WO2001036930A1 - Method and apparatus for pressure measurement - Google Patents
Method and apparatus for pressure measurement Download PDFInfo
- Publication number
- WO2001036930A1 WO2001036930A1 PCT/JP2000/008144 JP0008144W WO0136930A1 WO 2001036930 A1 WO2001036930 A1 WO 2001036930A1 JP 0008144 W JP0008144 W JP 0008144W WO 0136930 A1 WO0136930 A1 WO 0136930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- pressure
- signal
- circuit
- change
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000009530 blood pressure measurement Methods 0.000 title abstract description 3
- 238000001514 detection method Methods 0.000 claims abstract description 56
- 239000012530 fluid Substances 0.000 claims abstract description 15
- 230000010355 oscillation Effects 0.000 claims description 40
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- 238000007689 inspection Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/007—Transmitting or indicating the displacement of flexible diaphragms using variations in inductance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
Definitions
- the present invention relates to a pressure detecting method and apparatus for supplying a pressurized fluid to a work and detecting pressure leak of the work.
- the gas supplied into the work is Gas such as oil or liquid such as oil (hereinafter, referred to as fluid) force may leak from the hole or the gap.
- a leak tester is used to detect whether or not there is a fluid leakage in such a container-like work.
- a leak tester employs a pressure detection method using air pressure as a medium, and the determination of whether or not there is fluid leakage is performed by measuring the pressure of 0.5 to 5 atmospheres in the object (work). This is done by sealing the air pressure under pressure and detecting how the air pressure changes.
- a typical leak tester uses a sensor that combines a diaphragm and a strain gauge to detect pressure. Then, when the pressure acting on the diaphragm changes while the reference voltage for measurement is applied to the strain gauge, the strain gauge changes accordingly, and the voltage value applied to the strain gauge changes. Therefore, the pressure is detected by extracting the change in voltage applied to the strain gauge as a change in pressure.
- a reference voltage to the strain gauge which is a reference for the measurement, must be stable with high accuracy.
- the reference voltage is made of a so-called bridge circuit, which is liable to change over time due to a change in resistance due to heat, etc., and the pressure is detected based on the voltage causing the change over time. Therefore, the detected value includes an error such as power.
- the detected voltage is an analog value, and it is necessary to perform a so-called analog / digital (AZD) conversion process of converting the detected voltage into a digital value.
- AZAD analog / digital
- the pressure change to be detected is a very small value, and in order to obtain a sufficient digital value in the conversion process, the detected voltage value must be greatly amplified by an amplifier circuit. At that time, if the voltage value is greatly amplified, the noise component and the drift component are naturally included in the voltage value, and the measured value also includes an amplification error.
- the detection of pressure change by the combination of the diaphragm and the strain gauge will include a conversion error in the process of converting the analog detection value to digital, and will also add the drift of the strain gauge reference voltage, etc. It is pointed out that high-precision measurement cannot be performed.
- the present invention is to solve this kind of problem, and to provide a pressure detection method and apparatus capable of detecting a small pressure change with high accuracy and smoothness by a simple process and configuration. With the goal. Disclosure of the invention
- the converted frequency is directly supplied to the counter circuit as a digital signal. Further, a pressure change is obtained as a count value by performing a counting process in the counter circuit. This avoids errors during amplification and conversion, such as when pressure is detected as an analog value, and makes it possible to detect pressure changes for leak detection with high accuracy and reliability.
- the oscillation modulation type sensor includes a high frequency oscillating means for generating a MHZ (megahertz) band reference frequency, a winding coil connected to the high frequency oscillating means, and a retractable coil disposed in the winding coil. And a probe that directly modulates the reference frequency by engaging and displacing the diaphragm that is deformed by the pressure change. For this reason, the change in pressure directly changes the frequency, and the pressure can be detected with high accuracy. In addition, since a high frequency is used, it is possible to reliably and quickly detect a small change in pressure.
- MHZ megahertz
- the high frequency oscillation means includes a crystal oscillation circuit and a battery power supply connected to the crystal oscillation circuit.
- the crystal oscillation circuit can obtain a stable reference frequency and can accurately and stably detect a pressure change.
- the battery power supply is not affected by noise and drift unlike a commercial power supply, and by using this battery power supply, a more stable and accurate reference frequency can be obtained.
- a temperature compensation circuit it becomes possible to generate a stable oscillation frequency with a small drift error even with a temperature change.
- the modulated reference frequency can be directly applied to so-called FM transmission or PM transmission, and this can be sent directly to the counter circuit as a detection signal.
- a high-frequency amplification output circuit that performs frequency processing of the reference frequency is provided.By directly performing digital amplification, conversion errors and delivery errors can be prevented. Can be avoided.
- the transmission method may be a wired method or a wireless method.
- mixed frequency processing is performed to facilitate reading of the detection signal.
- a mixer signal having a frequency close to the transmitted detection signal is generated by another oscillation circuit, and the detection signal and the mixer signal are transmitted to a mixer circuit.
- a converted frequency signal is generated by subtracting the high-frequency carrier component from the detection signal.
- the converted frequency signal is subjected to half-wave processing to obtain a half-wave shape detection signal.
- a very high-precision high-frequency reference signal is oscillated from the clock oscillation circuit to generate a clock signal, and then this clock signal is mixed with the half-wave shape detection signal.
- a counting signal is obtained.
- the count signal is subjected to count reading processing by a counter circuit, whereby a pressure change is detected as a count value.
- FIG. 1 is an explanatory diagram of an overall configuration of a pressure detecting device according to a first embodiment of the present invention.
- FIG. 2 is an explanatory diagram of a crystal oscillation circuit constituting the pressure detecting device according to the first embodiment. is there.
- FIG. 3 is an explanatory diagram of frequency characteristics of a temperature compensation circuit provided in the crystal oscillation circuit.
- FIG. 4 is an explanatory diagram of a circuit constituting the pressure detecting device according to the first embodiment.
- FIG. 5 is an explanatory diagram of the entire configuration of the pressure detecting device according to the second embodiment of the present invention.
- FIG. 1 is an explanatory diagram of an overall configuration of a pressure detection device 10 for performing a pressure detection method according to a first embodiment of the present invention.
- This pressure detecting device 10 is an absolute type in which a pressure detector 22 is arranged in communication with an air pipe 16 for supplying a pressurized fluid, for example, pressurized air from an air supply source 12 to a work 14.
- An oscillation modulation type sensor 18 that directly converts a pressure change of the pressurized air into a frequency change, and a counter that directly supplies the converted frequency as a digital signal. Circuit 20.
- the oscillation modulation type sensor 18 is provided with a pressure detector 22 communicating with the air line 16 on the downstream side of the on-off valve 21, and the pressure detector 22 is provided with a pressure fluctuation in the air line 16.
- a diaphragm 24 deformed by the diaphragm 24, a measuring element 26 that is displaced by engaging with the diaphragm 24, and a winding coil 28 in which the measuring element 26 is disposed so as to be able to move forward and backward are provided.
- the wound coil 28 is connected to the oscillation modulation circuit 30, and the oscillation modulation circuit 30 is connected to high-frequency oscillation means 32 that generates a reference frequency in the MHZ (megahertz) band.
- the high-frequency oscillation means 32 includes a crystal oscillation circuit 34 and a battery power supply (DC power supply) 36 connected to the crystal oscillation circuit 34.
- the crystal oscillation circuit 34 includes a crystal oscillator 38 and an oscillation transistor 40, and a temperature compensation circuit 42 is provided in order to avoid a change in the oscillation frequency due to a temperature change.
- This temperature compensating circuit 42 includes a kind of inverse characteristic circuit, for example, a temperature compensating capacitor.
- the frequency characteristic with respect to temperature has a characteristic opposite to that of the crystal oscillator 38. This cancels out changes due to temperature.
- the oscillation modulation circuit 30 extracts a change in pressure as a high-frequency signal f 1 and sends the high-frequency signal ⁇ 1 to a high-frequency amplification output circuit 44.
- the high-frequency amplification output circuit 44 supplies a mixer circuit 46 that processes the amplified and output detection signal f 2 and the mixer signal f 3 at a mixed frequency to generate a converted frequency signal f 4.
- the mixer circuit 46 is connected to a mixer signal oscillation circuit 48 that generates the mixer signal f3 having a frequency close to the detection signal f2.
- the mixer circuit 46 is connected to a conversion frequency amplification circuit 50 that amplifies the conversion frequency signal f 4 to generate an amplified conversion frequency signal f 5.
- the conversion frequency amplification circuit 50 includes the amplification conversion frequency Half-wave processing of the signal f5 to obtain the half-wave shape detection signal ⁇ 6
- the wave circuit 52 is connected.
- the clock oscillation circuit 54 that generates the high-frequency clock signal f7 is connected to the counter mixer 56 together with the half-wave circuit 52.
- the half-wave shape detection signal f6 and the clock are output.
- the count signal f8 is obtained by mixing the signal f7, and the count signal f8 is sent to the counter circuit 20.
- the counter circuit 20 includes a display 58 for displaying the detected value.
- the opening / closing valve 21 is opened. Closed.
- the diaphragm 24 constituting the pressure detector 22 is deformed.
- a measuring element 26 is connected to the diaphragm 24.
- a reference frequency in the MHZ (megahertz) band is applied to the wound coil 28 from the crystal oscillation circuit 34, and when the measuring element 26 moves in the wound coil 28, The load inductance of the coil 28 changes. For this reason, the reference frequency is modulated, and this modulation frequency is directly taken out by the oscillation modulation circuit 30 as the high frequency signal f 1, and the high frequency signal f 1 is sent to the high frequency amplification output circuit 44.
- the high-frequency amplification output circuit 44 amplifies the high-frequency signal f1 so that it can be sent to a distant place, and outputs the detection signal f2.
- the mixer signal oscillation circuit 48 generates a mixer signal ⁇ 3 having a frequency close to the transmitted detection signal ⁇ 2, and outputs the detection signal f2 and the mixer signal f3. Is sent to the mixer circuit 46.
- the mixer circuit 46 generates a converted frequency signal ⁇ 4 in the KHZ (kilohertz) band obtained by subtracting the high-frequency carrier component from the detection signal f2.
- the converted frequency signal f 4 is amplified by the converted frequency amplifying circuit 50 and the amplified converted frequency signal f 4 is amplified.
- the half-wave circuit 52 half-processes the amplified converted frequency signal ⁇ 5 to obtain a half-wave shape detection signal f6.
- the clock oscillation circuit 54 oscillates a very high-precision high-frequency reference signal to generate a clock signal f7, the clock signal f7 becomes a half-wave shape.
- the count signal f 8 is obtained by mixing with the detection signal f 6.
- the count signal f8 is subjected to count reading processing by the counter circuit 20, whereby a pressure change is detected as a count value.
- the counter method counts the number of signals to be measured within a fixed time, and the change in pressure detected as a high-frequency signal f 1 by this reading process is minute 1 Hz (Hertz). In addition, it can read accurately to the order of 1 HZ (hertz) or less. Note that the shorter the time axis of the clock signal f7, which is the counted component, becomes, the more accurate the counting becomes possible. For example, several tens of MHz (megahertz) to 200 MHz (megahertz) Are used.
- An oscillation modulation type sensor 18 having a coil 28 is used to directly change a change in pressure of the work 14 into a change in frequency to perform a pressure leak test on the work 14.
- the pressure can be detected not by an analog value but by a digital value.
- a frequency signal which is a digital signal
- a high-precision reading process without an amplification error or a conversion error can be performed. The effect that the high-precision pressure leak inspection of 14 is surely performed is obtained.
- the high-frequency oscillating means 32 includes a crystal oscillating circuit 34, so that a stable reference frequency can be obtained, and a pressure change can be accurately and stably detected.
- a high frequency in the MHZ (megahertz) band is used as the reference frequency, so that even a small change in pressure can be detected reliably and quickly.
- the battery power supply 36 since the battery power supply 36 is used, it is possible to obtain a more stable and accurate reference frequency without being affected by noise and drift as in a commercial power supply. At this time, by using the temperature compensation circuit 42, On the other hand, a stable oscillation frequency with little drift error can be generated.
- the detection signal f2 can be reliably sent to the counter circuit 20 which is relatively far away. become.
- the detection signal ⁇ 2 is obtained by directly digitally amplifying the high-frequency signal f1, and can avoid occurrence of a conversion error or a delivery error.
- FIG. 5 is an explanatory diagram of the overall configuration of a pressure detection device 80 for performing the pressure detection method according to the second embodiment of the present invention.
- the same components as those of the pressure detection device 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
- the pressure detection device 80 is a pressurized fluid, for example, A differential pressure measurement method is provided in which a pressure detector 22 is disposed in communication with an air pipeline 82 that supplies pressurized air from an air supply source 12 to a work 14 and a master 84. A work 14 and a master 84 are connected to the air line 82, and the work 14 and the master 84 can be shut off via a bypass valve 86.
- the master 84 has the same volume and the same shape as the work 14 to be measured, and it is previously detected that there is no pressure leak.
- the master 84 may not have the same volume and the same shape as the work 14 in some cases.
- the work 14 to be subjected to the pressure leak inspection and the master 84 are connected to the air line 82 and the compressed air is supplied from the air supply source 12. Then, after the measured pressure is applied to the work 14 and the master 84, the open / close valve 21 and the bypass valve 86 are closed.
- a pressure difference P 2 ⁇ P 1
- the tracing stylus 26 is displaced in the coil 28 and the change in the pressure of the work 14 is directly changed to the change in the frequency.
- the same effect as that of the first embodiment can be obtained, for example, a highly accurate pressure leak inspection of the work 14 can be reliably performed.
- the pressure detection method and device In the pressure detection method and device according to the present invention, after the pressure change of the pressurized fluid for detecting the pressure leak of the work is directly converted into the frequency change, the converted frequency is directly converted into the digital value. Since the pressure change is supplied to the counter circuit as a signal and the pressure change is obtained as a count value, errors during amplification and conversion, such as when pressure is detected as an analog value, are avoided, and pressure changes for leak detection are accurately and accurately detected. It will be possible to detect it reliably. As a result, with a simple process and configuration, the pressure leakage inspection processing of the work is efficiently and accurately performed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
A pressure detection apparatus (10) uses an absolute pressure measurement system, in which a pressure detector (22) is provided in a channel (16) through which compressed fluid, such as compressed air, is supplied from an air supply (12) to a workpiece (14). The apparatus includes an oscillating and modulating sensor (18) that converts changes in pressure of compressed air directly into changes in frequency, and a counter circuit (20) that directly receives the converted frequencies as digital signals. The apparatus provides accurate measurements of very small changes in pressure while using a simple configuration and a simple process.
Description
明細書 圧力検出方法および装置 技術分野 Description Pressure detection method and device Technical field
本発明は、 ワークに加圧流体を供給して前記ワークの圧漏れを検出するための 圧力検出方法および装置に関する。 背景技術 The present invention relates to a pressure detecting method and apparatus for supplying a pressurized fluid to a work and detecting pressure leak of the work. Background art
例えば、 機械加工された容器状のワークに微小な孔部が形成されていたり、 ヮ ークを組み付ける際に嵌め合い部位にわずかな隙間が存在していたりすると、 該 ワーク内に供給されるガス等の気体やオイル等の液体 (以下、 流体という) 力 前記孔部ゃ前記隙間から洩れる場合がある。 For example, if a small hole is formed in a machined container-shaped work, or if there is a small gap in the fitting part when assembling the work, the gas supplied into the work is Gas such as oil or liquid such as oil (hereinafter, referred to as fluid) force may leak from the hole or the gap.
そこで、 この種の容器状ワークに流体漏れが存在する力否かを検出するために 、 リークテスタが使用されている。 リークテスタには、 一般的に、 空気圧を媒体 とした圧力検出方式が採用されており、 流体洩れがある力否かの判定は、 その対 象物 (ワーク) の中に 0. 5〜 5気圧の空気圧を加圧封入し、 その空気圧がどのよ うに変化するかを検出することにより行われている。 Therefore, a leak tester is used to detect whether or not there is a fluid leakage in such a container-like work. In general, a leak tester employs a pressure detection method using air pressure as a medium, and the determination of whether or not there is fluid leakage is performed by measuring the pressure of 0.5 to 5 atmospheres in the object (work). This is done by sealing the air pressure under pressure and detecting how the air pressure changes.
具体的には、 通常のリークテスタでは、 圧力検出のためにダイァフラムと歪み ゲージとを組み合わせたセンサが使用されている。 そして、 歪みゲージに測定用 の基準電圧が印加された状態で、 ダイァフラムに作用する圧力が変化すると、 前 記歪みゲージもそれに伴って変化をして該歪みゲージにかかる電圧値が変化する 。 従って、 この歪みゲージにかかる電圧の変化を圧力の変化として取り出すこと により、 圧力を検出している。 Specifically, a typical leak tester uses a sensor that combines a diaphragm and a strain gauge to detect pressure. Then, when the pressure acting on the diaphragm changes while the reference voltage for measurement is applied to the strain gauge, the strain gauge changes accordingly, and the voltage value applied to the strain gauge changes. Therefore, the pressure is detected by extracting the change in voltage applied to the strain gauge as a change in pressure.
近年、 環境問題の高まり等により、 従来は許容値とされていた極わずかな漏れ も問題とされるようになつている。 このため、 ワークからの流体の漏れを大変厳 しく規制する傾向にあり、 リークテスタに対する検出精度の要求も高くなってい る。 し力 しながら、 今までのリークテスタでは、 圧力検出方式に問題があり、 高
い検出精度の要求を満たすことができないという不具合がある。 In recent years, with the rise of environmental problems, very small leaks, which were previously regarded as allowable values, have become a problem. For this reason, the leakage of fluid from the work tends to be regulated very strictly, and the demand for the detection accuracy of the leak tester is also increasing. However, the conventional leak tester has a problem with the pressure detection method, There is a problem that the demand for high detection accuracy cannot be satisfied.
すなわち、 ダイァフラムと歪みゲージとを組み合わせたセンサでは、 高い精度 の圧力検出を達成するために、 その測定の基準になる歪みゲージへの基準電圧が 高い精度で安定していなければならない。 ところ力 その基準電圧は、 所謂、 ブ リッジ回路で作られており、 これは熱による抵抗の変化等によって経時変化が惹 起され易く、 この経時変化を起こす電圧を基準にして圧力の検出を行っているた め、 その検出値には電¾、等のエラーが含まれてしまう。 That is, in a sensor combining a diaphragm and a strain gauge, in order to achieve high-precision pressure detection, a reference voltage to the strain gauge, which is a reference for the measurement, must be stable with high accuracy. However, the reference voltage is made of a so-called bridge circuit, which is liable to change over time due to a change in resistance due to heat, etc., and the pressure is detected based on the voltage causing the change over time. Therefore, the detected value includes an error such as power.
また、 検出した電圧値の読み取り判定には、 所謂、 デジタル回路の演算が使用 されている。 ここで、 検出電圧はアナログ値であり、 それをデジタノレ値に変換す る、 所謂、 アナログ/デジタル(AZD)変換の処理が必要となる。 しかしながら 、 検出の対象となる圧力変化は大変小さな値であり、 その変換処理でデジタル値 として十分な値を得るために、 その検出電圧値をアンプ回路で大きく増幅しなけ ればならなレ、。 その際、 電圧値を大きく増幅すると、 その中にはノイズ成分ゃド リフト成分が当然含まれることになり、 その測定値もまた増幅エラー等を含んで しまう。 In addition, a so-called digital circuit operation is used to determine whether to read the detected voltage value. Here, the detected voltage is an analog value, and it is necessary to perform a so-called analog / digital (AZD) conversion process of converting the detected voltage into a digital value. However, the pressure change to be detected is a very small value, and in order to obtain a sufficient digital value in the conversion process, the detected voltage value must be greatly amplified by an amplifier circuit. At that time, if the voltage value is greatly amplified, the noise component and the drift component are naturally included in the voltage value, and the measured value also includes an amplification error.
他方、 アンプ回路で検出電圧を増幅しないとすると、 極わずかな変化幅の電圧 をデジタル変換することになり、 小さな変化等はデジタル変換されないおそれが ある。 これにより、 大きな圧力の変化し力判断することができなくなってしまい 、 結果的に、 検出値を増幅処理しないと小さな圧力変化を検出することができな いという問題が惹起されてしまう。 On the other hand, if the detection voltage is not amplified by the amplifier circuit, a voltage having a very small change width is converted into a digital signal, and a small change may not be converted into a digital signal. This makes it impossible to judge the force due to a large change in pressure, and consequently raises a problem that a small change in pressure cannot be detected unless the detected value is amplified.
レ、ずれにしても、 ダイァフラムと歪みゲージとの組み合わせによる圧力変化の 検出においては、 アナログ検出値をデジタル変換する過程において変換エラーを 含むことになるとともに、 歪みゲージの基準電圧のドリフト等が加わって高精度 測定を遂行することができないという問題が指摘されている。 Even if there is a deviation, the detection of pressure change by the combination of the diaphragm and the strain gauge will include a conversion error in the process of converting the analog detection value to digital, and will also add the drift of the strain gauge reference voltage, etc. It is pointed out that high-precision measurement cannot be performed.
本発明は、 この種の問題を解決するものであり、 簡単な工程および構成で、 微 小な圧力変化も高精度かつ円滑に検出することが可能な圧力検出方法おょぴ装置 を提供することを目的とする。
発明の開示 The present invention is to solve this kind of problem, and to provide a pressure detection method and apparatus capable of detecting a small pressure change with high accuracy and smoothness by a simple process and configuration. With the goal. Disclosure of the invention
ワークの圧漏れを検出するための加圧流体の圧力変化が、 直接、 周波数の変化 に変換された後、 この変換された周波数が、 直接、 デジタル信号としてカウンタ 回路に供給される。 さらに、 カウンタ回路で計数処理が施されることにより、 圧 力変化が計数値として得られる。 これにより、 圧力をアナログ値で検出する際の ような増幅や変換時のエラーが回避され、 漏れ検出用の圧力変化を高精度かつ確 実に検出することが可能になる。 After the pressure change of the pressurized fluid for detecting the pressure leak of the work is directly converted into the frequency change, the converted frequency is directly supplied to the counter circuit as a digital signal. Further, a pressure change is obtained as a count value by performing a counting process in the counter circuit. This avoids errors during amplification and conversion, such as when pressure is detected as an analog value, and makes it possible to detect pressure changes for leak detection with high accuracy and reliability.
また、 発振変調型センサは、 MH Z (メガヘルツ) 帯の基準周波数を生成する 高周波発振手段と、 前記高周波発振手段に接続される卷線コイルと、 前記卷線コ ィル内に進退可能に配置されるとともに、 前記圧力変化により変形するダイァフ ラムに係合して変位することにより、 直接、 前記基準周波数を変調させる測定子 とを備えている。 このため、 圧力の変化が、 直接、 周波数の変化となり、 前記圧 力を高精度に検出することができる。 しかも、 高周波が使用されるため、 圧力変 化を微少な変化まで確実かつ迅速に検出することが可能になる。 Further, the oscillation modulation type sensor includes a high frequency oscillating means for generating a MHZ (megahertz) band reference frequency, a winding coil connected to the high frequency oscillating means, and a retractable coil disposed in the winding coil. And a probe that directly modulates the reference frequency by engaging and displacing the diaphragm that is deformed by the pressure change. For this reason, the change in pressure directly changes the frequency, and the pressure can be detected with high accuracy. In addition, since a high frequency is used, it is possible to reliably and quickly detect a small change in pressure.
ここで、 高周波発振手段は、 水晶発振回路と、 この水晶発振回路に接続される 電池電源とを備えている。 水晶発振回路は、 安定した基準周波数を得ることがで き、 圧力変化を精度よくかつ安定して検出することが可能になる。 電池電源は、 商用電源のようなノイズゃドリフトの影響を受けることがなく、 この電池電源を 使用することにより一層安定した高精度な基準周波数を得ることができる。 その 際、 温度補償回路を用いることにより、 温度変化に対してもドリフト誤差の少な い安定した発振周波数を生成することが可能になる。 Here, the high frequency oscillation means includes a crystal oscillation circuit and a battery power supply connected to the crystal oscillation circuit. The crystal oscillation circuit can obtain a stable reference frequency and can accurately and stably detect a pressure change. The battery power supply is not affected by noise and drift unlike a commercial power supply, and by using this battery power supply, a more stable and accurate reference frequency can be obtained. At that time, by using a temperature compensation circuit, it becomes possible to generate a stable oscillation frequency with a small drift error even with a temperature change.
さらにまた、 変調された基準周波数は、 所謂、 FM送信や PM送信にそのまま 乗せることができ、 これを直接検出信号としてカウンタ回路に送ることが可能で ある。 この場合、 検出信号を比較的遠くにあるカウンタ回路に送るために、 基準 周波数を周波数処理する高周波増幅出力回路を備えており、 直接、 デジタル増幅 することによって、 変換エラーや送達エラ一の発生を回避することができる。 送 達方法は、 有線方式でも、 無線方式でもよい。 Furthermore, the modulated reference frequency can be directly applied to so-called FM transmission or PM transmission, and this can be sent directly to the counter circuit as a detection signal. In this case, in order to send the detection signal to a relatively distant counter circuit, a high-frequency amplification output circuit that performs frequency processing of the reference frequency is provided.By directly performing digital amplification, conversion errors and delivery errors can be prevented. Can be avoided. The transmission method may be a wired method or a wireless method.
また、 検出信号の読み取りを容易にするために、 混合周波数処理が施される。
この混合周波数処理では、 送られてきた検出信号と近い周波数を持つミキサ信号 を別の発振回路で作り、 前記検出信号と前記ミキサ信号とが混合器回路に送られ る。 混合器回路では、 検出信号から高周波キャリア成分を差し引いた変換周波数 信号が生成される。 Also, mixed frequency processing is performed to facilitate reading of the detection signal. In this mixed frequency processing, a mixer signal having a frequency close to the transmitted detection signal is generated by another oscillation circuit, and the detection signal and the mixer signal are transmitted to a mixer circuit. In the mixer circuit, a converted frequency signal is generated by subtracting the high-frequency carrier component from the detection signal.
さらに、 変換周波数信号をカウンタ方式で読み取りを行うために、 まず、 この 変換周波数信号を半波処理して半波形状検出信号を得る。 一方、 計数カウンタの ために、 ク口ック発振回路より非常に高精度な高周波の基準信号を発振してクロ ック信号を生成した後、 このクロック信号を半波形状検出信号と混合して計数信 号が得られる。 次いで、 この計数信号がカウンタ回路で計数読み取り処理される ことにより、 圧力変化が計数値として検出される。 このように、 検出信号として デジタル信号である周波数信号を使用し、 この検出信号をデジタル読み取り処理 することにより、 変換エラーのない高精度な読み取り処理が確実に遂行される。 図面の簡単な説明 Further, in order to read the converted frequency signal by the counter method, first, the converted frequency signal is subjected to half-wave processing to obtain a half-wave shape detection signal. On the other hand, for the counter, a very high-precision high-frequency reference signal is oscillated from the clock oscillation circuit to generate a clock signal, and then this clock signal is mixed with the half-wave shape detection signal. A counting signal is obtained. Next, the count signal is subjected to count reading processing by a counter circuit, whereby a pressure change is detected as a count value. In this way, by using a frequency signal that is a digital signal as the detection signal and performing digital reading processing on the detection signal, high-precision reading processing without conversion errors can be reliably performed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る圧力検出装置の全体構成説明図である 図 2は、 前記第 1の実施形態に係る圧力検出装置を構成する水晶発振回路の説 明図である。 FIG. 1 is an explanatory diagram of an overall configuration of a pressure detecting device according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram of a crystal oscillation circuit constituting the pressure detecting device according to the first embodiment. is there.
図 3は、 前記水晶発振回路に設けられる温度補償回路の周波数特性の説明図で ある。 FIG. 3 is an explanatory diagram of frequency characteristics of a temperature compensation circuit provided in the crystal oscillation circuit.
図 4は、 前記第 1の実施形態に係る圧力検出装置を構成する回路説明図である 図 5は、 本発明の第 2の実施形態に係る圧力検出装置の全体構成説明図である FIG. 4 is an explanatory diagram of a circuit constituting the pressure detecting device according to the first embodiment. FIG. 5 is an explanatory diagram of the entire configuration of the pressure detecting device according to the second embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、 本発明の第 1の実施形態に係る圧力検出方法を実施するための圧力検 出装置 1 0の全体構成説明図である。
この圧力検出装置 1 0は、 加圧流体、 例えば、 加圧空気をエア供給源 1 2から ワーク 1 4に供給するエア管路 1 6の途上に圧力検出器 2 2が連通配置される絶 対圧測定方式を構成しており、 前記加圧空気の圧力変化を、 直接、 周波数の変化 に変換する発振変調型センサ 1 8と、 前記変換された周波数が、 直接、 デジタル 信号として供給されるカウンタ回路 2 0とを備える。 FIG. 1 is an explanatory diagram of an overall configuration of a pressure detection device 10 for performing a pressure detection method according to a first embodiment of the present invention. This pressure detecting device 10 is an absolute type in which a pressure detector 22 is arranged in communication with an air pipe 16 for supplying a pressurized fluid, for example, pressurized air from an air supply source 12 to a work 14. An oscillation modulation type sensor 18 that directly converts a pressure change of the pressurized air into a frequency change, and a counter that directly supplies the converted frequency as a digital signal. Circuit 20.
発振変調型センサ 1 8は、 開閉バルブ 2 1の下流側でエア管路 1 6に連通する 圧力検出器 2 2を設け、 この圧力検出器 2 2は、 前記エア管路 1 6内の圧力変動 によって変形するダイアフラム 2 4と、 前記ダイアフラム 2 4に係合して変位す る測定子 2 6と、 内部に前記測定子 2 6が進退自在に配設される卷線コイル 2 8 とを備える。 卷線コイル 2 8が発振変調回路 3 0に接続されるとともに、 この発 振変調回路 3 0には、 MH Z (メガヘルツ) 帯の基準周波数を生成する高周波発 振手段 3 2が接続される。 The oscillation modulation type sensor 18 is provided with a pressure detector 22 communicating with the air line 16 on the downstream side of the on-off valve 21, and the pressure detector 22 is provided with a pressure fluctuation in the air line 16. A diaphragm 24 deformed by the diaphragm 24, a measuring element 26 that is displaced by engaging with the diaphragm 24, and a winding coil 28 in which the measuring element 26 is disposed so as to be able to move forward and backward are provided. The wound coil 28 is connected to the oscillation modulation circuit 30, and the oscillation modulation circuit 30 is connected to high-frequency oscillation means 32 that generates a reference frequency in the MHZ (megahertz) band.
高周波発振手段 3 2は、 水晶発振回路 3 4と、 前記水晶発振回路 3 4に接続さ れる電池電源 (D C電源) 3 6とを備える。 図 2に示すように、 水晶発振回路 3 4は、 水晶発振子 3 8および発振トランジスタ 4 0を備えており、 温度変化によ る発振周波数の変動を回避するために、 温度補償回路 4 2が設けられる。 この温 度補償回路 4 2は、 一種の逆特生回路、 例えば、 温度補償コンデンサを備え、 図 3に示すように、 温度に対する周波数特性が水晶発振子 3 8とは逆の特性を有し 、 これにより温度による変化を互いにうち消し合う。 The high-frequency oscillation means 32 includes a crystal oscillation circuit 34 and a battery power supply (DC power supply) 36 connected to the crystal oscillation circuit 34. As shown in FIG. 2, the crystal oscillation circuit 34 includes a crystal oscillator 38 and an oscillation transistor 40, and a temperature compensation circuit 42 is provided in order to avoid a change in the oscillation frequency due to a temperature change. Provided. This temperature compensating circuit 42 includes a kind of inverse characteristic circuit, for example, a temperature compensating capacitor. As shown in FIG. 3, the frequency characteristic with respect to temperature has a characteristic opposite to that of the crystal oscillator 38. This cancels out changes due to temperature.
図 1に示すように、 発振変調回路 3 0は、 圧力の変化を高周波信号 f 1として 取り出し、 この高周波信号 ί 1を高周波増幅出力回路 4 4に送る。 高周波増幅出 力回路 4 4は、 図 4に示すように、 増幅出力された検出信号 f 2とミキサ信号 f 3とを混合周波数処理して変換周波数信号 f 4を生成する混合器回路 4 6に接続 されるとともに、 この混合器回路 4 6には、 この検出信号 f 2と近い周波数を持 つ前記ミキサ信号 f 3を生成するミキサ信号発振回路 4 8が接続される。 As shown in FIG. 1, the oscillation modulation circuit 30 extracts a change in pressure as a high-frequency signal f 1 and sends the high-frequency signal ί 1 to a high-frequency amplification output circuit 44. As shown in FIG. 4, the high-frequency amplification output circuit 44 supplies a mixer circuit 46 that processes the amplified and output detection signal f 2 and the mixer signal f 3 at a mixed frequency to generate a converted frequency signal f 4. At the same time, the mixer circuit 46 is connected to a mixer signal oscillation circuit 48 that generates the mixer signal f3 having a frequency close to the detection signal f2.
混合器回路 4 6には、 変換周波数信号 f 4を増幅して増幅変換周波数信号 f 5 を生成する変換周波数増幅回路 5 0が接続され、 この変換周波数増幅回路 5 0に は、 前記増幅変換周波数信号 f 5を半波処理して半波形状検出信号 ί 6を得る半
波回路 5 2が接続される。 高周波のクロック信号 f 7を発生するクロック発振回 路 5 4は、 半波回路 5 2と共にカウンタ混合器 5 6に接続され、 このカウンタ混 合器 5 6では、 半波形状検出信号 f 6とクロック信号 f 7を混合して計数信号 f 8が得られ、 この計数信号 f 8がカウンタ回路 2 0に送られる。 カウンタ回路 2 0は、 検出値を表示するための表示器 5 8を備えている。 The mixer circuit 46 is connected to a conversion frequency amplification circuit 50 that amplifies the conversion frequency signal f 4 to generate an amplified conversion frequency signal f 5. The conversion frequency amplification circuit 50 includes the amplification conversion frequency Half-wave processing of the signal f5 to obtain the half-wave shape detection signal ί6 The wave circuit 52 is connected. The clock oscillation circuit 54 that generates the high-frequency clock signal f7 is connected to the counter mixer 56 together with the half-wave circuit 52. In the counter mixer 56, the half-wave shape detection signal f6 and the clock are output. The count signal f8 is obtained by mixing the signal f7, and the count signal f8 is sent to the counter circuit 20. The counter circuit 20 includes a display 58 for displaying the detected value.
このように構成される圧力検出装置 1 0の動作について、 以下に説明する。 まず、 ワーク 1 4がエア管路 1 6に接続された状態で、 エア供給源 1 2力 らカロ 圧空気が供給されて前記ワーク 1 4に測定圧が付与された後、 開閉バルブ 2 1が 閉じられる。 ここで、 ワーク 1 4に漏れが存在して前記ワーク 1 4に付与された 測定圧が減圧すると、 圧力検出器 2 2を構成するダイァフラム 2 4が変形する。 このダイアフラム 2 4には、 測定子 2 6が連結されており、 前記ダイアフラム 2 4が圧力の変動により変形すると、 前記測定子 2 6が卷線コィル 2 8内で変位す る。 The operation of the pressure detecting device 10 thus configured will be described below. First, in a state where the work 14 is connected to the air line 16, after the caro-pressure air is supplied from the air supply source 12 to apply the measurement pressure to the work 14, the opening / closing valve 21 is opened. Closed. Here, when the work 14 has a leak and the measurement pressure applied to the work 14 is reduced, the diaphragm 24 constituting the pressure detector 22 is deformed. A measuring element 26 is connected to the diaphragm 24. When the diaphragm 24 is deformed due to a change in pressure, the measuring element 26 is displaced in the winding coil 28.
その際、 卷線コイル 2 8には、 水晶発振回路 3 4から MH Z (メガヘルツ) 帯 の基準周波数が印加されており、 この卷線コィル 2 8内で測定子 2 6が移動する と、 前記卷線コイル 2 8の負荷インダクタンスが変化する。 このため、 基準周波 数が変調され、 この変調周波数が発振変調回路 3 0で、 直接、 高周波信号 f 1と して取り出され、 前記高周波信号 f 1が高周波増幅出力回路 4 4に送られる。 こ の高周波増幅出力回路 4 4では、 高周波信号 f 1を遠くに送ることができるよう に増幅して検出信号 f 2を出力する。 At this time, a reference frequency in the MHZ (megahertz) band is applied to the wound coil 28 from the crystal oscillation circuit 34, and when the measuring element 26 moves in the wound coil 28, The load inductance of the coil 28 changes. For this reason, the reference frequency is modulated, and this modulation frequency is directly taken out by the oscillation modulation circuit 30 as the high frequency signal f 1, and the high frequency signal f 1 is sent to the high frequency amplification output circuit 44. The high-frequency amplification output circuit 44 amplifies the high-frequency signal f1 so that it can be sent to a distant place, and outputs the detection signal f2.
次いで、 検出信号 f 2の読み取りを容易にするために、 混合周波数処理が施さ れる。 すなわち、 図 4に示すように、 ミキサ信号発振回路 4 8では、 送られてき た検出信号 ί 2と近い周波数を持つミキサ信号 ί 3を生成し、 前記検出信号 f 2 と前記ミキサ信号 f 3とが混合器回路 4 6に送られる。 混合器回路 4 6では、 検 出信号 f 2から高周波キャリア成分を差し引いた KH Z (キロへルツ) 帯の変換 周波数信号 ί 4が生成される。 Next, mixed frequency processing is performed to facilitate reading of the detection signal f2. That is, as shown in FIG. 4, the mixer signal oscillation circuit 48 generates a mixer signal ί3 having a frequency close to the transmitted detection signal ί2, and outputs the detection signal f2 and the mixer signal f3. Is sent to the mixer circuit 46. The mixer circuit 46 generates a converted frequency signal ί4 in the KHZ (kilohertz) band obtained by subtracting the high-frequency carrier component from the detection signal f2.
さらに、 変換周波数信号 f 4をカウンタ方式で読み取りを行うために、 まず、 変換周波数増幅回路 5 0でこの変換周波数信号 f 4を増幅して増幅変換周波数信
号 f 5を生成した後、 半波回路 5 2において前記増幅変換周波数信号 ί 5が半波 処理されて半波形状検出信号 f 6が得られる。 一方、 計数カウンタのために、 ク 口ック発振回路 5 4より非常に高精度な高周波の基準信号を発振してクロック信 号 f 7が生成された後、 このクロック信号 f 7が半波形状検出信号 f 6と混合し て計数信号 f 8力 S得られる。 Further, in order to read the converted frequency signal f 4 in the counter method, first, the converted frequency signal f 4 is amplified by the converted frequency amplifying circuit 50 and the amplified converted frequency signal f 4 is amplified. After generating the signal f5, the half-wave circuit 52 half-processes the amplified converted frequency signal 半 5 to obtain a half-wave shape detection signal f6. On the other hand, after the clock oscillation circuit 54 oscillates a very high-precision high-frequency reference signal to generate a clock signal f7, the clock signal f7 becomes a half-wave shape. The count signal f 8 is obtained by mixing with the detection signal f 6.
次に、 この計数信号 f 8がカウンタ回路 2 0で計数読み取り処理されることに より、 圧力変化が計数値として検出される。 その際、 カウンタ方式は、 一定時間 内に被測定信号がどれだけあるかを計数するものであり、 この読み取り処理によ つて高周波信号 f 1として検出した圧力の変化を微細な 1 H Z (ヘルツ) 、 さら には 1 H Z (ヘルツ) 以下の桁まで正確に読み取ることができる。 なお、 被カウ ント成分であるクロック信号 f 7の時間軸を短くする程、 正確にカウントするこ とが可能になり、 例えば、 数十 MH Z (メガヘルツ) 〜2 0 0 MH Z (メガヘル ッ) の周波数が使用される。 Next, the count signal f8 is subjected to count reading processing by the counter circuit 20, whereby a pressure change is detected as a count value. At this time, the counter method counts the number of signals to be measured within a fixed time, and the change in pressure detected as a high-frequency signal f 1 by this reading process is minute 1 Hz (Hertz). In addition, it can read accurately to the order of 1 HZ (hertz) or less. Note that the shorter the time axis of the clock signal f7, which is the counted component, becomes, the more accurate the counting becomes possible. For example, several tens of MHz (megahertz) to 200 MHz (megahertz) Are used.
このように、 第 1の実施形態では、 ダイアブラム 2 4と、 前記ダイアフラム 2 4に係合して変位する測定子 2 6と、 内部に前記測定子 2 6が進退自在に配設さ れる卷線コイル 2 8とを備えた発振変調型センサ 1 8を使用し、 ワーク 1 4の圧 力の変化を、 直接、 周波数の変化に変更して前記ワーク 1 4の圧漏れ検査を行つ ている。 これにより、 圧力の検出をアナログ値ではなくデジタル値で行うことが でき、 デジタル信号である周波数信号をデジタル読み取り処理することによって 、 増幅エラーや変換エラー等のない高精度な読み取り処理、 すなわち、 ワーク 1 4の高精度な圧漏れ検査が確実に遂行されるという効果が得られる。 As described above, in the first embodiment, the diaphragm 24, the measuring element 26 that is displaced by engaging with the diaphragm 24, and the winding in which the measuring element 26 is disposed so as to be able to advance and retreat. An oscillation modulation type sensor 18 having a coil 28 is used to directly change a change in pressure of the work 14 into a change in frequency to perform a pressure leak test on the work 14. As a result, the pressure can be detected not by an analog value but by a digital value. By digitally reading a frequency signal which is a digital signal, a high-precision reading process without an amplification error or a conversion error can be performed. The effect that the high-precision pressure leak inspection of 14 is surely performed is obtained.
また、 高周波発振手段 3 2は、 水晶発振回路 3 4を備えており、 安定した基準 周波数を得ることができ、 圧力変化を精度よくかつ安定して検出することが可能 になる。 しかも、 基準周波数として MH Z (メガヘルツ) 帯の高周波が使用され るため、 圧力変化を微少な変化まで確実かつ迅速に検出することができるという 利点がある。 さらに、 電池電源 3 6が使用されるため、 商用電源のようなノイズ ゃドリフトの影響を受けることがなく、 一層安定した高精度な基準周波数を得る ことが可能になる。 その際、 温度補償回路 4 2を用いることにより、 温度変化に
対してもドリフト誤差の少ない安定した発振周波数を生成することができる。 さらにまた、 高周波信号 f 1が高周波増幅出力回路 4 4を介し増幅されて検出 信号 f 2が得られるため、 比較的遠くにあるカウンタ回路 2 0にこの検出信号 f 2を確実に送ることが可能になる。 この検出信号 ί 2は、 高周波信号 f 1を、 直 接、 デジタノレ増幅することによって得られており、 変換エラーや送達エラーの発 生を回避することができる。 Further, the high-frequency oscillating means 32 includes a crystal oscillating circuit 34, so that a stable reference frequency can be obtained, and a pressure change can be accurately and stably detected. In addition, since a high frequency in the MHZ (megahertz) band is used as the reference frequency, there is an advantage that even a small change in pressure can be detected reliably and quickly. Furthermore, since the battery power supply 36 is used, it is possible to obtain a more stable and accurate reference frequency without being affected by noise and drift as in a commercial power supply. At this time, by using the temperature compensation circuit 42, On the other hand, a stable oscillation frequency with little drift error can be generated. Furthermore, since the high-frequency signal f1 is amplified through the high-frequency amplification output circuit 44 to obtain the detection signal f2, the detection signal f2 can be reliably sent to the counter circuit 20 which is relatively far away. become. The detection signal ί2 is obtained by directly digitally amplifying the high-frequency signal f1, and can avoid occurrence of a conversion error or a delivery error.
図 5は、 本発明の第 2の実施形態に係る圧力検出方法を実施するための圧力検 出装置 8 0の全体構成説明図である。 なお、 第 1の実施形態に係る圧力検出装置 1 0と同一の構成要素には同一の参照符号を付して、 その詳細な説明は省略する この圧力検出装置 8 0は、 加圧流体、 例えば、 加圧空気をエア供給源 1 2から ワーク 1 4とマスタ 8 4に供給するエア管路 8 2に連通して圧力検出器 2 2が配 置される差圧測定方式を構成している。 エア管路 8 2には、 ワーク 1 4とマスタ 8 4とが接続されるとともに、 前記ワーク 1 4と前記マスタ 8 4とは、 バイパス バルブ 8 6を介して遮断可能である。 このマスタ 8 4は、 被測定物であるワーク 1 4と同一容積でかつ同一形状に設定されており、 予め圧漏れのないことが検出 されている。 なお、 マスタ 8 4は、 ワーク 1 4と同一容積でなくかつ同一形状で ないものが用いられる場合がある。 FIG. 5 is an explanatory diagram of the overall configuration of a pressure detection device 80 for performing the pressure detection method according to the second embodiment of the present invention. The same components as those of the pressure detection device 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The pressure detection device 80 is a pressurized fluid, for example, A differential pressure measurement method is provided in which a pressure detector 22 is disposed in communication with an air pipeline 82 that supplies pressurized air from an air supply source 12 to a work 14 and a master 84. A work 14 and a master 84 are connected to the air line 82, and the work 14 and the master 84 can be shut off via a bypass valve 86. The master 84 has the same volume and the same shape as the work 14 to be measured, and it is previously detected that there is no pressure leak. The master 84 may not have the same volume and the same shape as the work 14 in some cases.
このように構成される圧力検出装置 8 0では、 圧漏れ検査を行うワーク 1 4と マスタ 8 4とがエア管路 8 2に接続された状態で、 エア供給源 1 2から加圧空気 が供給されて前記ワーク 1 4および前記マスタ 8 4に測定圧が付与された後、 開 閉バルブ 2 1およびバイパスバルブ 8 6が閉じられる。 ここで、 ワーク 1 4に漏 れが存在すると、 前記ワーク 1 4とマスタ 8 4とに圧力差 (P 2— P 1 ) が生じ て圧力検出器 2 2を構成するダイアフラム 2 4が変形する。 In the pressure detection device 80 configured as described above, the work 14 to be subjected to the pressure leak inspection and the master 84 are connected to the air line 82 and the compressed air is supplied from the air supply source 12. Then, after the measured pressure is applied to the work 14 and the master 84, the open / close valve 21 and the bypass valve 86 are closed. Here, if a leak exists in the work 14, a pressure difference (P 2 −P 1) occurs between the work 14 and the master 84, and the diaphragm 24 constituting the pressure detector 22 is deformed.
これにより、 測定子 2 6が卷線コイル 2 8内で変位し、 ワーク 1 4の圧力の変 化を、 直接、 周波数の変化に変更して前記ワーク 1 4の圧漏れ検査が行われ、 前 記ワーク 1 4の高精度な圧漏れ検査が確実に遂行される等、 第 1の実施形態と同 様の効果が得られる。
産業上の利用可能性 As a result, the tracing stylus 26 is displaced in the coil 28 and the change in the pressure of the work 14 is directly changed to the change in the frequency. The same effect as that of the first embodiment can be obtained, for example, a highly accurate pressure leak inspection of the work 14 can be reliably performed. Industrial applicability
本発明に係る圧力検出方法および装置では、 ワークの圧漏れを検出するための 加圧流体の圧力変化が、 直接、 周波数の変化に変換された後、 この変換された周 波数が、 直接、 デジタル信号としてカウンタ回路に供給されて圧力変化が計数値 として得られるため、 圧力をアナログ値で検出する際のような増幅や変換時のェ ラーが回避され、 漏れ検出用の圧力変化を高精度かつ確実に検出することが可能 になる。 これにより、 簡単な工程および構成で、 ワークの圧もれ検査処理が効率 的かつ高精度に遂行される。
In the pressure detection method and device according to the present invention, after the pressure change of the pressurized fluid for detecting the pressure leak of the work is directly converted into the frequency change, the converted frequency is directly converted into the digital value. Since the pressure change is supplied to the counter circuit as a signal and the pressure change is obtained as a count value, errors during amplification and conversion, such as when pressure is detected as an analog value, are avoided, and pressure changes for leak detection are accurately and accurately detected. It will be possible to detect it reliably. As a result, with a simple process and configuration, the pressure leakage inspection processing of the work is efficiently and accurately performed.
Claims
1 . ワークに加圧流体を供給して前記ワークの圧漏れを検出するための圧力検出 方法であって、 1. A pressure detecting method for detecting a pressure leak of the work by supplying a pressurized fluid to the work,
前記加圧流体の圧力変化を、 直接、 周波数の変化に変換する工程と、 前記変換された周波数を、 直接、 デジタル信号としてカウンタ回路に供給する 工程と、 Directly converting the pressure change of the pressurized fluid into a frequency change; and supplying the converted frequency directly to a counter circuit as a digital signal.
前記カウンタ回路で計数処理を施すことにより、 前記圧力変化を計数値として 得る工程と、 A step of obtaining the pressure change as a count value by performing a counting process in the counter circuit;
を有することを特徴とする圧力検出方法。 A pressure detection method comprising:
2 . 請求項 1記載の圧力検出方法において、 前記加圧流体の圧力変化によって M H Z (メガヘルツ) 帯の基準周波数を変調させた後、 この変調された基準周波数 を周波数処理して前記カウンタ回路に送ることを特徴とする圧力検出装置。 2. The pressure detecting method according to claim 1, wherein after modulating a reference frequency in an MHZ (megahertz) band by a change in pressure of the pressurized fluid, the modulated reference frequency is subjected to frequency processing and sent to the counter circuit. A pressure detector characterized by the above-mentioned.
3 . ワークに加圧流体を供給して前記ワークの圧漏れを検出するための圧力検出 装置であって、 3. A pressure detecting device for supplying a pressurized fluid to a work to detect a pressure leak of the work,
前記加圧流体の圧力変化を、 直接、 周波数の変化に変換する発振変調型センサ と、 An oscillation modulation type sensor for directly converting a pressure change of the pressurized fluid into a frequency change,
前記変換された周波数が、 直接、 デジタノレ信号として供給されるカウンタ回路 と、 A counter circuit to which the converted frequency is directly supplied as a digital signal.
を備えることを特徴とする圧力検出装置。 A pressure detecting device comprising:
4 . 請求項 3記載の圧力検出装置において、 前記発振変調型センサは、 MH Z ( メガヘルツ) 帯の基準周波数を生成する高周波発振手段と、 4. The pressure detecting device according to claim 3, wherein the oscillation modulation type sensor includes a high frequency oscillation unit that generates a reference frequency in an MHZ (megahertz) band;
前記高周波発振手段に接続される卷線コィノレと、 A winding coil connected to the high-frequency oscillation means,
前記卷線コイル内に進退可能に配置されるとともに、 前記圧力変化により変形 するダイァフラムに係合して変位することにより、 直接、 前記基準周波数を変調 させる測定子と、 A tracing stylus that is arranged in the wound coil so as to be able to advance and retreat, and directly modulates the reference frequency by engaging and displacing a diaphragm that is deformed by the pressure change;
を備えることを特徴とする圧力検出装置。 A pressure detecting device comprising:
5 . 請求項 4記載の圧力検出装置において、 前記高周波発振手段は、 温度補償回 路を備えることを特徴とする圧力検出装置。
5. The pressure detection device according to claim 4, wherein the high-frequency oscillation means includes a temperature compensation circuit.
6 . 請求項 4記載の圧力検出装置において、 前記変調された基準周波数を高周波 増幅して前記力ゥンタ回路に送るための高周波増幅出力回路を備えることを特徴 とする圧力検出装置。 6. The pressure detection device according to claim 4, further comprising a high-frequency amplification output circuit for amplifying the modulated reference frequency at a high frequency and sending the amplified reference frequency to the power counter circuit.
7 . 請求項 6記載の圧力検出装置において、 前記高周波増幅された基準周波数が 変調されて得られた高周波信号とミキサ信号とを混合周波数処理して変換周波数 信号を生成する混合器回路と、 7. The pressure detection device according to claim 6, wherein a mixer circuit that performs a mixed frequency process on a high frequency signal and a mixer signal obtained by modulating the high frequency amplified reference frequency to generate a converted frequency signal,
前記変換周波数信号を半波処理して半波形状検出信号を得る半波回路と、 高周波のクロック信号を発生するクロック発振回路と、 A half-wave circuit that performs half-wave processing on the converted frequency signal to obtain a half-wave shape detection signal; a clock oscillation circuit that generates a high-frequency clock signal;
前記半波形状検出信号と前記ク口ック信号を混合して計数信号を得るカウンタ 混合器と、 A counter mixer for mixing the half-wave shape detection signal and the cook signal to obtain a count signal;
を備えることを特徴とする圧力検出装置。 A pressure detecting device comprising:
8 . 請求項 4記載の圧力検出装置において、 前記高周波発振手段は、 水晶発振回 路と、 8. The pressure detection device according to claim 4, wherein the high-frequency oscillating means includes a crystal oscillation circuit,
前記水晶発振回路に接続される電池電源と、 A battery power supply connected to the crystal oscillation circuit;
を備えることを特徴とする圧力検出装置。 A pressure detecting device comprising:
9 . 請求項 8記載の圧力検出装置において、 前記高周波発振手段は、 温度補償回 路を備えることを特徴とする圧力検出装置。 9. The pressure detection device according to claim 8, wherein the high-frequency oscillation means includes a temperature compensation circuit.
1 0 . 請求項 8記載の圧力検出装置において、 前記変調された基準周波数を高周 波増幅して前記力ゥンタ回路に送るための高周波増幅出力回路を備えることを特 徴とする圧力検出装置。 10. The pressure detection device according to claim 8, further comprising a high-frequency amplification output circuit for high-frequency amplifying the modulated reference frequency and sending the amplified reference frequency to the power counter circuit.
1 1 . 請求項 1 0記載の圧力検出装置において、 前記高周波増幅された基準周波 数が変調されて得られた高周波信号とミキサ信号とを混合周波数処理して変換周 波数信号を生成する混合器回路と、 11. The pressure detector according to claim 10, wherein the high frequency signal and the mixer signal obtained by modulating the high frequency amplified reference frequency are subjected to mixed frequency processing to generate a converted frequency signal. Circuit and
前記変換周波数信号を半波処理して半波形状検出信号を得る半波回路と、 高周波のク口ック信号を発生するクロック発振回路と、 A half-wave circuit that performs half-wave processing on the converted frequency signal to obtain a half-wave shape detection signal; a clock oscillation circuit that generates a high-frequency cut-off signal;
前記半波形状検出信号と前記クロック信号を混合して計数信号を得るカウンタ 混合器と、 A counter mixer for mixing the half-wave shape detection signal and the clock signal to obtain a count signal;
を備えることを特¾¾とする圧力検出装置。
A pressure detecting device comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11/370782 | 1999-11-18 | ||
JP37078299A JP2001147172A (en) | 1999-11-18 | 1999-11-18 | Pressure detecting method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001036930A1 true WO2001036930A1 (en) | 2001-05-25 |
Family
ID=18497594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/008144 WO2001036930A1 (en) | 1999-11-18 | 2000-11-17 | Method and apparatus for pressure measurement |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001147172A (en) |
WO (1) | WO2001036930A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5055721B2 (en) * | 2005-07-04 | 2012-10-24 | 横河電機株式会社 | Vibration sensor type differential pressure / pressure transmitter |
JP4757691B2 (en) * | 2006-04-03 | 2011-08-24 | 株式会社 ハジメ | Pipe leak inspection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017656A (en) * | 1973-06-14 | 1975-02-25 | ||
JPS58193432A (en) * | 1982-05-07 | 1983-11-11 | Fukuda:Kk | Pressure sensor |
JPS6280534A (en) * | 1985-10-03 | 1987-04-14 | Mitsubishi Electric Corp | Pressure measuring instrument |
JPS6295435A (en) * | 1985-10-23 | 1987-05-01 | Hitachi Ltd | pressure detection device |
JP3002470U (en) * | 1994-01-13 | 1994-09-27 | ケイ・アイ電子株式会社 | pressure sensor |
-
1999
- 1999-11-18 JP JP37078299A patent/JP2001147172A/en active Pending
-
2000
- 2000-11-17 WO PCT/JP2000/008144 patent/WO2001036930A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017656A (en) * | 1973-06-14 | 1975-02-25 | ||
JPS58193432A (en) * | 1982-05-07 | 1983-11-11 | Fukuda:Kk | Pressure sensor |
JPS6280534A (en) * | 1985-10-03 | 1987-04-14 | Mitsubishi Electric Corp | Pressure measuring instrument |
JPS6295435A (en) * | 1985-10-23 | 1987-05-01 | Hitachi Ltd | pressure detection device |
JP3002470U (en) * | 1994-01-13 | 1994-09-27 | ケイ・アイ電子株式会社 | pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2001147172A (en) | 2001-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100845423B1 (en) | meter | |
US20100231208A1 (en) | Vibration and condition monitoring system and the parts thereof | |
JP5603415B2 (en) | System for detecting incomplete process ground connections | |
CN1212052A (en) | Pressure sensor diagnostics in process transmitter | |
US20070295095A1 (en) | Apparatus for providing an output proportional to pressure divided by temperature (P/T) | |
US8283930B2 (en) | Method and system for compensating for variation in attenuation measurements caused by changes in ambient temperature | |
US8878529B2 (en) | Sensor module and method for monitoring the function thereof | |
US20160290560A1 (en) | Monitoring of a condensate drain | |
US7347098B2 (en) | Apparatus for providing an output proportional to pressure divided by temperature (P/T) | |
US11359953B2 (en) | Impedance sensor and method for its operation | |
KR102038920B1 (en) | Method and circuit arrangement for determining a working range of an ultrasonic vibrating unit | |
US11293790B2 (en) | Piezoelectric transducer condition monitoring | |
WO2001036930A1 (en) | Method and apparatus for pressure measurement | |
Jakoby et al. | Novel analog readout electronics for microacoustic thickness shear-mode sensors | |
US8854052B2 (en) | Sensor assembly and method of measuring the proximity of a machine component to a sensor | |
JPH01124739A (en) | Valve leak detector | |
CA1105605A (en) | Acoustical wave flowmeter | |
JP2008151676A (en) | ESR equipment | |
CN204389096U (en) | A kind of electric charges amplify apparatus | |
CN222298721U (en) | Metal film thickness detection device | |
JP2023089775A (en) | Flow rate detection device | |
JPH0449527Y2 (en) | ||
JPH09405U (en) | Gas laser equipment | |
CN109839178A (en) | A kind of current vortex sensor method of calibration | |
SU1733936A1 (en) | Device for testing articles for tightness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |