··· のうち、 I C 4 4 a 1 に対して熱輸送装置 4 7が付設されるとと もに、 基板 4 4上には放熱部 (あるいはヒ一 トシンク) 4 8が設 けられている。 Further, of the ICs 44a, 44a,... Arranged on the other substrate 44, the heat transport device 47 is attached to the IC 44a1, and the substrate is also provided. A heat radiator (or heat sink) 48 is provided on 44.
熱輸送装置 4 5乃至 4 7 については、 それらの基材の表面上で 平面的に形成したチャンネルとポンプ部分 (気泡駆動型) を含む 流路がループ状に形成された基本構造を有している。 したがって. 複数の各流路が同一平面上に形成されており、 発熱体である I C の熱を動力としてポンプ駆動される。 The heat transport devices 45 to 47 have a basic structure in which the channels including the channels formed in a plane on the surface of the base material and the flow path including the pump portion (bubble driven type) are formed in a loop shape. I have. Therefore, a plurality of flow paths are formed on the same plane, and the pump is driven by the heat of the heating element I C as power.
例えば、 図示にように、 熱輸送装置 4 6 については、 複数のマ イク口チャンネルからなる 2つの流路部分 4 6 A、 4 6 Aをもつ て放熱部 4 8 との間で熱交換が行われる。 つまり、 熱輸送装置 4 6の一部が、 発熱部分である I C 4 3 a 2 の表面に貼り付けられ ており、 ここで加熱された冷媒 (水等) がー方の流路部分 4 6 A を経てから放熱部 4 8 において熱を放出した後、 再び I C 4 3 a 2の表面に貼り付けられた部分へと戻っていく。
また、 放熱部 4 8 に接続される流路部分のうち、 あるものは分 岐して熱輸送装置 4 5や 4 7 にそれぞれ接続されている。 即ち、 熱輸送装置 4 7 と放熱部 4 8 とを繋ぐ 2つの流路部分 4 7 A、 4 7 Bのうち、 その一方 4 7 Aについては途中で T状に枝分かれし て基板 4 3側に向かって延びており、 さ らには熱輸送装置 4 5か ら基板 4 4側に向かって延びる流路部分 4 5 A、 4 5 Aへと繋が つている。 従って、 これらの流路部分に形成されたマイクロチヤ ンネルを通して各熱輸送装置と放熱部 4 8 との間で熱交換が行 われる (つまり、 基板上での I Cの実装位置において加熱された 冷媒がそれぞれの流路部分を経て放熱部分に到達してこ こで熱 を放出した後、 再び各 I Cの実装位置へと戻っていく。)。 For example, as shown in the figure, the heat transport device 46 has two flow passage portions 46 A and 46 A each composed of a plurality of micro-channels, and heat is exchanged with the heat radiating portion 48. Will be In other words, a part of the heat transport device 46 is attached to the surface of the IC 43 a 2, which is a heat-generating portion, and the refrigerant (water, etc.) heated here passes through the negative flow path portion 46 A After the heat is released from the heat radiating section 48 after passing through, the heat returns to the portion attached to the surface of the IC 43a2 again. Some of the flow path portions connected to the heat radiating section 48 are branched and connected to the heat transport devices 45 and 47, respectively. In other words, of the two flow path portions 47 A and 47 B connecting the heat transport device 47 and the heat radiating portion 48, one of the flow portions 47 A is branched in a T shape on the way and is directed to the substrate 43 side. It extends to the flow path portions 45 A and 45 A extending from the heat transport device 45 to the substrate 44 side. Accordingly, heat is exchanged between each heat transport device and the heat radiating section 48 through the microchannels formed in these flow path portions (that is, the refrigerant heated at the mounting position of the IC on the substrate is not heated). After arriving at the heat radiating part via each flow path part and releasing heat here, it returns to the mounting position of each IC again.)
このように、 発熱部分が複数存在する場合であっても、 流路配 置や形状等について自由に設計することが可能である。 また、 各 熱輸送装置の基材として可撓性に富む樹脂材料を用いて容易に 曲げられるように作成して柔軟性を持たせることが可能であり、 薄い平面状の装置としてこれを発熱部分に貼り付けて使用する ことができる。 さ らには、 同一平面上に多数の流路を形成したシ ー ト状の装置をさ らに積層した構成にして使用することも可能 である。 Thus, even when there are a plurality of heat generating parts, it is possible to freely design the flow path arrangement, the shape, and the like. In addition, it is possible to use flexible resin material as the base material of each heat transport device so that it can be easily bent to have flexibility. Can be attached to Furthermore, it is also possible to use a sheet-like device in which a number of flow paths are formed on the same plane, in a further stacked configuration.
以上に記載したところから明らかなように、 請求の範囲第 1項 乃至第 3項に係る発明によれば、 微小なチャンネル及びポンプを 一体化することで熱輸送系全体としての配置スペースや占有面 積等を低減できるので、 装置の薄型化が可能になる。 そして、 請 求の範囲第 2項に係る発明のように積層構造を採る場合にはチ ヤンネル群やポンプ群を増やすことにより、 また、 請求の範囲第 3項に係る発明のように一体構造を採る場合には、 チャンネルと
ポンプを含む単位構造の数を増やすことにより、 簡単に熱伝導性 を高めることができる。 As is clear from the above description, according to the inventions according to claims 1 to 3, the minute space and the pump are integrated to arrange the space and occupied surface of the entire heat transport system. Since the product and the like can be reduced, the device can be made thinner. In the case where a laminated structure is adopted as in the invention according to claim 2 of the claim, the number of channel groups and pump groups is increased, and an integrated structure as in the invention according to claim 3 is provided. If you take it, The thermal conductivity can be easily increased by increasing the number of unit structures including the pump.
請求の範囲第 4項に係る発明によれば、 微小チャンネルについ て通路の一部を狭くすることで微小ポンプを形成できるので、 構 成が簡単である。 According to the fourth aspect of the present invention, since the minute pump can be formed by narrowing a part of the passage for the minute channel, the configuration is simple.
請求の範囲第 5項に係る発明によれば、 微小チヤンネル及び微 小ポンプによる閉ループの流路内で冷媒を循環させて熱輸送を 行う ことができるので、 このような閉ループを数多く並設するこ とで除熱や冷却の効率を高めることができる。 According to the invention as set forth in claim 5, since the refrigerant can be circulated in the closed loop flow path by the minute channel and the minute pump to carry out heat transfer, a number of such closed loops are provided in parallel. Thus, the efficiency of heat removal and cooling can be increased.
請求の範囲第 6項乃至第 9項に係る発明によれば、 基材を可撓 性材料によって形成することにより、 曲げ応力等に対して柔軟な デバイスを作ることができ、 曲率をもった流路の形成に関して容 易に対処できるようになるので、 使い易さが格段に向上する。
According to the inventions set forth in claims 6 to 9, by forming the base material from a flexible material, a device that is flexible against bending stress and the like can be produced, and a flow having curvature can be obtained. The ease of use is greatly improved because it is easier to deal with the formation of roads.
Claims
1 . 冷媒を通過させるための微小チャンネルと、 冷媒を輸送す るための微小ポンプとを有し、 上記微小チャンネルと上記微小ポ ンプは一体的に形成され、 上記冷煤が上記微小チヤンネル内を循 環することによって熱を輸送することを特徴とする熱輸送装置。 1. It has a microchannel for passing the refrigerant and a micropump for transporting the refrigerant, the microchannel and the micropump are integrally formed, and the cold soot flows through the microchannel. A heat transport device that transports heat by circulating.
2 . 請求の範囲第 1項に記載した熱輸送装置において、 上記微 小チャンネルが形成されたチャンネル層と、 上記微小ポンプが形 成されたポンプ層とを有し、 上記チャンネル層と上記ポンプ層と が積層された構造を備えていることを特徴とする熱輸送装置。 2. The heat transport device according to claim 1, comprising: a channel layer in which the microchannel is formed; and a pump layer in which the micropump is formed, wherein the channel layer and the pump layer are provided. A heat transport device comprising a structure in which and are stacked.
3 . 請求の範囲第 1項に記載した熱輸送装置において、 上記微 小チャンネルと上記微小ポンプとが一体化された単位構造を備 え、 上記単位構造を複数有することを特徴とする熱輸送装置。3. The heat transport device according to claim 1, further comprising a unit structure in which the microchannel and the micropump are integrated, and having a plurality of the unit structures. .
4 . 請求の範囲第 1項に記載した熱輸送装置において、 上記微 小ポンプは、 上記微小チャンネルの一部を狭く絞り込むことによ り形成されていることを特徴とする熱輸送装置。 4. The heat transport device according to claim 1, wherein the micro pump is formed by narrowing a part of the micro channel narrowly.
5 . 請求の範囲第 4項に記載した熱輸送装置において、 上記微 小チャ ンネル及び上記微小ポンプが閉ループ状に形成されてい ることを特徴とする熱輸送装置。 5. The heat transport device according to claim 4, wherein the micro-channel and the micro-pump are formed in a closed loop.
6 . 請求の範囲第 1項に記載した熱輸送装置において、 上記微 小チャンネル及び上記微小ポンプを構成する基材が可撓性材料 により形成されていることを特徴とする熱輸送装置。 6. The heat transport device according to claim 1, wherein the base material constituting the microchannel and the micropump is formed of a flexible material.
7 . 請求の範囲第 2項に記載した熱輸送装置において、 上記チ ヤ ンネル層及び上記ポンプ層を構成する基材が可撓性材料によ り形成されていることを特徴とする熱輸送装置。 7. The heat transport device according to claim 2, wherein the base material constituting the channel layer and the pump layer is formed of a flexible material. .
8 . 請求の範囲第 3項に記載した熱輸送装置において、 上記微 小チャ ンネル及び上記微小ポンプを構成する基材が可撓性材料
により形成されていることを特徴とする熱輸送装置。 8. The heat transport apparatus according to claim 3, wherein the base material constituting the micro-channel and the micro-pump is made of a flexible material. A heat transport device characterized by being formed by:
9 . 請求の範囲第 4項に記載した熱輸送装置において、 上記微 小チャ ンネル及び上記微小ポンプを構成する基材が可撓性材料 により形成されていることを特徴とする熱輸送装置。
9. The heat transport device according to claim 4, wherein the base material constituting the micro-channel and the micro-pump is formed of a flexible material.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-54220 | 2001-02-28 | ||
JP2001054220 | 2001-02-28 | ||
JP2002-39656 | 2002-02-18 | ||
JP2002039656A JP3941537B2 (en) | 2001-02-28 | 2002-02-18 | Heat transport equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002068318A1 true WO2002068318A1 (en) | 2002-09-06 |
Family
ID=26610295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/001853 WO2002068318A1 (en) | 2001-02-28 | 2002-02-28 | Heat transport device |
Country Status (3)
Country | Link |
---|---|
US (1) | US20030121644A1 (en) |
JP (1) | JP3941537B2 (en) |
WO (1) | WO2002068318A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100569175B1 (en) * | 2002-08-07 | 2006-04-07 | 가부시키가이샤 덴소 | Counter-stream-mode oscillating-flow heat transport apparatus |
US6622519B1 (en) * | 2002-08-15 | 2003-09-23 | Velocys, Inc. | Process for cooling a product in a heat exchanger employing microchannels for the flow of refrigerant and product |
JP2004190977A (en) * | 2002-12-12 | 2004-07-08 | Sony Corp | Heat transport device, manufacturing method of the same, and electronic device |
JP4486844B2 (en) * | 2003-05-21 | 2010-06-23 | 株式会社Kri | Heat transport equipment |
US7398818B2 (en) * | 2004-12-28 | 2008-07-15 | California Institute Of Technology | Fluidic pump for heat management |
US9656009B2 (en) | 2007-07-11 | 2017-05-23 | California Institute Of Technology | Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device |
WO2009051001A1 (en) * | 2007-10-19 | 2009-04-23 | Three Eye Co., Ltd. | One-way fluid moving device |
US20100071880A1 (en) * | 2008-09-22 | 2010-03-25 | Chul-Ju Kim | Evaporator for looped heat pipe system |
US9125655B2 (en) | 2010-07-16 | 2015-09-08 | California Institute Of Technology | Correction and optimization of wave reflection in blood vessels |
JP6448085B2 (en) * | 2014-12-19 | 2019-01-09 | ケミカルグラウト株式会社 | Ground freezing method and ground freezing system |
SE541352C2 (en) * | 2015-06-03 | 2019-08-13 | Apr Tech Ab | Microfluidic array |
JP6752062B2 (en) * | 2016-06-22 | 2020-09-09 | ケミカルグラウト株式会社 | Attached freezing tube and its mounting method |
KR102571242B1 (en) | 2016-07-11 | 2023-08-25 | 삼성디스플레이 주식회사 | Plastic substrate with improved hardness and display device comprising the same |
DE102019108155B3 (en) | 2019-03-29 | 2020-06-04 | Leibniz-Institut Für Photonische Technologien E.V. | Micro drop retention assembly |
CN113651288B (en) * | 2021-07-07 | 2023-10-20 | 北京大学 | Method for preparing micro-channel structure with nano through holes on partition wall |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0786002A (en) * | 1993-09-17 | 1995-03-31 | Olympus Optical Co Ltd | Method of manufacturing actuator |
JPH0786551A (en) * | 1993-09-16 | 1995-03-31 | Olympus Optical Co Ltd | Electronic device having flexible thin film substrate |
WO1997014497A1 (en) * | 1995-10-20 | 1997-04-24 | Battelle Memorial Institute | Microcomponent chemical process sheet architecture |
WO1999012016A1 (en) * | 1997-09-02 | 1999-03-11 | Caliper Technologies Corporation | Microfluidic system with electrofluidic and electrothermal controls |
JP2000111281A (en) * | 1998-10-08 | 2000-04-18 | Hitachi Cable Ltd | Planar heat pipe and method of manufacturing the same |
JP2000108161A (en) * | 1998-10-08 | 2000-04-18 | Sumitomo Heavy Ind Ltd | Method and equipment for manufacturing multilayer component |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4392362A (en) * | 1979-03-23 | 1983-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Micro miniature refrigerators |
US4220195A (en) * | 1979-05-24 | 1980-09-02 | The United States Of America As Represented By The Secretary Of The Navy | Ion drag pumped heat pipe |
US4519447A (en) * | 1980-08-04 | 1985-05-28 | Fine Particle Technology Corporation | Substrate cooling |
US4386505A (en) * | 1981-05-01 | 1983-06-07 | The Board Of Trustees Of The Leland Stanford Junior University | Refrigerators |
JPH063354B2 (en) * | 1987-06-23 | 1994-01-12 | アクトロニクス株式会社 | Loop type thin tube heat pipe |
US5219020A (en) * | 1990-11-22 | 1993-06-15 | Actronics Kabushiki Kaisha | Structure of micro-heat pipe |
US5099910A (en) * | 1991-01-15 | 1992-03-31 | Massachusetts Institute Of Technology | Microchannel heat sink with alternating flow directions |
US5316077A (en) * | 1992-12-09 | 1994-05-31 | Eaton Corporation | Heat sink for electrical circuit components |
US5611214A (en) * | 1994-07-29 | 1997-03-18 | Battelle Memorial Institute | Microcomponent sheet architecture |
JP3665975B2 (en) * | 1996-02-16 | 2005-06-29 | 敬 高橋 | Fluid regulation conveying means |
US5901037A (en) * | 1997-06-18 | 1999-05-04 | Northrop Grumman Corporation | Closed loop liquid cooling for semiconductor RF amplifier modules |
US5841244A (en) * | 1997-06-18 | 1998-11-24 | Northrop Grumman Corporation | RF coil/heat pipe for solid state light driver |
US6070656A (en) * | 1998-12-09 | 2000-06-06 | The Aerospace Corporation | Microelectronic substrate active thermal cooling wick |
US6283718B1 (en) * | 1999-01-28 | 2001-09-04 | John Hopkins University | Bubble based micropump |
KR100338810B1 (en) * | 1999-11-08 | 2002-05-31 | 윤종용 | cooling device |
US6253835B1 (en) * | 2000-02-11 | 2001-07-03 | International Business Machines Corporation | Isothermal heat sink with converging, diverging channels |
US6520197B2 (en) * | 2000-06-02 | 2003-02-18 | The Regents Of The University Of California | Continuous laminar fluid mixing in micro-electromechanical systems |
US6437981B1 (en) * | 2000-11-30 | 2002-08-20 | Harris Corporation | Thermally enhanced microcircuit package and method of forming same |
US6582987B2 (en) * | 2000-12-30 | 2003-06-24 | Electronics And Telecommunications Research Institute | Method of fabricating microchannel array structure embedded in silicon substrate |
US6629820B2 (en) * | 2001-06-26 | 2003-10-07 | Micralyne Inc. | Microfluidic flow control device |
US6529377B1 (en) * | 2001-09-05 | 2003-03-04 | Microelectronic & Computer Technology Corporation | Integrated cooling system |
-
2002
- 2002-02-18 JP JP2002039656A patent/JP3941537B2/en not_active Expired - Fee Related
- 2002-02-28 US US10/258,499 patent/US20030121644A1/en not_active Abandoned
- 2002-02-28 WO PCT/JP2002/001853 patent/WO2002068318A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0786551A (en) * | 1993-09-16 | 1995-03-31 | Olympus Optical Co Ltd | Electronic device having flexible thin film substrate |
JPH0786002A (en) * | 1993-09-17 | 1995-03-31 | Olympus Optical Co Ltd | Method of manufacturing actuator |
WO1997014497A1 (en) * | 1995-10-20 | 1997-04-24 | Battelle Memorial Institute | Microcomponent chemical process sheet architecture |
WO1999012016A1 (en) * | 1997-09-02 | 1999-03-11 | Caliper Technologies Corporation | Microfluidic system with electrofluidic and electrothermal controls |
JP2000111281A (en) * | 1998-10-08 | 2000-04-18 | Hitachi Cable Ltd | Planar heat pipe and method of manufacturing the same |
JP2000108161A (en) * | 1998-10-08 | 2000-04-18 | Sumitomo Heavy Ind Ltd | Method and equipment for manufacturing multilayer component |
Also Published As
Publication number | Publication date |
---|---|
JP3941537B2 (en) | 2007-07-04 |
US20030121644A1 (en) | 2003-07-03 |
JP2002349975A (en) | 2002-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7420807B2 (en) | Cooling device for electronic apparatus | |
JP4529915B2 (en) | Piezoelectric pump and cooling device using the same | |
WO2002068318A1 (en) | Heat transport device | |
US7764494B2 (en) | Liquid cooled module | |
US7836597B2 (en) | Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system | |
USRE40618E1 (en) | Integrated cooling system | |
US6988534B2 (en) | Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device | |
US8051905B2 (en) | Cooling systems employing fluidic jets, methods for their use and methods for cooling | |
JP6597892B2 (en) | Loop heat pipe, manufacturing method thereof, and electronic device | |
US20060060333A1 (en) | Methods and apparatuses for electronics cooling | |
US5901037A (en) | Closed loop liquid cooling for semiconductor RF amplifier modules | |
US20130008632A1 (en) | Heat spreader | |
KR20050081814A (en) | Cooling system of electronic device and electronic device using the same | |
TWI601930B (en) | Heat transfer equipment and electronic machines | |
JP2006518100A (en) | 3D high performance heat sink | |
JP3781018B2 (en) | Electronic equipment cooling system | |
US20090008064A1 (en) | Cooling System for Electronic Substrates | |
JP4778319B2 (en) | Piezoelectric fan, cooling device using the same, and driving method thereof | |
JP2005142513A (en) | Cooling device and electronic equipment | |
RU107582U1 (en) | MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF | |
JP2006046868A (en) | Radiator and heat pipe | |
JP2007043013A (en) | Sheet-like fluid cooling device and electronic device cooling structure using same | |
JP4193848B2 (en) | Cooling device and electronic equipment | |
Wits | Integrated cooling concepts for printed circuit boards | |
JP4144616B2 (en) | Sheet fluid circulation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10258499 Country of ref document: US |