[go: up one dir, main page]

WO2001000745A1 - Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk - Google Patents

Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk Download PDF

Info

Publication number
WO2001000745A1
WO2001000745A1 PCT/JP2000/004245 JP0004245W WO0100745A1 WO 2001000745 A1 WO2001000745 A1 WO 2001000745A1 JP 0004245 W JP0004245 W JP 0004245W WO 0100745 A1 WO0100745 A1 WO 0100745A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
magnetic disk
titanium oxide
substrate
composition
Prior art date
Application number
PCT/JP2000/004245
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiko Miyata
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to US09/701,042 priority Critical patent/US6478837B1/en
Priority to AU57043/00A priority patent/AU5704300A/en
Publication of WO2001000745A1 publication Critical patent/WO2001000745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the present invention relates to a polishing composition for a magnetic disk substrate, and more particularly to a polishing composition for a magnetic disk substrate capable of obtaining a highly accurate magnetic disk surface suitable for flying a magnetic head with a low flying height.
  • the present invention relates to a composition and a method for producing a magnetic disk substrate.
  • Magnetic disks are widely used as a means of accessing at high speed in external storage devices such as computers and word processors.
  • a typical example of this magnetic disk is an A1 alloy substrate with NiP electrolessly plated on its surface as an original plate, and after polishing the surface of this original plate, a Cr alloy base film, a Co alloy magnetic film And a carbon protective film formed sequentially by sputtering.
  • the magnetic head flying at a high speed while flying at a predetermined height collides with the protrusion and is damaged.
  • the magnetic disk substrate has protrusions or polishing scratches, when Cr alloy base film or Co alloy magnetic film is formed, protrusions appear on the surface of those films, and defects due to polishing scratches occur.
  • the surface of the magnetic disk does not become a smooth surface with high accuracy, it is necessary to precisely polish the substrate in order to increase the accuracy of the disk surface.
  • polishing compositions which eliminate projections or reduce the height thereof as much as possible and which hardly cause polishing scratches.
  • an abrasive that uses an alumina or aluminum compound with a particle size of about 1 ⁇ as abrasive grains can be polished with such accuracy that collision of projections on a magnetic disk can be avoided at the conventional magnetic head flying height.
  • colloidal particles of silica of several tens of nm as abrasive grains have high surface accuracy. Accuracy is easy to achieve, but the polishing rate is low, so the required mass productivity is not sufficient, and if the polishing is performed for a long time, the outer peripheral portion will be polished excessively (called surface sagging).
  • the polishing composition described in Japanese Patent Application Laid-Open No. H10-112135 uses titanium oxide (titania) fine particles of sub-micron as abrasive grains, so that high surface precision and high polishing can be achieved. Speed is easy to achieve.
  • titanium oxide titanium oxide fine particles of sub-micron as abrasive grains
  • Speed is easy to achieve.
  • rutile-type titanium oxide is excellent in polishing efficiency because of its small crystal cell and dense and high in hardness, but is susceptible to polishing scratches. It is considered that the rutile type titanium oxide (rutilization ratio) is desirably 10 to 80%.
  • titanium oxide having a rutile ratio of 10 to 80% is preferable. If titanium oxide having a different crystal structure is present, the disintegration or pulverization of fine particles is uniformly performed. And the particle size distribution is difficult to sharpen accurately. As a result, micro defects such as micro pits and micro scratches are generated at a low frequency, which causes a problem that the production yield of the substrate is deteriorated.
  • the quality required of a polishing composition for an aluminum magnetic disk substrate that enables high-density magnetic recording is to achieve a high-precision disk surface that enables low flying of the head. Disclosure of the invention
  • An object of the present invention is to achieve high-density recording with low surface roughness of a magnetic disk, and no generation of fine defects such as protrusions, polishing scratches, micropits, and micro scratches, and at an economical speed.
  • An object of the present invention is to provide a polishing composition for a magnetic disk substrate that can be polished and a method for manufacturing a magnetic disk substrate.
  • titanium oxide abrasives having different crystal structures do not coexist in many cases and have a single structure as much as possible so that the particle size distribution becomes sharper during crushing and pulverization. It has been found that a high-precision surface of a magnetic disk substrate that enables low flying height of the magnetic disk can be obtained, and that not only ordinary polishing scratches but also fine defects with particularly small polishing scratches can be prevented. The present invention is based on this finding. Titanium oxide has one of these crystal structures (single crystal structure) Any crystal structure may be used as long as the content is 90% or more.
  • the present invention comprises at least water, titanium oxide fine particles, and a polishing accelerator, wherein the titanium oxide has a single crystal structure of titanium oxide in an amount of 90 to 100%. It is.
  • the method for producing a magnetic disk substrate of the present invention includes a step of supplying the polishing composition.
  • the polishing composition of the present invention can be used for a substrate for high recording density (typically, 1 GbitZnch) represented by a magnetic disk for a magnetic head utilizing the magnetoresistance (MR) effect.
  • a substrate for high recording density typically, 1 GbitZnch
  • MR magnetoresistance
  • Two or more recording density having a) can be advantageously applied to, but can be effectively applied from the standpoint of improving reliability with respect to the magnetic disk to have a less recording density.
  • the depth of polishing scratches which has been regarded as a problem on a magnetic disk substrate, is about 10 nm or more, but especially on a low-floating type hard disk substrate aimed at by the present invention.
  • the presence of minute polishing flaws with a depth of about 5 nm that was not observed also causes errors in the magnetic properties and is judged to be outside the permissible range for practical use.
  • the titanium oxide fine particles contained as an abrasive in the polishing composition of the present invention have a single crystal structure of 90 to 100%. That is, 90 to 100% of any one of anatase type, rutile type, and brookite type titanium oxide is used. The remaining less than 10% may have another crystal structure.
  • anatase-type titanium oxide is 90% or more, and the remainder is less than 10% of rutile-type and / or brookite-type titanium oxide. If titanium oxide having a single crystal structure is less than 90%, that is, 10% or more of other crystal structures coexist, the particle size distribution becomes difficult to be sharp.
  • the crystal structure of titanium oxide can be identified by X-ray diffraction (using CuKct rays) as follows.
  • the ratio of rutile titanium oxide can be calculated from the peak intensity ratio of the X-ray diffraction between the rutile (1 10) plane and the anatase (101) plane.
  • the anatase (101) plane overlaps with the blue kite (1 20) plane
  • the blue kite (1 2 1) plane (relative strength 90%) does not overlap with all the anatase planes.
  • the intensity of the blue kite (120) plane (100Z90 times) can be determined from the peak intensity and the peak intensity of the anatase (101) plane can be used to determine the content ratio of both.
  • the method for producing titanium oxide is not particularly limited, and the ilmenite or titanium slag is reacted with sulfuric acid, and the sulfuric acid method comprising the steps of dissolution, hydrolysis, and calcination, or rutile ore is heated red heat.
  • a chlorine method is used in which titanium gas is vaporized as chloride by passing chlorine gas through a chlorine gas furnace heated to about 800 ° C, and this is directly pyrolyzed from titanium tetrachloride obtained by distillation. It is a target.
  • the anatase type is formed and stable at the lowest temperature.
  • a bullish kite type at 816 to 1040 ° C is obtained, and a rutile-type structure is obtained at higher temperatures (Ichititanium acid, 3rd edition, RIKEN, p. 5 14-5 1 5).
  • titanium oxide having a single crystal structure of 90% or more is commercially available, it can be used in the present invention by adjusting the particle size by grinding or removing coarse particles as necessary.
  • the particle size distribution of the secondary particles is such that the cumulative particle size is 90% by weight and the particle size is D 90 (the particle size of D 90 or less is 9 ° weight /.) And the cumulative value is 10
  • the ratio D 90ZD 10 with respect to the weight% of the particle diameter 1310 (the particle diameter of D 10 or less is 10 weight./.) Is preferably within 3 and more preferably within 2.7. The smaller the ratio, the sharper the particle size distribution.
  • the secondary particles preferably have an average particle diameter of 0.1 to 1.0 / xm.
  • the average particle diameter of the secondary particles is a value measured using a laser Dobler-frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by Honeywell 11).
  • the polishing rate of titanium oxide fine particles largely depends on the secondary particle diameter, and as the secondary particle diameter increases, the polishing rate increases, but polishing scratches are more likely to occur, which may cause errors in magnetic properties. However, it is difficult to suppress the polishing scratches to a practically acceptable level as a low-floating hard disk substrate. Therefore, oxidation
  • the average particle diameter of the secondary particles of tanium is preferably 1.0 ⁇ or less.
  • the average particle diameter of the secondary particles is preferably 0.1 ⁇ or more from the viewpoint of increasing the polishing rate and reducing the surface sag.
  • the average particle size of the secondary particles is within the above range and the primary particles are small. Since the polishing rate is high and polishing scratches can be prevented, the average primary particle diameter (average of major and minor diameters) determined from SEM photographs is in the range of 0.01 to 0.6 m. Is more preferred.
  • the concentration of titanium oxide in the polishing composition of the present invention when the concentration is low, the polishing rate is low.
  • the polishing rate increases as the concentration increases, but the weight is 15 weight. Beyond this, the rate of increase in polishing rate slows down. In consideration of economy, the upper limit is practically 20% by weight. Therefore, the concentration of titanium oxide in the polishing composition is preferably in the range of 2 to 20% by weight.
  • titanium oxide has a mechanical polishing action.
  • a polishing accelerator which chemically acts on the substrate is added.
  • the polishing accelerator aluminum nitrate (A 1 (N_ ⁇ 3) 3), aluminum sulfate (A 1 2 (S0 4) 3), aluminum oxalate (A 1 2 (C 2
  • polishing accelerators may be used alone or in combination of two or more.
  • the polishing accelerator chemically acts on the substrate such as a corrosive action, and the mechanical polishing action of titanium oxide is added to the chemical action, thereby greatly improving the polishing efficiency. Further, addition of a water-soluble oxidizing agent in addition to the polishing accelerator is also effective in enhancing the polishing performance.
  • the addition amount of the polishing accelerator is 0.1 to 20% by weight, preferably 1 to 15% by weight. If the addition amount of the polishing accelerator is less than 0.1% by weight, the polishing rate is reduced, and the polishing time required for polishing a predetermined amount is prolonged, thereby increasing the surface sag.
  • the polishing rate increases up to 15% by weight, but the polishing rate does not increase even when the addition amount exceeds 15% by weight. Therefore, even if added in excess of 15% by weight, there is no adverse effect on the polished surface, but considering economics, 20% by weight is determined to be the upper limit.
  • the above-mentioned component concentrations are the concentrations when polishing the magnetic disk substrate.
  • a polishing composition When a polishing composition is manufactured and transported, it is more efficient to use a composition II which is thicker than the above concentration, and dilute it to the above concentration before use.
  • the polishing composition for a magnetic disk substrate of the present invention comprises the aforementioned anatase-type titanium oxide 910%, rutile-type titanium oxide 910%, or brookite-type titanium oxide 910%.
  • % of titanium oxide a polishing accelerator and water, and a water-soluble oxidizing agent is added if necessary.
  • a surfactant, a preservative and an acid or alkali for adjusting pH are added. It can be accompanied by calories.
  • an acid salt of aluminum such as aluminum nitrate
  • the preferred pH range is 25. If the pH is less than 2, corrosion of the polishing machine or the like will occur, and if it exceeds 5, the polishing efficiency will be impaired.
  • the polishing composition of the present invention can be prepared by suspending titanium oxide having the above crystal structure in water and adding a polishing accelerator or the like to water, similarly to the conventional polishing composition.
  • the magnetic disk substrate to which the polishing composition of the present invention is applied is not particularly limited, the composition of the present invention is applied to an aluminum substrate, particularly, for example, an aluminum substrate in which NiP is electrolessly plated.
  • the mechanical polishing action by titanium oxide and the chemical polishing action by the polishing accelerator are combined, and a high-quality polished surface can be industrially advantageously obtained.
  • the polishing method is generally a method in which a polishing pad used for a slurry-like abrasive is rubbed on a magnetic disk original plate, and the pad or the original plate is rotated while supplying slurry between the pad and the original plate.
  • a magnetic disk made from a substrate polished by the polishing composition of the present invention is a magnetic disk.
  • the frequency of occurrence of minute defects such as pit pits and micro scratches is extremely low, and the surface roughness (Ra) is about 3-5A, which is excellent in smoothness.
  • Titanium Co., Ltd. Showa Titanium Co., Ltd.'s high-purity titanium oxide, super titania F110 (98% by weight of rutile titanium oxide, anatase-type titanium oxide double weight 0 /.) And Supertitania F-4 (anatase-type titanium oxide 95 (Weight: rutile-type titanium oxide 5% by weight) was pulverized with a medium stirring mill to remove a small amount of coarse particles to obtain titanium oxide having an average particle diameter of 0.3 ⁇ .
  • the crystal structure and content of titanium oxide were measured using RAD-2 2 manufactured by Rigaku Corporation. These are shown in Table 1 as Titania II and Titania II, respectively.
  • the particle diameter was measured with a laser Doppler frequency analysis type particle size distribution analyzer, Microtrack UPA150 (manufactured by Honeywell). Table 1 shows the measured particle size.
  • Polishing pad suede type (Polytex DG, Dale mouth) Lower platen rotation speed 60 r pm
  • the depths of the polishing scratches and polishing pits were determined by three-dimensional mode analysis using a stylus-type surface analyzer P-12 (manufactured by TENCOR).
  • Table 2 shows the evaluation results of the polishing characteristics.
  • the polishing flaw A in Table 2 has a polishing flaw depth of 5 nm or less, and the pit A has a pit depth of 5 nm or less.
  • Polishing scratch B has a polishing scratch depth of 5 to 10 nm, and pit B has a pit depth of 5 to 10 nm. No abrasive scratch depth of more than 10 nm or pit depth of more than 10 nm occurred in any of the examples and comparative examples.
  • a polished surface having a low surface roughness and a very low frequency of occurrence of minute defects such as micropits and microscratch can be obtained, and at a high speed.
  • a magnetic disk using a polished disk is useful as a low-floating type hard disk, and enables high-density recording.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

A composition for polishing a substrate for a magnetic disk, which comprises water, fine titanium oxide particles and a polishing promoter, characterized in that 90 to 100 % of the titanium oxide constituting said particles has the same crystal structure; and a method for producing a substrate for a magnetic disk using the composition. The composition can be used for polishing a substrate for a magnetic disk, at an economical polishing rate, so as to have a reduced surface roughness and to become free from the occurrence of fine defects such as projections, scraches by abrasion and micropits.

Description

明 細 書 磁気ディスク用基板研磨用組成物及び磁気ディスク用基板の製造方法 技術分野  Description: Polishing composition for magnetic disk substrate and method for manufacturing magnetic disk substrate
本発明は磁気ディスク用基板の研磨用組成物に関し、 さらに詳しくは、 磁気へ ッドが低浮上量で飛行するのに適した精度の高い磁気ディスク表面が得られる磁 気ディスク用基板の研磨用組成物及び磁気ディスク用基板の製造方法に関する。 背景技術  The present invention relates to a polishing composition for a magnetic disk substrate, and more particularly to a polishing composition for a magnetic disk substrate capable of obtaining a highly accurate magnetic disk surface suitable for flying a magnetic head with a low flying height. The present invention relates to a composition and a method for producing a magnetic disk substrate. Background art
コンピュータ一やワードプロセッサ一の外部記憶装置の中で高速でァクセスで きる手段として磁気ディスク (メモリーハードディスク) が広く使われている。 この磁気ディスクの代表的な一例は、 A 1合金基板の表面に N i Pを無電解メッ キしたものを原板とし、 この原板を表面研磨した後、 C r合金下地膜、 C o合金 磁性膜、 カーボン保護膜を順次スパッターで形成したものである。  Magnetic disks (memory hard disks) are widely used as a means of accessing at high speed in external storage devices such as computers and word processors. A typical example of this magnetic disk is an A1 alloy substrate with NiP electrolessly plated on its surface as an original plate, and after polishing the surface of this original plate, a Cr alloy base film, a Co alloy magnetic film And a carbon protective film formed sequentially by sputtering.
ところで、 磁気ディスク表面に磁気へッド浮上量以上の高さを有する突起が残 つていると、 所定高さにて浮上しながら高速で飛行する磁気へッドがその突起に 衝突して損傷する原因になる。 また、 磁気ディスク用基板に突起や研磨傷などが あると C r合金下地膜や C o合金磁性膜などを形成したとき、 それらの膜の表面 に突起が現われ、 また研磨傷に基づく欠陥が生じ、 磁気ディスク表面が精度の高 い平滑面にならないので、 ディスク表面の精度を上げるには基板を精密に研磨す る必要がある。  By the way, if a protrusion having a height equal to or higher than the magnetic head flying height remains on the surface of the magnetic disk, the magnetic head flying at a high speed while flying at a predetermined height collides with the protrusion and is damaged. Cause. In addition, if the magnetic disk substrate has protrusions or polishing scratches, when Cr alloy base film or Co alloy magnetic film is formed, protrusions appear on the surface of those films, and defects due to polishing scratches occur. However, since the surface of the magnetic disk does not become a smooth surface with high accuracy, it is necessary to precisely polish the substrate in order to increase the accuracy of the disk surface.
このため、 磁気ディスク用基板の研磨において、 突起物をなくし、 またはその 高さをできるだけ低くし、 かつ研磨傷が生じ難い研磨用組成物として多くのもの が提案されてきた。 例えば、 粒径 1 μ ιη前後のアルミナまたはアルミニウム化合 物を砥粒として使用するものは、 従来の磁気へッド浮上量において磁気ディスク の突起の衝突を回避できる程度の精度での研磨はできるが、 最近顕著になってき た記録密度向上において求められている高いレベルの表面精度を達成できていな レ、 一方、 数十 n mのシリカのコロイ ド粒子を砥粒として使用するものは高い面 精度は達成し易いが研磨速度が遅いので求められている量産性が十分でないし、 長時間の研磨を行うと外周部が余分に研磨される (面ダレといわれる) 問題が生 じる。 Therefore, in polishing a magnetic disk substrate, many polishing compositions have been proposed as polishing compositions which eliminate projections or reduce the height thereof as much as possible and which hardly cause polishing scratches. For example, an abrasive that uses an alumina or aluminum compound with a particle size of about 1 μιη as abrasive grains can be polished with such accuracy that collision of projections on a magnetic disk can be avoided at the conventional magnetic head flying height. However, it has not been possible to achieve the high level of surface accuracy required for the increase in recording density, which has recently become remarkable.On the other hand, those using colloidal particles of silica of several tens of nm as abrasive grains have high surface accuracy. Accuracy is easy to achieve, but the polishing rate is low, so the required mass productivity is not sufficient, and if the polishing is performed for a long time, the outer peripheral portion will be polished excessively (called surface sagging).
これに対し、 特開平 1 0— 1 2 1 0 3 5号公報に記載の研磨用組成物はサブミ クロンの酸化チタニウム (チタニア) 微粒子を砥粒として使用しているので、 高 い面精度、 研磨速度は達成し易い。 この特許の組成物ではルチル型の酸化チタ二 ゥムは結晶セルが小さく緻密で硬度が高いので、 研磨能率に優れているが、 研磨 傷が入り易くなるので、 全酸ィ匕チタニウム中に占めるルチル型酸化チタニウム (ルチル化率) は 1 0〜 8 0 %が望ましいとされている。  On the other hand, the polishing composition described in Japanese Patent Application Laid-Open No. H10-112135 uses titanium oxide (titania) fine particles of sub-micron as abrasive grains, so that high surface precision and high polishing can be achieved. Speed is easy to achieve. In the composition of this patent, rutile-type titanium oxide is excellent in polishing efficiency because of its small crystal cell and dense and high in hardness, but is susceptible to polishing scratches. It is considered that the rutile type titanium oxide (rutilization ratio) is desirably 10 to 80%.
上記特許ではルチル化率が 1 0〜8 0 %の酸化チタンが好ましいとされている 、 結晶構造の異なる酸化チタニウムが共存しているとそれを微粒子にする際の 解砕あるいは粉砕が均一に行われず、 粒度分布が精度よくシャープになりにくい。 その結果マイクロピット、 マイクロスクラッチ等微細な欠陥が頻度は低いが発生 するため、 基板の生産収率を悪化させるという問題が生じる。  According to the above patent, titanium oxide having a rutile ratio of 10 to 80% is preferable.If titanium oxide having a different crystal structure is present, the disintegration or pulverization of fine particles is uniformly performed. And the particle size distribution is difficult to sharpen accurately. As a result, micro defects such as micro pits and micro scratches are generated at a low frequency, which causes a problem that the production yield of the substrate is deteriorated.
高密度磁気記録を可能とするアルミニウム磁気ディスク用基板の研磨用組成物 に要求される品質は、 へッドの低浮上を可能とする高精度ディスク面の達成であ る。 発明の開示  The quality required of a polishing composition for an aluminum magnetic disk substrate that enables high-density magnetic recording is to achieve a high-precision disk surface that enables low flying of the head. Disclosure of the invention
本発明の目的は、 磁気ディスクの表面粗さが小さく、 かつ突起、 研磨傷やマイ クロピット、 マイクロスクラッチ等微細な欠陥を発生させず、 高密度記録が達成 可能であり、 しかも経済的な速度で研磨できる磁気ディスク用基板の研磨用組成 物及び磁気ディスク用基板の製造方法を提供することにある。  It is an object of the present invention to achieve high-density recording with low surface roughness of a magnetic disk, and no generation of fine defects such as protrusions, polishing scratches, micropits, and micro scratches, and at an economical speed. An object of the present invention is to provide a polishing composition for a magnetic disk substrate that can be polished and a method for manufacturing a magnetic disk substrate.
本発明者は鋭意研究の結果、 酸化チタニウム研磨材は結晶構造の異なるものが 多く共存せず、 できるだけ単一構造とすることにより破砕、 粉砕の際、 粒度分布 がシャープとなり、 それによつてへッドの低浮上を可能とする磁気ディスク用基 板の高精度面が得られるとともに、 通常の研磨傷のみならず、 特に研磨傷の小さ い微細な欠陥の発生を防止できることを知見した。 本発明はこの知見に基づくも のである。 酸化チタニウムは、 これらのいずれかの結晶構造 (単一結晶構造) の ものが 90%以上であればいずれの結晶構造のものでもよい。 As a result of intensive studies, the present inventor has found that titanium oxide abrasives having different crystal structures do not coexist in many cases and have a single structure as much as possible so that the particle size distribution becomes sharper during crushing and pulverization. It has been found that a high-precision surface of a magnetic disk substrate that enables low flying height of the magnetic disk can be obtained, and that not only ordinary polishing scratches but also fine defects with particularly small polishing scratches can be prevented. The present invention is based on this finding. Titanium oxide has one of these crystal structures (single crystal structure) Any crystal structure may be used as long as the content is 90% or more.
即ち、 本発明は少なくとも水、 酸化チタニウム微粒子、 研磨促進剤を含み、 該 酸化チタニウムは単一結晶構造の酸化チタニウムが 90〜100%であることを 特徴とする磁気ディスク用基板の研磨用組成物である。  That is, the present invention comprises at least water, titanium oxide fine particles, and a polishing accelerator, wherein the titanium oxide has a single crystal structure of titanium oxide in an amount of 90 to 100%. It is.
また本発明の磁気ディスク用基板の製造方法は、 前記研磨用組成物を供給する 工程を含むものである。  The method for producing a magnetic disk substrate of the present invention includes a step of supplying the polishing composition.
本発明の研磨用組成物は、 例えば磁気抵抗 (MR) 効果を利用した磁気ヘッド 用磁気ディスクに代表される高記録密度用の基板 (通常、 1 Gb i tZ i n c h The polishing composition of the present invention can be used for a substrate for high recording density (typically, 1 GbitZnch) represented by a magnetic disk for a magnetic head utilizing the magnetoresistance (MR) effect.
2 以上の記録密度を有する) に有利に適用できるが、 それ以下の記録密度を有 する磁気デイスクに対しても信頼性向上という見地から効果的に応用できる。 発明を実施するための最良の形態 Two or more recording density having a) can be advantageously applied to, but can be effectively applied from the standpoint of improving reliability with respect to the magnetic disk to have a less recording density. BEST MODE FOR CARRYING OUT THE INVENTION
従来より、 磁気ディスク用基板において、 問題とされてきた研磨傷の深さは 1 0 nm程度以上のものであつたが、 特に本発明が目的とする低浮上型ハードディ スク基板においては、 従来問題視されなかった深さ 5 nm程度の微小な研磨傷の 存在も磁気特性上のェラーとなり、 実用上許容範囲外と判定される。  Conventionally, the depth of polishing scratches, which has been regarded as a problem on a magnetic disk substrate, is about 10 nm or more, but especially on a low-floating type hard disk substrate aimed at by the present invention. The presence of minute polishing flaws with a depth of about 5 nm that was not observed also causes errors in the magnetic properties and is judged to be outside the permissible range for practical use.
本発明の研磨用組成物に研磨材として含まれる酸化チタニウム微粒子は、 その 結晶構造が単一のものが 90〜100%である。 即ち、 アナターゼ型、 ルチル型 またはブル一カイ ト型の酸化チタニウムのいずれか 1つが 90〜1 00%である。 残りの 1 0%未満は他の結晶構造のものが共存してもよい。 例えばアナターゼ型 の酸化チタニウムが 90%以上で、 残りがルチル型及びノまたはブルーカイト型 の酸化チタニウムが 1 0%未満である。 単一結晶構造の酸化チタニウムが 90% 未満、 即ち、 他の結晶構造のものが 1 0%以上共存させると粒度分布がシャープ になりにくくなる。  The titanium oxide fine particles contained as an abrasive in the polishing composition of the present invention have a single crystal structure of 90 to 100%. That is, 90 to 100% of any one of anatase type, rutile type, and brookite type titanium oxide is used. The remaining less than 10% may have another crystal structure. For example, anatase-type titanium oxide is 90% or more, and the remainder is less than 10% of rutile-type and / or brookite-type titanium oxide. If titanium oxide having a single crystal structure is less than 90%, that is, 10% or more of other crystal structures coexist, the particle size distribution becomes difficult to be sharp.
酸化チタニウムの結晶構造は X線回折法 (CuKct線使用) で次のようにして 同定することができる。 ルチル型酸化チタニウムの比率はルチル (1 1 0) 面と アナターゼ (1 01) 面の X線回折のピーク強度比から計算で求められる。 アナ ターゼ (1 01) 面はブルーカイ ト (1 20) 面と重なるが、 ブルーカイ ト (1 2 1) 面 (相対強度 90%) はアナターゼの全ての面と重ならないので、 このピ ーク強度からブルーカイ ト (1 20) 面の強度 (1 00Z90倍) を求め、 これ とアナターゼ (1 01) 面のピーク強度から両者の含有比率を求めることができ る。 The crystal structure of titanium oxide can be identified by X-ray diffraction (using CuKct rays) as follows. The ratio of rutile titanium oxide can be calculated from the peak intensity ratio of the X-ray diffraction between the rutile (1 10) plane and the anatase (101) plane. Although the anatase (101) plane overlaps with the blue kite (1 20) plane, the blue kite (1 2 1) plane (relative strength 90%) does not overlap with all the anatase planes. The intensity of the blue kite (120) plane (100Z90 times) can be determined from the peak intensity and the peak intensity of the anatase (101) plane can be used to determine the content ratio of both.
酸化チタニウムの製法は、 本発明において、 特に限定されるものではなく、 ィ ルメナイトまたはチタンスラグを硫酸と反応させ、 溶解、 加水分解、 焼成の各ェ 程からなる硫酸法、 または、 ルチル鉱を赤熱脱水したのち約 800°Cに加熱した 塩ィ匕炉中で塩素ガスを通じチタンを塩化物として気化させ、 これを精溜して得た 四塩化チタンから直接熱分解によって製造する塩素法等が一般的ではある。  In the present invention, the method for producing titanium oxide is not particularly limited, and the ilmenite or titanium slag is reacted with sulfuric acid, and the sulfuric acid method comprising the steps of dissolution, hydrolysis, and calcination, or rutile ore is heated red heat. After dehydration, a chlorine method is used in which titanium gas is vaporized as chloride by passing chlorine gas through a chlorine gas furnace heated to about 800 ° C, and this is directly pyrolyzed from titanium tetrachloride obtained by distillation. It is a target.
酸化チタ二ゥムの結晶構造については、 例えば四塩化チタ二ゥムと酸素等の混 合燃焼方法で製造する気相法の場合において、 最も低温で生成し安定なのがアナ ターゼ型である。 これに熱処理を施し燃焼していくと 81 6〜1040°Cでブル 一カイト型、 それ以上の温度域ではルチル型構造の酸ィヒチタニウムが得られる (理化学辞典第 3版、 P. 5 14〜5 1 5) 。  Regarding the crystal structure of titanium oxide, for example, in the case of a gas phase method produced by a mixed combustion method of titanium tetrachloride and oxygen, the anatase type is formed and stable at the lowest temperature. When this is heat-treated and burned, a bullish kite type at 816 to 1040 ° C is obtained, and a rutile-type structure is obtained at higher temperatures (Ichititanium acid, 3rd edition, RIKEN, p. 5 14-5 1 5).
なお、 単一結晶構造が 90%以上の酸化チタニウムは市販されているので、 こ れを必要により粉砕、 粗粒子の除去等を行って粒度調整して本発明に用いること もできる。  Since titanium oxide having a single crystal structure of 90% or more is commercially available, it can be used in the present invention by adjusting the particle size by grinding or removing coarse particles as necessary.
本発明で使用される酸化チタニウムの粒度分布は二次粒子の粒度分布において、 累積 90重量%の粒子径 D 90 (D 90以下の粒子径のものが 9◦重量。/。) と累 積 10重量%の粒子径131 0 (D 10以下の粒子径のものが 1 0重量。/。) との比 D 90ZD 1 0が好ましくは 3以内、 さらに好ましくは 2. 7以内である。 この 比は小さレ、程粒度分布がシャープであることを示す。  In the particle size distribution of the titanium oxide used in the present invention, the particle size distribution of the secondary particles is such that the cumulative particle size is 90% by weight and the particle size is D 90 (the particle size of D 90 or less is 9 ° weight /.) And the cumulative value is 10 The ratio D 90ZD 10 with respect to the weight% of the particle diameter 1310 (the particle diameter of D 10 or less is 10 weight./.) Is preferably within 3 and more preferably within 2.7. The smaller the ratio, the sharper the particle size distribution.
本発明における酸化チタニウムの粒径は、 二次粒子として平均粒子径が 0. 1 〜1. 0 /xmであることが好ましい。 二次粒子の平均粒子径はレーザードッブラ —周波数解析式粒度分布測定器、 マイクロ トラック UPA1 50 (Ho n e yw e 1 1社製) により測定した値である。  As for the particle diameter of titanium oxide in the present invention, the secondary particles preferably have an average particle diameter of 0.1 to 1.0 / xm. The average particle diameter of the secondary particles is a value measured using a laser Dobler-frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by Honeywell 11).
酸化チタニウム微粒子の研磨速度は二次粒子径に依存するところが大きく、 二 次粒子径が大きくなると研磨速度は高まるが、 研磨傷が発生し易くなり、 それに よって磁気特性上のエラーが生ずる場合があり、 低浮上型ハードディスク基板と して実用上許容される程度の研磨傷に抑えることが困難となる。 従って、 酸化チ タニゥムの二次粒子の平均粒子径は 1. 0 μπι以下であることが好ましい。 一方、 研磨速度を高めること、 面ダレを低減することから二次粒子の平均粒子径は、 0. 1 μπι以上が好ましい。 The polishing rate of titanium oxide fine particles largely depends on the secondary particle diameter, and as the secondary particle diameter increases, the polishing rate increases, but polishing scratches are more likely to occur, which may cause errors in magnetic properties. However, it is difficult to suppress the polishing scratches to a practically acceptable level as a low-floating hard disk substrate. Therefore, oxidation The average particle diameter of the secondary particles of tanium is preferably 1.0 μπι or less. On the other hand, the average particle diameter of the secondary particles is preferably 0.1 μπι or more from the viewpoint of increasing the polishing rate and reducing the surface sag.
更に、 一次粒子径の大きさが大きくなつても研磨傷が発生し易くなり、 また、 二次粒子の平均粒子径が上記の範囲に入る大きさであって、 かつ一次粒子が小さ い方が研磨速度が大きく、 かつ研磨傷の発生を防ぐことができるため、 SEM写 真より求めた一次粒子径 (長短径の平均) の平均値が 0. 01〜0. 6 mの範 囲であるものがより好ましい。  Furthermore, even if the size of the primary particles is large, polishing flaws are liable to occur, and the average particle size of the secondary particles is within the above range and the primary particles are small. Since the polishing rate is high and polishing scratches can be prevented, the average primary particle diameter (average of major and minor diameters) determined from SEM photographs is in the range of 0.01 to 0.6 m. Is more preferred.
本発明の研磨用組成物中の酸化チタニウムの濃度については、 濃度が低い場合 は研磨速度が低い。 濃度が高くなるにつれて研磨速度は高くなるが、 1 5重量。ん を越えると研磨速度の上昇率は鈍化する。 経済性を加味すると実用的には 20重 量%が上限となる。 従って、 研磨用組成物中の酸化チタニウムの濃度は 2〜20 重量%の範囲であることが望ましい。  Regarding the concentration of titanium oxide in the polishing composition of the present invention, when the concentration is low, the polishing rate is low. The polishing rate increases as the concentration increases, but the weight is 15 weight. Beyond this, the rate of increase in polishing rate slows down. In consideration of economy, the upper limit is practically 20% by weight. Therefore, the concentration of titanium oxide in the polishing composition is preferably in the range of 2 to 20% by weight.
本発明の研磨用組成物にぉレ、て、 酸化チタニゥムは機械的研磨作用をなしてい るが、 さらに研磨能率を高めるため、 基板に対して化学的な作用をする研磨促進 剤を添加する。 研磨促進剤としては硝酸アルミニウム (A 1 (N〇3 ) 3 ) 、 硫酸アルミニウム (A 12 (S04 ) 3 ) 、 蓚酸アルミニウム (A 12 (C2 In the polishing composition of the present invention, titanium oxide has a mechanical polishing action. However, in order to further enhance the polishing efficiency, a polishing accelerator which chemically acts on the substrate is added. The polishing accelerator aluminum nitrate (A 1 (N_〇 3) 3), aluminum sulfate (A 1 2 (S0 4) 3), aluminum oxalate (A 1 2 (C 2
04 ) , ) , 硝酸鉄 (F e (N03 ) ) 乳酸アルミニウム (A 1 (C3 H 03 ) 3 ) 、 ダルコン酸 (C6 H1207 ) 、 リンゴ酸 (C4 Ηβ 05 ) 等が 用いられる。 これらの中でアルミニウム塩および硝酸塩が好ましく、 とりわけ硝 酸アルミニウムが好ましい。 これらの研磨促進剤は 1種もしくは 2種以上併用し てもよい。 研磨促進剤は基板に対して腐食作用等の化学的に作用し、 これに酸化 チタニウムによる機械的研磨作用が加わって研磨能率が大幅に向上する。 さらに 研磨促進剤の他に水溶性の酸化剤を加えることも研磨性能を高める上で有効であ る。 水溶性の酸化剤としては過酸化水素 (H2 02 ) 、 硝酸、 過マンガン酸力 リゥム (KMn〇4 ) 、 過塩素酸 (HC 104 ) 、 過塩素酸ソーダ (N a C 1 04 ) 、 次亜塩素酸ソーダ (Na C I O) の 1種もしくは 2種以上が用いられ る。 その濃度は高すぎても効果が増さないので 1 0重量%以下が適当である。 研磨促進剤の添加量は 0. 1〜 20重量%、 好ましくは 1〜 1 5重量%である。 研磨促進剤の添加量が 0 . 1重量%未満だと研磨速度が低下し、 所定量の研磨に 必要な研磨時間が長くなり、 それにより面ダレを増大する。 添加量を増やした場 合 1 5重量%までは研磨速度は上昇するが、 1 5重量%を越えて添加量を増やし ても研磨速度は上昇しない。 従って 1 5重量%を越えて添加しても研磨面に悪影 響は出ないが、 経済性を考慮すると 2 0重量%が上限値と判断される。 0 4)), iron nitrate (F e (N0 3)) of aluminum lactate (A 1 (C 3 H 0 3) 3), Darukon acid (C 6 H 12 0 7) , malic acid (C 4 Eta beta 0 5 ) etc. are used. Of these, aluminum salts and nitrates are preferred, and aluminum nitrate is particularly preferred. These polishing accelerators may be used alone or in combination of two or more. The polishing accelerator chemically acts on the substrate such as a corrosive action, and the mechanical polishing action of titanium oxide is added to the chemical action, thereby greatly improving the polishing efficiency. Further, addition of a water-soluble oxidizing agent in addition to the polishing accelerator is also effective in enhancing the polishing performance. Hydrogen peroxide as the water-soluble oxidizing agent (H 2 0 2), nitric acid, permanganic acid strength Riumu (KMn_〇 4), perchloric acid (HC 10 4), perchloric acid sodium (N a C 1 0 4 ), One or more of sodium hypochlorite (Na CIO) is used. Since the effect is not increased even if the concentration is too high, the concentration is suitably 10% by weight or less. The addition amount of the polishing accelerator is 0.1 to 20% by weight, preferably 1 to 15% by weight. If the addition amount of the polishing accelerator is less than 0.1% by weight, the polishing rate is reduced, and the polishing time required for polishing a predetermined amount is prolonged, thereby increasing the surface sag. When the addition amount is increased, the polishing rate increases up to 15% by weight, but the polishing rate does not increase even when the addition amount exceeds 15% by weight. Therefore, even if added in excess of 15% by weight, there is no adverse effect on the polished surface, but considering economics, 20% by weight is determined to be the upper limit.
なお、 上記の各成分濃度は磁気ディスク用基板を研磨する際の濃度である。 研 磨用組成物を製造し、 運搬等する場合は上記濃度より濃厚な組成¾とし、 使用に 際して上記の濃度に薄めて使用するのが効率的である。  The above-mentioned component concentrations are the concentrations when polishing the magnetic disk substrate. When a polishing composition is manufactured and transported, it is more efficient to use a composition II which is thicker than the above concentration, and dilute it to the above concentration before use.
本発明の磁気ディスク用基板の研磨用組成物は、 上記したアナターゼ型酸化チ タニゥム 9 0 1 0 0 %またはルチル型酸化チタニウム 9 0 1 0 0 %またはブ ルーカイ ト型酸化チタニウム 9 0 1 0 0 %の酸化チタニウム、 研磨促進剤及び 水からなるスラリー状のもので、 必要によりさらに水溶性の酸化剤が添加される 、 その他に界面活性剤、 防腐剤及び p H調整のため酸またはアルカリ等を添カロ することができる。 研磨促進剤として硝酸アルミニウム等のアルミニウムの酸性 塩を使用した場合、 好ましい p H範囲は 2 5である。 p Hが 2未満では研磨 機等の腐食や作業上の問題が発生し、 5を越えると研磨効率に支障をきたすため 好ましくない。  The polishing composition for a magnetic disk substrate of the present invention comprises the aforementioned anatase-type titanium oxide 910%, rutile-type titanium oxide 910%, or brookite-type titanium oxide 910%. % Of titanium oxide, a polishing accelerator and water, and a water-soluble oxidizing agent is added if necessary.In addition, a surfactant, a preservative and an acid or alkali for adjusting pH are added. It can be accompanied by calories. When an acid salt of aluminum such as aluminum nitrate is used as the polishing accelerator, the preferred pH range is 25. If the pH is less than 2, corrosion of the polishing machine or the like will occur, and if it exceeds 5, the polishing efficiency will be impaired.
本発明の研磨用,組成物は、 従来の研磨用組成物と同様に、 水に上記結晶構造の 酸化チタニウムを懸濁し、 これに研磨促進剤等を添加することによって調製する ことができる。  The polishing composition of the present invention can be prepared by suspending titanium oxide having the above crystal structure in water and adding a polishing accelerator or the like to water, similarly to the conventional polishing composition.
本発明の研磨用組成物を適用する磁気 ドデイスク基板は格別限定されるも のではないが、 アルミニウム基板、 特に、 例えば N i Pを無電解メツキしたアル ミ二ゥム基板に本発明の組成物を適用すると酸化チタ二ゥムによる機械的研磨作 用と研磨促進剤による化学的研磨作用とが相俟って、 高品質の研磨面が工業上有 利に得られる。  Although the magnetic disk substrate to which the polishing composition of the present invention is applied is not particularly limited, the composition of the present invention is applied to an aluminum substrate, particularly, for example, an aluminum substrate in which NiP is electrolessly plated. By applying the method, the mechanical polishing action by titanium oxide and the chemical polishing action by the polishing accelerator are combined, and a high-quality polished surface can be industrially advantageously obtained.
研磨方法は一般にスラリー状研磨材に用いられる研磨パッドを磁気ディスク用 原板上に摺り合わせ、 パッドと原板の間にスラリーを供給しながらパッドまたは 原板を回転させる方法である。  The polishing method is generally a method in which a polishing pad used for a slurry-like abrasive is rubbed on a magnetic disk original plate, and the pad or the original plate is rotated while supplying slurry between the pad and the original plate.
本発明の研磨用組成物により研磨した基板からつくられた磁気ディスクは、 マ イク口ピット、 マイクロスクラッチ等微細な欠陥について発生頻度が非常に低く、 また表面粗さ (Ra) も 3〜5A位であり、 平滑性に優れている。 実施例 A magnetic disk made from a substrate polished by the polishing composition of the present invention is a magnetic disk. The frequency of occurrence of minute defects such as pit pits and micro scratches is extremely low, and the surface roughness (Ra) is about 3-5A, which is excellent in smoothness. Example
以下、 本発明の実施例について具体的に説明するが、 本発明はこれらの実施例 に限定されるものではない。  Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited to these examples.
(実施例:!〜 16 ) (Example:! ~ 16)
昭和タイタニゥム (株) 製の高純度酸化チタニウムのスーパータイタニア F 一 1 0 (ルチル型酸化チタニウム 98重量%、 アナターゼ型酸化チタニウム 2重 量0 /。) 及びスーパータイタニア F— 4 (アナターゼ型酸化チタニウム 95重 量。/。、 ルチル型酸化チタニウム 5重量%) を媒体撹拌ミルで粉砕し、 微量の粗大 粒子を除去し、 平均粒子径 0. 3 μπιの酸化チタニウムをまず得た。 酸化チタ二 ゥムの結晶構造及びその含有率は理学電機 (株) 製 RAD— 2 Βを用いて測定し た。 これらを表 1に各々チタニア①、 チタニア②で表わす。 Showa Titanium Co., Ltd.'s high-purity titanium oxide, super titania F110 (98% by weight of rutile titanium oxide, anatase-type titanium oxide double weight 0 /.) And Supertitania F-4 (anatase-type titanium oxide 95 (Weight: rutile-type titanium oxide 5% by weight) was pulverized with a medium stirring mill to remove a small amount of coarse particles to obtain titanium oxide having an average particle diameter of 0.3 μπι. The crystal structure and content of titanium oxide were measured using RAD-2 2 manufactured by Rigaku Corporation. These are shown in Table 1 as Titania II and Titania II, respectively.
なお、 粒子径はレーザードップラー周波数解析式粒度分布測定器、 マイクロト ラック UPA1 50 (Ho n e ywe l l社製) により測定した。 粒度測定値を 表 1に示す。  The particle diameter was measured with a laser Doppler frequency analysis type particle size distribution analyzer, Microtrack UPA150 (manufactured by Honeywell). Table 1 shows the measured particle size.
次に、 研磨材として上記の酸化チタニウム及び研磨促進剤、 場合により更に酸 化剤を表 2に示す割合で添加し、 種々の水性研磨用組成物を調製し、 以下に示す 研磨装置及び研磨条件で研磨を行った。 研磨促進剤として、 硝酸アルミニウムを 使用した場合、 pH値は 2. 3〜4. 1であった。 研磨  Next, the above-mentioned titanium oxide and a polishing accelerator as a polishing material, and optionally an oxidizing agent were further added in the proportions shown in Table 2, to prepare various aqueous polishing compositions, and the following polishing apparatus and polishing conditions were used. Was polished. When aluminum nitrate was used as a polishing accelerator, the pH value was 2.3 to 4.1. Polishing
使用した基板 Substrate used
N i Pを無電解メツキした 3. 5インチサイズのアルミニウムディスク 使用した研磨装置及び研磨条件  Polishing equipment and polishing conditions using 3.5 inch aluminum disk with NiP electroless plating
研磨試験機 4ウェイ式両面ポリシングマシン  Polishing test machine 4-way double-side polishing machine
研磨パッド スエードタイプ (ポリテックス DG、 口デール製) 下定盤回転速度 60 r pm Polishing pad suede type (Polytex DG, Dale mouth) Lower platen rotation speed 60 r pm
スラリ一供給速度 5 Om 1 /m i n  Slurry feed rate 5 Om 1 / min
研磨時間 5 m i n  Polishing time 5 min
加工圧力 50 g/cm2 研磨特性の評価 Processing pressure 50 g / cm 2 Evaluation of polishing characteristics
研磨レート アルミニウムディスクの研磨前後の重量減より換算 表面粗さ タリステップ、 タリデータ 2000 (ランクテーラーホブ ソン社製) を使用  Polishing rate Converted from weight loss before and after polishing of aluminum disk Surface roughness Taristep, Taridata 2000 (made by Rank Taylor Hobson) is used
研磨傷及び研磨ピットの深さは触針式表面解析装置 P— 1 2 (TENCOR社 製) の 3次元モードにより形状解析し深さを求めた。  The depths of the polishing scratches and polishing pits were determined by three-dimensional mode analysis using a stylus-type surface analyzer P-12 (manufactured by TENCOR).
研磨特性の評価結果を表 2に示す。 表 2中の研磨傷 Aは研磨傷深さが 5 nm以 下であり、 またピット Aはピット深さが 5 nm以下である。 研磨傷 Bは研磨傷深 さが 5〜 1 O n mであり、 またピット Bはピット深さが 5〜 1 0 n mである。 研 磨傷深さが 10 nmより大なもの、 またピット深さが 10 nmより大なものは実 施例、 比較例共に発生しなかった。  Table 2 shows the evaluation results of the polishing characteristics. The polishing flaw A in Table 2 has a polishing flaw depth of 5 nm or less, and the pit A has a pit depth of 5 nm or less. Polishing scratch B has a polishing scratch depth of 5 to 10 nm, and pit B has a pit depth of 5 to 10 nm. No abrasive scratch depth of more than 10 nm or pit depth of more than 10 nm occurred in any of the examples and comparative examples.
なお、 ブルーカイ ト型酸化チタニウムが 90〜 1 00%のものについても同様 の効果があった。 (比較例 1、 2)  The same effect was obtained when the blue-kit type titanium oxide was 90 to 100%. (Comparative Examples 1 and 2)
昭和タイタニゥム (株) 製の酸化チタニウムのスーパータイタニア F— 1 (ルチル型酸化チタニウム 50重量0 /。、 アナターゼ型酸化チタニウム 50重 量0 /。) 及び同 F— 2 (ルチル型酸化チタニウム 16重量%、 アナターゼ型酸化 チタニウム 84重量%) を使用し、 表 2に示す水性研磨用組成物を調製し実施例 と同様に研磨した。 その結果を表 2に示す。 なお、 粒度測定値は表 1に示す。 表 中チタニア③は上記の F— 2、 チタニア④は F— 1を表わす。 酸化チタニウム 酸ィヒチタニウムの 一次粒子径 二次粒子径 D 90/ の種別 結晶構造と含有率 (平均) (平均) D 1 0 Showa Titanium Co., Ltd.'s titanium oxide super titania F-1 (rutile titanium oxide 50 weight 0 /., Anatase titanium oxide 50 weight 0 /.) And F-2 (rutile titanium oxide 16 weight%) , Anatase-type titanium oxide (84% by weight), and aqueous polishing compositions shown in Table 2 were prepared and polished in the same manner as in Examples. The results are shown in Table 2. Table 1 shows the measured particle size. In the table, titania ③ represents F-2 above, and titania ④ represents F-1. Titanium oxide Primary particle diameter of titanium oxide Secondary particle diameter D 90 / type Crystal structure and content (average) (average) D 10
( β m) ( β m) チタニア① ルチル型 0. 2 0. 3 2. 4  (β m) (β m) Titania-rutile type 0.2 0 0.3 2
98  98
アナターゼ型  Anatase type
2 チタニア② アナターゼ型 0. 05 0. 3 2. 6  2 Titania ② anatase type 0. 05 0. 3 2. 6
95  95
ルチル型  Rutile type
5 チタニア③ ルチル型 0. 06 0. 3 3. 4  5 Titania ③ Rutile type 0.06 0.3 0.34
1 6  1 6
アナターゼ型  Anatase type
84 チタニア④ ルチル型 0. 1 0. 5 3. 4  84 Titania rutile type 0.1 0.5 0.5
50  50
アナターゼ型  Anatase type
50 50
表 2 Table 2
研磨材 研磨促進剤 ル文 ll 卜  Abrasives Polishing accelerators
レ 表 [&祖さ 麵 11 レ0 、, し ヒ ッ 卜 種類 添加量 r m 添加量 種類 添加量 (β m / (R a) 表 Table [& さ レ レ0し レ0レ , 種類 種類 種類 種類 種類 種類 種類 種類 種類 種類 種類
m l n) (A) 夹她 1タリ 丄 チタニア① 1 硝酸アルミ二ゥム 5 . 0 Λ Λ  m l n) (A) 夹 她 1 丄 titania ① 1 aluminum nitrate 5.0 Λ Λ
丄 / Λ  丄 / Λ
2 〃 5 II 5 . 0 0, 25 4 A A  2 〃 5 II 5.00, 254 A A
10 // o . 0 (J . b A A 10 // o.0 (J.b A A
〃 4 20 〃 5 . 0 0. 30 6 A A 〃 4 20 〃 5.0 .0 0.30 6 A A
5 〃 5 0. 05 0. 10 5 A A 5 〃 5 0.05 0.10 5 A A
" 6 〃 5 〃 〇 . 1 ― 0. 1 3 4 A A "6 〃 5 〃 〇. 1 ― 0.1 3 4 A A
" 7 5 〃 1 . 0 ― 0. 1 7 4 A A  "75 〃 1.0 .0-0.174 A A
〃 2 . 0 U . 1 A Λ Λ  〃 2.0 U. 1 A Λ Λ
Δ 丄 r o Ο ρ 5  Δ 丄 r o Ο ρ 5
〃 9 " 5 10 . 0 一 0. 29 4 A A  〃 9 "5 10.0 .0 1 .29 4 A A
" 1 0 チタニア② 5 II 5 . 0 0. 28 4 A A  "10 Titania 5 II 5 .0 0.28 4 A A
" 1 1 チタニア① 5 II 2 . 0 H2 02 1. 0 0. 25 4 A A "1 1 titania ① 5 II 2. 0 H 2 0 2 1. 0 0. 25 4 AA
" 1 2 〃 5 II 2 . 0 石肖酸 0. 2 0. 25 4 A A  1 2 〃 5 II 2.0
" 1 3 チタニア① 5 蓚酸アルミ二ゥム 2 . 0 0. 1 6 6 A A 1 3 Titania 5 Aluminum oxalate 2.0 0.16 A A
" 1 4 〃 5 硝酸鉄 2 . 0 0. 20 5 A A  "14 〃 5 iron nitrate 2.0 0 0.25 A A
" 1 5 〃 5 乳酸アルミ二ゥム 2 • 0 0. 1 8 5 A A "15 5 5 Aluminum lactate 2 • 0 0.1 5 A A
〃 1 6 〃 5 ダルコン酸 1 • 0 0. 1 7 5 A A 比較例 1 チタニア③ 5 硝酸アルミ二ゥム 5 . 0 0. 21 4 B B 〃 16 〃 5 Dalconic acid 1 • 0 0.1 7 5 A A Comparative example 1 Titania ③ 5 Aluminum nitrate 5.0 0. 21 4 B B
〃 2 チタニア④ 5 〃 5 . 0 0. 23 6 B B 〃 2 Titania ④ 5 〃 5. 0 0.23 6 BB
産業上の利用可能性 Industrial applicability
本発明の研磨用組成物を用いてディスクの研磨を行うと、 表面粗さが小さく、 かつマイクロピット、 マイクロスクラッチ等微細な欠陥について発生頻度が非常 に低い研磨面が得られ、 しかも高い速度で研磨することができる。 研磨したディ スクを用いた磁気ディスクは低浮上型ハードディスクとして有用であり、 高密度 記録が可能である。  When a disk is polished using the polishing composition of the present invention, a polished surface having a low surface roughness and a very low frequency of occurrence of minute defects such as micropits and microscratch can be obtained, and at a high speed. Can be polished. A magnetic disk using a polished disk is useful as a low-floating type hard disk, and enables high-density recording.
特に、 研磨したディスクを用いた磁気ディスク磁気抵抗効果を利用した M Rへ ッド用メディァに代表される高記録密度媒体 (1 Gb i t/i n c h2 以上の 記録密度を有する) として有用度が高いが、 それ以下のメディアにおいても高信 頼性媒体があるという観点で有用である。 In particular, it is highly useful as a high recording density medium (having a recording density of 1 Gbit / inch 2 or more) typified by an MR head media utilizing the magnetoresistive effect of a magnetic disk using a polished disk. However, it is useful from the viewpoint that there is a highly reliable medium even in the lower media.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なくとも水、 酸化チタニウム微粒子、 研磨促進剤を含み、 該酸化チタ二 ゥムは単一結晶構造の酸化チタニウムが 9 0〜1 0 0 %であることを特徴とする 磁気ディスク用基板の研磨用組成物。 1. At least water, titanium oxide fine particles, and a polishing accelerator, wherein the titanium oxide contains 90 to 100% of titanium oxide having a single crystal structure, and is characterized in that it is used for polishing a magnetic disk substrate. Composition.
2 . 酸化チタニウム微粒子の二次粒子の粒度分布における累積 9 0重量%の粒 子径と 1 0重量。んの粒子径の比 D 9 0 ZD 1 0が 3 . 0以内である請求項 1に記 載の研磨用組成物。 2. Cumulative 90% by weight particle size and 10% by weight in the particle size distribution of secondary titanium oxide fine particles. 2. The polishing composition according to claim 1, wherein the particle diameter ratio D90ZD10 of the particles is within 3.0.
3 . 酸化チタ二ゥム微粒子の二次粒子の平均粒子径が 0 . 1〜 1 . 0 μ mであ る請求項 1または 2に記載の研磨用組成物。 3. The polishing composition according to claim 1, wherein the secondary particles of the titanium oxide fine particles have an average particle diameter of 0.1 to 1.0 μm.
4 . 研磨促進剤がアルミニウム塩または硝酸塩である請求項 1〜 3のいずれか 一項に記載の研磨用組成物。 4. The polishing composition according to any one of claims 1 to 3, wherein the polishing accelerator is an aluminum salt or a nitrate.
5 . アルミニウム塩が硝酸アルミニウムである請求項 4に記載の研磨用組成物。 5. The polishing composition according to claim 4, wherein the aluminum salt is aluminum nitrate.
6 . 水溶性酸化剤を含む請求項 1〜 5のいずれか一項に記載の研磨用組成物。 6. The polishing composition according to any one of claims 1 to 5, further comprising a water-soluble oxidizing agent.
7 . 磁気ディスク用原板表面に請求項 1〜 6のいずれか一項に記載の研磨用組 成物を供給する工程を含む、 磁気ディスク用基板の製造方法。 7. A method for producing a magnetic disk substrate, comprising a step of supplying the polishing composition according to any one of claims 1 to 6 to the surface of a magnetic disk original plate.
8 . 磁気ディスク用原板と研磨パッドとの間に請求項 1〜6のいずれか一項に 記載の研磨用組成物を供給しながら、 前記磁気ディスク用原板または前記研磨パ ッドの少なくとも一方を回転させる工程を含む、 磁気ディスク用基板の製造方法。 8. While supplying the polishing composition according to any one of claims 1 to 6, between the magnetic disk master and the polishing pad, at least one of the magnetic disk master or the polishing pad is supplied. A method for manufacturing a magnetic disk substrate, comprising a step of rotating.
PCT/JP2000/004245 1999-06-28 2000-06-28 Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk WO2001000745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/701,042 US6478837B1 (en) 1999-06-28 2000-06-28 Abrasive composition substrate for magnetic recording disks and process for producing substrates for magnetic recording disk
AU57043/00A AU5704300A (en) 1999-06-28 2000-06-28 Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/181753 1999-06-28
JP18175399 1999-06-28

Publications (1)

Publication Number Publication Date
WO2001000745A1 true WO2001000745A1 (en) 2001-01-04

Family

ID=16106296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004245 WO2001000745A1 (en) 1999-06-28 2000-06-28 Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk

Country Status (5)

Country Link
CN (1) CN1152104C (en)
AU (1) AU5704300A (en)
MY (1) MY128169A (en)
TW (1) TW581803B (en)
WO (1) WO2001000745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081410A (en) * 2009-09-10 2011-04-21 Sekisui Chem Co Ltd Photosensitive composition and printed wiring board
JP2015502417A (en) * 2012-04-13 2015-01-22 ユービーマテリアルズ インコーポレイテッド Polishing slurry and substrate polishing method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095833B2 (en) * 2002-05-30 2008-06-04 株式会社フジミインコーポレーテッド Polishing composition
TWI792464B (en) * 2020-08-03 2023-02-11 美商Cmc材料股份有限公司 Titanium dioxide containing ruthenium chemical mechanical polishing slurry and its use in method for polishing a ruthenium containing substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004700A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Metal oxide powder and process for producing the same
JPH10121035A (en) * 1996-08-30 1998-05-12 Showa Denko Kk Composition for polishing magnetic disk substrate
JPH11198028A (en) * 1998-01-14 1999-07-27 Showa Alum Corp Polishing agent for magnetic disk substrate and polishing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004700A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Metal oxide powder and process for producing the same
JPH10121035A (en) * 1996-08-30 1998-05-12 Showa Denko Kk Composition for polishing magnetic disk substrate
JPH11198028A (en) * 1998-01-14 1999-07-27 Showa Alum Corp Polishing agent for magnetic disk substrate and polishing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081410A (en) * 2009-09-10 2011-04-21 Sekisui Chem Co Ltd Photosensitive composition and printed wiring board
JP4897922B2 (en) * 2009-09-10 2012-03-14 積水化学工業株式会社 Solder resist composition and printed wiring board
JP2015502417A (en) * 2012-04-13 2015-01-22 ユービーマテリアルズ インコーポレイテッド Polishing slurry and substrate polishing method using the same

Also Published As

Publication number Publication date
AU5704300A (en) 2001-01-31
TW581803B (en) 2004-04-01
MY128169A (en) 2007-01-31
CN1152104C (en) 2004-06-02
CN1315991A (en) 2001-10-03

Similar Documents

Publication Publication Date Title
CN100469527C (en) Substrate for Disk
JP4273475B2 (en) Polishing composition
US6007592A (en) Polishing composition for aluminum disk and polishing process therewith
JP4003116B2 (en) Polishing composition for magnetic disk substrate and polishing method using the same
JP4090589B2 (en) Polishing composition
JPH10204416A (en) Polishing composition
JP2002030274A (en) Abrasive composition
JP2001148117A (en) Polishing composition and method for manufacturing memory hard disk by using the same
US5935278A (en) Abrasive composition for magnetic recording disc substrate
US6152976A (en) Abrasive composition for disc substrate, and process for polishing disc substrate
JP6060166B2 (en) Manufacturing method of glass substrate for magnetic disk
JPH07216345A (en) Abrasive composition
US20050028449A1 (en) Polishing composition
WO2001000745A1 (en) Composition for polishing substrate for magnetic disk and method for producing substrate for magnetic disk
US6478837B1 (en) Abrasive composition substrate for magnetic recording disks and process for producing substrates for magnetic recording disk
JP2004253058A (en) Polishing liquid composition
JPH1121545A (en) Polishing composition
JP3877924B2 (en) Magnetic disk substrate polishing composition
TW528645B (en) Composition for polishing magnetic disk substrate
JPH10121034A (en) Composition for polishing magnetic disk substrate
JP4074126B2 (en) Polishing composition
JP3997154B2 (en) Polishing liquid composition
JP3825844B2 (en) Precision polishing composition, method for polishing electroless NiP plating film formed on Al alloy substrate, method for manufacturing Al alloy substrate having electroless NiP plating film
JPH10121035A (en) Composition for polishing magnetic disk substrate
JP3997153B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801202.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09701042

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase