[go: up one dir, main page]

WO2001060963A1 - Protease und percarbonat enthaltende wasch- und reinigungsmittel - Google Patents

Protease und percarbonat enthaltende wasch- und reinigungsmittel Download PDF

Info

Publication number
WO2001060963A1
WO2001060963A1 PCT/EP2001/001445 EP0101445W WO0160963A1 WO 2001060963 A1 WO2001060963 A1 WO 2001060963A1 EP 0101445 W EP0101445 W EP 0101445W WO 0160963 A1 WO0160963 A1 WO 0160963A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
acid
alkali metal
percarbonate
carboxylic acid
Prior art date
Application number
PCT/EP2001/001445
Other languages
English (en)
French (fr)
Inventor
Jörg Poethkow
Horst-Dieter Speckmann
Beatrix Kottwitz
Thomas Otto Gassenmeier
Peter Schmiedel
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU33753/01A priority Critical patent/AU3375301A/en
Publication of WO2001060963A1 publication Critical patent/WO2001060963A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38609Protease or amylase in solid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present invention relates to enzyme-containing detergents and cleaning agents which, in addition to the usual constituents, contain a genetically modified protease and a specific peroxidic bleaching agent.
  • detergents In addition to the ingredients that are indispensable for the washing process, such as surfactants and builder materials, detergents generally contain other ingredients, which can be summarized under the term washing aids and which include such different active ingredient groups as foam regulators, graying inhibitors, bleaching agents, bleach activators and color transfer inhibitors. Such auxiliaries also include substances which support the surfactant performance through the enzymatic degradation of soiling on the textile. The same applies analogously to cleaning agents for hard surfaces. In addition to the removal of starchy stains and the fat-splitting lipases, the proteases are of particular importance.
  • Enzymes such as amylases, lipases and cellulases, but especially proteolytic enzymes, are used extensively in detergents, washing aids and cleaning agents.
  • proteases enzymes from the subtilisin family are used almost exclusively. These are extracellular proteins with a molecular weight in the range from approximately 20,000 to 45,000.
  • Subtilisins are relatively unspecific enzymes which, in addition to the hydrolytic effect on peptide bonds, also have esterolytic properties (M. Bahn and RD Schmidt, Biotec L, 119, 1987).
  • Many representatives of the subtilisins are precisely characterized physically and chemically. Their spatial structure is often known in detail through X-ray structure analysis.
  • a protease from the subtilisin family that is stable and active under strongly alkaline conditions can be produced in Bacillus lentus (DSM 5483) as described in international patent application WO 91/02792.
  • This Bacillus lentus alkaline protease (BLAP) can be produced by fermentation of the Bacillus licheniforrnis transformed with an expression plasmid which carries the gene for BLAP under the control of the Bacillus licheniforrnis ATCC 53926 promoter.
  • the composition as well as the spatial structure of BLAP is known (D.W. Godette et al, J. Mol. Biol. 228, 580-595, 1992).
  • protease is characterized by the sequence of 269 amino acids described in the cited literature, a calculated molecular weight of 26,823 daltons and a theoretical isoelectric point of 9.7. Variants of this Bacillus lentus DSM 5483 protease accessible by mutation are described in US Pat. No. 5,340,735. These include protease enzymes which, in particular when washing textiles made of proteinogenic fibers, for example textile fabrics made of natural silk or wool, result in particularly low substance damage or destruction of the fiber dressings without loss of cleaning performance.
  • the invention therefore relates to a particulate protease- and percarbonate-containing washing or cleaning agent, which is characterized in that, in addition to the usual ingredients compatible with such active ingredients, it is a mutant of a protease of the subtilisin type, in which in at least one of positions 3, 4, 99, 188, 193, 199 and 211 (BLAP count) the amino acid present at this point in the wild-type protease is replaced by another amino acid, and particulate alkali percarbonate, which is an alkaline earth metal sulfate, alkali metal sulfate, alkali metal silicate, alkaline earth metal halide, alkali metal halide, Contains alkali carbonate, alkali hydrogen carbonate, alkali phosphate, alkali borate, alkali perborate, boric acid, partially hydrated aluminosilicate, carboxylic acid, dicarboxylic acid, polymer made from unsaturated carbonic and / or dicarboxylic
  • alkali percarbonate particles are described in the prior art.
  • Sodium percarbonate particles with a coating of 30% by weight to 75% by weight of alkali carbonate and 25% by weight to 70% by weight of alkali silicate are known from international patent application WO 99/64350.
  • the international patent application WO 96/14389 discloses percarbonate particles which are coated with a combination of alkali silicate, a water-soluble magnesium salt, in particular magnesium sulfate, and a chelating agent, in particular a hydroxycarboxylic acid, corresponding particles from the international patent application WO coated with a hydroxycarboxylic acid or a dicarboxylic acid 95/23210 and the international patent application WO 95/23209 are known.
  • Percarbonate particles which are coated with a combination of boric acid and alkali halide, sulfate and / or nitrate or a combination of boric acid and alkali silicate are known from international patent application WO 95/15292 and European patent application EP 0 459 625.
  • International patent application WO 95/15291 discloses a process for coating particulate sodium percarbonate with sodium hydrogen carbonate.
  • a method for coating sodium percarbonate with polymers of unsaturated acids, in particular copolymerization products of methacrylic or acrylic acid and maleic acid, is known from international patent application WO 94/05594.
  • Polycarboxylate-coated sodium percarbonate is also known from international patent application WO 22/17400.
  • the international patent application WO 93/20007 discloses sodium percarbonate coated with carboxylic acids with at least 8 carbon atoms and then powdered with solids, whereas with Mixtures of sodium percarbonate coated with carboxylic acids melting above and below 35 ° C. are known from international patent application WO 92/17404.
  • a process for coating percarbonate with fatty acid alkali salts by applying the fatty acid salts in powder form is known from European patent application EP 0 503 516.
  • Sodium percarbonate coated with mixtures of sodium carbonate and sodium chloride is known from European patent application EP 0 592 969.
  • European patent application EP 0 546 815 discloses sodium percarbonate coated with alkali citrate.
  • particulate alkali percarbonates with coatings which contain at least one of the inorganic salts mentioned, in particular alkali sulfate and / or alkali silicate, are particularly preferred.
  • the weight ratio of coating material to percarbonate in the coated alkali percarbonate particles is preferably 1: 500 to 1: 2, in particular 1: 200 to 1: 5.
  • Another object of the invention is therefore the use of a combination of a mutant of a protease of the subtilisin type, in which in at least one of the positions 3, 4, 99, 188, 193, 199 and 211 (BLAP count) the at this point
  • the amino acid present in the wild-type protease is replaced by another amino acid, and particulate alkali percarbonate, which is an alkaline earth metal sulfate, alkali metal sulfate, alkali metal silicate, alkaline earth metal halide, alkali metal halide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal phosphate, alkali metal borate, alkali acid boronate, partially hydrate, Has dicarboxylic acid, polymer made of unsaturated carboxylic and / or dicarboxylic acids or mixtures of these containing coating for Improving the cleaning performance of detergents or cleaning agents compared to protein-containing soiling.
  • the soiled protein-containing soiling to be removed can, depending on the type of agent, be on a textile surface or on a hard surface, for example a tile or a piece of tableware.
  • the use according to the invention takes place essentially when washing or cleaning agents are used in, in particular, aqueous washing or cleaning solutions.
  • An agent according to the invention preferably contains 3% by weight to 30% by weight, in particular 7% by weight to 25% by weight, of coated alkali percarbonate, sodium being the preferred alkali metal.
  • the agent according to the invention preferably has a proteolytic activity in the range from approximately 100 PU / g to approximately 10,000 PU / g, in particular 300 PU / g to 8000 PU / g.
  • the protease activity is determined according to the standardized method described below, as described in Tenside 7 (1970), 125: A solution containing 12 g / 1 casein and 30 mM sodium tripolyphosphate in water of 15 ° dH hardness (containing 0.058% by weight CaCl 2 • 2 H 2 O, 0.028 wt.% MgCl 2 • 6 H 2 O and 0.042 wt.% NaHCO 3 ) is heated to 70 ° C., the pH is raised to 0.1 N by adding NaOH 8.5 set at 50 ° C.
  • the absorption of this solution at 290 nm is determined with the aid of an absorption spectrometer, the absorption zero value being obtained by measuring a centrifuged solution which is prepared by mixing 600 ml of the above-mentioned TCA solution with 600 ml of the above-mentioned substrate solution and then adding the enzyme solution determine is.
  • the proteolytic activity of a protease solution which causes an absorption of 0.500 OD under the specified measurement conditions, is defined as 10 PE (protease units) per ml.
  • the proteases which can be used according to the invention also include those genetically modified proteases of the abovementioned subtilisin type in which, in positions which are analogous to the abovementioned positions in BLAP, exchanges of the wild type at this point -Protease existing amino acid against other amino acids were made.
  • the numbering of the amino acid positions in BLAP differs from that frequently found for the subtilisin BPN '.
  • positions 1 to 35 is identical in subtilisin BPN 'and BLAP; due to the lack of corresponding amino acids, positions 36 to 54 in BLAP correspond to positions 37 to 55 in BPN ', likewise positions 55 to 160 in BLAP correspond to positions 57 to 162 in BPN' and positions 161 to 269 in BLAP correspond to those from 167 to 275 in BPN '.
  • the proteases preferred according to the invention include genetically modified proteases of the abovementioned BL AP type, in which, in position 211 (BLAP count), the amino acid leucine (L in the customary one-letter code) present in the wild-type protease at this point against aspartic acid (D) or glutamic acid (E) is exchanged (L211D or L211E). These can be produced as described in international patent application WO 95/23221. Instead or in addition, further changes to the original Bacillus lentus protease, such as at least one of the amino acid exchanges S3T, V4I, R99G, R99A, R99S, A188P, V193M and / or V199I, may have been made. The use of a variant in which the amino acid exchanges S3T + V4I + V193M + V199I were carried out is particularly preferred.
  • the enzymes can be used in particular in particulate compositions, such as, for example, in European patent EP 0 564 476 or in the international patent Patent application WO 94/23005 for other enzymes, adsorbed on carriers and / or embedded in coating substances in order to protect them against premature inactivation.
  • further enzymes which in particular include amylases, lipases and / or cellulases, can be incorporated by incorporating the separate or, in a known manner, separately prepared enzymes or by protease and further enzyme prepared together in a granulate, such as from the international patent applications WO 96/00772 or WO 96/00773 known to be used in agents according to the invention.
  • the washing and cleaning agents according to the invention which can be present in particular as powdery solids, in post-compacted particle form, as homogeneous solutions or suspensions, can in principle contain all known ingredients which are customary in such agents.
  • the agents according to the invention can include, in particular, builder substances, surface-active surfactants, additional bleaching agents based on organic and / or inorganic peroxygen compounds, bleach activators, water-miscible organic solvents, additional enzymes, sequestering agents, electrolytes, pH regulators and further auxiliaries, such as optical brighteners, graying inhibitors, color transfer inhibitors , Foam regulators, silver corrosion inhibitors and dyes and fragrances.
  • the agents according to the invention can contain one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 -alkylbenzenesulfonates, olefin sulfonates, that is to say mixtures of alkene and hydroxyalkanesulfonates and disulfonates of the type obtained, for example, from C 12 -C 18 monoolefins with a terminal or internal double bond Sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the Receives sulfonation products.
  • alkanesulfonates obtained from C 12 -C 8 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, which by - sulfonating the methyl esters of fatty acids of vegetable and / or animal origin with 8 to 20 C atoms in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are considered.
  • ⁇ -sulfofatty acid alkyl esters are preferred which have an alkyl chain with no more than 4 carbon atoms in the ester group, for example methyl esters, ethyl esters, propyl esters and butyl esters.
  • the methyl esters of ⁇ -sulfofatty acids (MES), but also their saponified disalts, are used with particular advantage.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and triesters as well as their mixtures, such as those produced by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol be preserved.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of the Schwefelhoffreschester C I2 -C 18 fatty alcohols, for example, from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or C ⁇ be 0 -C 20 oxo alcohols, and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C, C 2 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C, 5 alkyl sulfates are particularly preferred from the point of view of washing technology.
  • 2,3-alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and are obtained as commercial products from the Shell Oil Company under the name DAN® are suitable anionic surfactants.
  • sulfuric acid monoesters of the straight-chain or branched C 7 -C 21 alcohols ethoxylated with 1 to 6 moles of ethylene oxide such as 2-methyl branched C 9 -C ⁇ alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 12 - C 18 fatty alcohols with 1 to 4 EO. Because of their high foaming behavior, they are normally used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which are nonionic surfactants in themselves.
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Fatty acid derivatives of amino acids for example of N-methyl taurine (taurides) and / or of N-methyl glycine (sarcosides) are suitable as further anionic surfactants.
  • the sarcosides or sarcosinates, and in particular sarcosinates of higher and optionally mono- or polyunsaturated fatty acids such as oleyl sarcosinate, are particularly preferred.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are particularly suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the known alkenylsuccinic acid salts can also be used together with these soaps or as a substitute for soaps.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, Di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation products of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl part and 3 to 20, preferably 4 to 10, alkyl ether groups.
  • alkyl glycosides and ethoxylation and / or propoxylation products of N-alkyl amines, vicinal diols, fatty acid esters and fatty acid amides which correspond to the long-chain alcohol derivatives mentioned with regard to the alkyl part, and also of alkyl phenols with 5 to 12 carbon atoms in the alkyl radical, can be used.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical has a methyl or linear branching in the 2-position may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 alcohols with 3 EO or 4 EO, C 9 -C n alcohols with 7 EO, C 13 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12 -C 14 alcohol with 3 EO and C 12 -C lg alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO. Extremely low-foaming compounds are usually used in particular in cleaning agents for use in machine dishwashing processes. These preferably include C 12 -C 18 alkyl polyethylene glycol polypropylene glycol ether, each with up to 8 moles of ethylene oxide and propylene oxide units in the molecule.
  • low-foaming nonionic surfactants such as, for example, C 12 -C 18 -alkylpolyethylene glycol-polybutylene glycol ether, each with up to 8 moles of ethylene oxide and butylene oxide units in the molecule, and also end-capped alkylpolyalkylene glycol mixed ethers.
  • hydroxyl-containing alkoxylated alcohols as described in European patent application EP 0 300 305, so-called hydroxy mixed ethers.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms, and G stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as an analytically determinable variable, can also take fractional values - between 1 and 10; x is preferably 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R ⁇ O is an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups:
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • [Z] is also preferably obtained here by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international patent application WO 95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO 90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • So-called gemini surfactants can be considered as further surfactants. These are generally understood to mean those compounds which have two hydrophilic groups per molecule. These groups are usually separated from one another by a so-called “spacer”.
  • This spacer is usually a carbon chain which should be long enough that the hydrophilic groups are sufficiently spaced apart for them to be independent can act from each other.
  • Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water.
  • the term gemini surfactants is understood not only to mean “dimeric” in this way, but also “trimeric” surfactant.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers according to German patent application DE 43 21 022 or dimer alcohol bis and trimeral alcohol tris sulfates and ether sulfates according to German patent application DE 195 03 061.
  • End group-blocked dimeric and trimeric mixed ethers according to German patent application DE 195 13 391 are particularly characterized by their bi- and multifunctionality.
  • the end-capped surfactants mentioned have good wetting properties and are low-foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides as described in international patent applications WO 95/19953, WO 95/19954 and WO 95/19955 can also be used.
  • Surfactants are present in detergents according to the invention in proportions of preferably 5% by weight to 50% by weight, in particular 8% by weight to 30% by weight, whereas agents for cleaning hard surfaces, in particular for machine cleaning of dishes , have lower surfactant contents of up to 10% by weight, in particular up to 5% by weight and preferably in the range from 0.5% by weight to 3% by weight.
  • An agent according to the invention preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid, and also polyaspartic acid, polyphosphonic acids, in particular aminotris (methylene-phosphinophenonic acid), ethylenediamine (1) ethylenediamine (1) 1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and polymer (Poly) carboxylic acids, in particular the polycarboxylates of the European patent EP 0 625 992 or the international patent application WO 92/18542 or the European patent EP 0232202 accessible by oxidation of polysaccharides or dextrins, polymeric acrylic acids, methacrylic acids,
  • the relative molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 3,000 and 200,000, that of the copolymers between 2,000 and 200,000, preferably 30,000 to 120,000, in each case based on free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative molecular weight of 30,000 to 100,000.
  • Commercial products are, for example, Sokalan® CP 5, CP 10 and PA 30 from BASF.
  • Suitable, albeit less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of acid is at least 50% by weight.
  • Terpolymers which contain two unsaturated acids and / or their salts as monomers and vinyl alcohol and / or an esterified vinyl alcohol or a carbohydrate as monomers can also be used as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 carboxylic acid and preferably from a C 3 -C 4 monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt can be a derivative of a C 4 -C 8 dicarboxylic acid, maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical ,
  • Such polymers can be produced in particular by processes which are described in German patent specification DE 42 21 381 and German patent application DE 43 00772 and generally have a relative molecular weight of between 1,000 and 200,000.
  • Further preferred copolymers are those which are described in German patent applications DE 43 03 320 and DE 44 17 734 and which preferably have acrolein and acrylic acid / acrylic acid salts or vinyl acetate as monomers.
  • the organic builder substances can, in particular for the production of liquid agents, in the form of aqueous solutions, preferred be used in the form of 30 to 50 weight percent aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • Such organic builder substances can, if desired, be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Amounts close to the upper limit mentioned are preferably used in paste-like or liquid, in particular water-containing agents according to the invention.
  • Particularly suitable water-soluble inorganic builder materials are alkali silicates, alkali carbonates and alkali phosphates, which can be present in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • alkali silicates alkali carbonates and alkali phosphates, which can be present in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • examples include trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric
  • crystalline or amorphous alkali alumosilicates are used as water-insoluble, water-dispersible inorganic builder materials, in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid compositions in particular from 1% by weight to 5% by weight. used.
  • the crystalline sodium aluminosilicates in detergent quality in particular zeolite A, P and optionally X, alone or in mixtures, for example in the form of a co-crystallizate from the zeolites A and X (Vegobond® AX, a commercial product of Condea Augusta SpA), are preferred .
  • Suitable aluminosilicates in particular have no particles with a grain size above 30 ⁇ m and preferably consist of at least 80% by weight of particles with a size below 10 ⁇ m.
  • Suitable substitutes or partial substitutes for the aluminosilicate mentioned are crystalline alkali silicates, which can be present alone or in a mixture with amorphous silicates.
  • the alkali silicates which can be used as builders in the agents according to the invention preferably have a molar ratio of alkali oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and can be amorphous or crystalline.
  • Preferred alkali silicates are the sodium silicates, in particular the amorphous sodium silicates, with a Na ⁇ SiOz molar ratio of 1: 2 to 1: 2.8. Those with a molar Na 2 O: SiO 2 ratio of 1: 1.9 to T.2.8 can be prepared by the process of European patent application EP 0 425 427. Crystalline sheet silicates of the general formula Na 2 Si x O 2x + 1 • y H 2 O, in which x, the so-called modulus, a number of 1, are preferably used as crystalline silicates, which may be present alone or in a mixture with amorphous silicates.
  • Crystalline layered silicates which fall under this general formula are described, for example, in European patent application EP 0 164 514. Preferred crystalline layered silicates are those in which x assumes the values 2 or 3 in the general formula mentioned.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 • y H 2 O
  • ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171.
  • ⁇ -sodium silicates with a modulus between 1.9 and 3.2 can be produced according to Japanese patent applications JP 04/238 809 or JP 04/260 610.
  • Practically anhydrous crystalline alkali silicates of the above general formula, in which x denotes a number from 1.9 to 2.1, can also be prepared from amorphous alkali silicates, as in European patent applications EP 0 548 599, EP 0 502 325 and EP 0 452 428 described, can be used in agents according to the invention.
  • a crystalline layered sodium silicate with a modulus of 2 to 3 is used, as can be produced from sand and soda by the process of European patent application EP 0 436 835.
  • Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5, as can be obtained by the processes of European patent EP 0 164 552 and / or EP 0 294 753, are in a further preferred embodiment agents according to the invention used.
  • Crystalline layered silicates of the formula (I) given above are sold by Clariant GmbH (Germany) under the trade name Na-SKS, for example Na-SKS-1 Kenyaite), Na-SKS-2 (Na 2 Si 14 O 29 xH 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 O 17 xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 x H 2 O, makatite).
  • Na-SKS-5 (-Na 2 Si 2 O 5 ), Na-SKS-7 ( ⁇ -Na 2 Si 2 O 5 , natrosilite), Na-SKS-9 (NaHSi 2 O 5 H) are particularly suitable 2 O), Na-SKS-10 (NaHSi 2 O 5 3H 2 O, Kanemit), Na-SKS-11 (t-Na 2 Si 2 O 5 ) and Na-SKS-13 (NaHSi 2 O 5 ), in particular but Na-SKS-6 ( ⁇ -Na ⁇ SiA).
  • crystalline layered silicates are given, for example, in "Hoechst High Chem Magazine 14/1993" on pages 33 - 38 and in "Soap-oil-fat-waxes, 116 year, No. 20/1990" on pages 805 - 808 published articles.
  • a granular compound composed of crystalline layered silicate and citrate, of crystalline layered silicate and the (co) polymeric polycarboxylic acid mentioned above, as described for example in German patent application DE 198 19 187, or of alkali silicate and alkali carbonate is used as described, for example, in international patent application WO 95/22592 or as it is commercially available, for example, under the name Nabion® 15.
  • Builder substances can optionally be present in the agents according to the invention in amounts of up to 90% by weight. They are preferably contained in amounts of up to 75% by weight. Detergents according to the invention have builder contents of in particular 5% by weight to 50% by weight. In agents according to the invention for cleaning hard surfaces, in particular for machine cleaning of dishes, the builder substance content is in particular 5% by weight to 88% by weight, with such agents preferably not using any water-insoluble builder materials.
  • agents according to the invention for in particular machine cleaning of dishes 20% by weight to 40% by weight of water-soluble organic builders, in particular alkali citrate, 5% by weight to 15% by weight of alkali carbonate and 20% by weight to Contain 40 wt .-% alkali disilicate.
  • Additional peroxygen compounds suitable for use in agents according to the invention are, in particular, organic peracids or peracidic salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and inorganic salts which give off hydrogen peroxide under the washing conditions, to which perborate, persilicate and / or persulfate such as caroate belong into consideration.
  • the peroxygen compounds can be used in the form of powders or granules, which can also be coated in a manner known in principle.
  • an agent according to the invention contains additional peroxygen compounds, these are present in amounts of preferably up to 50% by weight, in particular from 5% by weight to 30% by weight.
  • additional peroxygen compounds such as, for example, phosphonates, borates or metaborates and metasilicates, and magnesium salts such as magnesium sulfate may be useful.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • hydrophilically substituted acylacetals known from German patent application DE 196 16 769 and the acyl lactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 44 43 177 can also be used.
  • Bleach activators of this type can be present in the customary quantitative range, preferably in amounts of 0.5% by weight to 10% by weight, in particular 1% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446 982 and EP 0453 003 may also be present as so-called bleaching catalysts.
  • Enzymes which can be used in the agents in addition to the protease essential to the invention are those from the class of lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases, laccases and peroxidases and mixtures thereof. If appropriate, proteases or amylase other than the invention may also be present in addition to these. Enzymes obtained from fungi or bacteria such as Bacillus subtilis, Bacillus licheniforrnis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus are particularly suitable.
  • the optionally additionally used enzymes can, as described for example in international patent applications WO 92/11347 or WO 94/23005, be adsorbed on carriers and / or be embedded in coating substances in order to protect them against premature inactivation. They are preferred in the washing or cleaning agents according to the invention. wise in amounts up to 5 wt .-%, in particular from 0.2 wt .-% to 4 wt .-%.
  • the agents can contain further constituents customary in washing and cleaning agents.
  • These optional components include, in particular, enzyme stabilizers, graying inhibitors, color transfer inhibitors, foam inhibitors, and optical brighteners, and colorants and fragrances.
  • silver corrosion inhibitors can be used in dishwashing detergents according to the invention.
  • a cleaning agent according to the invention for hard surfaces can also contain abrasive components, in particular from the group comprising quartz flours, wood flours, plastic flours, chalks and micro-glass balls and mixtures thereof. Abrasives are preferably not contained in the cleaning agents according to the invention in excess of 20% by weight, in particular from 5% by weight to 15% by weight.
  • the agents according to the invention can contain system and environmentally compatible acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, especially sulfuric acid, or bases, especially ammonium or alkali hydroxides.
  • Such pH regulators are contained in the agents according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • the color transfer inhibitors that are suitable for use in textile detergents according to the invention include in particular polyvinylpyrrolidones, polyvinylimidazoles, polymeric N-oxides such as poly (vinylpyridine-N-oxide) and copolymers of vinylpyrrolidone with vinylimidazole.
  • Graying inhibitors have the task of keeping the dirt detached from the textile fibers suspended in the liquor.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example starch, glue, gelatin, salts of ether carboxylic acids or Ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose.
  • Starch derivatives other than those mentioned above can also be used, for example aldehyde starches.
  • Cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, for example in amounts of 0.1 to 5% by weight, based on the agent, are preferably used ,
  • Textile detergents according to the invention can contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which are used instead of morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type can also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned optical brighteners can also be used.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and also paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bisfatty acid alkyl diamides. Mixtures of different foam inhibitors are also used with advantages, for example those made of silicone, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably attached to a granular, water-soluble or dispersible carrier substance bound. Mixtures of paraffins and bistearylethylenediamide are particularly preferred.
  • the preparation of solid agents according to the invention is not difficult and can be carried out in a known manner, for example by spray drying or granulation, the enzymes and further thermally sensitive ingredients, such as bleaching agents, optionally being added separately later.
  • a method known from European Patent EP 0486 592 and having an extrusion step is preferred for producing agents according to the invention with increased bulk density, in particular in the range from 650 g / 1 to 950 g / 1.
  • Another preferred production using a granulation process is described in European patent EP 0 642 576.
  • agents according to the invention in tablet form, which can consist of one or more phases, of one color or of more than one color and in particular of one layer or of more than one, in particular of two layers
  • the procedure is preferably such that all constituents - optionally one layer each - are combined in one Mixer mixed together and the mixture is pressed by means of conventional tablet presses, for example eccentric presses or rotary presses, with pressing forces in the range from about 50 to 100 kN, preferably at 60 to 70 kN.
  • break-resistant tablets which nevertheless dissolve sufficiently quickly under application conditions, are obtained with breaking and bending strengths of normally 100 to 200 N, but preferably over 150 N.
  • a tablet produced in this way preferably has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the shape of the tablets is arbitrary and can be round, oval or angular, intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm. In particular, the size of angular or cuboid tablets, which are predominantly via the metering device The dishwasher, for example, is dependent on the geometry and the volume of this metering device. Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or of 24x38 mm.
  • Table 1 below shows the washing results (% remission at 460 nm) for a detergent VI which contains 25% by weight of Na-A zeolite, 12% by weight of alkylbenzenesulfonate, 5% by weight of fatty alkyl sulfate and 1% by weight of soap , 10% by weight nonionic surfactant, 7% by weight TAED, 4% by weight foam regulator granules and 2.5% by weight enzyme granules (amylase, lipase, cellulase and S3T + V4I + V193M + V199I + L211D BLAP protease ) and 14% by weight sodium perborate monohydrate (remainder to 100% by weight water, fragrances and sodium sulfate), for a detergent V2, which was otherwise composed the same way, but instead of sodium perborate the active oxygen-equal amount of uncoated sodium percarbonate contained a detergent Ml otherwise composed as VI, which instead of sodium perborate contained the active oxygen-
  • Example 1 was repeated, the washing temperature being raised to 60 °.
  • the washing results obtained are shown in Table 2.
  • the agent according to the invention also has a performance clearly superior to agents containing another bleach.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Reinigungsleistung von Wasch- und Reinigungsmitteln gegenüber proteinhaltigen Anschmutzungen sollte verbessert werden. Dies gelang im wesentlichen dadurch, dass das Mittel neben üblichen mit derartigen Wirkstoffen verträglichen Inhaltsstoffen eine Mutante einer Protease vom Subtilisin-Typ, bei der in mindestens einer der Positionen (3, 4, 99, 188, 193, 199 und 211) (BLAP-Zählung) die an dieser Stelle in der Wildtyp-Protease vorhandene Aminosäure gegen eine andere Aminosäure ausgetauscht ist, und umhülltes teilchenförmiges Alkalipercarbonat enthält.

Description

Protease und Percarbonat enthaltende Wasch- und Reinigungsmittel
Die vorliegende Erfindung betrifft enzymhaltige Wasch- und Reinigungsmittel, die neben üblichen Bestandteilen eine gentechnisch veränderte Protease und ein bestimmtes peroxidisches Bleichmittel enthalten.
Wasclimittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Farbübertragungsinhibitoren umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche die Tensidleistung durch den enzymatischen Abbau von auf dem Textil befindlichen Anschmutzungen unterstützen. Gleiches gilt sinngemäß auch für Reinigungsmittel für harte Oberflächen. Dabei kommt neben den die Entfernung stärkehaltiger Anschmutzungen unterstützenden Amylasen und den fettspaltenden Lipasen den Proteasen besondere Bedeutung zu.
Enzyme wie Amylasen, Lipasen und Cellulasen, insbesondere aber proteolytische Enzyme, finden ausgedehnte Verwendung in Wasch-, Waschhilfs- und Reinigungsmitteln. Unter den Proteasen werden derzeit praktisch ausschließlich Enzyme aus der Sub- tilisinfamilie eingesetzt. Dabei handelt es sich um extrazelluläre Proteine mit einem Molekulargewicht im Bereich von etwa 20 000 bis 45 000. Subtilisine sind relativ unspezifische Enzyme, die neben der hydrolytischen Wirkung auf Peptidbindungen auch esterolytische Eigenschaften aufweisen (M. Bahn und R.D. Schmidt, Biotec L, 119, 1987). Viele Vertreter der Subtilisine sind physikalisch und chemisch genau charakterisiert. Ihre räumliche Struktur ist durch Röntgenstrukturanalyse oft im Detail bekannt. Hierdurch sind die Voraussetzungen für molekulares Modelling und sogenanntes Protein Engineering in Form gezielter Mutagenese gegeben (Kraut, Ann. Rev. Biochem. 46, 331- 358, 1977). Gentechnische Modifikationen von Proteasen sind vielfach beschrieben; so waren im Juni 1991 bereits 219 durch Protein Engineering erhaltene Proteinvarianten der Subtilisine bekannt (A. Recktenwald et al., J. Biotechnol. 28, 1-23, 1993). Die meisten dieser Varianten wurden erzeugt, um die Stabilität der Proteasen zu verbessern.
Eine unter stark alkalischen Bedingungen stabile und aktive Protease aus der Subtilisinfamilie kann wie in der internationalen Patentanmeldung WO 91/02792 beschrieben in Bacillus lentus (DSM 5483) produziert werden. Diese Bacillus lentus alkalische Protease (BLAP) kann durch Fermentation des Bacillus licheniforrnis produziert werden, der mit einem Expressionsplasmid transformiert wurde, welches das Gen für BLAP unter der Kontrolle des Promotors aus Bacillus licheniforrnis ATCC 53926 trägt. Die Zusammensetzung wie auch die räumliche Struktur von BLAP ist bekannt (D.W. Godette et al, J. Mol. Biol. 228, 580-595,1992). Diese Protease ist durch die in der zitierten Literatur beschriebene Sequenz aus 269 Aminosäuren, ein rechnerisches Molekulargewicht von 26 823 Dalton und einen theoretischen isoelektrischen Punkt von 9,7 charakterisiert. Durch Mutation zugängliche Varianten dieser Bacillus lentus DSM 5483 Protease sind in der US-amerikanischen Patentschrift US 5 340 735 beschrieben. Unter diesen sind Proteaseenzyme, die bei insbesondere mehrfacher Waschbehandlung von Textilien aus proteinogenen Fasern, beispielsweise textilen Flächengebilden aus Naturseide oder Wolle, ohne Verlust an Reinigungsleistung zu besonders geringen Substanzschädigungen beziehungsweise Zerstörungen der Faserverbände führen.
Überraschenderweise wurde nun gefunden, daß die Kombination aus einer bestimmten gentechnisch veränderten Protease mit einem bestimmten peroxidischen Oxidationsmittel zu unerwartetet synergistischen Leistungsverbesserungen f hrt, wenn man sie in Waschoder Reinigungsmitteln einsetzt.
Gegenstand der Erfindung ist daher ein teilchenförmiges protease- und percarbonathaltiges Wasch- oder Reinigungsmittel, welches dadurch gekennzeichnet ist, daß es neben üblichen mit derartigen Wirkstoffen verträglichen Inhaltsstoffen eine Mutante einer Protease vom Subtilisin-Typ, bei der in mindestens einer der Positionen 3, 4, 99, 188, 193, 199 und 211 (BLAP-Zählung) die an dieser Stelle in der Wildtyp- Protease vorhandene Aminosäure gegen eine andere Aminosäure ausgetauscht ist, und teilchenförmiges Alkalipercarbonat, welches eine Erdalkalisulfat, Alkalisulfat, Alkalisilikat, Erdalkalihalogenid, Alkalihalogenid, Alkalicarbonat, Alkalihydrogencar- bonat, Alkaliphosphat, Alkaliborat, Alkaliperborat, Borsäure, teilweise hydratisiertes Alumosilikat, Carbonsäure, Dicarbonsäure, Polymer aus ungesättigten Carbon- und/oder Dicarbonsäuren oder Mischungen aus diesen enthaltende Umhüllung aufweist, enthält.
Entsprechend umhüllte Alkalipercarbonatpartikel sind im Stand der Technik beschrieben. Natriumpercarbonat-Teilchen mit einer Umhüllung aus 30 Gew.-% bis 75 Gew.-% Alkalicarbonat und 25 Gew.-% bis 70 Gew.-% Alkalisilikat sind aus der internationalen Patentanmeldung WO 99/64350 bekannt. Die internationale Patentanmeldung WO 96/14389 offenbart Percarbonatpartikel, die mit einer Kombination aus Alkalisilikat, einem wasserlöslichen Magnesiumsalz, insbesondere Magnesiumsulfat, und einem Chelatisierungsmittel, insbesondere einer Hydroxycarbonsäure, umhüllt sind, wobei entsprechende mit einer Hydroxycarbonsäure beziehungsweise einer Dicarbonsäure umhüllte Partikel aus der internationalen Patentanmeldung WO 95/23210 beziehungsweise der internationalen Patentanmeldung WO 95/23209 bekannt sind. Percarbonat-Teilchen, die mit einer Kombination aus Borsäure und Alkalihalogenid, - sulfat und/oder Nitrat beziehungsweise einer Kombination aus Borsäure und Alkalisilikat umhüllt sind, sind aus der internationalen Patentanmeldung WO 95/15292 beziehungsweise der europäischen Patentanmeldung EP 0 459 625 bekannt. Die internationale Patentanmeldung WO 95/15291 offenbart ein Verfahren zum Umhüllen von teilchenförmigem Natriumpercarbonat mit Natriumhydrogencarbonat. Ein Verfahren zum Umhüllen von Natriumpercarbonat mit Polymeren ungesättigter Säuren, insbesondere Copolymerisationsprodukten der Methacyrl- oder Acrylsäure und Maleinsäure, ist aus der internationalen Patentanmeldung WO 94/05594 bekannt. Polycarboxylat-umhülltes Natriumpercarbonat ist auch aus der internationalen Patentanmeldung WO 22/17400 bekannt. Die internationale Patentanmeldung WO 93/20007 offenbart mit Carbonsäuren mit mindestens 8 C-Atomen umhülltes und anschließend mit Feststoffen bepudertes Natriumpercarbonat, wohingegen mit Mischungen aus über und unter 35 °C schmelzenden Carbonsäuren umhülltes Natriumpercarbonat aus der internationalen Patentanmeldung WO 92/17404 bekannt ist. Aus der europäischen Patentanmeldung EP 0 503 516 ist ein Verfahren zum Umhüllen von Percarbonat mit Fettsäurealkalisalzen durch Aufbringen der Fettsäuresalze in Pulverform bekannt. Mit Mischungen aus Natriumcarbonat und Natriumchlorid umhülltes Natriumpercarbonat ist aus der europäischen Patentanmeldung EP 0 592 969 bekannt. Die europäische Patentanmeldung EP 0 546 815 offenbart mit Alkalicitrat umhülltes Natriumpercarbonat.
Unter diesen sind teilchenförmige Alkalipercarbonate mit Umhüllungen, welche mindestens eines der genannten anorganischen Salze, insbesondere Alkalisulfat und/oder Alkalisilikat enthalten, besonders bevorzugt.
Das Gewichtsverhältnis von Umhüllungsmaterial zu Percarbonat in den umhüllten Alkalipercarbonat-Teilchen beträgt vorzugsweise 1:500 bis 1:2, insbesondere 1:200 bis 1:5.
Im Stand der Technik sind derartige Umhüllungen mit dem Zweck der Stabilisierung des Percarbonats und damit der Verbesserung der Bleichleistung von Wasch- oder reinigungsmitteln, welche es enthalten, vorgenommen worden. Unvorhersehbarerweise ergibt die Kombination des so umhüllten Percarbonats mit der genannten Protease eine Verbesserung der Reinigungswirkung gegenüber proteinhaltigen Anschmutzungen.
Ein weiterer Gegenstand der Erfindung ist daher die Verwendung einer Kombination aus einer Mutante einer Protease vom Subtilisin-Typ, bei der in mindestens einer der Positionen 3, 4, 99, 188, 193, 199 und 211 (BLAP-Zählung) die an dieser Stelle in der Wildtyp-Protease vorhandene Aminosäure gegen eine andere Aminosäure ausgetauscht ist, und teilchenförmigem Alkalipercarbonat, welches eine Erdalkalisulfat, Alkalisulfat, Alkalisilikat, Erdalkalihalogenid, Alkalihalogenid, Alkalicarbonat, Alkalihydrogencar- bonat, Alkaliphosphat, Alkaliborat, Alkaliperborat, Borsäure, teilweise hydratisiertes Alumosilikat, Carbonsäure, Dicarbonsäure, Polymer aus ungesättigten Carbon- und/oder Dicarbonsäuren oder Mischungen aus diesen enthaltende Umhüllung aufweist, zur Verbesserung der Reinigungsleistung von Wasch- oder Reinigungsmitteln gegenüber proteinhaltigen Anschmutzungen.
Die erwähnten zu entfernenden proteinhaltigen Anschmutzungen können sich, je nach Art dedes Mittels, an einer textilen Oberfläche oder an einer harten Oberfläche, beispielsweise einer Fliese oder eines Geschirrteils, befinden. Die erfindungsgemäße Verwendung erfolgt im wesentlichen bei der Anwendung von Wasch- oder Reinigungsmitteln in insbesondere wäßrigen Wasch- oder Reinigungslösungen.
Ein erfindungsgemäßes Mittel enthält vorzugsweise 3 Gew.-% bis 30 Gew.-%, insbesondere 7 Gew.-% bis 25 Gew.-% umhülltes Alkalipercarbonat, wobei Natrium das bevorzugte Alkalimetall ist.
Vorzugsweise weist das erfindungsgemäße Mittel eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Die Proteaseaktivität wird gemäß dem nachfolgend beschriebenen standardisierten Verfahren, wie in Tenside 7 (1970), 125 beschrieben, bestimmt: Eine Lösung, die 12 g/1 Casein und 30 mM Natriumtripolyphosphat in Wasser des Härtegrades 15 °dH (enthaltend 0,058 Gew.-% CaCl2 2 H2O, 0,028 Gew.-% MgCl2 6 H2O und 0,042 Gew.- % NaHCO3) wird auf 70 °C erwärmt, der pH- Wert wird durch Zugabe von 0,1 N NaOH auf 8,5 bei 50 °C eingestellt. Zu 600 ml der Substratlösung werden 200 ml einer Lösung des zu testenden Enzyms in 2 gewichtsprozentiger Natriumtripolyphosphat-Pufferlösung (pH 8,5) gegeben. Die Reaktionsmischung wird bei 50 °C für 15 Minuten inkubiert. Die Reaktion wird danach durch Zugabe von 500 ml TCA-Lösung (0,44 M Trichloressigsäure und 0,22 M Natriumacetat in 3 volumenprozentiger Essigsäure) und Abkühlen (Eisbad bei 0 °C, 15 Minuten) gestoppt. Das TCA-unlösliche Protein wird durch Zentrifugation entfernt, 900 ml des Überstandes werden mit 300 ml 2 N NaOH verdünnt. Die Absorption dieser Lösung bei 290 nm wird mit Hilfe eines Absorptionsspektrometers bestimmt, wobei der Absorptionsnullwert durch das Messen einer zentrifugierten Lösung, die durch Mischen von 600 ml der obengenannten TCA-Lösung mit 600 ml der obengenannten Substratlösung und anschließender Zugabe der Enzymlösung hergestellt wird, zu bestimmen ist. Die proteolytische Aktivität einer Proteaselösung, die unter den angegebenen Meßbedingungen eine Absorption von 0,500 OD bewirkt, wird zu 10 PE (Protease- Einheiten) pro ml definiert.
Zu den erfindungsgemäß brauchbaren Proteasen zählen neben der wie oben ausgeführt gentechnisch veränderten Protease aus Bacillus lentus auch solche gentechnisch veränderte Proteasen des obengenannten Subtilisin-Typs, bei denen in Positionen, die den genannten Positionen in BLAP analog sind, Austausche von an dieser Stelle in der Wildtyp-Protease vorhandenen Aminosäure gegen andere Aminosäuren vorgenommen wurden. Bei derartigen analogen Positionen in anderen Subtilisin-Proteasen ist zu beachten, daß die Numerierung der Aminosäurepositionen in BLAP sich von der häufig anzutreffenden des Subtilisin BPN' unterscheidet. Die Numerierung der Positionen 1 bis 35 ist identisch in Subtilisin BPN' und BLAP; aufgrund fehlender korrespondierender Aminosäuren entsprechen die Positionen 36 bis 54 in BLAP den Positionen 37 bis 55 in BPN', ebenso die Positionen 55 bis 160 in BLAP den Positionen 57 bis 162 in BPN' und die Positionen 161 bis 269 in BLAP denen von 167 bis 275 in BPN'.
Zu den erfϊndungsgemäß bevorzugten Proteasen zählen gentechnisch veränderte Proteasen des obengenannten BL AP-Typs, bei denen in Position 211 (BLAP-Zählung) die an dieser Stelle in der Wildtyp-Protease vorhandene Aminosäure Leucin (L im gebräuchlichen Ein-Buchstaben-Code) gegen Asparaginsäure (D) beziehungsweise Glutaminsäure (E) ausgetauscht ist (L211D beziehungsweise L211E). Diese können wie in der internationalen Patentanmeldung WO 95/23221 beschrieben hergestellt werden. Stattdessen oder zusätzlich können weitere Veränderungen gegenüber der ursprünglichen Bacillus lentus-Protease, wie beispielsweise mindestens einer der Aminosäureaustausche S3T, V4I, R99G, R99A, R99S, A188P, V193M und/oder V199I, vorgenommen worden sein. Besonders bevorzugt ist der Einsatz einer Variante, bei welcher die Aminosäureaustausche S3T + V4I + V193M + V199I vorgenommen wurden.
Die Enzyme können insbesondere zum Einsatz in teilchenförmigen Mitteln, wie zum Beispiel in der europäischen Patentschrift EP 0 564 476 oder in der internationalen Pa- tentanmeldung WO 94/23005 für andere Enzyme beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Die Anwesenheit weiterer Enzyme, zu denen insbesondere Amylasen, Lipasen und/oder Cellulasen zu rechnen sind, kann durch Einarbeitung der separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch gemeinsam in einem Granulat konfektionierte Protease und weiterem Enzym, wie zum Beispiel aus den internationalen Patentanmeldungen WO 96/00772 oder WO 96/00773 bekannt, in erfϊndungsgemäßen Mitteln eingesetzt werden.
Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer der erfindungsgemäß eingesetzten Kombination im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, zusätzliche Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, Bleichaktivatoren, wassermischbare organische Lösungsmittel, zusätzliche Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertra- gungsinhibitoren, Schaumregulatoren, Silberkorrosionsinhibitoren sowie Färb- und Duftstoffe enthalten.
Die erfindungsgemäßen Mittel können ein Tensid oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat-Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9- C13-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxy- alkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18- Monoolefmen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-Cι8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfo- nierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren, die durch - Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Taigfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α- Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt. Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der CI2-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cι0-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C,2-C16- Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C,5-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-amerikanischen Patentschriften US 3 234 258 oder US 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside. Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21- Alkohole, wie 2-Methylverzweigte C9-Cπ-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens normalerweise nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäure- amiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-Cn- Alkohole mit 7 EO, C13-C15- Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-Clg- Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Reinigungsmitteln für den Einsatz in maschinellen Geschirrspülverfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise C12-C18-Alkylpolyethylenglykol-polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C12-C18-Alkylpolyethy- lenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylen- oxideinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykol- mischether. Besonders bevorzugt sind auch die hydroxylgruppenhaltigen alkoxylierten Alkohole, wie sie in der europäischen Patentanmeldung EP 0 300 305 beschrieben sind, sogenannte Hydroxymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann- zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R^O für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht:
R2
Ri_CO-N-[Z] (I)
Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
R4-O-R5
I (ii)
R3-CO-N-[Z] in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Koh- lenstoffatomen steht, wobei Cι-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO 95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO 90/13533 beschriebenen Verfahren hergestellt werden. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N- dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten „Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig „dimere", sondern auch entsprechend „trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE 43 21 022 oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate gemäß der deutschen Patentanmeldung DE 195 03 061. Endgruppenverschlossene dimere und trimere Mischether gemäß der deutschen Patentanmeldung DE 195 13 391 zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini- Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO 95/19953, WO 95/19954 und WO 95/19955 beschrieben werden.
Tenside sind in erfindungsgemäßen Waschmitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten, wohingegen Mittel zur Reinigung harter Oberflächen, insbesondere zur maschinellen Reinigung von Geschirr, niedrigere Tensidgehalte von bis zu 10 Gew.-%, insbesondere bis zu 5 Gew.-% und vorzugsweise im Bereich von 0,5 Gew.-% bis 3 Gew.-% aufweisen.
Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessig- säure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylen- phosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan- 1,1-diphosphonsäure, polymere Hydroxy Verbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate der europäischen Patentschrift EP 0 625 992 beziehungsweise der internationalen Patentanmeldung WO 92/18542 oder der europäischen Patentschrift EP 0232202, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 3 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 30 000 bis 120000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 30 000 bis 100 000 auf. Handelsübliche Produkte sind zum Beispiel Sokalan® CP 5, CP 10 und PA 30 der Firma BASF. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinyl- ethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Builder- substanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Aryl- rest substituiert ist, sein. Derartige Polymere lassen sich insbesondere nach Verfahren herstellen, die in der deutschen Patentschrift DE 42 21 381 und der deutschen Patentanmeldung DE 43 00772 beschrieben sind, und weisen im allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 und DE 44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäure- salze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, Vorzugs- weise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.- % enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsgemäßen Mitteln eingesetzt.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Alkalisilikate, Alkalicarbonate und Alkaliphosphate, die in Form ihrer alkalischen, neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Trmatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentana- triumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres
Trinatriumphosphat mit Oligomerisierungsgraden von 5 bis 1000, insbesondere 5 bis 50, sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, allein oder in Mischungen, beispielsweise in Form eines Co-Kristallisats aus den Zeolithen A und X (Vegobond® AX, ein Handelsprodukt der Condea Augusta S.p.A.), bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teil- chenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm. Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1 :1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na^SiOz von 1:2 bis 1:2,8. Solche mit einem molaren Verhältnis Na2O:SiO2 von 1:1,9 bis T.2,8 können nach dem Verfahren der europäischen Patentanmeldung EP 0 425 427 hergestellt werden. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 22, insbesondere 1,9 bis 4 und y eine Zahl von 0 bis 33 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Kristalline Schichtsilikate, die unter diese allgemeine Formel fallen, werden beispielsweise in der europäischen Patentanmeldung EP 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si2O5 y H2O) bevorzugt, wobei ß-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. δ-Natriumsilikate mit einem Modul zwischen 1,9 und 3,2 können gemäß den japanischen Patentanmeldungen JP 04/238 809 oder JP 04/260 610 hergestellt werden. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, herstellbar wie in den europäischen Patentanmeldungen EP 0 548 599, EP 0 502 325 und EP 0 452 428 beschrieben, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es nach dem Verfahren der europäischen Patentanmeldung EP 0 436 835 aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5, wie sie nach den Verfahren der europäischen Patentschriften EP 0 164 552 und/oder EP 0 294 753 erhältlich sind, werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Kristalline schichtförmige Silikate der oben angegebenen Formel (I) werden von der Fa. Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1
Figure imgf000018_0001
Kenyait), Na-SKS-2 (Na2Si14O29xH2O, Magadiit), Na-SKS-3 (Na2Si8O17xH2O) oder Na-SKS-4 (Na2Si4O9xH2O, Makatit). Von diesen eignen sich vor allem Na-SKS-5 ( -Na2Si2O5), Na- SKS-7 (ß-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5H2O), Na-SKS- 10 (NaHSi2O53H2O, Kanemit), Na-SKS- 11 (t-Na2Si2O5) und Na-SKS- 13 (NaHSi2O5), insbesondere aber Na- SKS-6 (δ-Na^SiA). Einen Überblick über kristalline Schichtsilikate geben zum Beispiel die im "Hoechst High Chem Magazin 14/1993" auf den Seiten 33 - 38 und in "Seifen- Öle-Fette- Wachse, 116 Jahrgang, Nr. 20/1990" auf den Seiten 805 - 808 veröffentlichten Artikel. In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel setzt man ein granuläres Compound aus kristallinem Schichtsilikat und Citrat, aus kristallinem Schichtsilikat und oben genannter (co-)polymerer Polycarbonsäure, wie es zum Beispiel in der deutschen Patentanmeldung DE 198 19 187beschrieben ist, oder aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel in der internationalen Patentanmeldung WO 95/22592 beschrieben ist oder wie es beispielsweise unter dem Namen Nabion® 15 im Handel erhältlich ist.
Buildersubstanzen können in den erfindungsgemäßen Mitteln gegebenenfalls in Mengen bis zu 90 Gew.-% enthalten sein. Sie sind vorzugsweise in Mengen bis zu 75 Gew.-% enthalten. Erfindungsgemäße Waschmittel weisen Buildergehalte von insbesondere 5 Gew.-% bis 50 Gew.-% auf. In erfindungsgemäßen Mitteln für die Reinigung harter Oberflächen, insbesondere zur maschinellen Reinigung von Geschirr, beträgt der Gehalt an Buildersubstanzen insbesondere 5 Gew.-% bis 88 Gew.-%, wobei in derartigen Mitteln vorzugsweise keine wasserunlöslichen Buildermaterialien eingesetzt werden. In einer bevorzugten Ausführungsform erfindungsgemäßer Mittel zur insbesondere maschinellen Reinigung von Geschirr sind 20 Gew.-% bis 40 Gew.-% wasserlöslicher organischer Builder, insbesondere Alkalicitrat, 5 Gew.-% bis 15 Gew.-% Alkalicarbonat und 20 Gew.- % bis 40 Gew.-% Alkalidisilikat enthalten. Als für den Einsatz in erfindungsgemäßen Mitteln geeignete zusätzliche Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, zu denen Perborat, Persilikat und/oder Persulfat wie Caroat gehören, in Betracht. Die Persauerstoffverbindungen können in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Falls ein erfindungsgemäßes Mittel zusätzliche Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden. Der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat kann zweckdienlich sein.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl- 2,4-dioxohexahydro-l,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren können im üblichen Mengenbereich, vorzugsweise in Mengen von 0,5 Gew.- % bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten sein.
Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446 982 und EP 0453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein.
Als in den Mitteln zusätzlich zur erfindungswesentlichen Protease verwendbare Enzyme kommen solche aus der Klasse der Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cellulasen, Oxidasen, Laccasen und Peroxidasen sowie deren Gemische in Frage. Gegebenenfalls können auch andere als die erfindungswesentliche Protease beziehungsweise Amylase zusätzlich zu diesen vorhanden sein. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniforrnis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die gegebenenfalls zusätzlich verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln Vorzugs- weise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten.
Zusätzlich können die Mittel weitere in Wasch- und Reinigungsmitteln übliche Bestandteile enthalten. Zu diesen fakultativen Bestandteilen gehören insbesondere Enzymstabilisatoren, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schauminhibitoren, und optische Aufheller sowie Färb- und Duftstoffe. Um einen Silberkorrosionsschutz zu bewirken, können in erfindungsgemäßen Reinigungsmitteln für Geschirr Silberkorrosionsinhibitoren eingesetzt werden. Ein erfindungsgemäßes Reinigungsmittel für harte Oberflächen kann darüber hinaus abrasiv wirkende Bestandteile, insbesondere aus der Gruppe umfassend Quarzmehle, Holzmehle, Kunststoffmehle, Kreiden und Mikroglaskugeln sowie deren Gemische, enthalten. Abrasivstoffe sind in den erfindungsgemäßen Reinigungsmitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-%, enthalten.
Zur Einstellung eines unter Anwendungsbedingungen gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH- Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citro- nensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH- Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
Zu den für den Einsatz in erfindungsgemäßen Textilwaschmitteln in Frage kommenden Farbübertragungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinyl- imidazole, polymere N-Oxide wie Poly-(vinylpyridin-N-oxid) und Copolymere von Vinylpyrrolidon mit Vinylimidazol.
Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methyl- hydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Erfindungsgemäße Textilwaschmittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-l,3,5-triazinyl-6- amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-di- phenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
Die Herstellung erfindungsgemäßer fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei die Enzyme und weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/1 bis 950 g/1, ist ein aus der europäischen Patentschrift EP 0486 592 bekanntes, einen Extrusionschritt aufweisendes Verfahren bevorzugt. Eine weitere bevorzugte Herstellung mit Hilfe eines Granulations Verfahrens ist in der europäischen Patentschrift EP 0 642 576 beschrieben.
Zur Herstellung von erfindungsgemäßen Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, daß man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Preßkräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpreßt. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpreßt wird. Dies wird vorzugsweise bei Preßkräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Geschirrspülmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
Beispiele
Beispiel 1
Zur Bestimmung des Waschvermögens wurden mit standardisierten Testanschmutzungen (3 Blut-Milch-haltige Anschmutzungen) verunreinigte Baumwollgewebe bei 40°C (Waschmitteldosierung 76 g; Wasserhärte 17 °d; Beladung 3,5 kg) in einer Haushaltswaschmaschine (Miele® W 701; Normalprogramm) gewaschen. In der nachfolgenden Tabelle 1 sind die Waschergebnisse (% Remission bei 460 nm) für ein Waschmittel VI, das 25 Gew.-% ZeolithNa-A, 12 Gew.-% Alkylbenzolsulfonat, 5 Gew.-% Fettalkylsulfat, 1 Gew.-% Seife, 10 Gew.-% nichtionisches Tensid, 7 Gew.-% TAED, 4 Gew.-% Schaumregulatorgranulat und 2,5 Gew.-% Enzymgranulate (Amylase, Lipase, Cellulase und S3T + V4I + V193M + V199I + L211D BLAP-Protease) sowie 14 Gew.-% Natrium- perborat-Monohydrat (Rest auf 100 Gew.-% Wasser, Duftstoffe und Natriumsulfat) enthielt, für ein Waschmittel V2, das ansonsten gleich zusammengesetzt war, aber statt Natriumperborat die aktivsauerstoffgleiche Menge an nicht-umhülltem Natriumpercarbonat enthielt, ein ansonsten wie VI zusammengesetztes Waschmittel Ml, das statt Natriumperborat die aktivsauerstoffgleiche Menge an mit Natriumsulfat/-silikat umhülltem Natriumpercarbonat (Percarbonat ECOX-C) enthielt, nach verschieden langen Waschdauern als Ergebnis von 5fach-Bestimmungen und gemittelt über alle Anschmutzungen angegeben.
Tabelle 1 : Waschergebnisse (Remission in %)
Figure imgf000025_0001
Man erkennt, daß das erfindungsgemäße Mittel eine den ein anderes Bleichmittel enthaltenden Mitteln deutlich überlegene Leistung aufweist.
Beispiel 2
Beispiel 1 wurde wiederholt, wobei die Waschtemperatur auf 60 ° erhöht wurde. In Tabelle 2 sind die dabei erhaltenen Waschergebnisse angegeben.
Tabelle 1 : Waschergebnisse (Remission in %)
Figure imgf000026_0001
Man erkennt, daß auch hier das erfindungsgemäße Mittel eine den ein anderes Bleichmittel enthaltenden Mitteln deutlich überlegene Leistung aufweist.

Claims

Patentansprüche
1. Teilchenförmiges protease- und percarbonathaltiges Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, daß es neben üblichen mit derartigen Wirkstoffen verträglichen Inhaltsstoffen eine Mutante einer Protease vom Subtilisin-Typ, bei der in mindestens einer der Positionen 3, 4, 99, 188, 193, 199 und 211 (BLAP-Zählung) die an dieser Stelle in der Wildtyp-Protease vorhandene Aminosäure gegen eine andere Aminosäure ausgetauscht ist, und teilchenförmiges Alkalipercarbonat, welches eine Erdalkalisulfat, Alkalisulfat, Alkalisilikat, Erdalkalihalogenid, Alkalihalogenid, Alkalicarbonat, Alkalihydrogencarbonat, Alkaliphosphat, Alkaliborat, Alkaliperborat, Borsäure, teilweise hydratisiertes Alumosilikat, Carbonsäure, Dicarbonsäure, Polymer aus ungesättigten Carbon- und/oder Dicarbonsäuren oder Mischungen aus diesen enthaltende Umhüllung aufweist, enthält.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß das Alkalipercarbonat eine Umhüllung, die Alkalisulfat und/oder Alkalisilikat enthält, aufweist.
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es 3 Gew.-% bis 30 Gew.-%, insbesondere 7 Gew.-% bis 25 Gew.-% umhülltes Alkalipercarbonat enthält.
4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es eine proteolytische Aktivität im Bereich von 100 PE/g bis 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g aufweist.
5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es eine Proteasemutante vom BLAP-Typ enthält, bei der mindestens einer der Aminosäureaustausche S3T, V4I, R99G, R99A, R99S, A188P, V193M und V199I vorgenommen worden ist.
6. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Umhüllungsmaterial zu Percarbonat in den umhüllten Alkalipercarbonat-Teilchen 1:500 bis 1:2, insbesondere 1:200 bis 1:5 beträgt.
7. Verwendung einer Kombination aus einer Mutante einer Protease vom Subtilisin- Typ, bei der in mindestens einer der Positionen 3, 4, 99, 188, 193, 199 und 211 (BLAP-Zählung) die an dieser Stelle in der Wildtyp-Protease vorhandene Aminosäure gegen eine andere Aminosäure ausgetauscht ist, und teilchenförmigem Alkalipercarbonat, welches eine Erdalkalisulfat, Alkalisulfat, Alkalisilikat, Erdalkalihalogenid, Alkalihalogenid, Alkalicarbonat, Alkalihydrogencarbonat, Alkaliphosphat, Alkaliborat, Alkaliperborat, Borsäure, teilweise hydratisiertes Alumosilikat, Carbonsäure, Dicarbonsäure, Polymer aus ungesättigten Carbon- und/oder Dicarbonsäuren oder Mischungen aus diesen enthaltende Umliüllung aufweist, zur Verbesserung der Reinigungsleistung von Wasch- oder Reinigungsmitteln gegenüber proteinhaltigen Anschmutzungen.
PCT/EP2001/001445 2000-02-18 2001-02-09 Protease und percarbonat enthaltende wasch- und reinigungsmittel WO2001060963A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33753/01A AU3375301A (en) 2000-02-18 2001-02-09 Detergents containing protease and percarbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10007608A DE10007608A1 (de) 2000-02-18 2000-02-18 Protease und Percarbonat enthaltende Wasch- und Reinigungsmittel
DE10007608.4 2000-02-18

Publications (1)

Publication Number Publication Date
WO2001060963A1 true WO2001060963A1 (de) 2001-08-23

Family

ID=7631544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001445 WO2001060963A1 (de) 2000-02-18 2001-02-09 Protease und percarbonat enthaltende wasch- und reinigungsmittel

Country Status (4)

Country Link
US (1) US20010044398A1 (de)
AU (1) AU3375301A (de)
DE (1) DE10007608A1 (de)
WO (1) WO2001060963A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017707A1 (en) * 2012-02-02 2015-01-15 Basf Se Storage-stable liquid dishwashing detergent containing protease and amylase
EP3044302B1 (de) 2013-09-12 2017-10-25 Henkel AG & Co. KGaA Festes textilwaschmittel mit verbesserter proteaseleistung
CN112204138A (zh) * 2018-06-19 2021-01-08 宝洁公司 自动盘碟洗涤剂组合物
EP2216393B1 (de) * 2009-02-09 2024-04-24 The Procter & Gamble Company Reinigungsmittelzusammensetzung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138753B4 (de) * 2001-08-07 2017-07-20 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel mit Hybrid-Alpha-Amylasen
WO2004058931A1 (de) * 2002-12-20 2004-07-15 Henkel Kommanditgesellschaft Auf Aktien Bleichmittelhaltige wasch- oder reinigungsmittel
US20090215663A1 (en) 2006-04-20 2009-08-27 Novozymes A/S Savinase variants having an improved wash performance on egg stains
DE102011088751A1 (de) * 2011-12-15 2013-06-20 Henkel Ag & Co. Kgaa Lagerstabiles flüssiges Wasch- oder Reinigungsmittel enthaltend Protease und Amylase
EP2662330A1 (de) 2012-05-11 2013-11-13 Creachem SA Peroxygen-Freisetzungszusammensetzungen mit aktivem Verdickungsmittel und Herstellungsverfahren dafür
DE102015225465A1 (de) * 2015-12-16 2017-06-22 Henkel Ag & Co. Kgaa Flüssige Tensidzusammensetzung mit spezieller Kombination aus Enzym und Stabilisator
EP4438707A1 (de) * 2021-11-24 2024-10-02 SkyLab AG Biologisch abbaubare waschmittelzusammensetzung auf lipasebasis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700327A1 (de) * 1997-01-08 1998-07-09 Henkel Kgaa Protease- und amylasehaltiges Waschmittel
WO1999001531A1 (en) * 1997-07-02 1999-01-14 The Procter & Gamble Company Dishwashing compositions comprising a phospholipase and an amylase
WO1999020723A2 (en) * 1997-10-23 1999-04-29 The Procter & Gamble Company Multiply-substituted protease variant and amylase variant-containing cleaning compositions
US5904161A (en) * 1994-05-25 1999-05-18 The Procter & Gamble Company Cleaning compositions containing bleach and stability-enhanced enzymes
EP0979864A1 (de) * 1998-07-17 2000-02-16 The Procter & Gamble Company Waschmitteltablette

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088102C (zh) * 1993-10-14 2002-07-24 普罗格特-甘布尔公司 含有蛋白酶的漂白组合物
US5691295A (en) * 1995-01-17 1997-11-25 Cognis Gesellschaft Fuer Biotechnologie Mbh Detergent compositions
DE69535736T2 (de) * 1994-02-24 2009-04-30 Henkel Ag & Co. Kgaa Verbesserte enzyme und diese enthaltene detergentien
EP0913458B1 (de) * 1997-10-22 2004-06-16 The Procter & Gamble Company Flüssige Reinigungszusammensetzungen für harte Oberflächen
DE19824705A1 (de) * 1998-06-03 1999-12-09 Henkel Kgaa Amylase und Protease enthaltende Wasch- und Reinigungsmittel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904161A (en) * 1994-05-25 1999-05-18 The Procter & Gamble Company Cleaning compositions containing bleach and stability-enhanced enzymes
DE19700327A1 (de) * 1997-01-08 1998-07-09 Henkel Kgaa Protease- und amylasehaltiges Waschmittel
WO1999001531A1 (en) * 1997-07-02 1999-01-14 The Procter & Gamble Company Dishwashing compositions comprising a phospholipase and an amylase
WO1999020723A2 (en) * 1997-10-23 1999-04-29 The Procter & Gamble Company Multiply-substituted protease variant and amylase variant-containing cleaning compositions
EP0979864A1 (de) * 1998-07-17 2000-02-16 The Procter & Gamble Company Waschmitteltablette

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216393B1 (de) * 2009-02-09 2024-04-24 The Procter & Gamble Company Reinigungsmittelzusammensetzung
US20150017707A1 (en) * 2012-02-02 2015-01-15 Basf Se Storage-stable liquid dishwashing detergent containing protease and amylase
CN104471047A (zh) * 2012-02-02 2015-03-25 巴斯夫欧洲公司 含有蛋白酶和淀粉酶的储存稳定的液体餐具洗涤剂
CN104471047B (zh) * 2012-02-02 2018-04-06 巴斯夫欧洲公司 含有蛋白酶和淀粉酶的储存稳定的液体餐具洗涤剂
EP3044302B1 (de) 2013-09-12 2017-10-25 Henkel AG & Co. KGaA Festes textilwaschmittel mit verbesserter proteaseleistung
CN112204138A (zh) * 2018-06-19 2021-01-08 宝洁公司 自动盘碟洗涤剂组合物

Also Published As

Publication number Publication date
AU3375301A (en) 2001-08-27
DE10007608A1 (de) 2001-08-30
US20010044398A1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
WO1999063040A1 (de) Amylase und protease enthaltende wasch- und reinigungsmittel
WO2009021867A2 (de) Mittel enthaltend proteasen
DE102008018503A1 (de) Farbschützendes Wasch- oder Reinigungsmittel
EP1165737B1 (de) Enzym- und bleichaktivatorhaltige wasch- und reinigungsmittel
EP1084217B1 (de) Amylase und acetonitril-derivate enthaltende wasch- und reinigungsmittel
DE102007012975A1 (de) Farbschützendes Waschmittel
WO2001060963A1 (de) Protease und percarbonat enthaltende wasch- und reinigungsmittel
DE102008024084A1 (de) Wasch- und Reinigungsmittel
EP1084223B1 (de) Amylase und bleichaktivierende übergangsmetallverbindung enthaltende wasch- und reinigungsmittel
EP1084219B1 (de) Amylase und percarbonat enthaltende wasch- und reinigungsmittel
EP3218474B1 (de) Wasch- und reinigungsmittel, enthaltend mindestens zwei proteasen
EP1084220A1 (de) Amylase und percarbonsäure enthaltende wasch- und reinigungsmittel
EP1224254B1 (de) Enzymatischer vergrauungsinhibitor
EP1084218A1 (de) Amylase und farbübertragungsinhibitor enthaltende waschmittel
EP1084221A1 (de) Amylase enthaltende wasch- und reinigungsmittel
EP3224358B1 (de) Verwendung von molkenproteinisolat in enzymhaltigen wasch- oder reinigungsmitteln zur erhöhung der stabilität von enzymen
EP3380071A1 (de) Verwendung von polyoxyalkylenaminen in enzymhaltigen wasch- oder reinigungsmitteln zur erhöhung der stabilität von enzymen
EP3353274B1 (de) Verwendung hochkonzentrierter enzymgranulate zur erhöhung der lagerstabilität von enzymen
DE10038844A1 (de) Kationischen Bleichaktivator enthaltende Wasch- und Reinigungsmittel
DE102014226251A1 (de) Verwendung anorganischer Oxide, Hydroxide oder Oxidhydroxide in enzymhaltigen Wasch- oder Reinigungsmitteln zur Erhöhung der Stabilität von Enzymen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ DZ HU ID IL IN JP KR MX PL RO RU SG SI SK UA ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP