WO2002039128A1 - Method and apparatus of nondestructive insulation test for small electric machine - Google Patents
Method and apparatus of nondestructive insulation test for small electric machine Download PDFInfo
- Publication number
- WO2002039128A1 WO2002039128A1 PCT/JP2001/009785 JP0109785W WO0239128A1 WO 2002039128 A1 WO2002039128 A1 WO 2002039128A1 JP 0109785 W JP0109785 W JP 0109785W WO 0239128 A1 WO0239128 A1 WO 0239128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric machine
- small electric
- coil
- test
- corona
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 21
- 238000012360 testing method Methods 0.000 title claims description 40
- 238000000034 method Methods 0.000 title description 11
- 238000010998 test method Methods 0.000 claims abstract description 12
- 230000001066 destructive effect Effects 0.000 claims description 16
- 230000006837 decompression Effects 0.000 claims description 11
- 238000004804 winding Methods 0.000 abstract description 17
- 230000002950 deficient Effects 0.000 description 11
- 238000007689 inspection Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
Definitions
- the present invention relates to a test method and an apparatus for detecting a defect in an insulating state between a winding part such as a small motor and a laminate core in a non-destructive state and detecting the defect with very high sensitivity.
- the insulation between the winding and the laminated core is broken, and the main cause of the life is that the winding magnet wire and insulators (film, resin, etc.) Magnet wire and laminated cores due to cracks, scratches, pinholes, etc. caused by impact, mechanical pressure, friction, etc. given by any machine or jig during the wire process or assembling process as a motor
- the winding magnet wire and insulators film, resin, etc.
- Magnet wire and laminated cores due to cracks, scratches, pinholes, etc. caused by impact, mechanical pressure, friction, etc. given by any machine or jig during the wire process or assembling process as a motor
- dielectric breakdown so-called ground short-circuit
- abnormal current such as short-circuit current to flow and heating and burning the winding This is what you'll want to do.
- methods for inspecting the insulation state include an AC withstand voltage test, an insulation resistance test, a partial discharge measurement test, a surge test, a reduced pressure surge test, a pinhole test, and a visual sensory test.
- AC withstand voltage test an insulation resistance test
- partial discharge measurement test a surge test
- reduced pressure surge test a reduced pressure surge test
- pinhole test a visual sensory test
- the partial discharge measurement test is a measurement of the partial discharge.
- the magnet wire contacts the laminating core, it can be detected with extremely high sensitivity. This determines whether a partial discharge occurs between the coil and the laminated core through the insulating film of the magnet wire, so it is not possible to detect the phenomenon that a healthy magnet wire is slightly separated from the laminated core It is.
- only the partial discharge generation start voltage changes, and its detection ability does not change.
- the surge test is effective in detecting layer shorts caused by coil flaws adjacent to the coil and coil, in addition to the coil flaws being in contact with the laminated core, but has limited detection of coil flaws.
- the pressure-reduction surge test has a very high detection power for detecting a lay short caused by adjacent coil scratches between coils and detecting coil scratches, but a phenomenon in which a sound magnet wire comes into contact with or approaches a laminate core. Is undetectable.
- the pinhole test involves completely immersing the sample in a saline solution + phenolphthalene solution. Although coil wounds are detected, this test is a destructive test and cannot be 100% tested.
- the visual sensory inspection is performed during the winding process and the motor assembly process, but it is an inspection of the surface only, and there are many places that cannot be seen. Effect cannot be expected.
- the conventional test method for inspecting the insulation state as described above uses the high sensitivity, mass production process, and the phenomenon that the magnet wire abnormally approaches the laminate core and causes the dielectric breakdown during operation in the near future. However, it is not satisfactory to perform a 100% inspection, and there are the following problems (a) and (b).
- the conventional test method is to detect a state of poor quality (when there is a coil flaw in the magnet wire or when the magnet wire comes into direct contact with the laminate core), and a healthy magnet wire and the laminate core approach abnormally. It is not possible to detect the condition.
- the present invention solves the above-mentioned conventional problems, and a non-destructive inspection is performed to detect a defective portion where a sound winding coil has abnormally approached (within 1 mm) the laminating core. It is an object of the present invention to provide an insulation test method and apparatus capable of 100% inspection in a mass production process. Disclosure of the invention
- the present invention provides a non-destructive insulation test method for a small electric machine having a coil, wherein a pressure inside a container storing the small electric machine is set to a reduced pressure atmosphere, and a high frequency voltage is applied to a coil of the small electric machine. And a step of detecting whether or not corona discharge is generated from the small electric machine.
- the method comprises the steps of: applying a high-frequency voltage between the winding coil and the laminated core; The pass / fail judgment is made based on the corona pulse which increases when 0 to 110 V is applied.
- the present invention provides a first step of storing a small electric machine having a coil in a container, a second step of reducing the pressure in the container, a third step of applying a high-frequency voltage to the coil, and the small electric machine.
- a non-destructive insulation test method for a small electric machine having a coil characterized by comprising a fourth step of determining whether or not a corona discharge has occurred from the coil. It has the effect of being able to
- the present invention also provides a non-destructive insulation test apparatus for a small electric machine having a coil, a container for accommodating the small electric machine, a decompression device for evacuating the inside of the container to a reduced pressure atmosphere, and applying a high-frequency voltage to the coil.
- a non-destructive insulation test device comprising: a high-frequency power source to be applied; and a high-frequency corona measuring device that detects whether corona discharge is generated from the small electric machine. It has the effect that corona discharge can be generated by voltage.
- FIG. 1 shows a non-destructive insulation test apparatus of the present invention.
- FIG. 2 shows a circuit configuration of the present invention.
- FIG. 3 shows the corona generation starting voltage in the test mode (good) according to one embodiment of the present invention.
- FIG. 4 shows the start of corona generation at a failure phenomenon portion of the test motor according to one embodiment of the present invention.
- FIG. 5 shows a corona pulse generation frequency according to an embodiment of the present invention.
- FIG. 1 shows an embodiment of the non-destructive insulation test method of the present invention.
- 1 is a test mode (small electric machine)
- 2 is a decompression tank (vessel)
- 3 is a high-frequency corona measuring device
- 4 is a vacuum gauge
- 5 is a valve
- 6 is a vacuum pump
- 7 is a pushing
- 8 is Yuichi Minaru.
- test mode 1 Under the atmospheric pressure, the test mode 1 is stored in the decompression tank 2, the test mode 1 is relayed to the terminal 8, passes through the pushing 7, and is connected to the lead wire of the motor winding coil.
- the decompression device is composed of a vacuum pump 6, a valve 5, and a vacuum gauge 4.
- the degree of decompression in the decompression tank 2 is controlled by the vacuum gauge 4 and reduced to a predetermined degree by the vacuum pump 6 via the valve 5. Is done.
- the optimal degree of decompression of the decompression tank 2 is 65 to 20 O T O r rr by experiments, and decompression management should be performed according to the type of the DUT (test sample 1).
- the high-frequency voltage generated by the high-frequency power supply in the high-frequency corona measuring device 3 is guided by a high-voltage cable, applied to the coil of the motor 1 through the lead wire, and gradually increases the applied voltage. Corona discharge occurs between the wire and the laminate core. Corona discharges generated in the windings (magnet wires) of small electric machines can be broadly divided into (1) discharges generated through insulators (film, resin, etc.) between the magnet wires and the laminated core, ( 2) There is a discharge generated between the magnet wire and the laminating core through the air insulation.
- Phenomenon (1) is a phenomenon in which the dielectric constant of the insulator is higher than that of (2) and the corona generation starting voltage is low, and the phenomenon occurs early. It was difficult.
- phenomenon (2) has a high probability of failure in the future due to electrical, mechanical, thermal, and scientific factors, and must be determined and detected in advance.
- a high-frequency power supply (1 to 40 kHz) should be used for this task. This is because the impedance (Z) of a small electric machine having a coil is (1 / coC). By increasing the power supply frequency ( ⁇ ), the impedance is reduced and the amount of charge flowing in the winding is reduced. By increasing the voltage, it became possible to generate corona discharge at a low voltage at the defective part.
- the corona pulse frequency in (2) was found to increase near 1.5 MHz by experiments, and a single-pass filter (500 kHz) and a high-pass filter were used. Judgment and detection can be realized by means for forming a band-pass filter using a combination of filters (2 MHz).
- Fig. 3 shows the relationship between the voltage at which corona discharge occurs from the entire test motor and the degree of vacuum
- Fig. 4 shows the distance between one magnet wire of the test motor winding and the laminated core of 0.3 mm. The relationship between the corona generation starting voltage and the degree of vacuum at the failure reproduction location is shown.
- the meaningless corona discharge generated from the whole motor under test especially the corona discharge generated through the slot insulating paper
- the significant corona discharge generated at the defective part are shown. Need to be distinguished.
- the voltage generated by the high-frequency power supply 50 (high-frequency power supply whose sinusoidal signal whose frequency can be varied from 1 to 50 KHz is boosted up to MAX 3000 V (0-P) by a transformer) is used for the test mode. Apply to the winding and stay overnight. At that time, high frequency components are superimposed on the power supply due to corona discharge generated from the test mode. Among these discharge pulses, a corona pulse having a low frequency is detected by the detection circuit 52.
- Corona frequency that is meaningless among the detected corona pulses and the motor under test In order to distinguish the corona frequency of a faulty part having a distance of 1 mm or less from one winding magnet wire to the laminated core, a mouth-pass filter (500 KHz) and a high-pass filter Yuichi (2. 5 MHz) and a band pass filter 52 formed by the band pass filter 52.
- the corona pulse is an electrically very small signal
- the signal is amplified by the AMP54.
- a corona pulse generated for a negative voltage applied from the high-frequency power supply 50 is also effective. Since the pulse is also a negative pulse, the pulse is changed to a positive pulse throughout the absolute value circuit 55.
- Fig. 5 shows the results of a comparative measurement of a non-defective product in the test mode and a product with a defective phenomenon using the above method.
- the pulse increased from about 150 V, the pulse increased from 75 V in the test motor with the failure phenomenon.
- testing at 900 V makes it possible to judge good and defective products.
- all of the defective portions in which a healthy winding coil has abnormally approached (within l mm) the laminate core are subjected to non-destructive inspection in the mass production process.
- the advantageous effect of being able to provide an insulation test method that enables inspection can be obtained.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Abstract
A nondestructive insulation test method for a small electric machine having a coil, comprising a step for bringing about a depressurized atmosphere in a container (2) containing the small electric machine (1) and applying a high frequency voltage to the coil of the small electric machine (1), and a step for detecting for generation of corona discharge from the small electric machine, wherein a decision is made whether the small electric machine is acceptable or not by a corona pulse increasing upon application of a high frequency voltage of 600-1100V between a winding coil and a laminate core.
Description
明細書 Specification
小型電気機械の非破壊絶縁試験方法および装置 技術分野 Non-destructive insulation test method and apparatus for small electric machines
本発明は、 小型モー夕などの巻線部とラミネートコア間の絶縁状態の欠陥を非 破壊状態にして、 非常に高感度に検出する試験方法および装置に関する。 背景技術 The present invention relates to a test method and an apparatus for detecting a defect in an insulating state between a winding part such as a small motor and a laminate core in a non-destructive state and detecting the defect with very high sensitivity. Background art
般的に、 小型モータなどが使用中に巻線とラミネートコア間の絶縁が破壊さ れ、 寿命をきたす主な原因として、 巻線のマグネットワイヤーと絶縁物 (フィル ム、 樹脂等) が、 巻線の工程中、 またはモータとして組立工程中で何らかの機械 または治具などで与えられた打撃、 機械的圧力、 摩擦などから生じたクラック、 傷、 ピンホール等がもとで、 マグネットワイヤーとラミネートコアが接触また異 常接近し、 使用中の電気的、 温度的、 機械的、 化学的な要因で絶縁破壊 (いわゆ る接地短絡) が生じ、 短絡電流など異常電流が流れて巻線を加熱焼損にいたらし めるものである。 Generally, when a small motor is used, the insulation between the winding and the laminated core is broken, and the main cause of the life is that the winding magnet wire and insulators (film, resin, etc.) Magnet wire and laminated cores due to cracks, scratches, pinholes, etc. caused by impact, mechanical pressure, friction, etc. given by any machine or jig during the wire process or assembling process as a motor Contacts or abnormally closes, causing dielectric breakdown (so-called ground short-circuit) due to electrical, thermal, mechanical, or chemical factors during use, causing abnormal current such as short-circuit current to flow and heating and burning the winding This is what you'll want to do.
従来、 この絶縁状態を検査する方法としては、 交流耐圧試験、 絶縁抵抗試験、 部分放電測定試験、 サージ試験、 減圧サージ試験、 ピンホール試験、 目視官能検 查などがある。 以下、 これら方法について説明する。 Conventionally, methods for inspecting the insulation state include an AC withstand voltage test, an insulation resistance test, a partial discharge measurement test, a surge test, a reduced pressure surge test, a pinhole test, and a visual sensory test. Hereinafter, these methods will be described.
交流耐電圧試験、 絶縁抵抗試験では、 マグネットワイヤーのコイル傷が相当に 大きく、 そして、 直接ラミネートコアに接触もしくは接近していないと検出は不 可能で、 接地短絡のみが対象となる。 In the AC withstanding voltage test and insulation resistance test, the magnet wire coil damage is quite large, and it is impossible to detect unless the laminate core is directly in contact with or close to the laminate core.
部分放電測定試験は、 部分放電の測定であり、 マグネットワイヤ一がラミネ一 トコアに接触する場合は、 きわめて高感度に検出できる。 これはマグネットワイ ヤーの絶縁皮膜を介し、 コイルとラミネートコア間に部分放電が発生するか否か を判定するので、 健全なマグネットワイヤ一がラミネートコアからわずかでも離 れた現象の検出は不可能である。 また減圧雰囲気下での部分放電測定試験におい ても、 部分放電発生開始電圧変化するのみで、 その検出能力は変わらない。
サージ試験は、 コイル傷がラミネートコアに接触することに加え、 コイルとコ ィル間で隣接するコィル傷から生じるレャ一ショートにも検出効果があるものの, コィル傷の検出には限界がある。 The partial discharge measurement test is a measurement of the partial discharge. When the magnet wire contacts the laminating core, it can be detected with extremely high sensitivity. This determines whether a partial discharge occurs between the coil and the laminated core through the insulating film of the magnet wire, so it is not possible to detect the phenomenon that a healthy magnet wire is slightly separated from the laminated core It is. Also, in a partial discharge measurement test under a reduced pressure atmosphere, only the partial discharge generation start voltage changes, and its detection ability does not change. The surge test is effective in detecting layer shorts caused by coil flaws adjacent to the coil and coil, in addition to the coil flaws being in contact with the laminated core, but has limited detection of coil flaws.
減圧サージ試験は、 コイルとコイル間で隣接するコイル傷から生じるレヤーシ ョートの検出と、 コイル傷の検出には極めて高い検出力があるが、 健全なマグネ ットワイャ一がラミネートコアに接触または接近した現象については検出不可能 である。 The pressure-reduction surge test has a very high detection power for detecting a lay short caused by adjacent coil scratches between coils and detecting coil scratches, but a phenomenon in which a sound magnet wire comes into contact with or approaches a laminate core. Is undetectable.
ピンホール試験は、 食塩水 +フエノールフタレン溶液に試供品を完全に漬けす るもので、 コイル傷は検出するものの、 この試験は破壊試験となり全数検査はで きない。 The pinhole test involves completely immersing the sample in a saline solution + phenolphthalene solution. Although coil wounds are detected, this test is a destructive test and cannot be 100% tested.
目視官能検査は、 巻線の工程中、 モータの組立工程中に行われるが、 表面のみ の検査であり目視不可能な箇所が多く、 また目視検査最大の課題であるヒユーマ ンエラーが発生し、 完全な効果は期待できない。 The visual sensory inspection is performed during the winding process and the motor assembly process, but it is an inspection of the surface only, and there are many places that cannot be seen. Effect cannot be expected.
以上のような従来の絶縁状態を検査する試験方法は、 絶縁破壊の原因となる、 マグネットワイヤーがラミネートコアに異常接近し、 近い将来運転中に絶縁破壊 を起こす現象を、 高感度に、 量産工程で全数検査を行うには満足できるものでは なく、 以下 (a ) および (b ) に示すような課題がある。 The conventional test method for inspecting the insulation state as described above uses the high sensitivity, mass production process, and the phenomenon that the magnet wire abnormally approaches the laminate core and causes the dielectric breakdown during operation in the near future. However, it is not satisfactory to perform a 100% inspection, and there are the following problems (a) and (b).
( a )健全なマグネットワイヤーが、 ラミネートコアに異常接近( 1 mm以内) した状態にある不良現象の自動検出は困難であり、 前記欠陥を電気的に検知する には、 欠陥箇所に放電現象を起こす必要があるが、 商用電源で高電圧 (3 0 0 0 V以上) が必要であり、 これでは小型電気機械全体 (特に絶縁紙を透して) から コロナ放電が発生し、 情報が埋没する。 (a) It is difficult to automatically detect a defective phenomenon in which a healthy magnet wire is abnormally close to the laminated core (within 1 mm). To detect the defect electrically, a discharge phenomenon must be applied to the defect. High voltage (300 000 V or more) is required for commercial power, which causes corona discharge from the entire small electric machine (especially through insulating paper), burying information. .
( b ) 高電圧印加では破壊試験になり全数検査は不可能である。 (b) Applying a high voltage results in a destructive test, which makes it impossible to perform 100% inspection.
すなわち、 従来試験方法は、 程度の悪い (マグネットワイヤーにコイル傷があ る場合、 またはマグネットワイヤーがラミネートコアに直接接触した現象) 状態 の検出であり、 健全なマグネットワイヤーとラミネートコアが異常に接近した状 態の検出は不可能である。 In other words, the conventional test method is to detect a state of poor quality (when there is a coil flaw in the magnet wire or when the magnet wire comes into direct contact with the laminate core), and a healthy magnet wire and the laminate core approach abnormally. It is not possible to detect the condition.
本発明は、 上記従来の課題を解決するものであり、 健全な巻線コイルがラミネ 一卜コアに異常接近 (1 mm以内) した状態にある欠陥部分を、 非破壊検査によ
り量産工程で全数検査を可能にした絶縁試験方法および装置を提供することを目 的とする。 発明の開示 The present invention solves the above-mentioned conventional problems, and a non-destructive inspection is performed to detect a defective portion where a sound winding coil has abnormally approached (within 1 mm) the laminating core. It is an object of the present invention to provide an insulation test method and apparatus capable of 100% inspection in a mass production process. Disclosure of the invention
この課題を解決するために本発明は、 コイルを有する小型電気機械の非破壊絶 縁試験方法において、小型電気機械を収納した容器内部の圧力を減圧雰囲気にし、 小型電気機械が有するコイルに高周波電圧を印加するステップと、 前記小型電気 機械からコロナ放電が発生しているか否かを検出するステップからなる非破壊絶 縁試験方法としたものであり、 巻線コイルとラミネートコア間に高周波電圧を 6 0 0〜 1 1 0 0 V印加した時に増大するコロナパルスにより良否判定するように 構成されている。 In order to solve this problem, the present invention provides a non-destructive insulation test method for a small electric machine having a coil, wherein a pressure inside a container storing the small electric machine is set to a reduced pressure atmosphere, and a high frequency voltage is applied to a coil of the small electric machine. And a step of detecting whether or not corona discharge is generated from the small electric machine. The method comprises the steps of: applying a high-frequency voltage between the winding coil and the laminated core; The pass / fail judgment is made based on the corona pulse which increases when 0 to 110 V is applied.
これにより、 健全な巻線コイルがラミネートコアに異常接近 (1 mm以内) し た状態にある欠陥部分を、 非破壊検査により量産工程で全数検査を可能にするこ とができる。 This enables non-destructive inspection of all defective parts in which a healthy winding coil has approached the laminated core abnormally (within 1 mm) in the mass production process.
本発明は、 コイルを有する小型電気機械を容器に収納する第 1ステップと、 前 記容器内を減圧する第 2ステップと、 前記コイルに高周波電圧を印加する第 3ス テツプと、 前記小型電気機械からコロナ放電が発生しているか否かを判定する第 4ステップからなることを特徴とするコイルを有する小型電気機械の非破壊絶縁 試験方法であり、 不良箇所に低い電圧でコロナ放電を発生させることができると いう作用を有する。 The present invention provides a first step of storing a small electric machine having a coil in a container, a second step of reducing the pressure in the container, a third step of applying a high-frequency voltage to the coil, and the small electric machine. A non-destructive insulation test method for a small electric machine having a coil, characterized by comprising a fourth step of determining whether or not a corona discharge has occurred from the coil. It has the effect of being able to
また、 本件発明は、 コイルを有する小型電気機械の非破壊絶縁試験装置におい て、 前記小型電気機械を収納する容器と、 前記容器内を減圧雰囲気にする減圧装 置と、 前記コイルに高周波電圧を印加する高周波電源と、 前記小型電気機械から コロナ放電が発生しているか否かを検出する高周波コロナ測定装置により構成さ れていることを特徴とする非破壊絶縁試験装置であり、 不良箇所に低い電圧でコ ロナ放電を発生させることができるという作用を有する。 図面の簡単な説明 The present invention also provides a non-destructive insulation test apparatus for a small electric machine having a coil, a container for accommodating the small electric machine, a decompression device for evacuating the inside of the container to a reduced pressure atmosphere, and applying a high-frequency voltage to the coil. A non-destructive insulation test device comprising: a high-frequency power source to be applied; and a high-frequency corona measuring device that detects whether corona discharge is generated from the small electric machine. It has the effect that corona discharge can be generated by voltage. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の非破壊絶縁試験装置を示す。
図 2は、 本発明の回路構成を示す。 FIG. 1 shows a non-destructive insulation test apparatus of the present invention. FIG. 2 shows a circuit configuration of the present invention.
図 3は、 本発明の一実施例による供試モー夕 (良品) のコロナ発生開始電圧を 示す。 FIG. 3 shows the corona generation starting voltage in the test mode (good) according to one embodiment of the present invention.
図 4は、 本発明の一実施例による供試モータの不良現象箇所でのコロナ発生開 始を示す。 FIG. 4 shows the start of corona generation at a failure phenomenon portion of the test motor according to one embodiment of the present invention.
図 5は、 本発明の一実施例によるコロナパルス発生頻度を示す。 発明を実施するための最良の形態 FIG. 5 shows a corona pulse generation frequency according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について、 図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の非破壊絶縁試験方法の一実施例を示している。 図 1において、 1は供試モー夕 (小型電気機械)、 2は減圧タンク (容器)、 3は高周波コロナ測 定装置、 4は真空計、 5はバルブ、 6は真空ポンプ、 7はプッシング、 8は夕一 ミナルである。 FIG. 1 shows an embodiment of the non-destructive insulation test method of the present invention. In Fig. 1, 1 is a test mode (small electric machine), 2 is a decompression tank (vessel), 3 is a high-frequency corona measuring device, 4 is a vacuum gauge, 5 is a valve, 6 is a vacuum pump, 7 is a pushing, 8 is Yuichi Minaru.
大気圧中で、 供試モ一夕 1は減圧タンク 2に収納され、 供試モー夕 1はターミ ナル 8を中継し、 プッシング 7を通ってモー夕巻線コイルのリード線に接続され る。 Under the atmospheric pressure, the test mode 1 is stored in the decompression tank 2, the test mode 1 is relayed to the terminal 8, passes through the pushing 7, and is connected to the lead wire of the motor winding coil.
減圧装置は真空ポンプ 6、 バルブ 5、 真空計 4により構成されており、 減圧夕 ンク 2内の減圧度は真空計 4により管理されながらバルブ 5を介して真空ポンプ 6で所定の減圧度に減圧される。 減圧タンク 2の減圧度は実験により、 6 5〜2 0 O T o r rが最適であり、 被測定物 (供試モ一夕 1 ) の種類に応じ減圧管理を 行うとよい。 The decompression device is composed of a vacuum pump 6, a valve 5, and a vacuum gauge 4.The degree of decompression in the decompression tank 2 is controlled by the vacuum gauge 4 and reduced to a predetermined degree by the vacuum pump 6 via the valve 5. Is done. The optimal degree of decompression of the decompression tank 2 is 65 to 20 O T O r rr by experiments, and decompression management should be performed according to the type of the DUT (test sample 1).
一般的に減圧コロナに注目する場合パッシェンの法則により 1〜 5 T o r rが 最も感度が高いが、 この領域ではあまりにコロナ放電が活発なため、 意味のない ノイズ的なコロナ量が多く、 本来検出しょうとしている、 供試モータ巻線のマグ ネットワイヤー 1本とラミネ一トコァまでの距離 1 mm以下を有す不良現象から のコロナ放電情報が埋没し、 著しく S N比を低下させてしまう。 In general, when focusing on the decompression corona, 1 to 5 Torr is the most sensitive according to Paschen's law. However, since corona discharge is too active in this region, there is a lot of meaningless noise-like corona, so it should be detected originally. The corona discharge information from a failure phenomenon that has a distance of 1 mm or less between one magnet wire of the motor winding to be tested and the laminator core is buried, which significantly lowers the SN ratio.
高周波コロナ測定装置 3内にある高周波電源において発生した高周波電圧は高 圧ケ一ブルにより導かれ、 リード線を通ってモー夕 1のコイルに印加され、 徐々 に印加電圧を上げていくとモータ巻線とラミネートコア間にコロナ放電が起こる。
小型電気機械の巻線 (マグネットワイヤー) のなかで発生するコロナ放電は大 きく分けて、 (1)マグネットワイヤーとラミネートコアの間に有る絶縁物(フィ ルム、 樹脂等) を通して発生する放電、 (2) マグネットワイヤーとラミネ一トコ ァ間で空気絶縁を通して発生する放電がある。 The high-frequency voltage generated by the high-frequency power supply in the high-frequency corona measuring device 3 is guided by a high-voltage cable, applied to the coil of the motor 1 through the lead wire, and gradually increases the applied voltage. Corona discharge occurs between the wire and the laminate core. Corona discharges generated in the windings (magnet wires) of small electric machines can be broadly divided into (1) discharges generated through insulators (film, resin, etc.) between the magnet wires and the laminated core, ( 2) There is a discharge generated between the magnet wire and the laminating core through the air insulation.
(1) の現象は (2) の現象に比べ絶縁物の誘電率が高く、 コロナ発生開始電 圧が低く早期に発生するもので、 高電圧を印加した場合 (2) の現象の不良判定 が困難であった。 しかし (2) の現象は、 電気的、 機械的、 温度的、 科学的な要 因から将来的に不良となる確率が高く、 判定し事前に検出しなければならない。 この課題に対し高周波電源 (l〜40 kHz) を使用するとよい。 これは、 コ ィルを有した小型電気機械のインピーダンス (Z) は (1/coC) であり、 電源 周波数 (ω) を増大させることにより、 インピーダンスを減らし、 卷線内に流れ る電荷量を増大させることにより、 不良箇所に低い電圧でコロナ放電を発生させ ることが可能となった。 Phenomenon (1) is a phenomenon in which the dielectric constant of the insulator is higher than that of (2) and the corona generation starting voltage is low, and the phenomenon occurs early. It was difficult. However, phenomenon (2) has a high probability of failure in the future due to electrical, mechanical, thermal, and scientific factors, and must be determined and detected in advance. A high-frequency power supply (1 to 40 kHz) should be used for this task. This is because the impedance (Z) of a small electric machine having a coil is (1 / coC). By increasing the power supply frequency (ω), the impedance is reduced and the amount of charge flowing in the winding is reduced. By increasing the voltage, it became possible to generate corona discharge at a low voltage at the defective part.
さらに、 前記 (1) と (2) のコロナ放電の判定方法として、 (2) のコロナパ ルス周波数は 1. 5 MHz付近に増大することを実験により求め、 口一パスフィ ルター (500 kHz) とハイパスフィルタ一 (2MHz) の組み合せによるバ ンドパスフィルターを形成する手段により判定し検出が実現できるものである。 図 3は供試モータ全体から発生するコロナ放電の発生開始電圧と真空度の関係 を、 図 4は供試モータ巻線のマグネットワイヤー 1本とラミネートコアまでの距 離 0. 3 mmを有す不良再現箇所のコロナ発生開始電圧と真空度の関係を示す。 この図 3および図 4が示すように、 供試モータ全体 (特にスロット絶縁紙を通 過し発生するコロナ放電) から発生する意味のないコロナ放電と、 不良箇所に発 生する有意なコロナ放電を区別する必要がある。 Furthermore, as a method for determining the corona discharge in (1) and (2), the corona pulse frequency in (2) was found to increase near 1.5 MHz by experiments, and a single-pass filter (500 kHz) and a high-pass filter were used. Judgment and detection can be realized by means for forming a band-pass filter using a combination of filters (2 MHz). Fig. 3 shows the relationship between the voltage at which corona discharge occurs from the entire test motor and the degree of vacuum, and Fig. 4 shows the distance between one magnet wire of the test motor winding and the laminated core of 0.3 mm. The relationship between the corona generation starting voltage and the degree of vacuum at the failure reproduction location is shown. As shown in Fig. 3 and Fig. 4, the meaningless corona discharge generated from the whole motor under test (especially the corona discharge generated through the slot insulating paper) and the significant corona discharge generated at the defective part are shown. Need to be distinguished.
この方法を図 2で説明する。 高周波電源 50 (周波数が 1〜 50 KH zまで可 変できる正弦波信号を変圧器により MAX 3000 V (0—P) まで昇圧された 高周波電源)にて発生した電圧を供試モー夕 5 1の巻線とステ一夕間に印加する。 その時供試モー夕から発生するコロナ放電により高周波成分が電源に重乗してく る。 この放電パルスの中でも低域の周波数のコロナパルスを検出回路 52で検出 する。 検出されたコロナパルスの中でも意味のないコロナ周波数と、 供試モータ
巻線のマグネットワイヤー 1本とラミネートコアまでの距離 l mm以下を有す不 良箇所のコロナ周波数を区別するため、 口一パスフィルタ一 (5 0 0 K H z ) と ハイパスフィル夕一 (2 . 5 MH z ) とで形成するバンドパスフィルター 5 2に て区別する。 This method is illustrated in FIG. The voltage generated by the high-frequency power supply 50 (high-frequency power supply whose sinusoidal signal whose frequency can be varied from 1 to 50 KHz is boosted up to MAX 3000 V (0-P) by a transformer) is used for the test mode. Apply to the winding and stay overnight. At that time, high frequency components are superimposed on the power supply due to corona discharge generated from the test mode. Among these discharge pulses, a corona pulse having a low frequency is detected by the detection circuit 52. Corona frequency that is meaningless among the detected corona pulses and the motor under test In order to distinguish the corona frequency of a faulty part having a distance of 1 mm or less from one winding magnet wire to the laminated core, a mouth-pass filter (500 KHz) and a high-pass filter Yuichi (2. 5 MHz) and a band pass filter 52 formed by the band pass filter 52.
コロナパルスは電気的に非常にレベルの小さな信号であるため、 A M P 5 4に て信号を増幅する。 また、 高周波電源 5 0より印加された負の電圧に対して発生 したコロナパルスも有効であり、 パルスも負のパルスであるため、 絶対値回路 5 5をとおしすベて正のパルスに変える。 Since the corona pulse is an electrically very small signal, the signal is amplified by the AMP54. A corona pulse generated for a negative voltage applied from the high-frequency power supply 50 is also effective. Since the pulse is also a negative pulse, the pulse is changed to a positive pulse throughout the absolute value circuit 55.
その後コロナパルスをパルスカウン夕 5 6でパルス数を数え、 積分回路 5 7で 放電量を算出し、またピーク検出器 5 8でコロナパルスのピークレベルを検出し、 不良箇所があれば判定回路 5 9で不良と判定することにより検出を可能にした。 上記方法により、 供試モー夕の良品と不良現象を有するものとを比較測定した ものを図 5に示す。 Thereafter, the corona pulse is counted by the pulse counter 56, the number of pulses is calculated by the integrating circuit 57, the discharge amount is calculated by the integrating circuit 57, and the peak level of the corona pulse is detected by the peak detector 58. The detection was made possible by judging it as defective. Fig. 5 shows the results of a comparative measurement of a non-defective product in the test mode and a product with a defective phenomenon using the above method.
良品供試モータは約 1 0 5 0 Vからパルスの増加が発生しているものに比べ、 不良現象を有した供試モータは 7 5 0 Vからパルスは増加している。 この関係に ある供試モータでは、 9 0 0 Vで試験することにより、 良品と不良品の判定が可 能となる。 産業上の利用可能性 Compared to the non-defective test motor, the pulse increased from about 150 V, the pulse increased from 75 V in the test motor with the failure phenomenon. With the test motor having this relationship, testing at 900 V makes it possible to judge good and defective products. Industrial applicability
以上のように請求項 1および請求項 2記載の発明によれば、 健全な巻線コイル がラミネートコアに異常接近 (l mm以内) した状態にある欠陥部分を、 非破壊 検査により量産工程で全数検査を可能にした絶縁試験方法を提供することができ るという有利な効果を得ることができる。
As described above, according to the first and second aspects of the present invention, all of the defective portions in which a healthy winding coil has abnormally approached (within l mm) the laminate core are subjected to non-destructive inspection in the mass production process. The advantageous effect of being able to provide an insulation test method that enables inspection can be obtained.
Claims
請求の範囲 コイルを有する小型電気機械を容器に収納する第 1ステップと、前記容器 内を減圧する第 2ステップと、 前記コイルに高周波電圧を印加する第 3ステ ップと、 前記小型電気機械からコロナ放電が発生しているか否かを判定する 第 4ステップからなることを特徴とするコイルを有する小型電気機械の非破 壊絶縁試験方法。 Claims A first step of storing a small electric machine having a coil in a container, a second step of reducing the pressure in the container, a third step of applying a high-frequency voltage to the coil, A non-destructive insulation test method for a small electric machine having a coil, comprising a fourth step of determining whether or not corona discharge has occurred.
第 2ステップで容器内を 6 5〜2 5 0 0 T o r rに減圧し、第 2ステップ で 1〜 4 0 k H zの高周波電圧を印加する請求の範囲第 1項に記載の小型電 気機械の 破壊絶縁試験方法。 The small electric machine according to claim 1, wherein the pressure in the vessel is reduced to 65 to 250 Torr in the second step, and a high-frequency voltage of 1 to 40 kHz is applied in the second step. Destructive insulation test method.
コイルを有する小型電気機械の非破壊絶縁試験装置において、前記小型電 気機械を収納する容器と、 前記容器内を減圧雰囲気にする減圧装置と、 前記 コイルに高周波電圧を印加する高周波電源と、 前記小型電気機械からコロナ 放電が発生しているか否かを判定する高周波コロナ測定装置により構成され ていることを特徴とする非破壊絶縁試験装置。
In a non-destructive insulation test apparatus for a small electric machine having a coil, a container for accommodating the small electric machine, a decompression device for evacuating the inside of the container to a reduced pressure atmosphere, a high frequency power supply for applying a high frequency voltage to the coil, A non-destructive insulation test device comprising a high-frequency corona measuring device for determining whether corona discharge is generated from a small electric machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020037006293A KR100705121B1 (en) | 2000-11-10 | 2001-11-08 | Non-destructive insulation test method and apparatus for small electric machines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-343286 | 2000-11-10 | ||
JP2000343286A JP2002148300A (en) | 2000-11-10 | 2000-11-10 | Non-destructive insulation test method and apparatus for small electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002039128A1 true WO2002039128A1 (en) | 2002-05-16 |
Family
ID=18817681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/009785 WO2002039128A1 (en) | 2000-11-10 | 2001-11-08 | Method and apparatus of nondestructive insulation test for small electric machine |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2002148300A (en) |
KR (2) | KR100705121B1 (en) |
CN (1) | CN1216296C (en) |
WO (1) | WO2002039128A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101910853A (en) * | 2008-06-25 | 2010-12-08 | 爱信艾达株式会社 | Insulation coated conductor testing method and apparatus |
CN106405342A (en) * | 2015-07-31 | 2017-02-15 | 斯凯孚公司 | Partial discharge detection relay matrix for multiple lead analysis |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4749416B2 (en) * | 2005-03-02 | 2011-08-17 | トヨタ自動車株式会社 | Insulation inspection equipment |
JP5267339B2 (en) * | 2009-06-04 | 2013-08-21 | アイシン・エィ・ダブリュ株式会社 | Coil nondestructive inspection method and apparatus |
CN104698349B (en) * | 2015-01-16 | 2017-04-12 | 广东电网有限责任公司电力科学研究院 | Paper oil insulation partial discharge test device |
CN105182202B (en) * | 2015-09-29 | 2017-11-03 | 北京环境特性研究所 | One kind miniaturization corona discharge detection device |
CN106526375B (en) * | 2016-10-28 | 2023-04-07 | 桂林理工大学 | Electromagnetic acting force generating device for electrical insulation film pulse voltage accelerated aging experiment |
KR102010062B1 (en) | 2017-12-15 | 2019-08-12 | 주식회사 포스코 | Coherence testing apparatus |
CN110514999A (en) * | 2019-09-04 | 2019-11-29 | 青岛艾普智能仪器有限公司 | A kind of motor stator coil single-point damage testing method |
CN113597458B (en) | 2020-03-27 | 2023-10-27 | 株式会社寺冈制作所 | Thermal peeling type adhesive tape |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535657B2 (en) * | 1974-06-03 | 1980-09-16 | ||
JPH07128392A (en) * | 1993-10-26 | 1995-05-19 | Mitsubishi Cable Ind Ltd | Non-destructive insulation test equipment |
US5867029A (en) * | 1995-08-02 | 1999-02-02 | Matsushita Electric Industrial Co., Ltd. | Method of nondestructive insulation test and a nondestructive insulation testing apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173072U (en) * | 1985-04-16 | 1986-10-28 |
-
2000
- 2000-11-10 JP JP2000343286A patent/JP2002148300A/en not_active Withdrawn
-
2001
- 2001-11-08 KR KR1020037006293A patent/KR100705121B1/en not_active Expired - Fee Related
- 2001-11-08 CN CN018184715A patent/CN1216296C/en not_active Expired - Fee Related
- 2001-11-08 WO PCT/JP2001/009785 patent/WO2002039128A1/en not_active Application Discontinuation
- 2001-11-08 KR KR1020057015106A patent/KR20050087887A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535657B2 (en) * | 1974-06-03 | 1980-09-16 | ||
JPH07128392A (en) * | 1993-10-26 | 1995-05-19 | Mitsubishi Cable Ind Ltd | Non-destructive insulation test equipment |
US5867029A (en) * | 1995-08-02 | 1999-02-02 | Matsushita Electric Industrial Co., Ltd. | Method of nondestructive insulation test and a nondestructive insulation testing apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101910853A (en) * | 2008-06-25 | 2010-12-08 | 爱信艾达株式会社 | Insulation coated conductor testing method and apparatus |
CN106405342A (en) * | 2015-07-31 | 2017-02-15 | 斯凯孚公司 | Partial discharge detection relay matrix for multiple lead analysis |
Also Published As
Publication number | Publication date |
---|---|
CN1216296C (en) | 2005-08-24 |
KR20050087887A (en) | 2005-08-31 |
CN1473273A (en) | 2004-02-04 |
JP2002148300A (en) | 2002-05-22 |
KR20040008114A (en) | 2004-01-28 |
KR100705121B1 (en) | 2007-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315814B2 (en) | Insulation coated conductor inspection method and apparatus | |
CA2082204C (en) | High frequency surge tester methods and apparatus | |
EP1870721B1 (en) | Insulation inspecting apparatus | |
WO2002039128A1 (en) | Method and apparatus of nondestructive insulation test for small electric machine | |
JP3261935B2 (en) | Non-destructive insulation test method and apparatus for small electric machine | |
US4737775A (en) | Insulation deterioration monitoring apparatus | |
JPH0830728B2 (en) | Withstand voltage inspection method and device | |
US5594348A (en) | Surge testing method in decompressed atmosphere for a small-size electric machine and apparatus thereof | |
JPH07128392A (en) | Non-destructive insulation test equipment | |
JP3808914B2 (en) | Non-destructive insulation test method and equipment for small electrical machines | |
JP2008180546A (en) | Withstand voltage test method for three-terminal capacitor, and withstand voltage tester thereof | |
JP2975039B2 (en) | Detecting device for abnormal winding of winding coil for motor | |
JP4244775B2 (en) | Coil insulation inspection device | |
JP2004361415A (en) | Non-destructive insulation test method and apparatus for small electric machines | |
CN104865510B (en) | The method of inspection of air reactor inner conductor Abnormal Insulation and mass defect | |
Stone et al. | Applicability of partial discharge testing for 4 kV motor and generator stator windings | |
JPH06313786A (en) | Inspection device of film | |
JPH06308189A (en) | Method for detecting partial discharge of cable | |
JP2023147406A (en) | Vacuum discharge testing method | |
JP2018036164A (en) | Method and device for examining insulation of coil | |
JPH048383Y2 (en) | ||
JP2023117672A (en) | Poor insulation part specification method | |
JPH08136609A (en) | Withstand voltage testing device | |
JPH09218173A (en) | Method for inspecting internal defect of object having electrostrictive phenomenon | |
JPH04109179A (en) | Defect section detecting method for cable insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 018184715 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037006293 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037006293 Country of ref document: KR |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020037006293 Country of ref document: KR |