WO2001014783A1 - Thermal insulation structure - Google Patents
Thermal insulation structure Download PDFInfo
- Publication number
- WO2001014783A1 WO2001014783A1 PCT/EP2000/007016 EP0007016W WO0114783A1 WO 2001014783 A1 WO2001014783 A1 WO 2001014783A1 EP 0007016 W EP0007016 W EP 0007016W WO 0114783 A1 WO0114783 A1 WO 0114783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal insulation
- insulation structure
- structure according
- spacers
- annular spacers
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 33
- 125000006850 spacer group Chemical group 0.000 claims abstract description 33
- 239000012774 insulation material Substances 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 230000010006 flight Effects 0.000 claims 1
- 238000005452 bending Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002887 superconductor Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/075—Arrangements using an air layer or vacuum the air layer or the vacuum being delimited by longitudinal channels distributed around the circumference of a tube
Definitions
- the invention relates to a thermal insulation structure in the evacuated annular gap between two flexible corrugated pipes.
- Such flexible corrugated pipes are used as transfer lines for refrigerants, e.g. liquid helium or liquid nitrogen are used.
- refrigerants e.g. liquid helium or liquid nitrogen are used.
- superconductor cables which contain helium, or high-temperature superconductors, e.g. cooled with nitrogen or neon and drawn into a flexible corrugated tube.
- the corrugated pipe to be insulated is wrapped with super insulation, which is located in an evacuated annular gap between two corrugated pipes.
- super insulation which is located in an evacuated annular gap between two corrugated pipes.
- Motojima Superconduc-
- the object of the invention is to provide a thermal insulation structure with high thermal resistance for flexible lines.
- the invention achieves a separation of insulation and support system at such short intervals as is necessary for centering the corrugated pipe while maintaining the minimum bending radius, the heat conduction component being divided by dividing the cross supports between the inner and outer corrugated pipe by means of a helix and displacing the cross supports between the inner corrugated pipe and the spiral and the cross supports between the spiral and the outer corrugated pipe is kept small in the direction of the line.
- FIG. 1 shows an isometric illustration of the insulation structure with the support system between the corrugated pipes with step sections
- FIG. 2 shows a cross-sectional drawing of the insulation structure with the support system
- FIG. 3 shows a longitudinal section of the insulation structure with the support system to clarify the supports between the corrugated pipes by the Support system and the figure 4 different cross-sectional shapes of the annular supports.
- the invention essentially consists of the division of the cross supports between the inner and outer corrugated tube by means of a helix, so that annular spacers between the inner corrugated tube and helix are arranged offset to annular spacers between the helix and the outer corrugated tube, the super insulation both around the helix and can also be wrapped around the inner corrugated pipe and is only interrupted by the cross supports.
- the spacing of the cross supports essentially depends on the minimum bending radius of the overall arrangement, the radially occurring load, the difference in the thickness of the super insulation layer and the thickness of the cross section of the annular supports and the rigidity of the helix 1.
- the support system is shown isometrically in FIG. 1. From left to right, the individual concentric layers are shown as they follow each other. On the left you can see the inner corrugated tube 5. This is followed on the outside by a conventional spacer 4, which can consist of a knotted tape, which is wound helically around the inner corrugated tube, as shown in FIG. 1, or which can consist of several interwoven hollow tubes, which also wound helically around the inner corrugated tube. Next comes a helix 1, in which the helix paths in the line direction should not touch. The direction of rotation of this helix is opposite to the direction of rotation of the conventional spacer 4 (nub band) in order to enable easier evacuation.
- knob-like spacers can also be attached to one side of the helix 1.
- the first layer of superinsulation 3 is wound around this coil 1, which is interrupted in the direction of conduction by annular spacers 2, which are likewise arranged at constant intervals around the inner coil 1. Then follows a second coil 1, which by
- ERSA ⁇ ZBL ⁇ T (RULE 26) the first annular spacer 2 is centered.
- the distance between the inner and outer helix 1 and thus the cross-sectional thickness of the annular spacers 2 should be so large that contact of the inner layer of super insulation 3 with the outer helix 1 is avoided even if the minimum bending radius of the overall arrangement is observed.
- the outer coil 1 is in turn wrapped with a multi-layer layer of superinsulation 3, which is interrupted in the direction of conduction by annular spacers 2, which are likewise arranged around the outer coil 1 at constant intervals. It is particularly important to ensure that the inner annular spacers 2 are arranged offset in the line direction from the outer annular spacers.
- This arrangement surrounds the outer corrugated tube 6, which is usually still surrounded by a PE protective jacket.
- the distance between the outer coil 1 and the outer corrugated tube 6 and thus the cross-sectional thickness of the annular spacers 2 should be so large that contact of the outer layer of super insulation 3 with the outer coil 1 is avoided even if the minimum bending radius of the overall arrangement is observed.
- Figure 2 shows a cross section (perpendicular to the axis of symmetry) through a support system, as shown in Figure 1.
- the annular spacers are not shown here.
- Figure 3 shows a longitudinal section through the insulation structure, as shown in Figure 1.
- the axis of symmetry is shown as a dash-dot line.
- the insulating layers are kept at a concentric distance by means of the annular spacers 2 and the nubbed band 4.
- Figure 4 shows various cross-sectional shapes for annular spacers.
- 4a is an annular spacer 2 made of a thin-walled hose, which for stabilization with I-
- REPLACEMENT B ⁇ (RULE 26) solations material is filled, or from a hose with a wall thickness that ensures a sufficient support function, which hose can also be perforated to ensure a low flow resistance during evacuation.
- the spacer consists of three packed tubes, which in turn are thin-walled and filled with insulation material or have a sufficient wall thickness to take over the support function and can also be perforated.
- Fig. 4c shows a ring with a double T profile, which can also be perforated to ensure a low flow resistance during evacuation.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
Abstract
The invention relates to a thermal insulation structure in the evacuated annular gap between flexible corrugated pipes. The aim of the invention is to provide a support system with a high degree of heat resistance for flexible pipes. To this end, the transversal supports are divided up between the inner corrugated pipe and the outer corrugated pipe (5, 6) with a spiral. Ring-shaped spacers (2) between the inner corrugated pipe and the spiral (1) are hereby offset from the ring-shaped spacers between the spiral and the outer corrugated pipe (6), accordingly. The super-insulation (3) can then be wound around the spiral and the inner corrugated pipe (5) and is only interrupted by the transversal supports.
Description
Thermischer IsolationsaufbauThermal insulation structure
Die Erfindung betrifft einen thermischen Isolationsaufbau im evakuierten Ringspalt zwischen zwei flexiblen Wellrohren.The invention relates to a thermal insulation structure in the evacuated annular gap between two flexible corrugated pipes.
Derartige flexible Wellrohre werden als Transferleitungen für Kältemittel, wie z.B. flüssiges Helium oder flüssiger Stickstoff eingesetzt. Ein weiteres großes Anwendungsgebiet sind Supraleiterkabel, die mit Helium, oder Hochtemperatursupraleiter, die z.B. mit Stickstoff oder Neon gekühlt werden und in einem flexiblen Wellrohr eingezogen werden.Such flexible corrugated pipes are used as transfer lines for refrigerants, e.g. liquid helium or liquid nitrogen are used. Another large area of application is superconductor cables, which contain helium, or high-temperature superconductors, e.g. cooled with nitrogen or neon and drawn into a flexible corrugated tube.
Für die Isolierung wird das zu isolierende Wellrohr mit Superisolation umwickelt, welche sich in einem evakuierten Ringspalt zwischen zwei Wellrohren befindet. Um eine möglichst gute Isolierung zu erzielen, sollte eine Berührung zwischen äußerem Wellrohr und Superisolation durch Abstandshalter vermieden werden. Aus S. Yamada, T. Mito, H. Chikaraishi, S. Tana-For the insulation, the corrugated pipe to be insulated is wrapped with super insulation, which is located in an evacuated annular gap between two corrugated pipes. In order to achieve the best possible insulation, contact between the outer corrugated pipe and super insulation by spacers should be avoided. From S. Yamada, T. Mito, H. Chikaraishi, S. Tana-
II hashi, S. Kitagawa, J. Ya amoto and 0. Motojima: Superconduc-II hashi, S. Kitagawa, J. Ya amoto and 0. Motojima: Superconduc-
II ting Current Feeder System for the Large Helical Device ; pre- sented at MT-14, Tampere Finnland, Jun. 11-16, 1995, B72 ist ein Superaleiter mit einem Abstandshalter, bestehend aus vier ineinander verflochtenen Schläuchen, bekannt, der um die Superisolation gewickelt wird, um das innere Wellrohr im äußeren zu zentrieren und einen Kontakt zwischen Superisolation und äußerem Wellrohr zu vermeiden. Ein wesentlicher Nachteil dieser Anordnung besteht darin, daß der thermische Widerstand der Superisolation erheblich durch die Aufnahme der radialen Druckbelastung über den Abstandshalter vermindert wird. Bei starren Leitungen wird die Superisolation nach relativ großen Abständen für Abstützungen zwischen innerem und äußerem Rohr unterbrochen. Die Qualität der Superisolation wird somit nicht durch radiale Belastung beeinträchtigt und die relativ große Wärmeübertragung an den Stützstellen wird durch die großen Abstände der Stützstellen in Bezug auf den übertragenen Wärme- β&ΗBLAπ (REGEL 26)
ström pro Längeneinheit gering gehalten. Aufgrund von möglichen Krümmungen ist man bei flexiblen Leitungen auf entsprechend kürzere Abstände der Abstützungen in Abhängigkeit vom Mindestbiegeradius der Leitung angewiesenII ting Current Feeder System for the Large Helical Device; presented at MT-14, Tampere Finland, Jun. 11-16, 1995, B72 is known a superconductor with a spacer, consisting of four intertwined tubes, which is wrapped around the superinsulation to the inner corrugated tube in the outer center and avoid contact between super insulation and outer corrugated pipe. A major disadvantage of this arrangement is that the thermal resistance of the superinsulation is considerably reduced by the radial pressure being taken up by the spacer. With rigid cables, the superinsulation is interrupted after relatively large distances for supports between the inner and outer pipe. The quality of the super insulation is therefore not affected by radial loads and the relatively large heat transfer at the support points is affected by the large distances between the support points in relation to the heat transferred. flow kept low per unit length. Due to possible curvatures, flexible lines are dependent on shorter distances between the supports depending on the minimum bending radius of the line
Aufgabe der Erfindung ist es, einen thermischen Isolationsaufbau mit hohem Wärmewiderstand für flexible Leitungen bereitzustellen.The object of the invention is to provide a thermal insulation structure with high thermal resistance for flexible lines.
Gelöst wird diese Aufgabe durch die Merkmale des Patentanspruches 1. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung.This object is achieved by the features of claim 1. The subclaims describe advantageous embodiments of the invention.
Die Erfindung erzielt für flexible Leitungen eine Trennung von Isolation und Stützsystem in so kurzen Abständen, wie es für die Zentrierung des Wellrohres bei Einhaltung des Mindestbiegeradius nötig ist, wobei der Wärmeleitungsanteil durch Aufteilung der Querabstützungen zwischen innerem und äußerem Wellrohr mittels einer Wendel und Versetzung der Querabstützungen zwischen innerem Wellrohr und Wendel und der Querabstützungen zwischen Wendel und äußerem Wellrohr in Leitungsrichtung klein gehalten wird.For flexible lines, the invention achieves a separation of insulation and support system at such short intervals as is necessary for centering the corrugated pipe while maintaining the minimum bending radius, the heat conduction component being divided by dividing the cross supports between the inner and outer corrugated pipe by means of a helix and displacing the cross supports between the inner corrugated pipe and the spiral and the cross supports between the spiral and the outer corrugated pipe is kept small in the direction of the line.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles mit Hilfe der Figuren 1 bis 4 näher erläutert.The invention is explained in more detail below using an exemplary embodiment with the aid of FIGS. 1 to 4.
Hierbei zeigt Figur 1 eine isometrische Darstellung des Isolationsaufbaues mit dem Stützsystem zwischen den Wellrohren mit Stufenschnitten, die Figur 2 eine Querschnittszeichnung des I- solationsaufbaues mit dem Stützsystem, die Figur 3 einen Längsschnitt des Isolationsaufbaues mit dem Stützsystem zur Verdeutlichung der Abstützungen zwischen den Wellrohren durch das Stützsystem und die Figur 4 verschiedene Querschnittsformen der ringförmigen Abstützungen.1 shows an isometric illustration of the insulation structure with the support system between the corrugated pipes with step sections, FIG. 2 shows a cross-sectional drawing of the insulation structure with the support system, and FIG. 3 shows a longitudinal section of the insulation structure with the support system to clarify the supports between the corrugated pipes by the Support system and the figure 4 different cross-sectional shapes of the annular supports.
ERJWZBLAπ (REGEL 26)
Die Erfindung besteht im wesentlichen aus der Aufteilung der Querabstützungen zwischen innerem und äußerem Wellrohr mittels einer Wendel, so daß ringförmige Abstandshalter zwischen innerem Wellrohr und Wendel versetzt zu ringförmigen Abstandshal- tern zwischen Wendel und äußerem Wellrohr angeordnet werden, wobei die Supersisolation sowohl um die Wendel als auch um das innere Wellrohr gewickelt werden kann und nur durch die Querabstützungen unterbrochen wird. Die Abstände der Querabstützungen richten sich im wesentlichen nach dem minimal einzuhaltenden Biegeradius der Gesamtanordnung, der radial auftretenden Belastung, dem Unterschied der Dicke der Superisolationsschicht und der Dicke des Querschnittes der ringförmigen AbStützungen und der Steifigkeit der Wendel 1.ERJWZBLAπ (RULE 26) The invention essentially consists of the division of the cross supports between the inner and outer corrugated tube by means of a helix, so that annular spacers between the inner corrugated tube and helix are arranged offset to annular spacers between the helix and the outer corrugated tube, the super insulation both around the helix and can also be wrapped around the inner corrugated pipe and is only interrupted by the cross supports. The spacing of the cross supports essentially depends on the minimum bending radius of the overall arrangement, the radially occurring load, the difference in the thickness of the super insulation layer and the thickness of the cross section of the annular supports and the rigidity of the helix 1.
Das Stützsystem wird isometrisch in der Figur 1 dargestellt. Von links nach rechts sind die einzelnen konzentrischen Schichten, wie sie aufeinanderfolgen dargestellt. Links sieht man das innere Wellrohr 5. Diesem folgt nach außen ein konventioneller Abstandshalter 4, der aus einem genopten Band bestehen kann, welches schraubenförmig um das innere Wellrohr gewickelt wird, wie in Figur 1 dargestellt oder der aus mehreren ineinander verflochtenen Hohlschläuchen bestehen kann, die e- benfalls schraubenförmig um das innere Wellrohr gewickelt werden. Als nächstes folgt eine Wendel 1, bei der sich die Wendelgänge in Leitungsrichtung nicht berühren sollten. Der Drehsinn dieser Wendel ist gegensinnig zum Drehsinn des konventionellen Abstandshalters 4 (Noppenband) , um eine leichtere Evakuierung zu ermöglichen. Um dies auch bei Einhaltung des Min- destbiegeradius zu gewährleisten können auch noppenartige Abstandshalter (hier nicht dargestellt) an einer Seite der Wendel 1 angebracht werden. Um diese Wendel 1 wird die erste Schicht Superisolation 3 gewickelt, die in Leitungsrichtung von ringförmigen Abstandshaltern 2 unterbrochen wird, welche in gleichbleibenden Abständen ebenfalls um die innere Wendel 1 angeordnet sind. Dann folgt eine zweite Wendel 1, die durchThe support system is shown isometrically in FIG. 1. From left to right, the individual concentric layers are shown as they follow each other. On the left you can see the inner corrugated tube 5. This is followed on the outside by a conventional spacer 4, which can consist of a knotted tape, which is wound helically around the inner corrugated tube, as shown in FIG. 1, or which can consist of several interwoven hollow tubes, which also wound helically around the inner corrugated tube. Next comes a helix 1, in which the helix paths in the line direction should not touch. The direction of rotation of this helix is opposite to the direction of rotation of the conventional spacer 4 (nub band) in order to enable easier evacuation. In order to ensure this even if the minimum bending radius is observed, knob-like spacers (not shown here) can also be attached to one side of the helix 1. The first layer of superinsulation 3 is wound around this coil 1, which is interrupted in the direction of conduction by annular spacers 2, which are likewise arranged at constant intervals around the inner coil 1. Then follows a second coil 1, which by
ERSAΓZBLÄΓT (REGEL 26)
die ersten ringförmigen Abstandshalter 2 zentriert wird. Der Abstand zwischen innerer und äußerer Wendel 1 und somit die Querschnittsdicke der ringförmigen Abstandhalter 2 sollte so groß sein, daß eine Berührung der inneren Schicht Supersisolation 3 mit der äußeren Wendel 1 auch bei Einhaltung des Mindestbiegeradius der Gesamtanordnung vermieden wird. Die äußere Wendel 1 wird wiederum mit einer mehrlagigen Schicht Superisolation 3 umwickelt, die in Leitungsrichtung von ringförmigen Abstandshaltern 2 unterbrochen wird, welche in gleichbleibenden Abständen ebenfalls um die äußere Wendel 1 angeordnet sind. Hierbei ist besonders darauf zu achten, daß die inneren ringförmigen Abstandshalter 2 in Leitungsrichtung versetzt zu den äußeren ringförmigen Abstandshaltern angeordnet sind. Dieser Anordnung umgibt das äußere Wellrohr 6, welches üblicherweise noch mit einem PE-Schutzmantel umgeben wird. Der Abstand zwischen äußerer Wendel 1 und äußerem Wellrohr 6 und somit die Querschnittsdicke der ringförmigen Abstandhalter 2 sollte so groß sein, daß eine Berührung der äußeren Schicht Supersisolation 3 mit der äußeren Wendel 1 auch bei Einhaltung des Mindestbiegeradius der Gesamtanordnung vermieden wird.ERSAΓZBLÄΓT (RULE 26) the first annular spacer 2 is centered. The distance between the inner and outer helix 1 and thus the cross-sectional thickness of the annular spacers 2 should be so large that contact of the inner layer of super insulation 3 with the outer helix 1 is avoided even if the minimum bending radius of the overall arrangement is observed. The outer coil 1 is in turn wrapped with a multi-layer layer of superinsulation 3, which is interrupted in the direction of conduction by annular spacers 2, which are likewise arranged around the outer coil 1 at constant intervals. It is particularly important to ensure that the inner annular spacers 2 are arranged offset in the line direction from the outer annular spacers. This arrangement surrounds the outer corrugated tube 6, which is usually still surrounded by a PE protective jacket. The distance between the outer coil 1 and the outer corrugated tube 6 and thus the cross-sectional thickness of the annular spacers 2 should be so large that contact of the outer layer of super insulation 3 with the outer coil 1 is avoided even if the minimum bending radius of the overall arrangement is observed.
Figur 2 zeigt einen Querschnitt (senkrecht zur Symmetrieachse) durch ein Stützsystem, wie es in Figur 1 dargestellt ist. Die ringförmigen Abstandshalter sind hierbei nicht eingezeichnet.Figure 2 shows a cross section (perpendicular to the axis of symmetry) through a support system, as shown in Figure 1. The annular spacers are not shown here.
Figur 3 zeigt einen Längsschnitt durch den Isolationsaufbau, wie er in Figur 1 dargestellt ist. Die Symmetrieachse ist als Strich-Punkt-Linie dargestellt. Durch die ringförmigen Abstandshalter 2 und das genopte Band 4 werden die Isolationsschichten auf konzentrischem Abstand gehalten.Figure 3 shows a longitudinal section through the insulation structure, as shown in Figure 1. The axis of symmetry is shown as a dash-dot line. The insulating layers are kept at a concentric distance by means of the annular spacers 2 and the nubbed band 4.
Figur 4 zeigt verschiedene Querschnittsformen für ringförmige Abstandshalter. Fig. 4a ist ein ringförmiger Abstandshalter 2 aus einem dünnwandigen Schlauch, der zur Stabilisierung mit I-Figure 4 shows various cross-sectional shapes for annular spacers. 4a is an annular spacer 2 made of a thin-walled hose, which for stabilization with I-
ERSATZB π (REGEL 26)
solationsmaterial ausgefüllt wird, oder aus einem Schlauch mit einer Wanddicke, die eine ausreichende Stützfunktion gewährleistet, wobei dieser Schlauch auch gelöchert sein kann, um einen niedrigen Strömungswiderstand bei der Evakuierung zu gewährleisten. Bei Fig. 4b besteht der Abstandshalter aus drei zusammengepackten Schläuchen, die wiederum dünnwandig und mit Isolationsmaterial gefüllt sind bzw. eine ausreichende Wanddicke zur Übernahme der Stützfunktion besitzen und auch gelöchert sein können. Fig. 4c zeigt einen Ring mit Doppel-T- Profil, der ebenfalls gelöchert sein kann, um einen niedrigen Strömungswiderstand bei der Evakuierung zu gewährleisten.REPLACEMENT B π (RULE 26) solations material is filled, or from a hose with a wall thickness that ensures a sufficient support function, which hose can also be perforated to ensure a low flow resistance during evacuation. In Fig. 4b, the spacer consists of three packed tubes, which in turn are thin-walled and filled with insulation material or have a sufficient wall thickness to take over the support function and can also be perforated. Fig. 4c shows a ring with a double T profile, which can also be perforated to ensure a low flow resistance during evacuation.
ERSAΓZBLAΠ (REGEL 26)
ERSAΓZBLAΠ (RULE 26)
Claims
1. Thermischer Isolationsaufbau in einem evakuierbaren Ringspalt zwischen zwei flexiblen Wellrohren (5, 6) bestehend aus a) mindestens einer zwischen den flexiblen Wellrohren (5, 6) konzentrisch angeordneten Wendel (1) , die durch ringförmige Abstandshalter (2), gegen die beiden Wellrohre (5, 6) abgestutzt wird und b) zwei Schichten Superisolation (3) zwischen den ringförmigen Abstandshaltern (2) die um das innere Wellrohr beziehungsweise um die Wendel (1) gewickelt sind, wobei die innen liegenden ringförmigen Abstandshalter (2) gegenüber den außen liegenden ringförmigen Abstandshaltern (2) versetzt angeordnet sind.1. Thermal insulation structure in an evacuable annular gap between two flexible corrugated pipes (5, 6) consisting of a) at least one between the flexible corrugated pipes (5, 6) concentrically arranged coil (1) by annular spacers (2) against the two Corrugated tubes (5, 6) is supported and b) two layers of super insulation (3) between the annular spacers (2) which are wound around the inner corrugated tube or around the coil (1), the inner annular spacers (2) being opposite external annular spacers (2) are arranged offset.
2. Thermischer Isolationsaufbau nach Anspruch 1, gekennzeichnet durch eine weitere Wendel (1) zwischen innerem Wellrohr2. Thermal insulation structure according to claim 1, characterized by a further coil (1) between the inner corrugated tube
(5) und der inneren Superisolationsschicht (3) mit den zugehörigen Abstandshaltern (2) .(5) and the inner super insulation layer (3) with the associated spacers (2).
3. Thermischer Isolationsaufbau nach Anspruch 1 oder 2, gekennzeichnet durch weitere Wendel (1) mit weiteren Superisolationsschichten (3) mit dazugehörigen ringförmigen Abstandshaltern (2), wobei sich Wendel (1) und Superisolation (3) abwechseln.3. Thermal insulation structure according to claim 1 or 2, characterized by further helix (1) with further super insulation layers (3) with associated annular spacers (2), the helix (1) and super insulation (3) alternating.
4. Thermischer Isolationsaufbau nach Anspruch 1, 2 oder 3, gekennzeichnet durch einen konventionellen Abstandshalter (4) direkt auf dem inneren Wellrohr (5).4. Thermal insulation structure according to claim 1, 2 or 3, characterized by a conventional spacer (4) directly on the inner corrugated tube (5).
5. Thermischer Isolationsaufbau nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Wendel (1) mit noppenartigen Abstandshaltern versehen sind, wodurch der Warmelei- tungswiderstand bei Berührung benachbarter Wendelgange er-5. Thermal insulation structure according to one of claims 1 to 4, characterized in that the helix (1) are provided with nub-like spacers, whereby the heat conduction resistance when touching adjacent helical flights he
ERSAΓZBUΓT (REGEL 26) höht wird .ERSAΓZBUΓT (RULE 26) is increased.
6. Thermischer Isolationsaufbau nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die ringförmigen Abstandshalter (2) aus einem dünnwandigen Schlauch bestehen, der zur Stabilisierung mit Isolationsmaterial ausgefüllt wird, oder der gelocht ist.6. Thermal insulation structure according to one of claims 1 to 5, characterized in that the annular spacers (2) consist of a thin-walled hose which is filled with insulation material for stabilization, or which is perforated.
7. Thermischer Isolationsaufbau nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die ringförmigen Abstandshalter (2) aus drei zusammengepackten Schläuchen besteht.7. Thermal insulation structure according to one of claims 1 to 5, characterized in that the annular spacers (2) consists of three packed hoses.
8. Thermischer Isolationsaufbau nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die ringförmigen Abstandshalter (2) ein Doppel-T-Profil aufweisen.8. Thermal insulation structure according to one of claims 1 to 5, characterized in that the annular spacers (2) have a double-T profile.
ERSAΓZBLAΠ (REGEL 26) ERSAΓZBLAΠ (RULE 26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1999139405 DE19939405C1 (en) | 1999-08-19 | 1999-08-19 | Thermic insulation structure is in evacuative ring gap between two flexible corrugated tubes and comprises at least one spiral concentrically arranged between flexible corrugated tubes |
DE19939405.9 | 1999-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001014783A1 true WO2001014783A1 (en) | 2001-03-01 |
Family
ID=7918944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2000/007016 WO2001014783A1 (en) | 1999-08-19 | 2000-07-21 | Thermal insulation structure |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19939405C1 (en) |
WO (1) | WO2001014783A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10060554A1 (en) * | 2000-12-06 | 2002-06-20 | Kraftanlagen Nukleartechnik Gm | Thermal shield for liquid helium supply systems, especially for particle accelerator systems |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3473575A (en) * | 1966-06-01 | 1969-10-21 | Kabel Metallwerke Ghh | Thermally insulated pipe |
US3565118A (en) * | 1968-07-24 | 1971-02-23 | Thornton Stearns | Thermal insulation for fluid storage containers |
DE3338465A1 (en) * | 1983-10-22 | 1985-05-02 | kabelmetal electro GmbH, 3000 Hannover | Heat-insulated pipeline |
US4570678A (en) * | 1983-04-25 | 1986-02-18 | Kabelmetal Electro Gmbh | Conduit system for transporting low temperature fluids |
US4570679A (en) * | 1983-09-26 | 1986-02-18 | Kabelmetal Electro Gmbh | Conduction of low temperature fluid |
-
1999
- 1999-08-19 DE DE1999139405 patent/DE19939405C1/en not_active Expired - Fee Related
-
2000
- 2000-07-21 WO PCT/EP2000/007016 patent/WO2001014783A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3473575A (en) * | 1966-06-01 | 1969-10-21 | Kabel Metallwerke Ghh | Thermally insulated pipe |
US3565118A (en) * | 1968-07-24 | 1971-02-23 | Thornton Stearns | Thermal insulation for fluid storage containers |
US4570678A (en) * | 1983-04-25 | 1986-02-18 | Kabelmetal Electro Gmbh | Conduit system for transporting low temperature fluids |
US4570679A (en) * | 1983-09-26 | 1986-02-18 | Kabelmetal Electro Gmbh | Conduction of low temperature fluid |
DE3338465A1 (en) * | 1983-10-22 | 1985-05-02 | kabelmetal electro GmbH, 3000 Hannover | Heat-insulated pipeline |
Non-Patent Citations (1)
Title |
---|
H LAEGER ET AL: "Long flexible transfer lines for gaseous and liquid helium", CRYOGENICS,GB,IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD, vol. 18, no. 12, December 1978 (1978-12-01), pages 659 - 662, XP002124084, ISSN: 0011-2275 * |
Also Published As
Publication number | Publication date |
---|---|
DE19939405C1 (en) | 2000-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1901069A1 (en) | Coaxial multiple pipe arrangement | |
DE3234476C2 (en) | ||
EP0952382B1 (en) | Flexible conduit | |
DE1936609A1 (en) | Insulated container | |
DE19846587C1 (en) | Supporting system for superisolation in annular gap between flexible corrugated pipes has cylindrical rod frames between superisolation and inner and outer corrugated pipes | |
DE7927533U1 (en) | TRANSPORT LINE FOR DEEP COLD AND / OR LIQUID GASES | |
DE1813397A1 (en) | Arrangement for holding one or more superconductive conductor strings inside a deeply cooled cable | |
EP2541560A1 (en) | Superconductor cable | |
EP2146125B1 (en) | Flexible conduit pipe | |
EP1363062B1 (en) | Conduit for the transport of cryogenic fluids | |
EP1480231B1 (en) | Manufacturing method of a superconducting cable | |
DE2541792C2 (en) | Electric low-temperature cable or pipe arrangement for the transmission of deep-frozen liquids or gases | |
EP1720176B1 (en) | Superconducting cable | |
EP0866259B1 (en) | Spacer for an elongated substratum | |
WO2001014783A1 (en) | Thermal insulation structure | |
EP2253878B1 (en) | Flexible conduit | |
EP3670997B1 (en) | Flexible vacuum insulated conduit | |
EP1457729A1 (en) | Spacer for an elongate substrate | |
EP1124085B1 (en) | Flexible conduit | |
DE102021133176B4 (en) | Pipeline compensator | |
AT256956B (en) | Superconducting power transmission line | |
DE1640807C2 (en) | Superconducting power transmission line | |
DE2905250A1 (en) | Coaxial heating pipe with corrugated inner and outer pipe - has flat portions in inner pipe locatable by markings on outer pipe | |
DE2825937A1 (en) | SPACING REEL FOR COAXIAL TUBE SYSTEMS | |
DE2250657C3 (en) | Cryogenic cables with several conductors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |