[go: up one dir, main page]

WO2001040411A1 - Procede et installation de gazeification de composes carbones - Google Patents

Procede et installation de gazeification de composes carbones Download PDF

Info

Publication number
WO2001040411A1
WO2001040411A1 PCT/FR2000/003360 FR0003360W WO0140411A1 WO 2001040411 A1 WO2001040411 A1 WO 2001040411A1 FR 0003360 W FR0003360 W FR 0003360W WO 0140411 A1 WO0140411 A1 WO 0140411A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
bath
molten slag
slag
furnace
Prior art date
Application number
PCT/FR2000/003360
Other languages
English (en)
Inventor
André Garnier
Jacques Proot
Original Assignee
Agriculture Azote Et Carbone Organiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agriculture Azote Et Carbone Organiques filed Critical Agriculture Azote Et Carbone Organiques
Priority to AU21818/01A priority Critical patent/AU2181801A/en
Priority to US10/148,753 priority patent/US7087098B2/en
Priority to DE60045662T priority patent/DE60045662D1/de
Priority to EP00985382A priority patent/EP1235889B1/fr
Priority to CA2393088A priority patent/CA2393088C/fr
Priority to AT00985382T priority patent/ATE499430T1/de
Priority to DK00985382.1T priority patent/DK1235889T3/da
Publication of WO2001040411A1 publication Critical patent/WO2001040411A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the present invention relates to a process for gasifying compounds of the carbon compound type and more particularly compounds comprising mineral fillers and / or potential contaminants.
  • the present invention also relates to an installation for implementing the method.
  • One area of application envisaged is in particular that of the recovery of carbochemical or petrochemical residues and treated wood.
  • the reactions are more or less complete and they generally lead to a mixture of gases comprising in particular carbon dioxide and hydrogen.
  • the Winkler process is well suited to the gasification of coal and operates in a fluidized bed, making it possible to produce a mixture of carbon monoxide and hydrogen.
  • this process is poorly suited to the types of fuel envisaged, in particular because of the particles of wood which fly away easily. Mention will also be made of the Lurgi process, fed with granular coal and working in a fixed bed under pressure, but at low temperature, which causes the release of numerous harmful compounds which it is necessary to recover by filtering the gases in a column of oil wash.
  • no device is provided for inerting any contaminants or for removing the mineral charges that the coal could contain.
  • the types of fuel envisaged include mineral fillers and above all contaminants, in particular chromium and copper, which it is essential to recover and to inert.
  • An object of the present invention is to provide a process for gasifying a compound comprising mineral fillers and / or potential contaminants in which the mineral fillers are removed, with the contaminants which are inert.
  • the process for gasifying compounds is characterized in that it comprises the following steps:
  • At least said compounds are loaded into a molten slag bath and the oxidizer is injected into said bath so that the mixture, carbonaceous compounds / oxidizer, is over-stoichiometric, whereby a first part of said compounds is pyrolyzed, whereby a second part undergoes a combustion reaction capable of yielding thermal energy to said slag bath, and whereby a third part diffuses into said bath,
  • a characteristic of the gasification process resides in the support constituted by the molten slag, in which the carbonaceous compounds, likely to contain mineral fillers and / or potential contaminants, decompose by pyrolysis.
  • the carbonaceous compounds likely to contain mineral fillers and / or potential contaminants, decompose by pyrolysis.
  • temperature between 1100 ° C and 1500 ° C, carbonaceous compounds form new chemical species leading to synthesis gas, and potential non-volatilized contaminants diffuse in the molten slag.
  • the injected oxidizer and the new chemical species formed constitute a mixture which, under the effect of temperature, leads to a combustion reaction.
  • the object of the invention is to produce synthetic gas and to do this we adjust the proportion of carbonaceous compounds, that is to say of fuel, and of oxidizer so that the mixture is super-stoichiometric.
  • the quantity of fuel is greater than the quantity of oxidizer capable of reacting with it and therefore a first part of the carbon compounds is pyrolyzed to lead to synthesis gas and a second part is burned and supplies energy to the slag.
  • burnt gases and the gases from the pyrolysis are recovered, but it is understood that it is the latter which are of interest, either energetically or for various syntheses.
  • the temperature of said slag is lowered by pouring it, then it is granulated.
  • the temperature of a part of the molten slag is lowered by removal of said part. This operation consists in pouring the slag either sequentially or continuously.
  • fluxes are added to the molten slag.
  • the said compounds are conditioned in solid elements so as to charge the said elements directly above the molten slag bath, whereby said elements are deposited on the surface. of said bath and / or are incorporated therein.
  • the carbon compounds are sufficiently homogeneous and dry, preferably preferably, said compounds and the oxidizer are simultaneously injected into the molten slag bath.
  • the object of the present invention is to recover the energy contained in carbonaceous compounds, in particular gases, and according to a particular characteristic, said gases are purified so as to obtain a clean combustible gas.
  • This gas can be burned in situ in a thermal power plant or transferred to a distribution network with or without cogeneration.
  • the gases directly coming from the combustion reaction and from the pyrolysis are hot and according to another particular characteristic, the heat energy is recovered, in particular from said gases, so as to transfer thermal energy to a heat transfer fluid.
  • a fourth part of said compounds vaporized by the slag bath is condensed into fusion. Indeed, a certain number of elements contained in carbonaceous compounds do not participate in the pyrolysis or combustion reactions and vaporize on contact with the slag. These elements are isolated at the heat exchanger, since the latter contributes to the condensation of said fourth part.
  • Another object of the present invention is to provide an installation for the gasification of compounds, in particular carbon compounds, comprising mineral fillers and / or potential contaminants, said installation comprising: means for containing a bath of molten slag,
  • the molten slag bath is contained in the lower part of a vertical cylindrical furnace comprising at least one opening pierced in the wall of the upper part of said furnace for loading said compounds , and at least one opening pierced in the wall of the lower part of said furnace to take at least part of the molten slag. It is understood that the carbonaceous compounds are projected into the molten slag from the top of the furnace, to be transformed, and that it is the same for the adjustments of the slag from which a part is removed.
  • the wall of the upper part of the vertical oven is pierced with an orifice intended to collect at least the gases resulting from the pyrolysis and of the combustion of said first and second parts and said installation further comprises washing means connected to said orifice for purifying said gases.
  • a heat exchanger and deposition chambers are interposed between the oven and the washing means so as to recover at least partially the heat energy of said products and to recover a fourth part of the compounds vaporized in the oven in condensed form.
  • the means for loading said compounds to include a worm screw, opening directly below the molten slag bath, provided with heating means , whereby the compounds can be agglomerated together by melting at least one of said compounds. It is understood that the endless screw fixed on the opening intended for loading makes it possible to isolate the enclosure of the furnace when it is in operation and that it contains carbonaceous compounds. The fact that certain compounds are made pasty and agglomerate all the other compounds contributes to the impermeability of the loading opening with respect to the gaseous mass.
  • the means for injecting the oxidant into the molten slag comprise a lance which passes through the wall of the upper part of the furnace to plunge into the bath of molten slag and in which the oxidant is under pressure.
  • the means for injecting the oxidant into the molten slag comprise a lance which passes through the wall of the lower part of the furnace to open into the bath of molten slag and in which the oxidant is under pressure.
  • the end of the lance is immersed in the slag, and the oxidizer under pressure diffuses therein to react with the fuel.
  • the opening pierced in the wall of the lower part of said oven opens into a reservoir contiguous to said oven, open in its upper part, the edges of which reach at least the average level. of the molten slag bath contained in the lower part of said furnace and said lance is introduced into said open upper part and passes through the common wall of the lower part of the furnace and of said tank to open into the molten slag bath.
  • said tank makes it possible to pour the slag more easily, in particular within the framework of a continuous process, since it suffices to provide a groove in the rim of the tank in the extension of the level of the molten slag bath.
  • each adjustment of the slag causes an increase in the height of the level and consequently the flow of a part of the molten slag.
  • FIG. 1 is a general schematic view of a gasification installation for implementing the method according to the invention
  • FIG. 2 is a simplified vertical sectional view of the furnace according to a particular embodiment of the installation
  • FIG. 3 is a schematic sectional view along the plane III-
  • Reactor 2 is the essential element of the installation, since it is within it that all of the transformations according to the invention take place.
  • the oven 2 is made of refractory material and it forms a vertical cylinder whose height is greater than the diameter.
  • the diameter of such an oven is fixed according to the quantities of carbon compounds which it is desired to transform, but it is preferably between two and four meters, which makes it possible to optimize the overall yield.
  • a slag 4 is deposited which is heated in a first phase by means of a lance 6 at the end of which burn a fuel and an oxidizer, injected under pressure.
  • the end of the lance is immersed in the slag and causes it to melt, so that the molten slag constitutes a bath whose temperature can be between 1100 ° C and 1500 ° C.
  • the lance passes through the wall of the upper part 8 of the furnace 2 and it is movable along the axis of the furnace so that the flame can be immersed in the slag.
  • Fuels likely to be used are preferably gas or fuel oil and the oxidizer is generally pure air or oxygen-enriched air.
  • the thermal energy is supplied to the slag 4 by the controlled combustion of the carbonaceous compounds 10 which float in the slag bath. These compounds are loaded from a hopper 12 onto the slag bath 4 by means of the worm screw 14.
  • the carbon compounds capable of being transformed in the furnace 2 are essentially wood and hydrocarbons.
  • Wood used as support for low voltage power lines or telephone lines is generally treated with water-soluble salts, for example solutions of copper, chromium, and arsenic oxides, while railway sleepers iron are treated with creosote.
  • water-soluble salts for example solutions of copper, chromium, and arsenic oxides
  • railway sleepers iron are treated with creosote.
  • the wood is packaged in fragments, the fine part of which is agglomerated with carbochemical or petrochemical residues.
  • Bituminous shales can also be used in this gasification process.
  • the wood in the form of shavings and sawdust is introduced into the hopper 12 with the carbochemical or petrochemical residues forming a mixture, said hopper 12 being extended by the endless screw 14 which opens into an opening 16 pierced in the wall of the upper part 8 of the oven 2.
  • the endless screw 14 is hermetically connected to the oven 2 and it is provided with a heating system which surrounds it so that, when the said mixture passes through it, the residues soften and form with shavings and sawdust from homogeneous portions comparable to solid elements. When these solid elements are at the base of the opening 16 they fall into the furnace 2 and are deposited on the surface of the molten slag bath 4.
  • These elements consisting essentially of carbon compounds 10 decompose under the effect of heat to form new substances, and in particular gases.
  • a certain number of these compounds, constituting said fourth part, are vaporized, this is notably the case with water and arsenic.
  • the latter is in the oxidized form in the feed but the conditions in the furnace reduce it to the metallic state; it will thus condense in the metallic form, which will allow better elimination.
  • the lance 6 which, in the first phase, makes it possible to inject an oxidizer and a fuel into the slag 4 so as to transfer energy to said slag by means of combustion, brings in this second phase the oxidant necessary for the controlled combustion of the carbonaceous compounds 10 present on the surface of the molten slag bath 4.
  • the oxidizer is injected at the end of the lance into the heart of the slag. In this way, said oxidizer diffuses into said slag 4 and reacts with carbonaceous compounds 10 according to a combustion reaction.
  • the oxidizer consists of pure air, oxygen or a mixture of the two which is adjusted according to the oxidizing properties which it is desired to have.
  • the oxidizer flow rate is also adjusted so that the mixture of carbonaceous compounds 10 / oxidizer is over-stoichiometric and thus, only a so-called second part of the carbonaceous compounds is burned to provide the energy necessary to maintain the slag in fusion.
  • the rest of the carbon compounds, said first part, is therefore pyrolysis and forms new substances and in particular carbon monoxide and hydrogen.
  • Carbonaceous compounds are likely to contain potential contaminants which spread into the molten slag during decomposition. This is particularly the case for chromium and copper.
  • the chromium will scorify and the copper will dissolve in the slag if its content is very limited, otherwise it will be at the base of the formation of the dense phase in metallic or other form.
  • the slag will be poured and then granulated. The pouring will be done through an opening, not shown in Figure 1, pierced in the wall of the lower part of the furnace 2. To compensate for the removal of slag, it is adjusted with conventional fluxes of the limestone, sand, ore type. iron, soda or others. These additions can be made from the opening drilled in the wall of the upper part 8 intended for loading carbonaceous compounds.
  • a special opening is provided, not shown, pierced in the wall of the upper part 8 to load these fluxes.
  • the appearance of the gases above the slag produces a gas pressure in the oven, which gases tend to escape through an orifice 18 pierced in the wall of the upper part 8 of the oven 2.
  • a rising gas flow therefore appears in the furnace with regard to which the portions of carbonaceous compounds are sufficiently heavy to reach slag 4 in fusion and not to be entrained by the gaseous mass.
  • the temperature of the gases is generally greater than 1100 ° C., therefore, in order to optimize the energy efficiency of the installation, the heat energy of said gases is at least partially recovered by directing them into a chamber 20 comprising an exchanger thermal 22.
  • the latter consists of a coil in which circulates a heat transfer fluid capable of actuating a turbine among others.
  • the gases cool in contact with the heat exchanger 22, and a certain number of compounds, constituting said fourth part, condense, in particular arsenic at around 800 ° C.
  • a space 24 is provided in the chamber 20 so as to store the condensation dust of the arsenic.
  • the latter will be recycled and reintroduced at the level of the conditioning of the load.
  • the gases reach a temperature of about 200 ° C
  • the efficiency of the heat exchanger 22 becomes relatively poor and the gases are evacuated. They are conveyed in washing means 26, connected to the chamber 20 to remove the last traces of dust, as well as the unwanted gases in order to supply clean gas at outlet 28.
  • a main fan (not shown) is provided so to take up the gases at outlet 28 to convey them in a gasometer. This main fan is capable of creating a vacuum at the end of the gasification installation, contributing to the recovery of gases from the oven.
  • the washing water is recycled in a purification device 30 to be reused.
  • FIG. 2 shows a view in vertical section of the furnace 2 in the wall of the lower part of which an opening 34 is pierced which opens into a tank 36, or pre-crucible, adjoining the lower part of the furnace 2.
  • the pre-crucible 36 is open in its upper part and its edges 38 are substantially above the average level of the slag bath 4 in molten furnace 2. It is understood that the slag 4 in fusion gains the pre-crucible 36 and that its level is established at the level of the slag 4 of the furnace 2.
  • the lance 6 is introduced into the open upper part of the crucible 36 and crosses, obliquely, the common wall of the lower part of the furnace 2 and of the fore-crucible 36, so that its end 40 opens into the molten slag bath from the furnace.
  • the oxidizer is injected into the slag 4 of the furnace and diffuses in particular on the surface so that the carbonaceous compounds burn.
  • This embodiment notably makes it possible to overcome the problems of seal between the lance 6 and the furnace 2 when the latter passes through it in the upper part.
  • Figure 4 there is shown the lance 6, the furnace 2 and the pre-crucible 36 in top view according to section IV-IV.
  • the lance 6 is eccentric with respect to the furnace 2, and the projection of the oxidizer imparts a rotation to the melt allowing better agitation and a good circulation of the slag 2 in the pre-crucible so that the latter does not freeze there .
  • the orifice of the wall 42 through which the lance passes is at least as large as the opening 34 pierced in the wall of the lower part of the oven.
  • the opening 34 is also eccentric and pierced tangentially to the internal wall of the furnace to open out in a corner of the pre-crucible. This configuration reduces the residence time of the slag 4 melted inside the fore-crucible and consequently the risks that it freezes there.
  • the pre-crucible is provided with a cover, not shown, having an orifice for the passage of the lance.
  • the slag is poured at regular or continuous intervals by means of a channel 44 formed in the edge of the pre-crucible, the closure of which is controllable.
  • the slag is then granulated and it is likely to be used as an aggregate or as a sandblasting agent since the potential contaminants it contains are perfectly immobilized.
  • a tap hole is provided at the base of the pre-crucible, closed by a plug, making it possible to eliminate a dense phase which forms and settles at the bottom of the molten slag bath.
  • the invention will now be illustrated by means of a comparative example, in which three different oxidant compositions are injected into the molten slag.
  • the example aims to give energy production values that can be expected from the installation in accordance with the invention by varying the composition of the oxidant.
  • the values and compositions below relate to a mixture comprising 70.6% of wood and 29.4% of pitch.
  • the wood contains 15% moisture and 0.8% ash and the "pitch" contains 80% pure pitch and 20% earth.
  • the necessary corrective will be brought to the slag, for example iron oxide.
  • the optimization of the process can be easily done by modulating the flow of oxygen and air.
  • further adjustments of oxidizers would have to be made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

L'invention concerne un procédé de gazéification de composés carbonés, comportant des charges minérales et/ou des contaminants potentiels, ainsi qu'une installation de gazéification comprenant des moyens pour contenir un bain de scories en fusion, des moyens pour charger lesdits composés dans ledit bain, des moyens pour injecter au moins le comburant dans le bain de sorte que le mélange, composés carbonés/comburant, soit sur-stoechiométrique, par quoi une première partie des composés est pyrolysée, une deuxième partie subit une réaction de combustion apte à céder de l'énergie thermique au bain de scories, et une troisième partie diffuse dans le bain, des moyens pour récupérer les gaz issus de la pyrolyse et de la combustion des première et deuxième parties, et des moyens pour abaisser la température d'une partie de la scorie en fusion de manière à la rendre solide, par quoi on immobilise au moins une portion de la troisième partie des composés contenant des charges et/ou des contaminants potentiels.

Description

Procédé et installation de gazéification de composés carbonés
La présente invention concerne un procédé de gazéification de composés du type composés carbonés et plus particulièrement des composés comportant des charges minérales et/ou des contaminants potentiels. La présente invention concerne également une installation pour la mise en oeuvre du procédé.
Un domaine d'application envisagé est notamment celui de la valorisation des résidus de carbochimie ou de pétrochimie et des bois traités.
Des procédés de gazéification de composés carbonés sont bien connus et conduisent à différents gaz en fonction des constituants initiaux et des conditions de température dans lesquelles les réactions chimiques ont lieu. Parmi ces réactions on peut citer notamment : C + O2 = CO2
C + 1/2 O2 = CO C + CO2 = 2 CO C + H2O = CO + H2 CO + H2O = CO2 + H2
Les réactions sont plus ou moins complètes et elles conduisent en général à un mélange de gaz comprenant notamment du dioxyde de carbone et de l'hydrogène.
Le procédé Winkler est bien adapté à la gazéification du charbon et fonctionne en lit fluidise, permettant de produire un mélange de monoxyde de carbone et d'hydrogène. Cependant, ce procédé est mal adapté aux types de combustible envisagés, en particulier à cause des particules de bois qui s'envolent aisément. On citera également le procédé Lurgi, alimenté par du charbon en grains et travaillant en lit fixe sous pression, mais à basse température, ce qui provoque le dégagement de nombreux composés nocifs qu'il est nécessaire de récupérer en filtrant les gaz dans une colonne de lavage à l'huile. Par ailleurs, dans ces procédés spécialement conçus pour la production de gaz à partir du charbon, aucun dispositif n'est prévu pour l'inertage des éventuels contaminants ou l'évacuation des charges minérales que pourrait contenir le charbon. Or, les types de combustible envisagés comportent des charges minérales et surtout des contaminants, notamment du chrome et du cuivre, qu'il est indispensable de récupérer et d'inerter.
Un objet de la présente invention est de proposer un procédé de gazéification d'un composé comportant des charges minérales et/ou des contaminants potentiels dans lequel les charges minérales sont évacuées, avec les contaminants qui sont inertes.
Pour atteindre ce but, selon l'invention, le procédé de gazéification de composés, notamment de composés carbonés comportant des charges minérales et/ou des contaminants potentiels, se caractérise en ce qu'il comprend les étapes suivantes :
- on charge au moins lesdits composés dans un bain de scories en fusion et on injecte le comburant dans ledit bain de sorte que le mélange, composés carbonés/comburant, soit sur-stoechiométrique, par quoi une première partie desdits composés est pyrolysée, par quoi une deuxième partie subit une réaction de combustion apte à céder de l'énergie thermique audit bain de scories, et par quoi une troisième partie diffuse dans ledit bain,
- on récupère notamment les gaz issus de la pyrolyse et de la combustion, desdites première et deuxième parties, et, - on abaisse la température d'au moins une partie de la scorie en fusion de manière à la rendre solide, par quoi on immobilise au moins une portion de ladite troisième partie desdits composés contenant au moins des charges et/ou des contaminants potentiels.
Ainsi, une caractéristique du procédé de gazéification réside dans le support que constitue la scorie en fusion, dans laquelle les composés carbonés, susceptibles de comporter des charges minérales et/ou des contaminants potentiels, se décomposent par pyrolyse. Sous l'action de la température, comprise entre 1100°C et 1500°C, les composés carbonés forment de nouvelles espèces chimiques conduisant à un gaz de synthèse, et les contaminants potentiels non volatilisés diffusent dans la scorie en fusion. Le comburant injecté et les nouvelles espèces chimiques formées constituent un mélange qui, sous l'effet de la température, conduit à une réaction de combustion.
On comprend que la combustion qui est toujours exothermique fournit de l'énergie thermique à la scorie permettant de la maintenir à une certaine température.
Cependant, le but de l'invention est de produire du gaz synthétique et pour ce faire on ajuste la proportion de composés carbonés, c'est-à-dire de combustible, et de comburant pour que le mélange soit sur-stoechiométrique. Ainsi, la quantité de combustible est supérieure à la quantité de comburant susceptible de réagir avec elle et donc une première partie des composés carbonés est pyrolysée pour conduire au gaz de synthèse et une deuxième partie est brûlée et fournit de l'énergie à la scorie.
Les gaz brûlés et les gaz issus de la pyrolyse sont récupérés mais on comprend que ce sont ces derniers qui présentent un intérêt, soit énergétique, soit pour des synthèses diverses.
De plus, afin d'immobiliser les contaminants contenus dans la scorie en fusion, on abaisse la température de ladite scorie en la coulant, puis on la granule. Lorsque le procédé est mis en œuvre en continu, avantageusement, on abaisse la température d'une partie de la scorie en fusion par prélèvement de ladite partie. Cette opération consiste à couler la scorie soit de façon séquentielle, soit de façon continue.
Afin de rendre la scorie inerte, et surtout de combler la scorie prélevée pour maintenir un niveau constant du bain, de façon avantageuse, on additionne notamment des fondants à la scorie en fusion. Pour la mise en oeuvre du procédé, lorsque la forme des composés le nécessite, avantageusement on conditionne lesdits composés en éléments solides de manière à charger lesdits éléments à l'aplomb du bain de scories en fusion, par quoi lesdits éléments se déposent à la surface dudit bain et/ou sont incorporés dans celui-ci.
En effet, lorsque l'on introduit des matières volatiles et hétérogènes au-dessus de la scorie en fusion, compte tenu du dégagement gazeux celles-ci sont susceptibles de ne pas directement atteindre la scorie, ou d'être emportées avec les gaz. Pour y pallier, on agglomère lesdits composés entre eux de manière à constituer des éléments solides relativement pesants au regard du dégagement gazeux, par quoi les composés sont directement introduits dans le bain de scorie.
Dans le cas où les composés carbonés sont suffisamment homogènes et secs, préférentiel lement, on injecte simultanément lesdits composés et le comburant dans le bain de scorie en fusion.
On peut également, de manière avantageuse, lors des phases de démarrage ou lorsque la quantité d'énergie apportée à la scorie par la combustion des composés carbonés est trop faible, injecter simultanément ledit comburant et un combustible dans ledit bain de scorie en fusion pour produire une réaction de combustion par quoi de l'énergie thermique est cédée audit bain et le maintient à la température voulue.
Toutefois, le but de la présente invention est de récupérer l'énergie contenue dans des composés carbonés, notamment des gaz, et selon une caractéristique particulière on purifie lesdits gaz de manière à obtenir un gaz combustible propre. Ce gaz pourra être brûler in situ dans une centrale thermique ou cédé à un réseau de distribution avec ou sans cogénération.
Les gaz directement issus de la réaction de combustion et de la pyrolyse sont chauds et selon une autre caractéristique particulière on récupère l'énergie calorifique, notamment desdits gaz, de façon à céder de l'énergie thermique à un fluide caloporteur. En outre, on condense une quatrième partie desdits composés vaporisés par le bain de scories en fusion. En effet, un certain nombre d'éléments contenus dans les composés carbonés ne participent pas aux réactions de pyrolyse ou de combustion et se vaporisent au contact de la scorie. Ces éléments sont isolés au niveau de l'échangeur thermique, puisque ce dernier contribue à la condensation de ladite quatrième partie.
Un autre objet de la présente invention est de proposer une installation de gazéification de composés, notamment de composés carbonés, comportant des charges minérales et/ou des contaminants potentiels, ladite installation comprenant : - des moyens pour contenir un bain de scories en fusion ,
- des moyens pour charger au moins lesdits composés dans ledit bain de scories en fusion,
- des moyens pour injecter au moins le comburant dans ledit bain de sorte que le mélange, composés carbonés/comburant, soit sur- stoechiometrique, par quoi une première partie, desdits composés, est pyrolysée, par quoi une deuxième partie subit une réaction de combustion apte à céder de l'énergie thermique audit bain de scories, et par quoi une troisième partie diffuse dans ledit bain,
- des moyens pour récupérer notamment les gaz issus de la pyrolyse et de la combustion desdites première et deuxième parties, et,
- des moyens pour abaisser la température d'au moins une partie de la scorie en fusion de manière à la rendre solide, par quoi on immobilise au moins une portion de ladite troisième partie desdits composés contenant au moins des charges et/ou des contaminants potentiels.
Selon un mode préféré de mise en oeuvre de l'invention, le bain de scories en fusion est contenu dans la partie inférieure d'un four cylindrique vertical comportant au moins une ouverture percée dans la paroi de la partie supérieure dudit four pour charger lesdits composés, et au moins une ouverture percée dans la paroi de la partie inférieure dudit four pour prélever au moins une partie de la scorie en fusion. On comprend que les composés carbonés sont projetés dans la scorie en fusion depuis le sommet du four, pour être transformés, et qu'il en est de même pour les ajustements de la scorie dont une partie est prélevée. Lorsque les composés carbonés atteignent la scorie en fusion, ils sont transformés en gaz et selon une caractéristique de l'invention, la paroi de la partie supérieure du four vertical est percée d'un orifice destiné à collecter au moins les gaz issus de la pyrolyse et de la combustion desdites première et deuxième parties et ladite installation comprend en outre des moyens de lavage reliés audit orifice pour purifier lesdits gaz.
Lorsqu'ils quittent le four les gaz possèdent une énergie importante puisqu'ils atteignent une température sensiblement supérieure à 1100°C Afin d'améliorer globalement le rendement de l'installation, un échangeur thermique et des chambres de dépôt sont interposés entre le four et les moyens de lavage de manière à récupérer au moins partiellement l'énergie calorifique desdits produits et à récupérer une quatrième partie des composés vaporisés dans le four sous forme condensée.
Les gaz s'échappent par l'orifice percé dans la partie supérieure et traversent l'ensemble des dispositifs, jusqu'à l'obtention du gaz propre. Pour éviter que les gaz s'échappent par l'ouverture destinée au chargement, on prévoit de manière avantageuse que les moyens pour charger lesdits composés comprennent une vis sans fin, débouchant à l'aplomb du bain de scories en fusion, munie de moyens chauffants, par quoi les composés peuvent être agglomérés entre eux par fusion d'au moins un des desdits composés. On comprend que la vis sans fin fixée sur l'ouverture destinée au chargement permet d'isoler l'enceinte du four lorsqu'elle est en fonctionnement et qu'elle contient des composés carbonés. Le fait que certains composés soient rendus pâteux et agglomèrent l'ensemble des autres composés contribue à l'imperméabilité de l'ouverture de chargement vis-à-vis de la masse gazeuse. Cette masse gazeuse provient essentiellement de la décomposition des produits carbonés, qui est induite indirectement par la chaleur que procure la combustion d'une partie de ces produits, laquelle combustion nécessite un comburant. Selon un mode particulier de réalisation, les moyens pour injecter le comburant dans la scorie en fusion comprennent une lance qui traverse la paroi de la partie supérieure du four pour plonger dans le bain de scorie en fusion et dans laquelle le comburant est sous pression.
Selon un autre mode particulier de réalisation, les moyens pour injecter le comburant dans la scorie en fusion comprennent une lance qui traverse la paroi de la partie inférieure du four pour déboucher dans le bain de scorie en fusion et dans laquelle le comburant est sous pression.
Dans ces deux modes de réalisation l'extrémité de la lance est immergée dans la scorie, et le comburant sous pression diffuse dans cette dernière pour venir réagir avec le combustible.
Dans le cas du dernier mode particulier de réalisation, de façon avantageuse, l'ouverture percée dans la paroi de la partie inférieure dudit four débouche dans un réservoir contigu audit four, ouvert dans sa partie supérieure, dont les rebords atteignent au moins le niveau moyen du bain de scorie en fusion contenu dans la partie inférieure dudit four et ladite lance est introduite dans ladite partie supérieure ouverte et traverse la paroi commune de la partie inférieure du four et dudit réservoir pour déboucher dans le bain de scorie en fusion. Ces dispositions permettent notamment de surmonter les difficultés que présente l'étanchéité du passage de la lance dans la paroi dudit four.
En outre ledit réservoir permet de couler plus aisément la scorie, notamment dans le cadre d'un processus continu, puisqu'il suffit de ménager une saignée dans le rebord du réservoir dans le prolongement du niveau du bain de scorie en fusion. Ainsi, chaque ajustement de la scorie provoque une augmentation de la hauteur du niveau et par conséquent l'écoulement d'une partie de la scorie en fusion. D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la Figure 1 est une vue schématique générale d'une installation de gazéification pour la mise en œuvre du procédé conforme à l'invention,
- la Figure 2 est une vue en coupe verticale simplifié du four selon un mode de réalisation particulier de l'installation,
- la Figure 3 est une vue en coupe schématique selon le plan III-
III de la Figure 2 ; et - la Figure 4 est une vue en coupe schématique selon le plan IV-
IV de la Figure 2.
En se réfèrent tout d'abord à la Figure 1 , on va décrire une installation générale pour la mise en oeuvre du procédé de gazéification conformément à l'invention. Le réacteur 2, dénommé four, est l'élément essentiel de l'installation, puisque c'est en son sein que l'ensemble des transformations selon l'invention ont lieu.
Le four 2 est réalisé en matériau réfractaire et il forme un cylindre vertical dont la hauteur est supérieure au diamètre. Le diamètre d'un tel four est fixé en fonction des quantités de composés carbonés que l'on souhaite transformer, mais il est de préférence compris entre deux et quatre mètres, ce qui permet d'optimiser le rendement global.
Dans la partie inférieure du four 2 on dépose une scorie 4 qui est chauffée dans une première phase au moyen d'une lance 6 à l'extrémité de laquelle brûlent un combustible et un comburant, injectés sous pression. L'extrémité de la lance est plongée dans la scorie et provoque sa fusion, de sorte que la scorie en fusion constitue un bain dont la température peut être comprise entre 1100°C et 1500°C.
Dans ce mode de réalisation, la lance traverse la paroi de la partie supérieure 8 du four 2 et elle est mobile selon l'axe du four de sorte que la flamme peut être immergée dans la scorie. Les combustibles susceptibles d'être utilisés sont de préférence du gaz ou du fioul et le comburant est généralement l'air pur ou de l'air enrichi en oxygène.
Dans une deuxième phase, c'est-à-dire en fonctionnement normal, l'énergie thermique est fournie à la scorie 4 par la combustion ménagée des composés carbonés 10 qui surnagent dans le bain de scorie. Ces composés sont chargés depuis une trémie 12 sur le bain de scorie 4 au moyen de la vis sans fin 14.
Les composés carbonés susceptibles d'être transformés dans le four 2 sont essentiellement du bois et des hydrocarbures. Les bois utilisés en tant que support de lignes électriques à basse tension ou de lignes téléphoniques sont généralement traités avec des sels hydrosolubles, par exemple des solutions d'oxydes de cuivre, de chrome, et d'arsenic, tandis que les traverses de chemin de fer sont traités à la créosote. Ces bois ainsi que les bois traités avec les mêmes substances sont difficiles à recycler, et le procédé de gazéification selon l'invention permet de détruire, ou de récupérer et inerter, les contaminants nocifs qu'ils contiennent.
Le bois est conditionné en fragments dont la partie fine est agglomérées avec des résidus de carbochimie ou de pétrochimie. Les schistes bitumineux sont également utilisables dans ce procédé de gazéification.
Le bois sous forme de copeaux et de sciures, est introduit dans la trémie 12 avec les résidus de carbochimie ou de pétrochimie formant un mélange, ladite trémie 12 se prolongeant par la vis sans fin 14 qui débouche dans une ouverture 16 percée dans la paroi de la partie supérieure 8 du four 2. La vis sans fin 14 est hermétiquement reliée au four 2 et elle est munie d'un système de chauffage qui l'entoure de sorte que, lorsque ledit mélange la traverse, les résidus se ramollissent et forment avec les copeaux et sciures des portions homogènes assimilables à des éléments solides. Lorsque ces éléments solides se trouvent à l'aplomb de l'ouverture 16 ils chutent dans le four 2 et se déposent à la surface du bain de scorie 4 en fusion.
Dans le cas ou les composés carbonés sont en morceaux ou agglomérés au préalable ou que la vis d'alimentation n'est pas appropriée pour charger le combustible, on prévoit un sas ou tout dispositif ayant la même fonction pour introduire lesdits composés dans la scorie 4 et respecter l'étanchéité du four 2.
Ces éléments constitués essentiellement de composés carbonés 10 se décomposent sous l'effet de la chaleur pour former de nouvelles substances, et notamment des gaz. Un certain nombre de ces composés, constituant ladite quatrième partie, sont vaporisés, c'est notamment le cas de l'eau et de l'arsenic. Ce dernier est sous la forme oxydée dans la charge mais les conditions dans le four le réduisent à l'état métallique ; il condensera ainsi sous la forme métallique, ce qui permettra une meilleure élimination.
La lance 6 qui, dans la première phase, permet d'injecter un comburant et un combustible dans la scorie 4 de manière à céder de l'énergie à ladite scorie par l'intermédiaire d'une combustion, apporte dans cette deuxième phase le comburant nécessaire à la combustion ménagée des composés carbonés 10 présents à la surface du bain de scorie 4 en fusion. Ainsi, seule la combustion ménagée des composés carbonés cède l'énergie thermique nécessaire au maintien de la température du bain entre 1100°C et 1500°C. Tout comme dans la première phase le comburant est injecté à l'extrémité de la lance au coeur de la scorie. De la sorte, ledit comburant diffuse dans ladite scorie 4 et réagit avec les composés carbonés 10 selon une réaction de combustion. Le comburant est constitué d'air pur, d'oxygène ou d'un mélange des deux qui est ajusté en fonction des propriétés oxydantes que l'on désire avoir. Le débit de comburant est également ajusté de sorte que le mélange composés carbonés 10/comburant est sur-stoechiométrique et ainsi, seule une dite deuxième partie des composés carbonés est brûlée pour fournir l'énergie nécessaire au maintien de la scorie en fusion. Le reste des composés carbonés, ladite première partie, est donc pyrolyse et forme de nouvelles substances et notamment du monoxyde de carbone et de l'hydrogène. Les composés carbonés sont susceptibles de contenir des contaminants potentiels qui se répandent dans la scorie en fusion lors de la décomposition. C'est notamment le cas du chrome et du cuivre. Le chrome se scorifiera et le cuivre se dissoudra dans la scorie si sa teneur est très limitée, sinon il sera à la base de la formation de la phase dense sous forme métallique ou autre. Afin d'immobiliser ces éléments, à intervalles réguliers ou en continu, la scorie sera coulée puis granulée. La coulée se fera par une ouverture, non représentée sur la Figure 1 , percée dans la paroi de la partie inférieure du four 2. Pour compenser le prélèvement de scorie, on l'ajuste avec des fondants classiques du type calcaire, sable, minerai de fer, soude ou autres. Ces ajouts peuvent être faits depuis l'ouverture percée dans la paroi de la partie supérieure 8 destiné au chargement des composés carbonés. De préférence on prévoit une ouverture spéciale, non représentée, percée dans la paroi de la partie supérieure 8 pour charger ces fondants. L'apparition des gaz au-dessus de la scorie produit une pression gazeuse dans le four, lesquels gaz tendent à s'échapper par un orifice 18 percé dans la paroi de la partie supérieure 8 du four 2. Un flux de gaz ascensionnel apparaît donc dans le four au regard duquel les portions de composés carbonés sont suffisamment pesantes pour atteindre la scorie 4 en fusion et ne pas être entraînées par la masse gazeuse.
La température des gaz est généralement supérieure à 1100°C, par conséquent, dans un objectif d'optimisation du rendement énergétique de l'installation, on récupère au moins partiellement l'énergie calorifique desdits gaz en les dirigeant dans une chambre 20 comprenant un échangeur thermique 22. Ce dernier est constitué d'un serpentin dans lequel circule un fluide caloporteur apte à actionner une turbine entre autres. Les gaz se refroidissent au contact de l'échangeur thermique 22, et un certain nombre de composés, constituant ladite quatrième partie, se condensent, notamment l'arsenic aux environs de 800°C. On prévoit un espace 24 dans la chambre 20 de manière à stocker les poussières de condensation de l'arsenic. On peut également prévoir une deuxième chambre analogue (non représentée), en amont de la première dans laquelle sédimenteront les poussières provenant directement du four 2. Ces dernières seront recyclées et réintroduites au niveau du conditionnement de la charge. Lorsque les gaz atteignent une température de 200°C environ, l'efficacité de l'échangeur thermique 22 devient relativement médiocre et les gaz sont évacués. Ils sont acheminés dans des moyens de lavage 26, reliés à la chambre 20 pour éliminer les dernières traces de poussières, ainsi que les gaz non désirés afin de fournir un gaz propre en sortie 28. Un ventilateur principal (non représenté) est prévu de façon à reprendre les gaz en sortie 28 pour les acheminer dans un gazomètre. Ce ventilateur principal est susceptible de créer une dépression, à l'extrémité de l'installation de gazéification, contribuant à la récupération des gaz issus du four. L'eau de lavage est recyclée dans un dispositif d'épuration 30 pour être réutilisée. On prévoit également d'interposer entre la chambre 20 et les moyens de lavage 26 une torchère 32 de manière à pouvoir évacuer les gaz en cas d'incident, mais surtout pendant les phases de démarrage et d'arrêt. On obtient ainsi un gaz de synthèse propre, utilisable comme combustible, mais qui pourrait également être utilisé pour produire différents composés organiques.
On va maintenant se référer aux Figures 2, 3 et 4 pour décrire en détail la partie inférieure du four, selon un mode de réalisation particulier. On a représenté sur la Figure 2 une vue en coupe verticale du four 2 dans la paroi de la partie inférieure duquel est percée une ouverture 34 qui débouche dans un réservoir 36, ou avant-creuset, attenant à la partie inférieure du four 2. L'avant-creuset 36 est ouvert dans sa partie supérieure et ses rebords 38 sont sensiblement au-dessus du niveau moyen du bain de scorie 4 en fusion du four 2. On comprend que la scorie 4 en fusion gagne l'avant-creuset 36 et que son niveau s'établit au niveau de la scorie 4 du four 2.
Dans ce mode particulier de réalisation, la lance 6 est introduite dans la partie supérieure ouverte du creuset 36 et traverse, de façon oblique, la paroi commune de la partie inférieure du four 2 et de l'avant- creuset 36, de sorte que son extrémité 40 débouche dans le bain de scorie en fusion du four . Ainsi le comburant est injecté dans la scorie 4 du four et diffuse notamment à la surface pour que les composés carbonés brûlent. Ce mode de réalisation permet notamment de s'affranchir des problèmes de joint entre la lance 6 et le four 2 lorsque celle-ci le traverse dans la partie supérieure. Sur la Figure 4, on a représenté la lance 6, le four 2 et l'avant- creuset 36 en vue de dessus selon la coupe IV-IV. La lance 6 est excentrée par rapport au four 2, et la projection du comburant imprime une rotation à la masse fondue permettant une meilleure agitation et une bonne circulation de la scorie 2 dans l'avant-creuset pour que cette dernière n'y fige pas. A cet effet, l'orifice de la paroi 42 que traverse la lance est au moins aussi grand que l'ouverture 34 percée dans la paroi de la partie inférieure du four. Par ailleurs, conformément à la Figure 3, l'ouverture 34 est également excentrée et percée tangentiellement à la paroi interne du four pour déboucher dans un coin de l'avant-creuset. Cette configuration diminue le temps de séjour de la scorie 4 fondue à l'intérieur de l'avant-creuset et par conséquent les risques qu'elle y fige. Pour atténuer encore ce risque, avantageusement l'avant- creuset est munit d'un couvercle, non représenté, présentant un orifice pour le passage de la lance. La scorie est coulée à intervalles réguliers ou en continu au moyen d'un chenal 44 ménagé dans le rebord de l'avant-creuset, dont l'obturation est commandable. La scorie est ensuite granulée et elle est susceptible d'être utilisée comme granulat ou comme agent de sablage puisque les contaminants potentiels qu'elle contient sont parfaitement immobilisés.
En outre, on prévoit un trou de coulée à la base de l'avant- creuset, obturé par un bouchon, permettant d'éliminer une phase dense qui se forme et se dépose au fond du bain de scorie en fusion.
L'invention va maintenant être illustrée à l'aide d'un exemple comparé, dans lequel trois compositions différentes de comburant sont injectées dans la scorie en fusion. L'exemple vise à donner des valeurs de production d'énergie que l'on peut attendre de l'installation conformément à l'invention en faisant varier la composition du comburant.
Les valeurs et les compositions ci-après concernent un mélange comprenant 70,6% de bois et 29,4% de brai. Le bois contient 15% d'humidité et 0,8% de cendres et le "brai" contient 80% de brai pur et 20% de terre. Pour fondre facilement la terre on apportera à la scorie le correctif nécessaire, par exemple de l'oxyde de fer.
Les données ci-dessous supposent un régime de consommation de 4722 Kg/h du mélange de bois et de brai, et une coulée de 9 tonnes de scorie par jour pour un four de 2 mètres de diamètre. Bien évidemment la scorie est réajustée en fonction de la quantité coulée.
Figure imgf000016_0001
Plus la teneur en oxygène du comburant est importante et plus la quantité de gaz produit diminue. Cependant, à l'inverse, le gaz qui est issu de la transformation est plus riche en monoxyde de carbone et en hydrogène, ce qui lui confère un plus grand Pouvoir Calorique Inférieur (PCI).
Toutefois la quantité de vapeur produite diminue avec l'augmentation de l'oxygène, et surtout l'oxygène a un coût qu'il faut répercuter sur le rendement global de l'installation.
Dans l'exemple précité l'optimisation du procédé peut se faire aisément en modulant le débit d'oxygène et d'air. Dans le cas d'une composition en composés carbonés différente, de nouveaux ajustements de comburants seraient à opérer.

Claims

REVENDICATIONS
1. Procédé de gazéification de composés, notamment de composés carbonés comportant des charges minérales et/ou des contaminants potentiels, caractérisé en ce qu'il comprend les étapes suivantes :
- on charge au moins lesdits composés dans un bain de scories en fusion et on injecte le comburant dans ledit bain de sorte que le mélange, composés carbonés/comburant, soit sur-stoechiométrique, par quoi une première partie desdits composés est pyrolysee, par quoi une deuxième partie subit une réaction de combustion apte à céder de l'énergie thermique audit bain de scories, et par quoi une troisième partie diffuse dans ledit bain,
- on récupère notamment les gaz issus de la pyrolyse et de la combustion, desdites première et deuxième parties, et,
- on abaisse la température d'au moins une partie de la scorie en fusion de manière à la rendre solide, par quoi on immobilise au moins une portion de ladite troisième partie desdits composés contenant au moins des charges et/ou des contaminants potentiels.
2. Procédé de gazéification selon la revendication 1 , caractérisé en ce qu'en outre, on conditionne lesdits composés en éléments solides de manière à charger lesdits éléments à l'aplomb du bain de scories en fusion, par quoi les dits éléments se déposent à la surface dudit bain.
3. Procédé de gazéification selon la revendication 1 ou 2, caractérisé en ce qu'en outre, on injecte simultanément lesdits composés et le comburant dans le bain de scorie en fusion.
4. Procédé de gazéification selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on injecte simultanément ledit comburant et un combustible dans ledit bain de scorie en fusion pour produire une réaction de combustion par quoi de l'énergie thermique est cédée audit bain.
5. Procédé de gazéification selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'en outre, on condense une quatrième partie desdits composés vaporisés par le bain de scories en fusion.
6. Procédé de gazéification selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'en outre on purifie lesdits gaz de manière à obtenir un gaz combustible propre.
7. Procédé de gazéification selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'en outre on récupère l'énergie calorifique, notamment desdits gaz, de façon à céder de l'énergie thermique à un fluide caloporteur.
8. Procédé de gazéification selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'en outre on additionne notamment des fondants à la scorie en fusion.
9. Procédé de gazéification selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on abaisse la température d'une partie de la scorie en fusion par prélèvement de ladite partie.
10. Installation de gazéification de composés, notamment de composés carbonés, comportant des charges minérales et/ou des contaminants potentiels, caractérisée en ce qu'elle comprend :
- des moyens pour contenir un bain de scories en fusion ,
- des moyens pour charger au moins lesdits composés dans ledit bain de scories en fusion,
- des moyens pour injecter au moins le comburant dans ledit bain de sorte que le mélange, composés carbonés/comburant, soit sur- stoechiométrique, par quoi une première partie, desdits composés, est pyrolysee, par quoi une deuxième partie subit une réaction de combustion apte à céder de l'énergie thermique audit bain de scories, et par quoi une troisième partie diffuse dans ledit bain, - des moyens pour récupérer notamment les gaz issus de la pyrolyse et de la combustion desdites première et deuxième parties, et - des moyens pour abaisser la température d'au moins une partie de la scorie en fusion de manière à la rendre solide, par quoi on immobilise au moins une portion de ladite troisième partie desdits composés contenant au moins des charges et/ou des contaminants potentiels.
11. Installation de gazéification selon la revendication 10, caractérisée en ce que le bain de scories en fusion est contenu dans la partie inférieure d'un four cylindrique vertical comportant au moins une ouverture percée dans la paroi de la partie supérieure dudit four pour charger lesdits composés, et au moins une ouverture percée dans la paroi de la partie inférieure dudit four pour prélever au moins une partie de la scorie en fusion.
12. Installation de gazéification selon la revendication 10 ou 11 , caractérisée en ce que les moyens pour charger lesdits composés comprennent une vis sans fin, débouchant à l'aplomb du bain de scories en fusion, munie de moyens chauffants, par quoi les composés peuvent être agglomérés entre eux par fusion d'au moins un des desdits composés.
13. Installation de gazéification selon l'une quelconque des revendications 10 à 12, caractérisée en ce que les moyens pour injecter le comburant dans la scorie en fusion comprennent une lance qui traverse la paroi de la partie inférieure du four pour déboucher dans le bain de scorie en fusion et dans laquelle le comburant est sous pression.
14. Installation de gazéification selon la revendication 13, caractérisée en ce que l'ouverture percée dans la paroi de la partie inférieure dudit four débouche dans un réservoir contigu audit four, ouvert dans sa partie supérieure, dont les rebords atteignent au moins le niveau moyen du bain de scorie en fusion contenu dans la partie inférieure dudit four et en ce que ladite lance est introduite dans ladite partie supérieure ouverte et traverse la paroi commune de la partie inférieure du four et dudit réservoir pour déboucher dans le bain de scorie en fusion.
15. Installation de gazéification selon l'une quelconque des revendications 10 à 12, caractérisée en ce que les moyens pour injecter le comburant dans la scorie en fusion comprennent une lance qui traverse la paroi de la partie supérieure du four pour plonger dans le bain de scorie en fusion et dans laquelle le comburant est sous pression.
16. Installation de gazéification selon l'une quelconque des revendications 11 à 15, caractérisée en ce que la paroi de la partie supérieure du four vertical est percée d'un orifice destiné à collecter au moins les gaz issus de la pyrolyse et de la combustion desdites première et deuxième parties et en ce qu'en outre ladite installation comprend des moyens de lavage reliés audit orifice pour purifier lesdits gaz.
17. Installation de gazéification selon la revendication 16, caractérisée en ce qu'en outre un échangeur thermique et des chambres de dépôt sont interposés entre le four et les moyens de lavage de manière à récupérer au moins partiellement l'énergie calorifique desdits produits et à récupérer une quatrième partie des composés vaporisés dans le four sous forme condensée.
PCT/FR2000/003360 1999-12-03 2000-12-01 Procede et installation de gazeification de composes carbones WO2001040411A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU21818/01A AU2181801A (en) 1999-12-03 2000-12-01 Method and installation for gasifying carbonaceous compounds
US10/148,753 US7087098B2 (en) 1999-12-03 2000-12-01 Method and installation for gasifying carbonaceous compounds
DE60045662T DE60045662D1 (de) 1999-12-03 2000-12-01 Verfahren zur vergasung von kohlenstoffhaltigen materialien
EP00985382A EP1235889B1 (fr) 1999-12-03 2000-12-01 Procede de gazeification de composes carbones
CA2393088A CA2393088C (fr) 1999-12-03 2000-12-01 Procede et installation de gazeification de composes carbones
AT00985382T ATE499430T1 (de) 1999-12-03 2000-12-01 Verfahren zur vergasung von kohlenstoffhaltigen materialien
DK00985382.1T DK1235889T3 (da) 1999-12-03 2000-12-01 Fremgangsmåde til forgasning af kulstofholdige materialer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915246A FR2801895B1 (fr) 1999-12-03 1999-12-03 Procede et installation de gazeification de composes carbones
FR99/15246 1999-12-03

Publications (1)

Publication Number Publication Date
WO2001040411A1 true WO2001040411A1 (fr) 2001-06-07

Family

ID=9552844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003360 WO2001040411A1 (fr) 1999-12-03 2000-12-01 Procede et installation de gazeification de composes carbones

Country Status (11)

Country Link
US (1) US7087098B2 (fr)
EP (1) EP1235889B1 (fr)
AT (1) ATE499430T1 (fr)
AU (1) AU2181801A (fr)
CA (1) CA2393088C (fr)
DE (1) DE60045662D1 (fr)
DK (1) DK1235889T3 (fr)
ES (1) ES2364123T3 (fr)
FR (1) FR2801895B1 (fr)
PT (1) PT1235889E (fr)
WO (1) WO2001040411A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220410A1 (en) 2005-09-30 2009-09-03 Tata Steel Limited Method for Producing Hydrogen and/or Other Gases from Steel Plant Wastes and Waste Heat
JP5017362B2 (ja) * 2006-04-28 2012-09-05 ターター スチール リミテッド 製鉄所のスラグ及び廃棄物質を使用する水の熱−化学分解による水素ガスの製造方法
US20080141591A1 (en) * 2006-12-19 2008-06-19 Simulent Inc. Gasification of sulfur-containing carbonaceous fuels
FR3025732B1 (fr) * 2014-09-15 2019-05-31 Pyro Green Innovations Procede et installation de vitrification en continu de materiaux fibreux
FR3045423B1 (fr) * 2015-12-17 2019-12-27 Pyro Green Innovations Procede et installation de traitement de dechets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445364A1 (fr) * 1978-12-26 1980-07-25 Sumitomo Metal Ind Procede, appareil et lance pour la gazeification de matieres carbonees solides
US4423704A (en) * 1981-09-16 1984-01-03 Persinger James G Method for improving efficiency of an internal combustion irrigation engine
EP0175207A2 (fr) * 1984-09-15 1986-03-26 DORNIER SYSTEM GmbH Procédé et appareil pour gazéifier des ordures
US5656042A (en) * 1992-10-22 1997-08-12 Texaco Inc. Environmentally acceptable process for disposing of scrap plastic materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089766A (en) * 1958-01-27 1963-05-14 Chemetron Corp Controlled chemistry cupola
BE786025A (fr) * 1971-07-09 1973-01-08 Union Carbide Corp Procede d'incineration d'ordures
LU71434A1 (fr) * 1974-12-06 1976-11-11
JP2000001677A (ja) * 1998-06-17 2000-01-07 Yoichi Wada 高分子系廃棄物の熱分解装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445364A1 (fr) * 1978-12-26 1980-07-25 Sumitomo Metal Ind Procede, appareil et lance pour la gazeification de matieres carbonees solides
US4423704A (en) * 1981-09-16 1984-01-03 Persinger James G Method for improving efficiency of an internal combustion irrigation engine
EP0175207A2 (fr) * 1984-09-15 1986-03-26 DORNIER SYSTEM GmbH Procédé et appareil pour gazéifier des ordures
US5656042A (en) * 1992-10-22 1997-08-12 Texaco Inc. Environmentally acceptable process for disposing of scrap plastic materials

Also Published As

Publication number Publication date
US7087098B2 (en) 2006-08-08
EP1235889B1 (fr) 2011-02-23
PT1235889E (pt) 2011-06-01
CA2393088C (fr) 2010-03-30
US20030056438A1 (en) 2003-03-27
CA2393088A1 (fr) 2001-06-07
AU2181801A (en) 2001-06-12
FR2801895B1 (fr) 2002-03-01
DK1235889T3 (da) 2011-06-14
DE60045662D1 (de) 2011-04-07
FR2801895A1 (fr) 2001-06-08
ATE499430T1 (de) 2011-03-15
ES2364123T3 (es) 2011-08-25
EP1235889A1 (fr) 2002-09-04

Similar Documents

Publication Publication Date Title
EP0161970B1 (fr) Procédé et installation de traitement de matière en lit fluidisé circulant
BE1009703A3 (fr) Procede et dispositif pour refroidir du laitier de haut fourneau en fusion.
EP0173782B1 (fr) Procédé de traitement de matiéres
FR2722436A1 (fr) Procede et installation de thermolyse de dechets
EP2798045A1 (fr) Procede et equipement de gazeification en lit fixe
FR2554107A1 (fr) Procede et appareil pour la calcination des matieres minerales reduites en poudre
FR2899238A1 (fr) Installation de gazeification de biomasse avec dispositif de craquage des goudrons dans le gaz de synthese produit
FR2597881A1 (fr) Procede et installation de gazeification de combustibles de qualite mineure dans un bain de metal en fusion
EP1235889B1 (fr) Procede de gazeification de composes carbones
EP0240483A1 (fr) Procédé et appareil de gazéification de charbon en cocourant
EP1077248B1 (fr) Procédé et installation de production d'un gaz combustible à partir d'une charge riche en matière organique
FR2721691A1 (fr) Procédé pour traiter les déchets municipaux combustibles solides ou analogues par gazéification.
FR2573750A1 (fr) Procede et installation pour produire du clinker de ciment blanc
FR2485178A1 (fr) Perfectionnements aux dispositifs pour realiser une reaction, telle qu'une combustion, entre un solide et un gaz
WO2017103523A1 (fr) Procédé et installation de traitement de déchets
FR2882046A1 (fr) Installation de production d'hydrogene ou de gaz de synthese par gazeification
EP0663433A1 (fr) Procédé pour traiter les déchets et en particulier les déchets urbains et dispositif pour réaliser le procédé
BE1016325A3 (fr) Procede de gazeification de matieres carbonees et dispositif pour sa mise en oeuvre.
EP0089329B1 (fr) Procédé et installation de gazéification de charbon sous pression
BE1015083A3 (fr) Procede pour accroitre la quantite de charbon consomme aux tuyeres d'un haut-fourneau.
FR2529221A1 (fr) Procede et appareil de gazeification utilisant du charbon, du coke ou une matiere du meme genre
EP0851906A1 (fr) Procede pour traiter les dechets municipaux combustibles solides ou analogues par gazeification
FR2874023A1 (fr) Procede de fabrication d'un gaz combustible par action d'un plasma immerge sur de la matiere organique en milieu aqueux
FR2683829A1 (fr) Installation de traitement de reduction du minerai de fer en lit fluidise circulant.
FR3027311A1 (fr) Procede et dispositif pour la pyro-gazeification d'une matiere carbonee comprenant un bain de cendres en fusion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000985382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2393088

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000985382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10148753

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP