WO2002004379A2 - Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof - Google Patents
Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof Download PDFInfo
- Publication number
- WO2002004379A2 WO2002004379A2 PCT/DE2001/002513 DE0102513W WO0204379A2 WO 2002004379 A2 WO2002004379 A2 WO 2002004379A2 DE 0102513 W DE0102513 W DE 0102513W WO 0204379 A2 WO0204379 A2 WO 0204379A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- ceramic
- electrically conductive
- starting
- conductive material
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 79
- 239000004020 conductor Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 title claims description 17
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 238000005245 sintering Methods 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000007772 electrode material Substances 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000010953 base metal Substances 0.000 claims description 4
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims description 2
- 229920002577 polybenzoxazole Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920001470 polyketone Polymers 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims 1
- 239000000470 constituent Substances 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 42
- 239000011888 foil Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 238000009413 insulation Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 229910001252 Pd alloy Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002003 electrode paste Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
- H01C1/146—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the resistive element surrounding the terminal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/006—Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/12—Overvoltage protection resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/18—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
- H10N30/053—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
Definitions
- the invention relates to a sintered, electrically conductive material, in particular for use as an inner electrode material in a ceramic multilayer component, a ceramic multilayer component with such a material, and a method for producing such a ceramic multilayer component according to the preamble of the independent claims.
- Ceramic piezo actuators which consist of a multiplicity of thin, ceramic, piezoactive layers, which are each separated from one another via inner electrode layers and can be electrically contacted and controlled via them, are widely known. For this purpose, reference is made, for example, to the application DE 199 51 016.4.
- piezo actuators often consist of a PZT ceramic, that is to say of a ceramic based on
- the piezoactive layers experience this when an external electrical voltage is applied to the inner electrode layers the inverse piezo effect a stretching or compression.
- typical control voltages from 100 volts to 300 volts, the change in length that occurs is in the range from 0.1% to 0.3%.
- a material is required as the inner electrode material in a ceramic multilayer component in the form of a piezo actuator, which both debinds the ceramic green foils initially used, i.e. the burning of the organic components contained in the green foils under an oxygen or air atmosphere, as well as the subsequent sintering process withstands typical temperatures from 950 ° C to 1100 ° C. In the simplest case, this means that the inner electrode material must both be stable to oxidation and must have a melting point that is higher than the maximum sintering temperature used.
- noble metals or noble metal alloys in particular in many cases a silver-palladium alloy with a composition of 70% by mass of silver and 30% by mass of palladium, have been used as the inner electrode material.
- Such an Ag-Pd alloy is less expensive than platinum and has a melting point that is still sufficiently high for sintering.
- Ag-Pd alloys have the disadvantage that there is a diffusion of silver in the course of the cofiring process of the ceramic green sheets with the PZT ceramic and the Ad / Pd inner electrode material comes into the PZT ceramic, whereby the silver is built into the Pb positions in the PZT ceramic, which leads to an impairment of the electromechanical properties of the PZT ceramic.
- Another disadvantage is that when large amounts of silver are diffused into the PZT ceramic, silver secondary phases can form after silver saturation has been reached, which reduces the specific electrical resistance of the PZT material, which is electrically insulating as a whole, and ultimately leads to undesired ones electrical breakdowns in the ceramic insulation layers of the ceramic multilayer component can result. These undesirable effects become more apparent the higher the proportion of silver in the inner electrode material.
- the silver-palladium alloy used is still an expensive raw material due to the relatively high palladium content, it is desirable to either drastically reduce the noble metal content in the inner electrode material used, or to replace it entirely with a less expensive material.
- the sintered, electrically conductive material according to the invention has the advantage over the prior art that it can be used in a ceramic multilayer component, for example a piezo actuator, as the inner electrode material, it being distinguished in particular by the fact that the powdery metallic starting component contained therein can also be a base metal or a base metal alloy.
- the organic component added before the sintering of the starting mixture ensures that it surrounds the powder particles of the metallic starting component at least largely in the form of an at least largely carbonized layer during and after the sintering, so that the powder particles are at least largely protected against oxidation.
- the material according to the invention is in the form of a two-phase material with a metallic phase and a carbon phase at least largely surrounding this metallic phase.
- the ceramic multilayer component provided with such a sintered, electrically conductive material in the form of inner electrode layers has the advantage that inner electrode layers made of this material are initially significantly cheaper than known inner electrode materials, and furthermore the problem that arises when using silver-palladium alloys the diffusion of silver into neighboring ceramic insulation layers does not occur.
- well-conductive inner electrode layers are formed between the ceramic insulation layers in the ceramic multilayer component, which are comparable in terms of their electrical conductivity to known inner electrode layers.
- the powdery metallic starting component is used in the form of a highly crystalline metal powder which is already in the starting mixture with a high-temperature stable organic protective layer from the one used organic starting component has been provided.
- a high-temperature-stable protective layer is understood to mean a material which, in contrast to the organic constituents in the ceramic green sheets, which later form the ceramic insulation layers, is not or only slightly thermally decomposed under the process conditions prevailing during debinding.
- the organic starting component which initially forms the organic protective layer around the highly crystalline metal powder is a material which is not or only slightly thermally decomposable up to a temperature of 350 ° C., in particular in an oxygen-containing gas atmosphere. It has turned out to be particularly advantageous if the organic starting component is a polyimide, a polybenzoxazole, a polyether, a polycarbonate or a polyketone.
- the powdery metallic starting component in the starting mixture for the electrically conductive material is provided with a protective layer made of the organic starting component, this initially protects the metallic powder particles during the debinding at least against complete oxidation, and on the other hand pyrolyzes during the subsequent one Sintering process at low oxygen partial pressure or with complete exclusion of oxygen to carbon.
- Green foils and an organic protective coating of the powder particles of the metallic starting component that can only be decomposed at significantly higher temperatures thus have the essential advantage that the metal powder is initially protected by the more heat-resistant organic coating during debinding.
- the organic protective coating is achieved in the following temperature range of approx. 400 ° C to 700 ° C carbonized from the organic starting component due to a lack of oxygen around the metallic powder particles, so that an electrically conductive material is formed which can be used in the ceramic multilayer component as an electrode layer made of metal and carbon.
- Material does not adversely affect the conductivity of the material obtained, and also shows no or only a negligible tendency to diffuse into adjacent ceramic layers, so that this inner electrode material does not cause any undesired contamination or no undesired doping of adjacent ceramic insulation layers.
- the protective layer surrounding the metallic starting component in the form of a layer which is at least largely carbonized to carbon also has the advantage that it reduces renden character, so that in the temperature range that usually has to be run through in the sintering process, the carbon formed by coking reduces a metal oxide possibly initially formed from the metallic starting component again to metal. At the same time, this carbon only reduces lead oxide in acceptable small amounts, while titanium dioxide, barium oxide and zirconium dioxide are not reduced.
- FIG. 1 shows a ceramic multilayer component with a multiplicity of ceramic insulation layers and inner electrode layers and FIG. 2 explains the production of this ceramic multilayer component starting from a multilayer green body during debinding and subsequent sintering.
- the production of the sintered electrically conductive material is explained using the example of the production of a ceramic multilayer component in the form of a piezo actuator, in which this sintered electrically conductive material forms the inner electrode layers.
- a starting mixture is first prepared in the form of a paste, which contains a powdery metallic starting component and an organic starting component.
- the proportion of the metallic starting component in the starting mixture is 30% by weight to 70% by weight.
- the mixture of metallic and organic starting component is further a solvent such as terpineol or an alcohol and optionally other components such as long-chain ethers or ester added, so that after a final mixing, a paste-like starting mixture is formed, in which the powder particles of the metallic starting component are at least largely provided with a surface coating made of the organic starting component.
- the powdery metallic starting component is a highly crystalline copper powder with an average particle size of 100 nm to 10 ⁇ m.
- a polyimide with a thermal decomposition temperature in an oxygen atmosphere of more than 350 ° C. is used as the organic starting component. In this way it is ensured that the organic starting component is not or only slightly thermally decomposed during the debinding of the multilayer green body produced later at temperatures of up to 350 ° C.
- the surface coating of the copper powder used with the polyimide can take place both before the preparation of the paste-like starting mixture and in situ during the production of the paste.
- the copper powder used it is also possible to use a different, preferably highly electrically conductive non-precious metal or a highly electrically conductive non-noble metal alloy whose melting point is above the temperatures that occur during the subsequent sintering.
- non-noble metals or non-noble metal alloys whose melting point is more than 1100 ° C. are preferred.
- a number of known, laminable ceramic green foils are also used prepared which, in addition to a binder and a solvent as ceramic component, contain a PZT ceramic of the composition Pb (Zr x Ti ⁇ _ x ) O3 with 0.4 ⁇ x ⁇ 0.6.
- dopants such as rare earth metals, alkali metals and / or alkaline earth metals with a typical proportion of less than 8 mol% can also be added to these ceramic green films in a manner known per se.
- the pasty starting mixture is applied to the surface of the prepared ceramic green foils at least on one side and at least in some areas.
- the ceramic green sheets thus provided with the starting mixture are then stacked to form a multi-layer green body, which is then laminated and debindered.
- the debinding takes place in an air atmosphere at the lowest possible temperatures of, for example, 100 ° C. to 350 ° C., in particular 100 ° C.
- this green body is sealing-sintered to form a ceramic multi-layer component 5 according to FIG. 1, which begins at a temperature of 400 ° C. and which ends at a temperature of 1100 ° C.
- This sealing sintering continues under low oxygen partial pressure, preferably, however, with the complete exclusion of oxygen, for example in a pure nitrogen atmosphere.
- the organic starting component in the starting mixture which has been applied to the surface of the ceramic green foils to form inner electrode layers, at least largely cokes to carbon due to lack of oxygen, which encloses the highly crystalline copper powder particles.
- a ceramic multilayer component 5 is formed from a regular sequence of ceramic insulating layers 11 an insighten arranged one above the other, which at least in regions consist of internal electrodes 10 made of the sintered electrically conductive material produced in the manner explained.
- the thickness of the insulating layers 11 according to FIG. 1 is between 50 ⁇ m and 130 ⁇ m, while the inner electrode layers 10 ⁇ have a thickness of 0.5 ⁇ m to 5 ⁇ m.
- a thickness of the inner electrode layers 10 ⁇ of approximately 1 ⁇ m to 2 ⁇ m is preferred.
- the polyimide used as the organic starting component ensures that it converts to carbon in the temperature range from 400 ° C to 700 ° C by coking.
- FIG. 2 once again explains the process sequence described above for producing the ceramic multilayer component 5, starting from a multilayer ceramic green body. It is shown that at a temperature of approximately 20 ° C. there is initially a multi-layer green body consisting of a sequence of stacked ceramic green foils 11 with electrode paste 10 located between them.
- the electrode paste 10 is the paste produced with the starting mixture for the electrically conductive material. It is further shown in FIG. 2 that the electrode paste 10 contains coated powder particles 30 which consist of a metallic powder particle 20 which is provided on the surface with an organic starting component 21, polyimide in the example explained.
- FIG. 2 further shows that the debinding of the ceramic green body initially produced is completed at approximately 400 ° C. before the actual sintering process begins, which reaches a final temperature of approximately 1100 ° C.
- the ceramic green body produced initially shows only a slight shrinkage during debinding, but this becomes significantly larger during sintering.
- the ceramic green sheets 10 form at least largely organic insulating layers 11 ⁇ made of PZT ceramic during sintering, which are separated from one another by the sintered electrically conductive material via the inner electrode layers 10 ⁇ .
- the powder particles 30 initially coated at 20 ° C.
- the inner electrode layer 10 in the actual sense often no longer contains any powder particles that can be separated exactly from one another, but is designed in the form of a compact layer that has two phases, on the one hand a metallic phase and on the other hand a carbon phase.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Conductive Materials (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
The invention relates to a sintered, electrically conductive material, which is made from a starting mixture containing a powdery metallic starting constituent and an organic starting constituent. After sintering, the organic starting constituent (21) encloses the powder particles (20, 20') of the metallic starting constituent in the form of a layer (21') that is at least largely carbonized into carbon. The invention also relates to a ceramic multilayer component (5), especially a piezo actuator, and to a method for the production thereof. The multilayer component (5) comprises a plurality of ceramic insulating layers (11'), which are arranged one above the other and which are separated from one another at least in areas by means of inner electrode layers (10') that are made of the electrically conductive material. The inventive method involves the preparation of the starting mixture, the preparation of a plurality of laminatable ceramic green films (11), an at least one side flat application of the starting mixture to the surface of the ceramic green films (11), the stacking of the ceramic green films (11), which are provided with the starting mixture, to form a multilayer green body, the releasing of the multilayer green body and the sintering of the multilayer green body to form the ceramic multilayer component (5).
Description
Gesinterter, elektrisch leitfähiger Werkstoff, keramisches Mehrlagenbauteil mit diesem Werkstoff, und Verfahren zu des- sen HerstellungSintered, electrically conductive material, ceramic multilayer component with this material, and method for its production
Die Erfindung betrifft einen gesinterten, elektrisch leitfähigen Werkstoff, insbesondere zur Verwendung als Innenelek- trodenmaterial in einem keramischen Mehrlagenbauteil, ein keramisches Mehrlagenbauteil mit einem derartigen Werkstoff, und ein Verfahren zur Herstellung eines derartigen keramischen Mehrlagenbauteils nach der Gattung der unabhängigen Ansprüche .The invention relates to a sintered, electrically conductive material, in particular for use as an inner electrode material in a ceramic multilayer component, a ceramic multilayer component with such a material, and a method for producing such a ceramic multilayer component according to the preamble of the independent claims.
Stand der TechnikState of the art
Keramische Piezoaktoren, die aus einer Vielzahl von dünnen, keramischen, piezoaktiven Schichten bestehen, die jeweils über Innenelektrodenschichten voneinander getrennt und dar- über elektrisch kontaktierbar und ansteuerbar sind, sind vielfach bekannt. Dazu sei beispielsweise auf die Anmeldung DE 199 51 016.4 verwiesen.Ceramic piezo actuators, which consist of a multiplicity of thin, ceramic, piezoactive layers, which are each separated from one another via inner electrode layers and can be electrically contacted and controlled via them, are widely known. For this purpose, reference is made, for example, to the application DE 199 51 016.4.
Insbesondere bestehen derartige Piezoaktoren häufig aus ei- ner PZT-Keramik, das heißt aus einer Keramik auf Basis vonIn particular, such piezo actuators often consist of a PZT ceramic, that is to say of a ceramic based on
P (TixZr^_x) O3 mit 0,4 < x < 0,6, in Form von zusammengesinterten piezoaktiven Schichten mit dazwischen angebrachten Innenelektroden bzw. Innenelektrodenschichten. Dabei erfahren die piezoaktiven Schichten bei Anlegen einer äußeren elektrischen Spannung an die Innenelektrodenschichten über
den inversen Piezoeffekt eine Dehnung oder Stauchung. Bei typischen Ansteuerspannungen von 100 Volt bis 300 Volt liegt die auftretende Längenänderung im Bereich von 0,1 % bis 0,3 %.P (Ti x Zr ^ _ x ) O3 with 0.4 <x <0.6, in the form of sintered piezoactive layers with inner electrodes or inner electrode layers arranged between them. The piezoactive layers experience this when an external electrical voltage is applied to the inner electrode layers the inverse piezo effect a stretching or compression. With typical control voltages from 100 volts to 300 volts, the change in length that occurs is in the range from 0.1% to 0.3%.
Als Innenelektrodenmaterial in einem keramischen Mehrlagenbauteil in Form eines Piezoaktors wird ein Material benötigt, das sowohl das Entbindern der zunächst eingesetzten keramischen Grünfolien, das heißt das Verbrennen der in den Grünfolien enthaltenen organischen Bestandteile unter Sauerstoff- oder Luftatmosphäre, als auch den sich daran anschließenden Sinterprozess bei typischen Temperaturen von 950°C bis 1100°C übersteht. Im einfachstem Fall bedeutet dies, dass das Innenelektrodenmaterial sowohl oxidationssta- bil sein muss als auch einen Schmelzpunkt aufweisen muss, der höher liegt als die maximal eingesetzte Sintertemperatur.A material is required as the inner electrode material in a ceramic multilayer component in the form of a piezo actuator, which both debinds the ceramic green foils initially used, i.e. the burning of the organic components contained in the green foils under an oxygen or air atmosphere, as well as the subsequent sintering process withstands typical temperatures from 950 ° C to 1100 ° C. In the simplest case, this means that the inner electrode material must both be stable to oxidation and must have a melting point that is higher than the maximum sintering temperature used.
Aus diesem Grund werden bisher Edelmetalle oder Edelmetall- legierungen, insbesondere vielfach eine Silber-Palladium- Legierung mit einer Zusammensetzung von 70 Massen% Silber und 30 Massen% Palladium, als Innenelektrodenmaterial eingesetzt. Eine solche Ag-Pd-Legierung ist kostengünstiger als Platin und hat einen für das Sintern noch ausreichend hohen Schmelzpunkt.For this reason, noble metals or noble metal alloys, in particular in many cases a silver-palladium alloy with a composition of 70% by mass of silver and 30% by mass of palladium, have been used as the inner electrode material. Such an Ag-Pd alloy is less expensive than platinum and has a melting point that is still sufficiently high for sintering.
Andererseits haben Ag-Pd-Legierungen trotz ihres ausreichend hohen Schmelzpunktes und ihres kontrollierbaren Oxidations- verhaltens den Nachteil, dass es im Laufe des durchgeführten Cofiring-Prozesses der keramischen Grünfolien mit der PZT- Keramik und dem Ad/Pd-Innenelektrodenmaterial zu einer Diffusion von Silber in die PZT-Keramik kommt, wobei das Silber auf die Pb-Plätze in der PZT-Keramik eingebaut wird, was zu einer Beeinträchtigung der elektromechanischen Eigenschaften der PZT-Keramik führt.
Nachteilig ist weiterhin, dass sich beim Eindiffundieren größerer Mengen von Silber in die PZT-Keramik nach Erreichen einer Silber-Sättigung Silber-Sekundärphasen ausbilden kön- nen, was den spezifischen elektrischen Widerstand des an sich elektrisch isolierenden PZT-Materials verringert, und schließlich zu unerwünschten elektrischen Durchschlägen in den keramischen Isolationsschichten des keramischen Mehrlagenbauteils führen kann. Diese unerwünschten Effekte treten umso stärker zu Tage, je höher der Anteil von Silber in dem Innenelektrodenmaterial ist.On the other hand, despite their sufficiently high melting point and controllable oxidation behavior, Ag-Pd alloys have the disadvantage that there is a diffusion of silver in the course of the cofiring process of the ceramic green sheets with the PZT ceramic and the Ad / Pd inner electrode material comes into the PZT ceramic, whereby the silver is built into the Pb positions in the PZT ceramic, which leads to an impairment of the electromechanical properties of the PZT ceramic. Another disadvantage is that when large amounts of silver are diffused into the PZT ceramic, silver secondary phases can form after silver saturation has been reached, which reduces the specific electrical resistance of the PZT material, which is electrically insulating as a whole, and ultimately leads to undesired ones electrical breakdowns in the ceramic insulation layers of the ceramic multilayer component can result. These undesirable effects become more apparent the higher the proportion of silver in the inner electrode material.
Da zudem die eingesetzte Silber-Palladium-Legierung durch den relativ hohen Palladiumgehalt immer noch ein teuerer Rohstoff ist, ist es wünschenswert, den Edelmetallgehalt in dem eingesetzten Innenelektrodenmaterial entweder drastisch zu senken, oder aber gänzlich durch ein kostengünstigeres Material zu ersetzen.In addition, since the silver-palladium alloy used is still an expensive raw material due to the relatively high palladium content, it is desirable to either drastically reduce the noble metal content in the inner electrode material used, or to replace it entirely with a less expensive material.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße, gesinterte, elektrisch leitfähige Werkstoff hat gegenüber dem Stand der Technik den Vorteil, dass er in einem keramischen Mehrlagenbauteil, beispielswei- se einem Piezoaktor, als Innenelektrodenmaterial einsetzbar ist, wobei er sich vor allem dadurch auszeichnet, dass die darin enthaltene pulverförmige metallische Ausgangskomponente auch ein Nichtedelmetall oder eine Nichtedelmetalllegierung sein kann. Dabei wird durch die vor dem Sintern der Ausgangsmischung zugesetzte organische Komponente gewährleistet, dass diese die Pulverteilchen der metallischen Ausgangskomponente beim und nach dem Sintern zumindest weitgehend in Form einer zumindest weitgehend zur Kohlenstoff verkokten Schicht umgibt, so dass die Pulverteilchen zumindest weitgehend vor Oxidation geschützt sind.
Insofern liegt nach dem Sintern der Ausgangsmischung der erfindungsgemäße Werkstoff in Form eines zweiphasigen Werkstoffes mit einer metallischen Phase und einer diese metal- lische Phase zumindest weitgehend umschließenden Kohlen- stoffphase vor.The sintered, electrically conductive material according to the invention has the advantage over the prior art that it can be used in a ceramic multilayer component, for example a piezo actuator, as the inner electrode material, it being distinguished in particular by the fact that the powdery metallic starting component contained therein can also be a base metal or a base metal alloy. The organic component added before the sintering of the starting mixture ensures that it surrounds the powder particles of the metallic starting component at least largely in the form of an at least largely carbonized layer during and after the sintering, so that the powder particles are at least largely protected against oxidation. In this respect, after the sintering of the starting mixture, the material according to the invention is in the form of a two-phase material with a metallic phase and a carbon phase at least largely surrounding this metallic phase.
Das mit einem derartigen gesinterten, elektrisch leitfähigen Werkstoff in Form von Innenelektrodenschichten versehene ke- ramische Mehrlagenbauteil hat den Vorteil, dass Innenelektrodenschichten aus diesem Werkstoff zunächst deutlich preiswerter sind als bekannte Innenelektrodenmaterialien, und dass darüber hinaus das beim Einsatz von Silber- Palladium-Legierungen auftretende Problem der Diffusion von Silber in benachbarte keramische Isolationsschichten nicht auftritt. Somit bilden sich durch den Einsatz des erfindungsgemäßen Werkstoffes zwischen den keramischen Isolationsschichten in dem keramischen Mehrlagenbauteil gut leitfähige Innenelektrodenschichten aus, die hinsichtlich ihrer elektrischen Leitfähigkeit mit bekannten Innenelektrodenschichten vergleichbar ist.The ceramic multilayer component provided with such a sintered, electrically conductive material in the form of inner electrode layers has the advantage that inner electrode layers made of this material are initially significantly cheaper than known inner electrode materials, and furthermore the problem that arises when using silver-palladium alloys the diffusion of silver into neighboring ceramic insulation layers does not occur. Thus, through the use of the material according to the invention, well-conductive inner electrode layers are formed between the ceramic insulation layers in the ceramic multilayer component, which are comparable in terms of their electrical conductivity to known inner electrode layers.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.Advantageous developments of the invention result from the measures mentioned in the subclaims.
So ist es besonders vorteilhaft, wenn als pulverförmige metallische Ausgangskomponente für den elektrisch leitfähigen Werkstoff Kupfer, Nickel oder eine Legierung von Kupfer mit Nickel eingesetzt wird. Als besonders vorteilhaft hat sich die Verwendung von Kupfer herausgestellt, da Kupfer ein sehr guter Leiter und gleichzeitig relativ preisgünstig ist.It is particularly advantageous if copper, nickel or an alloy of copper with nickel is used as the powdery metallic starting component for the electrically conductive material. The use of copper has proven to be particularly advantageous since copper is a very good conductor and at the same time relatively inexpensive.
Es sei jedoch betont, dass neben Kupfer und Nickel auch weitere Metalle oder Metalllegierungen in Frage kommen, sofern diese eine gute elektrische Leitfähigkeit und möglichst ge-
ringe Neigung zu Oxidation aufweisen, und mit dem Material der keramischen Isolierschichten, beispielsweise PZT- Keramik, verträglich sind.However, it should be emphasized that in addition to copper and nickel, other metals or metal alloys are also suitable, provided that they have good electrical conductivity and, if possible, rings have a tendency to oxidize, and are compatible with the material of the ceramic insulating layers, for example PZT ceramic.
Darüber hinaus ist es zur Verhinderung einer Oxidation während des Entbinderns bzw. des sich daran anschließenden Sin- terns vorteilhaft, wenn die pulverförmige metallische Ausgangskomponente in Form eines hochkristallinen Metallpulvers eingesetzt wird, das bereits in der Ausgangsmischung mit ei- ner hochtemperaturstabilen organischen Schutzschicht aus der eingesetzten organischen Ausgangskomponente versehen worden ist. Unter einer hochtemperaturstabilen Schutzschicht wird in diesem Zusammenhang ein Material verstanden, das im Gegensatz zu den organischen Bestandteilen in den keramischen Grünfolien, die später die keramischen Isolationsschichten bilden, unter den beim Entbindern herrschenden Verfahrensbedingungen nicht oder nur geringfügig thermisch zersetzt wird.In addition, to prevent oxidation during the debinding or the subsequent sintering, it is advantageous if the powdery metallic starting component is used in the form of a highly crystalline metal powder which is already in the starting mixture with a high-temperature stable organic protective layer from the one used organic starting component has been provided. In this context, a high-temperature-stable protective layer is understood to mean a material which, in contrast to the organic constituents in the ceramic green sheets, which later form the ceramic insulation layers, is not or only slightly thermally decomposed under the process conditions prevailing during debinding.
Insbesondere ist die zunächst die organische Schutzschicht um das hochkristalline Metallpulver bildende organische Ausgangskomponente ein Material, das bis zur einer Temperatur von 350 °C insbesondere in einer Sauerstoffhaltigen Gasatmosphäre nicht oder nur geringfügig thermisch zersetzbar ist. Als besonders vorteilhaft hat sich herausgestellt, wenn die organische Ausgangskomponente ein Polyimid, ein Polybenzoxa- zol, ein Polyether, ein Polycarbonat oder ein Polyketon ist.In particular, the organic starting component which initially forms the organic protective layer around the highly crystalline metal powder is a material which is not or only slightly thermally decomposable up to a temperature of 350 ° C., in particular in an oxygen-containing gas atmosphere. It has turned out to be particularly advantageous if the organic starting component is a polyimide, a polybenzoxazole, a polyether, a polycarbonate or a polyketone.
Dadurch dass die pulverförmige metallische Ausgangskomponen- te in der Ausgangsmischung für den elektrisch leitfähigen Werkstoff mit einer Schutzschicht aus der organischen Ausgangskomponente versehen ist, schützt diese die metallischen Pulverteilchen während des Entbinderns zunächst zumindest vor einer vollständigen Oxidation, und pyrolisiert anderer- seits während des sich anschließenden Sinterprozesses bei
geringem Sauerstoffpartialdruck oder bei vollständigem Sauerstoffausschluß zu Kohlenstoff.Because the powdery metallic starting component in the starting mixture for the electrically conductive material is provided with a protective layer made of the organic starting component, this initially protects the metallic powder particles during the debinding at least against complete oxidation, and on the other hand pyrolyzes during the subsequent one Sintering process at low oxygen partial pressure or with complete exclusion of oxygen to carbon.
Die Verwendung einer schon bei relativ geringen Temperaturen thermisch zersetzbaren Binderorganik in den keramischenThe use of a binder organic which can be thermally decomposed at relatively low temperatures in the ceramic
Grünfolien und einer erst danach bei deutlich höheren Temperaturen zersetzbaren organischen Schutzummantelung der Pulverteilchen der metallischen Ausgangskomponente hat somit den wesentlichen Vorteil, dass während des Entbinderns das Metallpulver durch die temperaturbelastbarere organische Beschichtung zunächst geschützt bleibt. Sobald die Entbinde- rung der keramischen Grünfolien dann aber abgeschlossen ist, wird durch das Umstellen auf eine sauerstoffarme oder gänzlich Sauerstofffreie Gasatmosphäre, beispielsweise eine Stickstoffatmosphäre, erreicht, dass in dem nun folgenden Temperaturbereich von ca. 400°C bis 700°C die organische Schutzummantelung aus der organischen Ausgangskomponente durch Sauerstoffmangel um die metallischen Pulverteilchen herum zu Kohlenstoff verkokt, so dass sich ein elektrisch leitfähiger Werkstoff bildet, der in dem keramischen Mehrlagenbauteil als Elektrodenschicht aus Metall und Kohlenstoff einsetzbar ist.Green foils and an organic protective coating of the powder particles of the metallic starting component that can only be decomposed at significantly higher temperatures thus have the essential advantage that the metal powder is initially protected by the more heat-resistant organic coating during debinding. As soon as the debinding of the ceramic green foils is then completed, by switching to a low-oxygen or completely oxygen-free gas atmosphere, for example a nitrogen atmosphere, the organic protective coating is achieved in the following temperature range of approx. 400 ° C to 700 ° C carbonized from the organic starting component due to a lack of oxygen around the metallic powder particles, so that an electrically conductive material is formed which can be used in the ceramic multilayer component as an electrode layer made of metal and carbon.
Dabei beeinträchtigt der Kohlenstoff in der Innenelektroden- schicht bzw. in dem gesinterten, elektrisch leitfähigenThe carbon in the inner electrode layer or in the sintered, electrically conductive layer is impaired
Werkstoff die Leitfähigkeit des erhaltenen Werkstoffes nicht nachteilig, und zeigt auch keine oder nur eine vernachlässigbar geringe Neigung zur Diffusion in benachbarte Keramikschichten, so dass von diesem Innenelektrodenmaterial keine unerwünschte Verschmutzung bzw. keine unerwünschte Dotierung benachbarter keramischer Isolationsschichten ausgeht.Material does not adversely affect the conductivity of the material obtained, and also shows no or only a negligible tendency to diffuse into adjacent ceramic layers, so that this inner electrode material does not cause any undesired contamination or no undesired doping of adjacent ceramic insulation layers.
Die die metallische Ausgangskomponente in Form einer zumindest weitgehend zu Kohlenstoff verkokten Schicht umgebende Schutzschicht hat zudem den Vorteil, dass sie einen reduzie-
renden Charakter aufweist, so dass in dem Temperaturbereich, der üblicher Weise beim Sinterprozess durchlaufen werden muss, der durch Verkoken gebildete Kohlenstoff ein möglicherweise aus der metallischen Ausgangskomponente zunächst teilweise doch gebildetes Metalloxid wieder zu Metall reduziert. Gleichzeitig wird durch diesen Kohlenstoff Bleioxid nur in vertretbar geringen Mengen, Titandioxid, Bariumoxid und Zirkoniumdioxid hingegen nicht reduziert.The protective layer surrounding the metallic starting component in the form of a layer which is at least largely carbonized to carbon also has the advantage that it reduces renden character, so that in the temperature range that usually has to be run through in the sintering process, the carbon formed by coking reduces a metal oxide possibly initially formed from the metallic starting component again to metal. At the same time, this carbon only reduces lead oxide in acceptable small amounts, while titanium dioxide, barium oxide and zirconium dioxide are not reduced.
Zeichnungendrawings
Die Erfindung wird anhand der Zeichnungen und in der nachfolgenden Beschreibung näher erläutert. Die Figur 1 zeigt ein keramisches Mehrlagenbauteil mit einer Vielzahl von ke- ramischen Isolationsschichten und Innenelektrodenschichten und die Figur 2 erläutert die Herstellung dieses keramischen Mehrlagenbauteils ausgehend von einem mehrlagigen Grünkörper beim Entbindern und anschießenden Sintern.The invention is explained in more detail with reference to the drawings and in the description below. FIG. 1 shows a ceramic multilayer component with a multiplicity of ceramic insulation layers and inner electrode layers and FIG. 2 explains the production of this ceramic multilayer component starting from a multilayer green body during debinding and subsequent sintering.
Ausführungsbeispieleembodiments
Die Herstellung des gesinterten elektrisch leitfähigen Werkstoffes wird am Beispiel der Herstellung eines keramischen Mehrlagenbauteils in Form eines Piezoaktors erläutert, bei dem dieser gesinterte elektrisch leitfähige Werkstoff die Innenelektrodenschichten bildet.The production of the sintered electrically conductive material is explained using the example of the production of a ceramic multilayer component in the form of a piezo actuator, in which this sintered electrically conductive material forms the inner electrode layers.
Dazu wird zunächst eine Ausgangsmischung in Form einer Paste vorbereitet, die eine pulverförmige metallische Ausgangskom- ponente und eine organische Ausgangskomponente enthält. Der Anteil der metallischen Ausgangskomponente in der Ausgangsmischung beträgt dabei 30 Gew.% bis 70 Gew.%. Der Mischung aus metallischer und organischer Ausgangskomponente wird weiter ein Lösungsmittel wie Terpineol oder ein Alkohol und gegebenenfalls weitere Bestandteile wie langkettige Ether
oder Ester zugesetzt, so dass nach einem abschließenden Vermischen eine pastenförmige Ausgangsmischung entstanden ist, in der die Pulverteilchen der metallischen Ausgangskomponen- te zumindest weitgehend mit einer Oberflächenbeschichtung aus der organischen Ausgangskomponente versehen sind.For this purpose, a starting mixture is first prepared in the form of a paste, which contains a powdery metallic starting component and an organic starting component. The proportion of the metallic starting component in the starting mixture is 30% by weight to 70% by weight. The mixture of metallic and organic starting component is further a solvent such as terpineol or an alcohol and optionally other components such as long-chain ethers or ester added, so that after a final mixing, a paste-like starting mixture is formed, in which the powder particles of the metallic starting component are at least largely provided with a surface coating made of the organic starting component.
Im Einzelnen ist im erläuterten Ausführungsbeispiel die pulverförmige metallische Ausgangskomponente ein hochkristallines Kupferpulver mit einem mittleren Teilchengröße von 100 nm bis 10 um. Als organische Ausgangskomponente wird im erläuterten Beispiel ein Polyimid mit einer thermischen Zersetzungstemperatur in Sauerstoffatmosphäre von mehr als 350°C eingesetzt. Auf diese Weise wird gewährleistet, dass die organische Ausgangskomponente beim Entbindern des später hergestellten mehrlagigen Grünkörpers bei Temperaturen von bis zu 350°C nicht oder nur geringfügig thermisch zersetzt wird.In detail, in the exemplary embodiment explained, the powdery metallic starting component is a highly crystalline copper powder with an average particle size of 100 nm to 10 μm. In the example explained, a polyimide with a thermal decomposition temperature in an oxygen atmosphere of more than 350 ° C. is used as the organic starting component. In this way it is ensured that the organic starting component is not or only slightly thermally decomposed during the debinding of the multilayer green body produced later at temperatures of up to 350 ° C.
Im Übrigen sei betont, dass die oberflächliche Beschichtung des eingesetzten Kupferpulvers mit dem Polyimid sowohl vor der Herstellung der pastenförmigen Ausgangsmischung als auch in situ während der Pastenherstellung erfolgen kann. Schließlich kann anstelle des eingesetzten Kupferpulvers auch ein anderes, bevorzugt gut elektrisch leitfähiges Nich- tedel etall bzw. eine gut elektrisch leitfähige Nichtedelmetalllegierung eingesetzt werden, dessen bzw. deren Schmelzpunkt oberhalb der bei dem nachfolgenden Sintern auftretenden Temperaturen liegt. Insbesondere werden Nichtedelmetalle bzw. Nichtedelmetalllegierungen bevorzugt, deren Schmelz- punkt mehr als 1100°C beträgt.In addition, it should be emphasized that the surface coating of the copper powder used with the polyimide can take place both before the preparation of the paste-like starting mixture and in situ during the production of the paste. Finally, instead of the copper powder used, it is also possible to use a different, preferably highly electrically conductive non-precious metal or a highly electrically conductive non-noble metal alloy whose melting point is above the temperatures that occur during the subsequent sintering. In particular, non-noble metals or non-noble metal alloys whose melting point is more than 1100 ° C. are preferred.
Neben der vorstehend erläuterten Ausgangsmischung als Vorprodukt für die Innenelektrodenschichten in dem herzustellenden keramischen Mehrlagenbauteil wird weiter eine Mehr- zahl an sich bekannter, laminierbarer keramischer Grünfolien
vorbereitet, die neben einem Binder und einem Lösungsmittel als keramischen Bestandteil eine PZT-Keramik der Zusammensetzung Pb (ZrxTiι_x) O3 mit 0,4 < x < 0,6 enthalten. Darüber hinaus können diesen keramischen Grünfolien in an sich be- kannter Weise auch noch Dotierstoffe wie Seltenerdmetalle, Alkalimetalle und/oder Erdalkalimetalle mit einem typischen Anteil von weniger als 8 mol% zugesetzt werden.In addition to the starting mixture explained above as a preliminary product for the inner electrode layers in the ceramic multilayer component to be produced, a number of known, laminable ceramic green foils are also used prepared which, in addition to a binder and a solvent as ceramic component, contain a PZT ceramic of the composition Pb (Zr x Tiι_ x ) O3 with 0.4 <x <0.6. In addition, dopants such as rare earth metals, alkali metals and / or alkaline earth metals with a typical proportion of less than 8 mol% can also be added to these ceramic green films in a manner known per se.
Nachdem nun einerseits die Ausgangsmischung für die zu bil- denden Innenelektrodenschichten und andererseits die keramischen Grünfolien für die zu bildenden keramischen Isolationsschichten vorbereitet sind, wird die pastöse Ausgangsmischung zumindest einseitig und zumindest bereichsweise jeweils flächig auf der Oberfläche der vorbereiteten kerami- sehen Grünfolien aufgetragen. Anschließend werden die derart mit der Ausgangsmischung versehenen keramischen Grünfolien dann zu einem mehrlagigen Grünkörper gestapelt, der nachfolgend laminiert und entbindert wird. Das Entbindern erfolgt dabei unter Luftatmosphäre bei möglichst niedrigen Tempera- turen von beispielsweise 100°C bis 350°C, insbesondere 100°C bis 200 °C, so dass in den keramischen Grünfolien enthaltene organische Bestandteile wie Binder, Lösungsmittel und Weichmacher und/oder auch in der Ausgangsmischung neben der organischen Ausgangskomponente gegebenenfalls enthaltene organi- sehe Bestandteile, insbesondere Binder, Lösungsmittel und Weichmacher, sich zumindest weitgehend verflüchtigen und/oder thermisch zersetzen.Now that on the one hand the starting mixture for the inner electrode layers to be formed and on the other hand the ceramic green foils for the ceramic insulation layers to be formed have been prepared, the pasty starting mixture is applied to the surface of the prepared ceramic green foils at least on one side and at least in some areas. The ceramic green sheets thus provided with the starting mixture are then stacked to form a multi-layer green body, which is then laminated and debindered. The debinding takes place in an air atmosphere at the lowest possible temperatures of, for example, 100 ° C. to 350 ° C., in particular 100 ° C. to 200 ° C., so that organic constituents such as binders, solvents and plasticizers and / or also contained in the ceramic green sheets In addition to the organic starting component, any organic constituents that may be present in the starting mixture, in particular binders, solvents and plasticizers, at least largely volatilize and / or thermally decompose.
Nach dem das Laminieren und Entbindern des mehrlagigen Grün- körpers abgeschlossen ist, erfolgt ein Dichtsintern dieses Grünkörpers zu einem keramischen Mehrlagenbauteil 5 gemäß Figur 1, das bei einer Temperatur von 400°C beginnt und das bei einer Temperatur von 1100°C endet. Dieses Dichtsintern erfolgt weiter unter geringem Sauerstoffpartialdruck, vor-
zugsweise jedoch unter gänzlichem Ausschluss von Sauerstoff, beispielsweise in reiner Stickstoffatmosphäre.After the lamination and debinding of the multi-layer green body has been completed, this green body is sealing-sintered to form a ceramic multi-layer component 5 according to FIG. 1, which begins at a temperature of 400 ° C. and which ends at a temperature of 1100 ° C. This sealing sintering continues under low oxygen partial pressure, preferably, however, with the complete exclusion of oxygen, for example in a pure nitrogen atmosphere.
Auf diese Weise wird erreicht, dass die organische Ausgangskomponente in der Ausgangsmischung, die auf der Oberfläche der keramischen Grünfolien zur Bildung von Innenelektrodenschichten aufgetragen worden ist, auf Grund von Sauerstoffmangel zumindest weitgehend zur Kohlenstoff verkokt, der die hochkristallinen Kupferpulverteilchen umschließt.In this way, it is achieved that the organic starting component in the starting mixture, which has been applied to the surface of the ceramic green foils to form inner electrode layers, at least largely cokes to carbon due to lack of oxygen, which encloses the highly crystalline copper powder particles.
Insgesamt bildet sich somit gemäß Figur 1 ein keramisches Mehrlagenbauteil '5 aus einer regelmäßigen Abfolge von übereinander angeordneten keramischen Isolierschichten 11Λ, die zumindest bereichsweise durch Innenelektroden 10 aus dem in der erläuterten Weise hergestellten, gesinterten elektrisch leitfähigen Werkstoff bestehen.Overall, as shown in FIG. 1, a ceramic multilayer component 5 is formed from a regular sequence of ceramic insulating layers 11 angeordneten arranged one above the other, which at least in regions consist of internal electrodes 10 made of the sintered electrically conductive material produced in the manner explained.
Die Dicke der Isolierschichten 11 gemäß Figur 1 liegt dabei zwischen 50 μm und 130 μm während die Innenelektrodenschich- ten 10 Λ eine Dicke von 0,5 μm bis 5 μm aufweisen. Bevorzugt ist eine Dicke der Innenelektrodenschichten 10 Λ von ca. 1 μm bis 2 μm.The thickness of the insulating layers 11 according to FIG. 1 is between 50 μm and 130 μm, while the inner electrode layers 10 Λ have a thickness of 0.5 μm to 5 μm. A thickness of the inner electrode layers 10 Λ of approximately 1 μm to 2 μm is preferred.
Durch das eingesetzte Polyimid als organische Ausgangsko po- nente ist sichergestellt, dass sich dieses im Temperaturbereich von 400 °C bis 700°C durch Verkoken zu Kohlenstoff umwandelt .The polyimide used as the organic starting component ensures that it converts to carbon in the temperature range from 400 ° C to 700 ° C by coking.
Die Figur 2 erläutert noch einmal den vorstehend beschriebe- nen Verfahrensablauf zur Herstellung des keramischen Mehrlagenbauteils 5 ausgehend von einem mehrlagigen keramischen Grünkörper. Dabei ist dargestellt, dass bei einer Temperatur von ca. 20°C zunächst ein mehrlagiger Grünkörper aus einer Abfolge von aufeinander gestapelten keramischen Grünfolien 11 mit dazwischen befindlicher Elektrodenpaste 10 vorliegt.
Die Elektrodenpaste 10 ist dabei die mit der Ausgangsmischung für den elektrisch leitfähigen Werkstoff hergestellte Paste. Weiter ist in Figur 2 dargestellt, dass die Elektrodenpaste 10 beschichtete Pulverteilchen 30 enthält, die aus einem metallischen Pulverteilchen 20 bestehen, das oberflächlich mit einer organischen Ausgangskomponente 21, im erläuterten Beispiel Polyimid, versehen ist.FIG. 2 once again explains the process sequence described above for producing the ceramic multilayer component 5, starting from a multilayer ceramic green body. It is shown that at a temperature of approximately 20 ° C. there is initially a multi-layer green body consisting of a sequence of stacked ceramic green foils 11 with electrode paste 10 located between them. The electrode paste 10 is the paste produced with the starting mixture for the electrically conductive material. It is further shown in FIG. 2 that the electrode paste 10 contains coated powder particles 30 which consist of a metallic powder particle 20 which is provided on the surface with an organic starting component 21, polyimide in the example explained.
Die Figur 2 zeigt weiter, dass das Entbindern des zunächst hergestellten keramischen Grünkörpers bei ca. 400°C abgeschlossen ist, bevor der eigentliche Sinterprozess einsetzt, der eine Endtemperatur von ca. 1100°C erreicht. Dabei zeigt der hergestellte keramische Grünkörper beim Entbindern zunächst nur eine geringe Schwindung, die beim Sintern jedoch deutlich größer wird. Zudem bilden sich aus den keramischen Grünfolien 10 beim Sintern zumindest weitgehend von organischen Bestandteilen freie keramische Isolierschichten 11 Λ aus PZT-Keramik, die über die Innenelektrodenschichten 10 Λ aus dem gesinterten elektrisch leitfähigen Werkstoff vonein- ander getrennt sind. Schließlich ist in Figur 2 angedeutet, dass die zunächst bei.20°C beschichteten Pulverteilchen 30 durch den Sinterprozess verformt werden können, so dass sich beschichtete gesinterte Pulverteilchen 30 λ innerhalb der Innenelektrodenschichten 10 Λ bilden, die in ihrem Inneren aus dem eingesetzten Metall als gesinterte metallische Phase 20 Λ und einer verkokten Oberflächenbeschichtung 21 Λ aus Kohlenstoff bestehen. Die mittlere Dicke dieser Oberflächenbeschichtung 21 λ beträgt ca. 1 nm bis 20 nm. Es sei jedoch betont, dass die Innenelektrodenschicht 10 nach dem Sintern im eigentlichen Sinne vielfach keine exakt voneinander separierbaren Pulverteilchen mehr enthält, sondern in Form einer kompakten Schicht ausgebildet ist, die zwei Phasen, einerseits eine metallische Phase und andererseits eine Kohlen- stoffphase, aufweist.
FIG. 2 further shows that the debinding of the ceramic green body initially produced is completed at approximately 400 ° C. before the actual sintering process begins, which reaches a final temperature of approximately 1100 ° C. The ceramic green body produced initially shows only a slight shrinkage during debinding, but this becomes significantly larger during sintering. In addition, the ceramic green sheets 10 form at least largely organic insulating layers 11 Λ made of PZT ceramic during sintering, which are separated from one another by the sintered electrically conductive material via the inner electrode layers 10 Λ . Finally, it is indicated in FIG. 2 that the powder particles 30 initially coated at 20 ° C. can be deformed by the sintering process, so that coated sintered powder particles 30 λ form inside the inner electrode layers 10 Λ , which in their interior are made of the metal used as sintered metallic phase 20 Λ and a coked surface coating 21 Λ consist of carbon. The average thickness of this surface coating 21λ is approximately 1 nm to 20 nm. However, it should be emphasized that after the sintering, the inner electrode layer 10 in the actual sense often no longer contains any powder particles that can be separated exactly from one another, but is designed in the form of a compact layer that has two phases, on the one hand a metallic phase and on the other hand a carbon phase.
Claims
1. Gesinterter, elektrisch leitfähiger Werkstoff, insbesondere Innenelektrodenmaterial für ein keramisches Mehrlagenbauteil, mit einer Ausgangsmischung, aus der sich nach dem Sintern der elektrisch leitfähige Werkstoff bildet, die eine pulverförmige metallische Ausgangskomponente und eine organische Ausgangskomponente enthält, dadurch gekennzeichnet, dass die organische Ausgangskomponente (21) nach dem Sintern zumindest weitgehend die Pulverteilchen (20, 20 Λ) der metallischen Ausgangskomponente in Form einer zumindest weitgehend zu Kohlenstoff verkokten Schicht (21 ) umgibt.1.Sintered, electrically conductive material, in particular inner electrode material for a ceramic multilayer component, with an initial mixture from which, after sintering, the electrically conductive material is formed, which contains a powdered metallic initial component and an organic initial component, characterized in that the organic initial component ( 21) after sintering at least largely surrounds the powder particles (20, 20 Λ ) of the metallic starting component in the form of an at least largely carbonized layer (21).
2. Gesinterter elektrisch leitfähiger Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die metallische Ausgangskomponente ein kristallines Nichtedelmetallpulver oder ein kristallines Nichtedelmetalllegierungspulver ist.2. Sintered electrically conductive material according to claim 1, characterized in that the metallic starting component is a crystalline base metal powder or a crystalline base metal alloy powder.
3. Gesinterter elektrisch leitfähiger Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die organische Ausgangskomponente (21) ein Material ist, das bis zu einer Temperatur von 350 °C insbesondere in einer Sauerstoffhalti- gen Gasatmosphäre nicht oder nur geringfügig thermisch zersetzbar ist.3. Sintered electrically conductive material according to claim 1, characterized in that the organic starting component (21) is a material which is not or only slightly thermally decomposable up to a temperature of 350 ° C, in particular in an oxygen-containing gas atmosphere.
4. Gesinterter elektrisch leitfähiger Werkstoff nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die organische Ausgangskomponente (21) ein Polyimid, ein Polybenzoxazol, ein Polyether, ein Polycarbonat oder ein Polyketon ist.4. Sintered electrically conductive material according to claim 1 or 3, characterized in that the organic Starting component (21) is a polyimide, a polybenzoxazole, a polyether, a polycarbonate or a polyketone.
5. Gesinterter elektrisch leitfähiger Werkstoff nach An- spruch 1, dadurch gekennzeichnet, dass die pulverförmige metallische Ausgangskomponente eine mittlere Teilchengröße von 100 nm bis 10 μm aufweist.5. Sintered electrically conductive material according to claim 1, characterized in that the powdery metallic starting component has an average particle size of 100 nm to 10 microns.
6. Gesinterter elektrisch leitfähiger Werkstoff nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die organische Ausgangskomponente (21) die pulverförmige metallische Ausgangskomponente in der Ausgangsmischung zumindest weitgehend, insbesondere in Form einer Beschichtung, umgibt.6. Sintered electrically conductive material according to at least one of the preceding claims, characterized in that the organic starting component (21) at least largely surrounds the powdery metallic starting component in the starting mixture, in particular in the form of a coating.
7. Gesinterter elektrisch leitfähiger Werkstoff nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Schmelzpunkt der metallischen Ausgangskomponente oberhalb der maximalen Sintertemperatur beim Sintern, insbesondere oberhalb von 1100°C, liegt.7. Sintered electrically conductive material according to at least one of the preceding claims, characterized in that the melting point of the metallic starting component is above the maximum sintering temperature during sintering, in particular above 1100 ° C.
8. Keramisches Mehrlagenbauteil, insbesondere Piezoak- tor, mit einer Mehrzahl von übereinander angeordneten keramischen Isolierschichten (11 Λ), die zumindest bereichsweise durch Innenelektrodenschichten (10λ) aus einem elektrisch leitfähigen Werkstoff nach mindestens einem der vorangehenden Ansprüche voneinander getrennt sind.8. Ceramic multilayer component, in particular piezo actuator, with a plurality of ceramic insulating layers (11 Λ ) arranged one above the other, which are separated from one another at least in regions by inner electrode layers (10 λ ) made of an electrically conductive material according to at least one of the preceding claims.
9. Keramisches Mehrlagenbauteil nach Anspruch 8, dadurch gekennzeichnet, dass die Innenelektrodenschichten (10 ) eine9. Ceramic multilayer component according to claim 8, characterized in that the inner electrode layers (10)
Dicke von 0,5 μm bis 5 μm aufweisen.Have a thickness of 0.5 μm to 5 μm.
10. Keramisches Mehrlagenbauteil nach Anspruch 8, dadurch gekennzeichnet, dass die keramischen Isolierschichten (11 Λ) zumindest weitgehend aus einer PZT-Keramik, insbesondere aus Pb (TixZri_x) 03 mit 0,40 < x < 0,60, bestehen, und eine Dicke von 50 um bis 130 μm aufweisen.10. Ceramic multilayer component according to claim 8, characterized in that the ceramic insulating layers (11 Λ ) at least largely consist of a PZT ceramic, in particular of Pb (Ti x Zri_ x ) 0 3 with 0.40 <x <0.60, and have a thickness of 50 μm to 130 μm.
11. Verfahren zur Herstellung eines keramischen Mehrlagenbauteils, insbesondere eines Mehrlagenbauteils nach einem der Ansprüche 8 bis 10, mit einer Mehrzahl von übereinander angeordneten keramischen Isolierschichten (11 λ), die zumindest bereichsweise durch Innenelektrodenschichten (10x) aus einem, elektrisch leitfähigen Werkstoff voneinander getrennt sind, mit den Verfahrensschritten: a.) Vorbereiten einer Ausgangsmischung als Vorprodukt für die Innenelektrodenschichten (10λ), die eine pulverförmige metallische Ausgangskomponente und eine organische Ausgangs- komponente enthält, b.) Vorbereiten einer Mehrzahl laminierbarer keramischer Grünfolien (11) , c.) zumindest einseitiges und zumindest bereichsweises flächiges Auftragen der Ausgangsmischung auf die Oberfläche der keramischen Grünfolien (11) , d.) Stapeln der mit der Ausgangsmischung versehenen keramischen Grünfolien (11) zu einem mehrlagigen Grünkörper, e.) Entbindern des mehrlagigen Grünkörpers und d.) Sintern des mehrlagigen Grünkörpers zu dem kera i- sehen Mehrlagenbauteil (5) , dadurch gekennzeichnet, dass das Entbindern und das Sintern des Grünkörpers derart erfolgt, dass sich aus der Ausgangsmischung die Innenelektrodenschichten (10 λ) in dem keramischen Mehrlagenbauteil (5) bilden, wobei die organische Aus- gangskomponente (21) nach dem Sintern zumindest weitgehend die Pulverteilchen (20, 20Λ) der metallischen Ausgangskomponente in Form einer zumindest weitgehend zu Kohlenstoff verkokten Schicht (21 Λ) umgibt. 11. A method for producing a ceramic multilayer component, in particular a multilayer component according to one of claims 8 to 10, with a plurality of ceramic insulating layers (11 λ ) arranged one above the other, which are separated from one another at least in regions by inner electrode layers (10 × ) made of an electrically conductive material are, with the method steps:.. a) preparing an initial mixture as a precursor for the internal electrode layers (10 λ), which contains a powdery metal starting component and an organic starting component, b) preparing a plurality laminable ceramic green sheets (11), c. ) at least one-sided and at least area-wise application of the starting mixture to the surface of the ceramic green sheets (11), d.) stacking of the ceramic green sheets (11) provided with the starting mixture to form a multi-layer green body, e.) debinding of the multi-layer green body and d.) Si nternal of the multilayered green body to the Kera i- see multilayer component (5), characterized in that the binder removal and sintering of the green body is carried out such that from the starting mixture, the internal electrode layers (10 λ) in the ceramic multi-layer component (5), wherein the organic starting component (21) after sintering at least largely surrounds the powder particles (20, 20 Λ ) of the metallic starting component in the form of a layer (21 Λ ) at least largely carbonized.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Stapeln der mit der Ausgangsmischung versehenen keramischen Grünfolien (11) von einem Laminieren der Grünfolien (11) begleitet wird, oder dass das Stapeln der Grünfolien (11) einem Laminieren der Grünfolien (11) vorausgeht.12. The method according to claim 11, characterized in that the stacking of the ceramic green sheets (11) provided with the starting mixture is accompanied by a lamination of the green sheets (11), or that the stacking of the green sheets (11) is laminated by the green sheets (11) precedes.
13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass als organisches Ausgangskomponente (21) ein Material eingesetzt wird, das beim Entbindern des mehrlagigen Grün- körpers, insbesondere in einer Sauerstoffhaltigen Gasatmosphäre, zumindest weitgehend thermisch stabil ist.13. The method according to claim 11, characterized in that a material is used as the organic starting component (21) which is at least largely thermally stable when debinding the multilayer green body, in particular in an oxygen-containing gas atmosphere.
14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Sintern bei einer Endtemperatur oberhalb von 400°C, insbesondere zwischen 900°C und 1150°C erfolgt.14. The method according to claim 11, characterized in that the sintering takes place at a final temperature above 400 ° C, in particular between 900 ° C and 1150 ° C.
15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Ausgangsmischung in Form einer Paste auf die keramischen Grünfolien (11) aufgetragen wird.15. The method according to claim 11, characterized in that the starting mixture is applied in the form of a paste to the ceramic green sheets (11).
16. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Sintern in einer sauerstoffarmen oder einer sauerstofffreien Gasatmosphäre, insbesondere einer Stickstoffatmosphäre, durchgeführt wird.16. The method according to claim 11, characterized in that the sintering is carried out in a low-oxygen or an oxygen-free gas atmosphere, in particular a nitrogen atmosphere.
17. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die organische Ausgangskomponente (21) im Temperaturbereich von 400°C bis 700°C zumindest weitgehend zu Kohlenstoff verkokt wird. 17. The method according to claim 11, characterized in that the organic starting component (21) in the temperature range from 400 ° C to 700 ° C is at least largely carbonized to carbon.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10033588A DE10033588C2 (en) | 2000-07-11 | 2000-07-11 | Ceramic multilayer component and method for its production |
DE10033588.8 | 2000-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002004379A2 true WO2002004379A2 (en) | 2002-01-17 |
WO2002004379A3 WO2002004379A3 (en) | 2002-06-27 |
Family
ID=7648491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/002513 WO2002004379A2 (en) | 2000-07-11 | 2001-07-06 | Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof |
Country Status (2)
Country | Link |
---|---|
DE (2) | DE10033588C2 (en) |
WO (1) | WO2002004379A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1808906A3 (en) * | 2006-01-12 | 2011-01-05 | Robert Bosch Gmbh | Piezo actuator with improved protection against short-circuits |
JP2014154569A (en) * | 2013-02-05 | 2014-08-25 | Murata Mfg Co Ltd | Laminated piezoelectric ceramic element and manufacturing method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011081278A1 (en) * | 2011-08-19 | 2013-02-21 | Siemens Aktiengesellschaft | Piezoceramic multilayer component |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19951016A1 (en) | 1999-10-22 | 2001-05-31 | Bosch Gmbh Robert | Piezoelectric ceramic body |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885038A (en) * | 1986-05-01 | 1989-12-05 | International Business Machines Corporation | Method of making multilayered ceramic structures having an internal distribution of copper-based conductors |
JPH02224283A (en) * | 1989-02-27 | 1990-09-06 | Mitsui Toatsu Chem Inc | Laminated electrostrictive element |
JPH04324687A (en) * | 1991-04-24 | 1992-11-13 | Onoda Cement Co Ltd | Base metal electrode material |
US5302562A (en) * | 1992-10-28 | 1994-04-12 | International Business Machines Corporation | Method of controlling the densification behavior of a metallic feature in a ceramic material |
DE19753930A1 (en) * | 1997-12-05 | 1999-06-10 | Ceramtec Ag | Process for attaching external electrodes to solid state actuators |
ATE481743T1 (en) * | 1999-12-16 | 2010-10-15 | Epcos Ag | INTERMEDIATE PRODUCT FOR A PIEZOELECTRIC COMPONENT |
-
2000
- 2000-07-11 DE DE10033588A patent/DE10033588C2/en not_active Expired - Fee Related
- 2000-07-11 DE DE20022469U patent/DE20022469U1/en not_active Expired - Lifetime
-
2001
- 2001-07-06 WO PCT/DE2001/002513 patent/WO2002004379A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19951016A1 (en) | 1999-10-22 | 2001-05-31 | Bosch Gmbh Robert | Piezoelectric ceramic body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1808906A3 (en) * | 2006-01-12 | 2011-01-05 | Robert Bosch Gmbh | Piezo actuator with improved protection against short-circuits |
JP2014154569A (en) * | 2013-02-05 | 2014-08-25 | Murata Mfg Co Ltd | Laminated piezoelectric ceramic element and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
DE10033588A1 (en) | 2002-01-31 |
DE10033588C2 (en) | 2002-05-16 |
DE20022469U1 (en) | 2002-01-31 |
WO2002004379A3 (en) | 2002-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3238218B1 (en) | Ceramic multilayer component and method for producing a ceramic multilayer component | |
DE2701411C3 (en) | Dielectric ceramic compound | |
DE19906582B4 (en) | Dielectric ceramic composition, laminated ceramic capacitor and method for producing the laminated ceramic capacitor | |
DE102011081939A1 (en) | Multilayered PTC thermistor | |
EP1386335B1 (en) | Electrical multilayer component and method for the production thereof | |
EP0716054A2 (en) | Firing and sintering process for a ceramic, electronic component | |
DE10101188A1 (en) | Piezoelectric ceramic material, process for its production and electroceramic multilayer component | |
DE69400553T2 (en) | Non-reducible dielectric ceramic composition | |
EP1124265A2 (en) | Piezoelectric ceramic device with silver containing internal electrodes | |
EP1863104B1 (en) | Method of manufacturing a multi-layered ceramic component | |
DE69513179T2 (en) | High temperature stable dielectric material | |
DE10040414B4 (en) | Dielectric ceramic material and electrical component | |
EP2153489B1 (en) | Method for the production of a ceramic spiral pulse generator and ceramic spiral pulse generator | |
EP1497838B1 (en) | Method for the production of a ptc component | |
WO2002004379A2 (en) | Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof | |
EP1286934A2 (en) | Ceramic component and the use thereof | |
WO2013167368A1 (en) | Method for producing a multi-layered structural element, and a multi-layered structural element produced according to said method | |
DE10110680A1 (en) | Electrical component | |
DE19945014C1 (en) | Reduction-stable X7R ceramic composition used for multi-layered capacitors with nickel inner electrodes is based on a core component made of barium titanate and different shell components | |
EP1226614A1 (en) | Piezoelectric multi-layer actuator with ceramic inner electrodes | |
WO2023237344A1 (en) | Method for producing a multilayer varistor, use of a metal paste for forming metal layers, green body for producing a multilayer varistor, and multilayer varistor | |
DE19902153A1 (en) | Dielectric ceramic for a laminated ceramic electronic element e.g. a miniature capacitor | |
DE10325008B4 (en) | Electrical component and its manufacture | |
DE102010049573B4 (en) | Method for producing a multilayer component and multilayer component | |
WO2004027888A1 (en) | Ceramic element comprising a homogeneous ceramic layer, and method for the production of said ceramic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |