WO1998048771A1 - Hair spray compositions - Google Patents
Hair spray compositions Download PDFInfo
- Publication number
- WO1998048771A1 WO1998048771A1 PCT/US1998/008349 US9808349W WO9848771A1 WO 1998048771 A1 WO1998048771 A1 WO 1998048771A1 US 9808349 W US9808349 W US 9808349W WO 9848771 A1 WO9848771 A1 WO 9848771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hair
- copolymer
- vinyl
- hair spray
- group
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 181
- 239000008266 hair spray Substances 0.000 title claims abstract description 86
- 229920001577 copolymer Polymers 0.000 claims abstract description 93
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 37
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 21
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000853 adhesive Substances 0.000 claims abstract description 16
- 230000001070 adhesive effect Effects 0.000 claims abstract description 16
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- -1 polysiloxane side chains Polymers 0.000 claims description 83
- 239000000178 monomer Substances 0.000 claims description 64
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 38
- 229920002554 vinyl polymer Polymers 0.000 claims description 33
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 23
- 229920001400 block copolymer Polymers 0.000 claims description 19
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 12
- 125000003282 alkyl amino group Chemical group 0.000 claims description 12
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims description 11
- 150000001298 alcohols Chemical class 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 125000005647 linker group Chemical group 0.000 claims description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 7
- 150000001412 amines Chemical class 0.000 claims description 7
- 238000007334 copolymerization reaction Methods 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 6
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 claims description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 5
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N alpha-Methyl-n-butyl acrylate Natural products CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 4
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 claims description 4
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims description 4
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 claims description 4
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 claims description 4
- 125000005504 styryl group Chemical group 0.000 claims description 4
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims description 3
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 claims description 3
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 3
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 claims description 3
- 239000007921 spray Substances 0.000 abstract description 16
- 229920000642 polymer Polymers 0.000 description 41
- 239000000523 sample Substances 0.000 description 39
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 20
- 239000003380 propellant Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 239000000443 aerosol Substances 0.000 description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 239000003607 modifier Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000012855 volatile organic compound Substances 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 238000007792 addition Methods 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 150000002431 hydrogen Chemical group 0.000 description 9
- 229960004592 isopropanol Drugs 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 229920002367 Polyisobutene Polymers 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 229920000578 graft copolymer Polymers 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- 150000002763 monocarboxylic acids Chemical class 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 210000003811 finger Anatomy 0.000 description 5
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000003709 fluoroalkyl group Chemical group 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 239000002304 perfume Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002453 shampoo Substances 0.000 description 4
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- JCBPETKZIGVZRE-UHFFFAOYSA-N 2-aminobutan-1-ol Chemical compound CCC(N)CO JCBPETKZIGVZRE-UHFFFAOYSA-N 0.000 description 3
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 3
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000004103 aminoalkyl group Chemical group 0.000 description 3
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229940031769 diisobutyl adipate Drugs 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000004299 sodium benzoate Substances 0.000 description 3
- 235000010234 sodium benzoate Nutrition 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 239000001069 triethyl citrate Substances 0.000 description 3
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 3
- 235000013769 triethyl citrate Nutrition 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 2
- BANXPJUEBPWEOT-UHFFFAOYSA-N 2-methyl-Pentadecane Chemical compound CCCCCCCCCCCCCC(C)C BANXPJUEBPWEOT-UHFFFAOYSA-N 0.000 description 2
- IWTBVKIGCDZRPL-UHFFFAOYSA-N 3-methylpentanol Chemical compound CCC(C)CCO IWTBVKIGCDZRPL-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- RZKSECIXORKHQS-UHFFFAOYSA-N Heptan-3-ol Chemical compound CCCCC(O)CC RZKSECIXORKHQS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000004479 aerosol dispenser Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 235000015961 tonic Nutrition 0.000 description 2
- 230000001256 tonic effect Effects 0.000 description 2
- 229960000716 tonics Drugs 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- PGQNYIRJCLTTOJ-UHFFFAOYSA-N trimethylsilyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)O[Si](C)(C)C PGQNYIRJCLTTOJ-UHFFFAOYSA-N 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- LCXCLBUJRIUARF-UHFFFAOYSA-N (3,5-dimethyl-1-adamantyl) prop-2-enoate Chemical compound C1C(C2)CC3(C)CC1(C)CC2(OC(=O)C=C)C3 LCXCLBUJRIUARF-UHFFFAOYSA-N 0.000 description 1
- 239000001618 (3R)-3-methylpentan-1-ol Substances 0.000 description 1
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 1
- WOJSMJIXPQLESQ-DTORHVGOSA-N (3s,5r)-1,1,3,5-tetramethylcyclohexane Chemical compound C[C@H]1C[C@@H](C)CC(C)(C)C1 WOJSMJIXPQLESQ-DTORHVGOSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-M 1,1-dioxo-1,2-benzothiazol-3-olate Chemical compound C1=CC=C2C([O-])=NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-M 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- AHFMSNDOYCFEPH-UHFFFAOYSA-N 1,2-difluoroethane Chemical compound FCCF AHFMSNDOYCFEPH-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- 239000005968 1-Decanol Substances 0.000 description 1
- KAJRUHJCBCZULP-UHFFFAOYSA-N 1-cyclohepta-1,3-dien-1-ylcyclohepta-1,3-diene Chemical compound C1CCC=CC=C1C1=CC=CCCC1 KAJRUHJCBCZULP-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- 229940043268 2,2,4,4,6,8,8-heptamethylnonane Drugs 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- IOAOAKDONABGPZ-UHFFFAOYSA-N 2-amino-2-ethylpropane-1,3-diol Chemical compound CCC(N)(CO)CO IOAOAKDONABGPZ-UHFFFAOYSA-N 0.000 description 1
- PIUJWWBOMGMSAY-UHFFFAOYSA-N 2-ethenoxybutane Chemical compound CCC(C)OC=C PIUJWWBOMGMSAY-UHFFFAOYSA-N 0.000 description 1
- VFOZPUQEFHZHBT-UHFFFAOYSA-N 2-ethenylbenzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1C=C VFOZPUQEFHZHBT-UHFFFAOYSA-N 0.000 description 1
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- PFNHSEQQEPMLNI-UHFFFAOYSA-N 2-methyl-1-pentanol Chemical compound CCCC(C)CO PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- BODRLKRKPXBDBN-UHFFFAOYSA-N 3,5,5-Trimethyl-1-hexanol Chemical compound OCCC(C)CC(C)(C)C BODRLKRKPXBDBN-UHFFFAOYSA-N 0.000 description 1
- WETBJXIDTZXCBL-UHFFFAOYSA-N 3,5-dimethylhexan-1-ol Chemical compound CC(C)CC(C)CCO WETBJXIDTZXCBL-UHFFFAOYSA-N 0.000 description 1
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical class CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241001522296 Erithacus rubecula Species 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical group CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 108010009736 Protein Hydrolysates Chemical class 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 206010049040 Weight fluctuation Diseases 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000021053 average weight gain Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-M cyclohexylsulfamate Chemical compound [O-]S(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-M 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- WBZPMFHFKXZDRZ-UHFFFAOYSA-N ethenyl 6,6-dimethylheptanoate Chemical compound CC(C)(C)CCCCC(=O)OC=C WBZPMFHFKXZDRZ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- KUVMKLCGXIYSNH-UHFFFAOYSA-N isopentadecane Natural products CCCCCCCCCCCCC(C)C KUVMKLCGXIYSNH-UHFFFAOYSA-N 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- DSZMPZRQIDKROL-UHFFFAOYSA-N lithium;1-phenylhexylbenzene Chemical compound [Li+].C=1C=CC=CC=1C(CCCC[CH2-])C1=CC=CC=C1 DSZMPZRQIDKROL-UHFFFAOYSA-N 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- MXEKGCYXPNIRFV-UHFFFAOYSA-N methyl 4-(2-methylprop-2-enoyloxy)benzoate Chemical group COC(=O)C1=CC=C(OC(=O)C(C)=C)C=C1 MXEKGCYXPNIRFV-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LUCXVPAZUDVVBT-UHFFFAOYSA-N methyl-[3-(2-methylphenoxy)-3-phenylpropyl]azanium;chloride Chemical compound Cl.C=1C=CC=CC=1C(CCNC)OC1=CC=CC=C1C LUCXVPAZUDVVBT-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 125000005574 norbornylene group Chemical group 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003531 protein hydrolysate Chemical class 0.000 description 1
- 108090000623 proteins and genes Chemical class 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007155 step growth polymerization reaction Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/896—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
- A61K8/899—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing sulfur, e.g. sodium PG-propyldimethicone thiosulfate copolyol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/895—Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/046—Polymers of unsaturated carboxylic acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/068—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/442—Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
Definitions
- the present invention relates to hair styling compositions including hair spray compositions, especially hair spray compositions having improved removeability from hair as defined by hair stiffness and flaking values. These spray compositions provide good style retention characteristics without being stiff or sticky.
- These compositions comprise a silicone containing adhesive copolymer and a solvent for the copolymer selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof.
- the spray compositions when dried, exhibit a cohesive strength of greater than about 0.5 kgf/rnm ⁇ , and a total energy absorption per unit volume of greater than about 0.55 kgfmm/mm- .
- the compositions, when dried, also preferably exhibit an impact strength of greater than about 7000 ergs.
- the desire to have the hair retain a particular style or shape is widely held.
- the most common methodology for accomplishing this is by spraying a composition, typically from a mechanical pump spray device or from a pressurized aerosol canister, to the hair.
- Such compositions provide temporary setting benefits and can usually be removed by water or by shampooing.
- the materials used in hair spray compositions are generally resins, gums, and adhesive polymers.
- the present invention provides hair spray compositions having good style retention without being stiff or sticky.
- the resulting hair styles obtained from using these compositions hold up well under the common stress conditions and other factors as mentioned above.
- such compositions provide the benefit of allowing the user to restyle the hair without the need for reapplication of spray product.
- the spray compositions of the present invention leave the hair both feeling and looking natural. Also, these products do not have the disadvantage of causing the hair to quickly resoil.
- VOC hair spray compositions having reduced volatile organic compound (i.e. "VOC") levels.
- VOC hair sprays typically have 80% or less of VOCs, whereas conventional VOC hair sprays have greater than about 80% of VOCs.
- the hair spray compositions of the present invention can be formulated as reduced VOC hair sprays.
- compositions of the present invention provide the recited benefits by utilizing certain silicone containing adhesive copolymers in combination with a solvent for the copolymer selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof.
- a solvent for the copolymer selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof.
- These spray compositions when dried, have a cohesive strength of greater than about 0.5 kgf/mm ⁇ , a total energy absorption per unit volume of greater than about 0.55 kgfmm/m - , and preferably an impact strength of greater than about 7000 ergs. Without being limited by theory, it is believed that these physical characteristics of the dried hair spray composition account for the benefits observed.
- the preferred hair spray compositions of the present invention have an improved removeability from hair during shampooing, wherein the removeability is defined in terms of hair stiffness and hair flaking values ranging from 0 to about 3.5 (0 to 4 scale) These hair stiffness and flaking values are indirect measures of hair spray removeability. Each of these values are determined in accordance with the methodology defined herein.
- the present invention relates to hair styling compositions, especially hair spray compositions, comprising:
- a solvent for said copolymer selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof, wherein said hair spray composition, when dried, has a cohesive strength of greater than about 0.5 kgf/mm ⁇ and a total energy absorption per unit volume of greater than about 0.55 kgfmm/mnM
- the hair spray compositions also prefreferably have improved removeability, wherein removeability is defined by a hair stiffness value of from 0 to about 3.5 and a hair flaking value of from 0 to 3.5 (0 to 4 scale)
- the present invention relates to hair spray compositions wherein the hair spray composition, when dried, has an impact strength of greater than about 7000 ergs.
- the present invention relates to a method of styling and/or holding hair comprising the step of applying to the hair an effective amount of a composition comprising,
- a solvent for said copolymer selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof, wherein said hair spray composition, when dried, has a cohesive strength of greater than about 0.5 kgf/mm ⁇ and a total energy absorption per unit volume of greater than about 0.55 kgfmm/mm ⁇ .
- Fig. 1 illustrates an overhead view of a dumbbell-shaped planar dried hair spray film sample useful for measuring the physical properties such as the cohesive strength and total energy absorption per unit volume as described herein.
- Fig. 2 illustrates a cross-sectional view, showing the thickness of the dumbbell- shaped dried film illustrated in Fig. 1.
- the present invention can comprise, consist of, or consist essentially of any of the required or optional ingredients and/or limitations described herein.
- compositions or components thereof so described are suitable for use in contact with human hair and the scalp and skin without undue toxicity, incompatibility, instability, allergic response, and the like.
- kgf is a standard physical term denoting a kilogram of force subjected to gravitational acceleration, i.e. 9.82 m/s ⁇ .
- compositions of the present invention comprise from about 0.1 % to about 30%), preferably from about 0.5%> to about 20%, and more preferably from about 0.5% to about 10%), by weight of the composition, of a silicone-containing adhesive copolymer.
- adheresive is meant that when applied as a solution to a surface and dried, e.g., the hair fibers, the copolymer forms films or welds. Such a film or weld will have adhesive and cohesive strength, as is understood by those skilled in the art.
- silicone-containing is meant that the copolymers contain one or more alkyl or aryl siloxane moieties, as defined further in the specification.
- the copolymers of the present invention are selected from the group consisting of silicone grafted copolymers, silicone block copolymers, sulfur-linked silicone containing copolymers, sulfur-linked silicone block copolymers, and mixtures thereof.
- silicone grafted copolymers is familiar to one of ordinary skill in polymer science and is used herein to describe the copolymers which result by adding or “grafting” polymeric silicone moieties (i.e. "grafts") onto another polymeric moiety commonly referred to as the "backbone".
- the backbone typically has a higher molecular weight than the grafts.
- silicone grafted copolymers can be described as polymers having pendant polymeric silicone side chains, and as being formed from the "grafting” or incorporation of polymeric silicone side chains onto or into a polymer backbone.
- the polymer backbone can be a homopolymer or a copolymer.
- the graft copolymers are derived from a variety of monomer units.
- these copolymers can comprise grafts derived from nonsilicone-containing macromonomers, e.g., macromonomers formed by the polymerization of acrylates, methacrylates, and other ethylenic moieties.
- macromonomers can be selected to have either high (>25°C) or low Tg ( ⁇ 25°C) values.
- Tg means glass transition temperature, which is familiar to one of ordinary skill in polymer science.
- block copolymers is familiar to one of ordinary skill in polymer science and is used herein to describe copolymers having sequentially arranged moieties or blocks which are further composed of smaller repeating units.
- the block copolymers herein comprise silicone blocks and nonsilicone blocks.
- the block copolymers can be represented by the following structures: A-B structures, containing two block segments; A-B-A, containing three block segments, and -(A-B) n -, wherein n is an integer of 2 or greater, containing multiple blocks.
- sulfur-linked as used herein in the terms “sulfur-linked silicone grafted copolymer” and “sulfur-linked silicone block copolymer” means a silicone grafted or block copolymer containing a sulfur linkage (i.e. -S-), a disulfide linkage (i.e. -S-S-), or a sulfhydryl group (i.e.-SH).
- copolymers, or salts thereof, of the present invention are soluble or dispersible in a solvent selected from the group consisting of water, ethanol, n- propanol, isopropanol, and mixtures thereof, at a concentration of at least about 0.1 mg/mL, preferably at least about 0.5 mg/mL, and more preferably at least about 1 mg/mL, at about 73 °F.
- the copolymers of the present invention have a weight average molecular weight, in grams/mole, of at least about 10,000. There is no upper limit for molecular weight except that which limits applicability of the invention for practical reasons, such as viscosity, processing, aesthetic characteristics, spreadability, formulation compatibility, etc.
- the weight average molecular weight is generally less than about 5,000,000, more generally less than about 2,500,000, and typically less than about 1,500,000.
- the weight average molecular weight is from about 10,000 to about 5,000,000, more preferably from about 20,000 to about 1,000,000, even more preferably from about 30,000 to about 500,000, and most preferably from about 50,000 to about 300,000.
- silicone containing adhesive copolymers are useful in the present invention, provided the physical parameters of the dried hair spray film and the solubility or dispersibility requirements and the molecular weight requirements of the copolymer are met.
- the silicone-grafted copolymers of the present invention are formed from the random copolymerization of vinyl monomer units and polysiloxane-containing macromonomer units containing a polymeric portion and a vinyl moiety copolymerizable with vinyl monomer units.
- the siloxane polymeric portion of the macromonomer units forms the polysiloxane side chains of the copolymer.
- the vinyl monomer units and the vinyl moiety portion of the macromonomer units form the backbone.
- the vinyl monomer and the polysiloxane- containing macromonomer can be selected form a wide variety of structures as long as the copolymer has the required properties described herein.
- the copolymer may have one or more polysiloxane side chains grafted to the backbone.
- the compositions of the present invention can include, in addition to the copolymer, low levels of the corresponding copolymers having no polysiloxane side chains grafted to the backbone.
- synthetic graft copolymerization processes may produce a mixture of polymer molecules containing none, one, or more than one polysiloxane side chains covalently bonded to and pendant from the polymeric backbone. From knowledge of the amount and number average molecular weight of side chains in a polymer sample, and the number average molecular weight of the polymer sample, it is possible to calculate the average number of polysiloxane side chains per polymer backbone.
- the grafted copolymers should satisfy the following three criteria:
- the copolymer phase when dried the copolymer phase-separates into a discontinuous phase which includes the grafted polymeric side chain portion and a continuous phase which includes the non-side chain portion; (2) the polymeric side chain portion is covalently bonded to the backbone portion; and
- the number average molecular weight of the polymeric side chain portion is from about 1000 to about 50,000.
- phase separation property provides a specific orientation of the copolymer which results in the desired combination of tactile feel, film-forming or adhesive benefits, and the ability to dry quickly and completely.
- the phase-separating nature of the compositions of the present invention may be determined as follows.
- the copolymer is cast as a solid film out of a solvent as described below. This film is then sectioned and examined by transmission electron microscopy. Microphase separation is demonstrated by the observation of inclusions in the continuous phase. These inclusions should have the proper size to match the size of the side chains (typically a few hundred nm or less) and the proper density to match the amount of side chain present. This behavior is well documented in the literature for polymers with this structure. See, for example, S. D. Smith, Ph.D. Thesis, University of Virginia, 1987, and references cited therein, said thesis incorporated by reference herein.
- the copolymers of the present invention are prepared by the polymerization combination of vinyl monomers and polysiloxane macromonomers.
- the copolymers can be synthesized by free radical polymerization of the monomers and macromonomers.
- the general principles of free radical polymerization methods are well understood. See, for example, Odian, "Principles of Polymerization", 3rd edition, John Wiley & Sons, 1991, pp. 198-334.
- the desired vinyl monomers and polysiloxane macromonomers are all placed in a reactor, along with a sufficient amount of a mutual solvent so that when the reaction is complete the viscosity of the reaction is reasonable. Undesired terminators, especially oxygen, are removed as needed.
- the initiator is introduced and the reaction brought to the temperature needed for initiation to occur, assuming thermal initiators are used. Alternatively, redox or radiation initiation can be used.
- the polymerization is allowed to proceed as long as needed for a high level of conversion to be achieved, typically from a few hours to a few days.
- the solvent is then removed, usually by evaporation or by precipitating the copolymer by addition of a nonsolvent.
- the copolymer can be further purified, as desired.
- the copolymer can be made by a semi- continuous or continuous process.
- the semi-continuous process two or more additions of monomers or macromonomers are made during the polymerization reaction. This is advantageous when the copolymer is made of several monomers which react during the polymerization at different rates.
- the proportions of monomers added to the reaction at the separate points of addition can be adjusted by one of ordinary skill in the art such that the polymers of the final product have a more uniform structure. In other words, the polymers of the final product will have a more consistent monomer content distribution for each of the monomer types charged to the reaction.
- the copolymers are prepared by the polymerization combination of vinyl monomers and polysiloxane macromonomers.
- the copolymer composition is characterized by the amount of each monomer charged to the polymerization reaction vessel, or alternatively used in a continuous or semi-continuous process.
- the copolymers can be optimized for various physical properties and for compatibility with other ingredients commonly used in hair care applications.
- the silicone copolymers of the present invention comprise from about 50%) to about 98%, preferably from about 60%> to about 95%, and more preferably from about 70% to about 90%) by weight of the vinyl monomer units.
- the vinyl monomer unit is selected from copolymerizable monomers, preferably ethylenically unsaturated monomers. Either a single type of vinyl monomer unit or combinations of two or more vinyl monomer units can be utilized. The vinyl monomers are selected to meet the requirements of the copolymer.
- copolymerizable is meant that the vinyl monomer can be reacted with or polymerized with the polysiloxane macromonomers in a polymerization reaction using one or more conventional synthetic techniques, such as ionic, emulsion, dispersion, Ziegler-Natta, free radical, group transfer or step growth polymerization.
- ethyleneically unsaturated is used herein to mean a material that contains at least one polymerizable carbon-carbon double bond, which can be mono-, di-, tri- or tetra-substituted.
- the monomer units can be derived from hydrophilic monomers (typically polar monomers), or mixtures of such hydrophilic monomers with hydrophobic monomers (typically low polarity monomers), provided that the solubility characteristics of the overall copolymer is achieved.
- hydrophilic monomers means monomers which form homopolymers which are substantially water soluble
- hydrophobic monomers means monomers which form substantially water insoluble homopolymers.
- Nonlimiting classes of monomers useful herein include monomers selected from the group consisting of unsaturated alcohols, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated anhydrides, alcohol esters of unsaturated monocarboxylic acids, alcohol esters of unsaturated dicarboxylic acids, alcohol esters of unsaturated anhydrides, alkoxylated esters of unsaturated monocarboxylic acids, alkoxylated esters of unsaturated dicarboxylic acids, alkoxylated esters of unsaturated anhydrides, aminoalkyl esters of unsaturated monocarboxylic acids, aminoalkyl esters of unsaturated dicarboxylic acids, aminoalkyl esters of unsaturated anhydrides, amides of unsaturated monocarboxylic acids, amides of unsaturated dicarboxylic acids, amides of unsaturated anhydrides, salts of unsaturated monocarboxylic acids, salts of unsaturated dicarboxylic acids
- Such monomers include acrylic acid, methacrylic acid, N,N-dimethylacrylamide, dimethylaminoethyl methacrylate, quaternized dimethylaminoethyl methacrylate, methacrylamide, N-t-butyl acrylamide, maleic acid, maleic anhydride and its half esters, crotonic acid, itaconic acid, acrylamide, acrylate alcohols, hydroxyethyl methacrylate, diallyldimethyl ammonium chloride, vinyl pyrrolidone, vinyl ethers (such as methyl vinyl ether), maleimides, vinyl pyridine, vinyl imidazole, other polar vinyl heterocyclics, styrene sulfonate, allyl alcohol, vinyl alcohol (such as that produced by the hydrolysis of vinyl acetate after polymerization), vinyl caprolactam, methacrylic acid esters of Cj-Ci g alcohols, such as methanol, ethanol, methoxy
- Preferred monomers include acrylic acid, methacrylic acid, N,N-dimethyl acrylamide, dimethylaminoethyl methacrylate, quaternized dimethylaminoethyl methacrylate, vinyl pyrrolidone, acrylic or methacrylic acid esters of Cj-Ci g alcohols, styrene, alpha-methylstyrene, t-butylstyrene, vinyl acetate, vinyl propionate, 2- methoxyethyl acrylate, 2-ethoxyethyl acrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methyl methacrylate, salts of any acids and amines listed above, and mixtures thereof.
- copolymers of the present invention comprise from about 2% to about 50%, preferably from about 5%> to about 40%>, and more preferably from about 10% to about 30%, by weight of the copolymer of polysiloxane macromonomer units.
- the polysiloxane macromonomer units are copolymerizable with the vinyl monomers, said macromonomers preferably having a vinyl moiety. Either a single type of macromonomer unit or combinations or two or more macromonomer units can be utilized herein.
- the macromonomers are selected to meet the requirements of the copolymer.
- copolymerizable is meant that the macromonomers can be reacted with or polymerized with the vinyl monomers in a polymerization reaction using one or more conventional synthetic techniques, as described above.
- polysiloxane macromonomers that are useful herein contain a polymeric portion and a copolymerizable moiety which is preferably an ethylenically unsaturated moiety.
- the preferred macromonomers are those that are endcapped with the vinyl moiety.
- endcapped as used herein is meant that the vinyl moiety is at or near a terminal position of the macromonomer.
- the macromonomers can be synthesized utilizing a variety of standard synthetic procedures familiar to the polymer chemist of ordinary skill in the art. Furthermore, these macromonomers can be synthesized starting from commercially available polymers. Typically, the weight average molecular weight of the macromonomer is from about 1000 to about 50,000.
- Polysiloxane macromonomers are exemplified by the general formula: X(Y) n Si(R) 3 _ m Z m wherein X is a vinyl group copolymerizable with the vinyl monomer units; Y is a divalent linking group; each R is independently selected from the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkylamino, styryl, phenyl, C1-C6 alkyl or alkoxy-substituted phenyl; Z is a monovalent siloxane polymeric moiety having a number average molecular weight of at least about 1000, is essentially unreactive under copolymerization conditions, and is pendant from the vinyl polymeric backbone described above; n is 0 or 1; and m is an integer from 1 to 3.
- the polysiloxane macromonomer has a weight average molecular weight from about 1000 to about 50,000
- the polysiloxane macromonomer has a formula selected from the following formulas:
- s is an integer from 0 to 6; preferably 0, 1, or 2; more preferably 0 or 1; m is an integer from 1 to 3, preferably 1; p is 0 or 1; q is an integer from 2 to 6; each Ri is independently selected form the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkylamino, phenyl, C1-C6 alkyl or alkoxy-substituted phenyl, preferably C1-C6 alkyl, or C1-C6 alkyl or alkoxy-substituted phenyl, more preferably C1-C6 alkyl, even more preferably methyl, R ⁇ is independently selected form the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkylamino, phenyl, C1-C6 alkyl or alkoxy-substituted phen
- R3 wherein R3 is hydrogen or -COOH, preferably R ⁇ is hydrogen; R ⁇ is hydrogen, methyl or -CH 2 COOH, preferably R4 is methyl; Z is
- R ⁇ , R6. and R? are independently selected from hydrogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkylamino, styryl, phenyl, C1-C6 alkyl or alkoxy- substituted phenyl, hydrogen or hydroxyl, preferably R ⁇ , R6, and R ⁇ are C1-C6 alkyls; more preferably methyl; and r is an integer of from about 14 to about 700, preferably about 60 to about 400, and more preferably about 100 to about 170. Silicone Block Copolymers
- silicone block copolymers comprising repeating block units of polysiloxanes.
- silicone-containing block copolymers are found in U.S. Patent No. 5,523,365, to Geek et al., issued June 4, 1996; U.S. Patent 4,689,289, to Crivello, issued August 25, 1987; U.S. Patent 4,584,356, to Crivello, issued April 22, 1986; Macromolecular Design, Concept & Practice, Ed: M.K. Mishra, Polymer Frontiers International, Inc., Hopewell Jet., NY (1994), and Block Copolymers, A. Noshay and J.E. McGrath, Academic Press, NY (1977), which are all incorporated by reference herein in their entirety.
- the silicone-containing block copolymers of the present invention can be described by the formulas A-B, A-B-A, and -(A-B) n - wherein n is an integer of 2 or greater.
- A-B represents a diblock structure
- A-B-A represents a triblock structure
- - (A-B) n - represents a multiblock structure.
- the silicone block portion, A can be represented by the following polymeric structure
- each R is independently selected from the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkylamino, styryl, phenyl, C1-C6 alkyl or alkoxy-substituted phenyl, preferably wherein R is methyl.
- m is an integer of about 10 or greater
- m is an integer of about 40 or greater, more preferably of about 60 or greater, and most preferably of about 100 or greater.
- the nonsilicone block, B comprises monomers selected from the vinyl monomers as described above for the silicone grafted copolymers.
- the block copolymers can comprise mixtures of diblocks, triblocks, and higher multiblock combinations as well as small amounts of homopolymers.
- Sulfur-Linked Silicone Containing Copolymers And Sulfur-Linked Silicone Block Copolymers can comprise mixtures of diblocks, triblocks, and higher multiblock combinations as well as small amounts of homopolymers.
- sulfur-linked silicone containing and block copolymers are also useful herein.
- sulfur-linked means that these containing and block copolymers contain a sulfur linkage (i.e. -S-), a disulfide linkage (i.e. -S-S-), or a sulfhydryl group (i.e.-SH).
- G5 represents monovalent moieties which can independently be the same or different selected from the group consisting of alkyl, aryl, alkaryl, alkoxy, alkylamino, fluoroalkyl, hydrogen, and — ZSA;
- A represents a vinyl polymeric segment consisting essentially of polymerized free radically polymerizable monomer, and Z is a divalent linking group.
- Useful divalent linking groups Z include but are not limited to the following: C ⁇ to CI Q alkylene, alkarylene, arylene, and alkoxyalkylene.
- Z is selected from the group consisting of methylene and propylene for reasons of commercial availability.
- G6 represents monovalent moieties which can independently by the same or different selected from the group consisting of alkyl, aryl, alkaryl, alkoxy, alkylamino, fluoroalkyl, hydrogen, and — ZSA;
- G 2 comprises A
- G4 comprises A
- R ⁇ represents monovalent moieties which can independently be the same or different and are selected from the group consisting of alkyl, aryl, alkaryl, alkoxy, alkylamino, fluoroalkyl, hydrogen, and hydroxyl.
- R ⁇ represents monovalent moieties which can independently be the same or different selected from the group consisting of C ⁇ .A alkyl and hydroxyl for reasons of commercial availability. Most preferably, R ⁇ is methyl.
- R 2 can independently be the same or different and represents divalent linking groups. Suitable divalent linking groups include but are not limited to the following: C] to C10 alkylene, arylene, alkarylene, and alkoxyalkylene. Preferably, R 2 is selected from the group consisting of
- R 2 is selected from the group consisting of — CH 2 — , 1,3 -propylene, and
- R3 represents monovalent moieties which can independently be the same or different and are selected from the group consisting of alkyl, aryl, alkaryl, alkoxy, alkylamino, fluoroalkyl, hydrogen, and hydroxyl.
- R3 represents monovalent moieties which can independently be the same or different selected from the group consisting of C 1.4 alkyl and hydroxyl for reasons of commercial availability.
- R3 is methyl.
- R4 can independently be the same or different and represents divalent linking groups. Suitable divalent linking groups include but are not limited to the following: C to C10 alkylene, arylene, alkarylene, and alkoxyalkylene. Preferably, R4 is selected from the group consisting of
- R4 is selected from the group consisting of — CH 2 — , 1,3-propylene, and x is an integer of 0-3; y is an integer of 5 or greater; preferably y is an integer ranging from about 14 to about 700, preferably from about 100 to about 170; q is an integer of 0-3; wherein at least one of the following is true: q is an integer of at least 1 ; x is an integer of at least 1 ;
- G5 comprises at least one — ZSA moiety
- G5 comprises at least one — ZSA moiety.
- A is a vinyl polymeric segment formed from polymerized free radically polymerizable monomers. The selection of A is typically based upon the intended uses of the composition, and the properties the copolymer must possess in order to accomplish its intended purpose. If A comprises a block in the case of block copolymers, a polymer having AB and ABA architecture will be obtained depending upon whether a mercapto functional group — SH is attached to one or both terminal silicon atoms of the mercapto functional silicone compounds, respectively.
- the weight ratio of vinyl polymer block or segment, to silicone segment of the copolymer can vary.
- the preferred copolymers are those wherein the weight ratio of vinyl polymer segment to silicone segment ranges from about 98:2 to 50:50, in order that the copolymer possesses properties inherent to each of the different polymeric segments while retaining the overall polymer's solubility.
- polymers which have acidic functionalities are usually used in at least partially neutralized form to promote solubility/dispersibility of the polymer.
- use of the neutralized form aids in the ability of the dried hair spray compositions to be removed from the hair by shampooing.
- neutralized it is preferred that from about 10%> to 100%, more preferably from about 20%> to about 90%, and even more preferably from about 40% to about 85%, of the acidic monomers of the copolymer be neutralized.
- Any conventionally used base including organic or inorganic (metallic or other) bases, can be used for neutralization of the polymers.
- Metallic bases are particularly useful in the present compositions.
- Hydroxides where the cation is ammonium, an alkali metal or an alkaline earth metal, are suitable neutralizers for use in the present hair spray compositions.
- Preferred neutralizing agents for use in hair spray compositions of the present invention are potassium hydroxide and sodium hydroxide.
- Suitable neutralizing agents which may be included in the hair spray compositions of the present invention include amines, especially amino alcohols such as 2-amino-2 -methyl- 1, 3 -propanediol (AMPD), 2-amino-2-ethy 1-1,3 - propanediol (AEPD), 2-mino-2-methyl-l-propanol (AMP), 2-amino- 1-butanol (AB), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), monoisopropanolamine (MIPA), diisopropanolamine (DIP A), triisopropanolamine (TIPA) and dimethyl stearamine (DMS).
- Particularly useful neutralizing agents are mixtures of amines and metallic bases.
- Polymers having basic functionalities, e.g., amino groups, are preferably at least partially neutralized with an acid, e.g., hydrochloric acid.
- Neutralization can be accomplished by techniques well known in the art, and before or after polymerization of the monomers comprising the graft copolymer.
- Solubility of the copolymer should be determined after neutralization, if any, as well as after addition of other ingredients that may be included in the copolymer/solvent systems.
- Nonlimiting examples of preferred polymers of the present invention include those selected from the group consisting of poly[(t-butylacrylate-co-n-butylacrylate-co- acrylic acid)-graft-poly(dimethylsiloxane)], poly[(t-butylacrylate-co-2-methoxyethyl acrylate-co-acrylic acid)-graft-poly(dimethylsiloxane)], poly(t ⁇ butylacrylate-co-acrylic acid)-graft-[poly(isobutylene); poly(dimethylsiloxane)], poly(4-t-butylstyrene-co- methacrylic acid)-graft-[(poly(isobutylene); poly(dimethysiloxane)], poly[(t- butylstyrene-co-methacrylic acid)]-graft-[poly(2-ethylhexyl methacrylate), poly(dimethyl
- Nonlimiting examples of preferred polymers of the present invention include those selected from the group consisting of poly [(t-butylacrylate-co-2-methoxy ethyl acrylate-co-methacrylic acid)]-graft-[poly(n-propyl methacrylate-co-methacrylic acid); poly(dimethylsiloxane)], poly[(t-butylacrylate-co-n-butylacrylate-co-acrylic acid)- graft-poly(dimethylsiloxane)] , [poly (dimethyl siloxane)-block-poly(t-butylacrylate-co- n-butylacrylate-co-acrylic acid-co-methacrylic acid)] n , [poly (dimethyl siloxane)-block- poly(t-butylacrylate-co-n-butylacrylate-co-acrylic acid-co-methacrylic acid)] n , [poly (
- copolymers of the present invention include the following, where the composition is given as weight percentage of each monomer used in the polymerization reaction (i.e. the weight percentage of the monomers and macromonomers charged).
- poly(dimethyl siloxane)-block-polv(t-butylacrylate-co-n-butylacrylate-co-acrylic acid- co-methacrylic acid)1 n having a weight average molecular weight of about 100,000, comprising about 62% t-butylacrylate, 11%> acrylic acid, 10% methacrylic acid, 17% poly(dimethylsiloxane) macroazoinitiator with a molecular weight of about 10,000.
- poly(isobutylene);polv(dimethylsiloxane)l having a weight average molecular weight of about 200,000, comprising about 40% t-butylacrylate, 20% n-butylacrylate, 20% acrylic acid, 10% poly(dimethylsiloxane) macromonomer with a molecular weight of about 10,000, and 10% poly(isobutylene) macromonomer with a molecular weight of about 4,000.
- compositions of the present invention comprise from about 70% to about 99.9%, preferably from about 75%) to about 98%, and more preferably from about 85%) to about 98%), by weight of the composition, of a solvent for the copolymer.
- the solvent is selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof.
- the water content of the compositions is generally in the range of from about 0.5% to about 99%), preferably from about 5%> to about 50%>, by weight of the total composition.
- the alcohol solvents are generally present in the range of from 0.5%> to about 99%>, preferably from about 50% to about 95%>, by weight of the total composition.
- hair spray compositions which contain reduced levels of volatile organic compounds such as solvents.
- volatile organic compounds such as solvents.
- VOCs volatile organic compounds
- a reduced volatile organic compound hair spray composition of the present invention contains no more than 80%> volatile organic compounds.
- the hair spray compositions of the present invention when dried, have specific physical properties as defined by the cohesive strength and total energy absorption per unit area.
- the dried hair spray compositions also exhibit specific impact strength properties.
- the hair spray compositions also preferably have an improved removeability as defined in terms of hair stiffness and flaking values.
- Cohesion is the strength of the bonds formed within a sample, e.g., a dried hair spray composition.
- the cohesive strength which is designated as kgf/mm ⁇ (kilograms of force per square millimeter) is the maximum unit stress a material will withstand when being subjected to displacement in tension. Stress is the ratio of measured load (kg X f) to the original cross-sectional area (mm ⁇ ) of the sample.
- the cohesive strength of dried hair spray compositions of the current invention are determined using the following method. This method is based on ASTM Designation: D 638-91, Standard Test Method for Tensile Properties of Plastics. Published January 1992, herein incorporated by reference in its entirety.
- the following test method to measure cohesive strength is similar to the ASTM standard, however, several modifications are made to better represent the tensile properties of the dried hair spray films. The measurements are made at about 73 °F and about 50%> relative humidity.
- the test method, described herein specifically uses a modified dumbbell shape with a thickness equal to about 0.4 mm., and uses an Instron Model Mini-55 (available from Instron Corp., Canton, MA) as the testing machine for applying the force to the polymer film samples.
- a dried film sample is prepared by drying an amount of the hair spray composition (i.e., the silicone-containing adhesive copolymer and solvent selected from the group consisting of water, ethanol, n-propanol, isopropanol, and mixtures thereof, and any additional optional components) in a flat-bottomed aluminum mold coated with PFA (perfluoroalkoxy) Teflon®.
- the copolymer film is dried at about 73°F and about 50%) relative humidity until film has attained a "constant weight".
- Constant weight is meant that there is less than a 1% weight fluctuation in the sample over a period of 24 hours.
- the drying film should be kept in an area protected from air currents, which could result in non-uniform drying and formation of air bubbles.
- the copolymer film is cut into a dumbbell shape for testing.
- the sample should be substantially free of defects, i.e. cracks, chips, tears, etc.
- Figures 1 and 2 illustrate the planar dumbbell shaped film to be used in the tensile testing described herein for the cohesive strength and the total energy absorption per unit volume.
- Figure 1 illustrates an overhead view of the dumbbell shaped sample.
- Figure 2 illustrates a cross section through the dumbbell shaped sample.
- the length of the narrow, 3 mm., section of the dumbbell, 3, is about 13 mm.
- the gauge length of the narrow section, 2 is the initial film length used in the determination of the strain of the sample.
- the transition sections between the wide ends and the narrow section of the film are about 6.5 mm. in length (i.e.
- the end portions of the narrow, center portion should be smoothly curved to avoid any stress points in the sample.
- the curve of the transition section should have a radius, 7, of from about 0.5 in. to about 5 inches, and should join tangentially to the narrow section.
- the dumbbell shaped samples are further equilibrated to a "constant weight".
- Constant weight is meant that over a selected 4 day period, there is no more than 0.2%> average weight gain or loss, relative to the dumbbell's measured weight 4 days previous and no more than ⁇ 0.2% weight drift should be observed between two consecutive measurements in the four day period of time. The dumbbell should be tested within a 7 day period of reaching this constant weight.
- the samples are tested on a calibrated Instron Model Mini-55 tensile tester. Before mounting the sample into the Instron, the length, 3, width, 1, and thickness, 8, of the narrow section of the dumbbell shaped sample are measured to the nearest micron with a calibrated micrometer. The dimensional measurements are required by the Instron for force per unit area calculations. The wide ends of the dumbbell samples are clamped into the Instron and pulled at a crosshead rate of 5 mm. per minute. The Instron tester measures the overall forces (e.g., kgf) applied to the film. These forces are spread over the cross sectional area of the narrow section of the film. The cohesive strength of the copolymer is the maximum unit force measured by the Instron divided by the cross sectional area of the narrow portion of the film.
- the overall forces e.g., kgf
- the dried hair spray compositions of the present invention have a cohesive strength of greater than about 0.5 kgf/mm ⁇ , preferably greater than about 0.6 kgf/mm ⁇ , and more preferably greater than about 0.7 kgf/mm ⁇ .
- Total Energy Absorption Per Unit Volume e.g., kgfmm/mm ⁇
- the total energy absorption per unit volume which is designated as kgfmm/mm ⁇ (kilograms of force millimeters per millimeter cubed), is the ratio of the total energy required to reach the autobreak point (in kgf X mm) to the original volume of the sample (mm ⁇ ).
- the total energy required to reach the break point is calculated using standard techniques by determining the area under a load versus displacement curve for the sample.
- the total energy absorption per unit volume is also known as "toughness" by those skilled in the art of polymer science and materials testing.
- the measurements are made at about 73 °F and about 50%> relative humidity.
- the dried hair spray compositions of the present invention have a total energy absorption per unit volume of greater than about 0.55 kgfmm/mm- , preferably greater than about 0.75 kgfmm/mm->, more preferably greater than about 1.10 kgfmm/mm->, more preferably greater than about 1.60 kgfmm/mnM and most preferably greater than about 2.15 kgfmm mm ⁇ .
- Impact strength is the mean-failure energy (mass X gravity X height) required to produce sample failure, e.g., in a dried hair spray composition.
- the sample failure is characterized by a crack or split created by the impact of the falling weight that can be seen by the naked eye under normal laboratory lighting conditions.
- the impact strength of the dried hair spray compositions of the current invention are determined using the following method. This method is based on ASTM Designation: D 5420-93, Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact), Published 1995, herein incorporated by reference in its entirety, however, several modifications are made to better represent the impact properties of the dried film. The measurements are made at about 73 °F and about 50%> relative humidity.
- the test method specifically uses rectangular shaped samples with a thickness equal to about 0.4 mm, and uses a GCA/Precision Scientific Penetrometer modified to drop a blunt faced probe to a distance of 70 mm and equipped with a Precision Scientific solenoid controller for GCA Penetrometer, a blunt faced cylindrical probe with a surface area of 8 mm ⁇ (OK M&T Corp. - part # WSU30), and a ruler which measures in 1 mm increments.
- the samples are prepared using the film drying method described above in the cohesive strength measurements.
- the copolymer film is cut into the rectangular shape, e.g. 10 mm X 20 mm.
- the thickness of the sample is 0.4 mm.
- the film thickness of various test samples should be maintained within ⁇ 15%> of 0.4 mm.
- the following measurement process is used. Turn on the solenoid operated probe release controller.
- the controller should begin to cycle on and off as indicated by a red light. Be sure the probe face is flush with the impact surface so that the sharp edge of the probe does not strike the film. Place a film sample on the Impact Tester over the target area. Direct the metric ruler gently on the film sample. Direct the lightening source across the surface of the sample such that the light source is in the same plane as the surface of the film. Small fractures in the film will reflect light and be easily detected.
- a suggested distance progression is: 1 mm, 3 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and further 5 mm increments up to 70 mm.
- the first step in the measurement of impact energy is to find the range of probe height necessary to fracture the film. Start at 1 mm for the first step. Continue to move up according to the suggested distance progression until a fracture is observed. When a fracture is observed make a note of it and move to a new sample.
- the second step in determining impact energy is to set a new sample and start drop at an observed fracture point in the range procedure. Set a new film sample and move the probe to the next lowest setting. If the film fractures, record result and repeat previous step. If the film does not fracture, set a new sample and move to the next distance. Continue to set new samples and increase the drop distance until the film fractures. Continue the procedure until 5 fractures are observed. Calculate the amount of work energy, i.e. the fracture strength using the following formula:
- W amount of work energy in ergs
- m mass of probe (59.53 g) (The probe is removable and can be replaced with one of different mass or impact surface area).
- g gravitational constant (980.665 cm/sec ⁇ )
- h average distance probe travels to impact (cm).
- the dried hair spray compositions of the present invention have an impact strength of greater than about 7000 ergs, preferably greater than about 20,000 ergs, and more preferably greater than about 50,000 ergs.
- the adhesive copolymers herein have improved removeability when used in the preferred hairspray embodiments of the present invention.
- removeability means that the adhesive copolymers are more easily removed from the hair or other applied surface during shampooing.
- removeability is determined indirectly by evaluating hair stiffness and the appearance of observable white flakes after treating the hair in accordance with the removeability methodology described hereinafter. It has been found that the removeability of a hair spray formulation after shampooing correlates with the resulting stiffness/softness of the hair and the appearance/nonappearance of white flakes on the hair after a series of shampooing cycles.
- the hair spray compositions of the present invention have high removeability e.g., reduced stiffness and reduced white flaking.
- the term "removeability" as used herein therefore refers to hair stiffness values (0-4 scale) and white flaking values (0-4 scale) as measured in accordance with the methodology described hereinafter.
- the removeability of the hair spray compositions is defined as a combination of hair stiffness values and hair flaking values, wherein the hair spray compositions provide hair flaking values ranging from 0 to about 3.5, preferably from 0 to about 2.5, more preferably from 0 to about 2.0, and hair stiffness values ranging from 0 to about 3.5, preferably from 0 to about 2.5, more preferably from 0 to about 2.0.
- Removeability of the hairspray composition of the present invention is determined in accordance with the following methodology.
- the methodology simulates multiple application and multi-cycle application of hairspray compositions so as to indirectly determine how readily and effectively such hairspray compositions are removed from hair.
- the methodology described herein provides a means of evaluating hair switches blindly treated with hairspray embodiments of the present invention.
- the method by which each hair switch is treated with the hairspray embodiments, and the method by which each treated hair switch is then evaluated for removeability are described in detail below.
- Two trained panelists each evaluate identically treated hair switches or sets of hair switches for stiffness and the appearance of white flakes. The panelists then individually assign each of the treated hair switches with a numerical score (0 to 4 scale) for hair stiffness and a numerical score for flaking (0 to 4 scale). The order in which the hair switches are treated with different hair spray embodiments is randomized and conducted round robin. Two identical sets of switches are prepared as described below for each panelist so that each has a fresh set of switches to evaluate. Before evaluating the blindly treated hair switches, each panelist also evaluates (not blinded) an untreated hair switch as a zero reference for hair stiffness and flaking.
- Each panelist also evaluates a control treated hair switch as a flaking reference (score 4.0) and another control treated hair switch as a hair stiffness reference (score 4.0).
- the hair stiffness values as defined herein are determined by averaging the hair stiffness scores provided by the two panelist.
- the hair flaking values as defined herein are determined by averaging the hair flaking scores provided by the two panelists.
- the hair switches are treated with either an aerosol or non-aerosol hair spray embodiment of the present invention in accordance with the following steps.
- the hair stiffness reference and the flaking reference are also prepared in accordance with the following steps, except that each is treated with the corresponding hair spray formulations as described hereinafter in Tables 2 and 3.
- step 3 on the opposite side of the switch.
- a panelist then evaluates the treated switch by feeling it between their first and second fingers of their dominant hand and between their thumb and other fingers for stiffness and resistance to bending, and then assigns to the treated switch a hair stiffness score (0 to 4 scale).
- the value of the assigned score is relative to the hair stiffness reference score (4) and the untreated reference score (0).
- the panelist then combs the evaluated switch in accordance with the procedure set forth in Step 14 above, and then visually evaluates the combed switch for white flakes, coating, and white haze and assings it a hair flaking score (0 to 4 scale).
- the value of the assigned score is relative to the hair flaking reference score (4) and the untreated reference score (0).
- Each of the formulations described in Tables 1 -3 are prepared by conventional formulation and mixing techniques.
- compositions of the present invention can also comprise a wide variety of optional ingredients that are suitable for application to human hair.
- compositions hereof can optionally contain a plasticizer for the copolymer.
- a plasticizer for the copolymer Any plasticizer suitable for use in hair care products or for topical application to the hair or skin can be used.
- plasticizers are known in the art. These include glycerin, diisobutyl adipate, butyl stearate, propylene glycol, tri-C 2 -Cg alkyl citrates, including triethyl citrate and tri-propyl, -butyl, -pentyl, etc., analogs of triethyl citrate. Triethyl citrate is preferred.
- Plasticizers are typically used at levels of from about 0.01% to about 10%, by weight of the composition, preferably from about 0.05% to about 3%, more preferably from about 0.05% to about 1%.
- the weight ratio of graft copolymer to the plasticizer is from about 1 :1 to about 40:1, preferably from about 2:1 to about 30:1, more preferably from about 3:1 to about 25:1.
- the compositions of the present invention can contain an effective amount of a non-surface active ionic strength modifier system for reducing the viscosity of the hair spray composition.
- the ionic strength modifiers will be present in the present compositions at a level of at least about 0.01%, by weight of the composition. The upper limit is dependent upon the maximum amount of the ionic strength modifiers that can be present in the particular compositions hereof such that the hair setting resin remains solubilized or dispersed.
- the resin will eventually fall out of solution, or otherwise no longer remain solubilized or dispersed in the hydrophilic liquid carrier.
- the upper limit of the ionic strength modifier system level will vary depending upon the particular ionic strength modifiers, liquid vehicle, resin, and other ingredients present in the composition. Thus, for example, the maximum amount of the ionic strength modifiers that can be used will tend to be lower for compositions with liquid vehicles containing less water, compared to compositions with more water.
- the compositions will comprise about 4%, by weight, or less of the ionic strength modifiers, more generally about 2% or less, and typically about 1%) or less.
- the compositions hereof will comprise from about 0.01% to about 0.5%), more preferably from about 0.0 l%o to about 0.1 %>, of the ionic strength modifier system.
- the ionic strength modifier system comprises a mixture of monomeric cations and anions.
- the ions of the ionic strength modifier system hereof are non-surface active, i.e. they do not significantly reduce surface tension.
- non-surface active shall mean the ions, which at a 0.5%> aqueous solution concentration, reduce surface tension by no more than 5.0 dynes/cm ⁇ .
- the ions of the ionic strength modifier system hereof will be characterized by having, at maximum, four or less carbon atoms per charge, preferably two or less carbon atoms, in any aliphatic chain or straight or branched chain organic heterochain.
- the ionic strength modifier system comprises monomeric ions of the type which are products of acid-base reactions.
- basic and acidic ions OH " and H do not constitute part of the ionic strength modifier system hereof, although they may be present in the composition.
- the ions hereof are incorporated into the composition in a form such that they can exist in the composition as free ions, i.e., in dissociated form. It is not necessary that all of the ions added exist in the composition as free ions, but must be at least partially soluble or dissociated in the composition.
- the ionic strength modifiers can be incorporated into the hair styling compositions, for example, by addition of soluble salts, or by addition of mixtures of acids and bases, or by a combination thereof. It is a necessary aspect of the invention that both anions and cations of the ionic strength modifier system be included in the composition.
- Suitable cations for use include, for example, alkali metals, such as lithium, sodium, and potassium, and alkaline-earth metals, such as magnesium, calcium, and strontium.
- Preferred of the divalent cations is magnesium.
- Preferred monovalent metal ions are lithium, sodium, and potassium, particularly sodium and potassium.
- Suitable means of addition to the compositions hereof include, for example, addition as bases, e.g., hydroxides, sodium hydroxide and potassium hydroxide, and such as salts that are soluble in the liquid carrier, e.g. salts of monomeric anions such as those described below.
- Suitable cations include organic ions, such as quaternary ammonium ions and cationic amines, such as ammonium mono-, di-, and triethanolamines, triethylamine, morpholine, aminomethylpropanol (AMP), aminoethylpropanediol, etc.
- Ammonium and the amines are preferably provided in the forms of salts, such as hydrochloride salts.
- Monomeric anions that can be used include halogen ions, such as chloride, fluoride, bromide, and iodide, particularly chloride, sulfate, ethyl sulfate, methyl sulfate, cyclohexyl sulfamate, thiosulfate, toluene sulfonate, xylene sulfonate, citrate, nitrate, bicarbonate, adipate, succinate, saccharinate, benzoate, lactate, borate, isethionate, tartrate, and other monomeric anions that can exist in dissociated form in the hair styling composition.
- halogen ions such as chloride, fluoride, bromide, and iodide, particularly chloride, sulfate, ethyl sulfate, methyl sulfate, cyclohexyl sulfamate, thiosulfate, toluen
- the anions can be added to the compositions hereof, for example, in the form of acids or salts which are at least partially soluble in the liquid vehicle, e.g., sodium or potassium salts of acetate, citrate, nitrate, chloride, sulfate, etc.
- acids or salts which are at least partially soluble in the liquid vehicle, e.g., sodium or potassium salts of acetate, citrate, nitrate, chloride, sulfate, etc.
- such salts are entirely soluble in the vehicle.
- ionic strength modifiers are especially useful in reduced volatile organic solvent compositions.
- compositions can also contain various hydrophobic volatile solvents such as cyclomethicone and volatile hydrocarbons such as isododecane and isohexadecane.
- compositions can contain a wide variety of other optional ingredients, including among them any of the types of ingredients known in the art for use in hair care compositions, especially hair setting compositions such as especially hair spray compositions and hair setting tonics.
- hair setting compositions such as especially hair spray compositions and hair setting tonics.
- other adjuvants collectively can comprise from about 0.05% to about 5%> by weight and preferably from about 0.1 % to about 3%, by weight.
- Such conventional optional adjuvants include, but are not limited to, surfactants (which may be anionic, cationic, amphoteric, or zwitterionic and which include fluorinated surfactants and silicone copolyols), propellants, hair conditioning agents (e.g., silicone fluids, fatty esters, fatty alcohols, long chain hydrocarbons, cationic surfactants, etc.); emollients; lubricants and penetrants such as various lanolin compounds; protein hydrolysates and other protein derivatives; ethylene adducts and polyoxyethylene cholesterol; dyes, tints, bleaches, reducing agents and other colorants; pH adjusting agents; sunscreens; preservatives; thickening agents (e.g. polymeric thickeners, such as xanthan gum); and perfume.
- surfactants which may be anionic, cationic, amphoteric, or zwitterionic and which include fluorinated surfactants and silicone copolyols
- the hair spray compositions of the present invention can be dispensed as sprayed or atomized products from containers which are pump spray dispensers or aerosol canisters.
- containers which are pump spray dispensers or aerosol canisters.
- Such containers are well known to those skilled in the art and are commercially available from a variety of manufacturers, including American National Can Corp. and Continental Can Corp.
- a propellant which consists of one or more of the conventionally- known aerosol propellants can be used to propel the compositions.
- a suitable propellant for use can be generally any liquifiable gas conventionally used for aerosol containers.
- Suitable propellants for use are volatile hydrocarbon propellants which can include liquified lower hydrocarbons of 3 to 4 carbon atoms such as propane, butane and isobutane.
- Other suitable propellants are hydrofluorocarbons such as 1,2- difluoroethane (Hydrofluorocarbon 152 A) supplied as Dymel 152A by DuPont.
- Other examples of propellants are dimethylether, nitrogen, carbon dioxide, nitrous oxide, and atmospheric gas.
- the hydrocarbons, particularly isobutane, used singly or admixed with other hydrocarbons are preferred.
- the aerosol propellant may be mixed with the present hair spray compositions and the amount of propellant to be mixed is governed by normal factors well known in the aerosol art. Generally, for liquifiable propellants, the level of propellant is from about 10% to about 60% by weight of the total composition, preferably from about 15% to about 50%) by weight of the total composition.
- pressurized aerosol dispensers can be used where the propellant is separated from contact with the hair spray composition such as a two compartment can of the type sold under the tradename SEPRO from American National Can Corp.
- suitable aerosol dispensers are those characterized by the propellant being compressed air which can be filled into the dispenser by means of a pump or equivalent device prior to use.
- Such dispensers are described in U.S. Patents 4,077,441, March 7, 1978, Olofsson and 4,850,577, July 25, 1989, TerStege, both incorporated by reference herein, and in U.S. Serial No. 07/839,648, Gosselin et al., filed February 21, 1992, also incorporated by reference herein.
- Compressed air aerosol containers suitable for use are also currently marketed by The Procter & Gamble Company under their tradename VIDAL SASSOON AIRSPRAY® hair sprays.
- Conventional nonaerosol pump spray dispensers i.e., atomizers, can also be used.
- hair styling compositions include tonics and lotions, which are typically dispensed in a conventional bottle or tube, and applied directly to the hair or first dispensed to the hand and then to the hair.
- the hair styling compositions of the present invention can be made using conventional formulation and mixing techniques.
- the silicone-containing adhesive copolymer and the solvent are mixed to provide a homogeneous mixture. Any other ingredients are then added and mixed to yield the final composition. If the polymer is neutralized, the neutralizer is preferably added prior to addition of other ingredients.
- the composition is packaged in conventional mechanical pump spray devices, or alternatively, in the case of aerosol sprays products, the composition is packaged in conventional aerosol canisters along with an appropriate propellant system.
- compositions of the present invention are used in conventional ways to provide the hair care benefits of the present invention. Such methods generally involve application of an effective amount of the product to dry, slightly damp, or wet hair before and/or after the hair is dried and arranged to a desired style.
- Application of the product is normally effected by spraying or atomizing the product using an appropriate device, e.g. a mechanical pump spray, a pressurized aerosol container, or other appropriate means.
- the composition is then dried or allowed to dry.
- effective amount is meant an amount sufficient to provide the hair hold and style benefits desired. In general, from about 0.5g to about 30g of product is applied to the hair, depending upon the particular product formulation, dispenser type, length of hair, and type of hair style.
- Examples 1-4 Syntheses of macromonomers and copolymers.
- tetrahydrofuran IL
- trimethylsilylmethacrylate lOOg, 0.632 mole
- n-propylmethacrylate lOOg, 0.780 mole
- IL tetrahydrofuran
- diphenylhexyllithium 0.0275 moles
- vinylbenzoyl chloride 8.33 mL, 0.05 mole
- the solution is then warmed to ambient temperature and H O (lOmL) is added and stirred for 0.25 hours to deprotect the acid groups.
- the macromonomer which has a weight average molecular weight of about 6000, is obtained by precipitating the resulting solution in hexanes, collecting precipitate, and drying under vacuum.
- the polymer is precipitated from the solution by adding one part of the polymer solution to 15 parts water.
- the resultant polymer is then placed in a vacuum oven for heated drying.
- the polymer is ground and extracted for 20 hours with hexane using a soxhlet extractor.
- the polymer is then vacuum dried with heat in an oven.
- the polymer is precipitated from the solution by adding one part solution to 15 parts water.
- the resultant polymer is then redissolved in acetone. This procedure is repeated six times, with the final polymer being placed in a vacuum oven for heated drying.
- Terminate the reaction by cooling to room temperature.
- the polymer is purified by drying off the reaction solvent in an oven.
- acetone can be used in place of tetrahydrofuran, in which case the polymer is precipitated by adding water and the precipitated polymer is collected and dried.
- Copolymer 6 4.00 5.00 6.00 4.00 — — — — —
- Copolymer 3 5.00 4.00 3.50 — — —
- compositions are prepared as described above, by first mixing the polymer with the ethanol, neutralizing the polymer with sodium or potassium hydroxide, then adding sequentially (as applicable) with mixing, isododecane, plasticizer, perfume, and water. If sodium benzoate is used, it is added after water addition. Most preferably a premix of water and sodium benzoate is made and then added after the main water addition. Propellants for aerosol compositions are charged to conventional aerosol containers after the remainder of the prepared composition has been added.
- the hair spray embodiments of the present invention described in Examples 5- 18 have high removeability from hair, and when evaluated by the removeability methodology described herein, provide a hair stiffness value of less than 2.0 and a hair flaking value of less than 2.0.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
- Silicon Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR9812296-7A BR9812296A (pt) | 1997-04-25 | 1998-04-24 | Composições capilares em spray |
AU71605/98A AU7160598A (en) | 1997-04-25 | 1998-04-24 | Hair spray compositions |
EP98918734A EP0977542A1 (en) | 1997-04-25 | 1998-04-24 | Hair spray compositions |
CA002288040A CA2288040A1 (en) | 1997-04-25 | 1998-04-24 | Hair spray compositions |
JP54719898A JP2001507368A (ja) | 1997-04-25 | 1998-04-24 | ヘアスプレー組成物 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84293897A | 1997-04-25 | 1997-04-25 | |
US08/842,938 | 1997-04-25 | ||
US08/939,362 | 1997-09-29 | ||
US08/939,362 US6113883A (en) | 1997-04-25 | 1997-09-29 | Hair styling compositions comprising silicone-containing copolymers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998048771A1 true WO1998048771A1 (en) | 1998-11-05 |
Family
ID=27126375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/008349 WO1998048771A1 (en) | 1997-04-25 | 1998-04-24 | Hair spray compositions |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0977542A1 (pt) |
JP (1) | JP2001507368A (pt) |
CN (1) | CN1259033A (pt) |
AU (1) | AU7160598A (pt) |
BR (1) | BR9812296A (pt) |
CA (1) | CA2288040A1 (pt) |
WO (1) | WO1998048771A1 (pt) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000028948A1 (en) * | 1998-11-12 | 2000-05-25 | The Procter & Gamble Company | Cosmetic compositions |
EP1013681A1 (en) * | 1998-12-21 | 2000-06-28 | Dow Corning Corporation | Organopolysiloxane-modified graft copolymers |
US6106820A (en) * | 1997-05-12 | 2000-08-22 | Procter & Gamble Company | Cosmetic compositions |
WO2000071607A1 (en) * | 1999-05-24 | 2000-11-30 | Unilever Plc | Polysiloxane block copolymers in topical cosmetic and personal care compositions |
US6548051B2 (en) | 2000-08-16 | 2003-04-15 | L′Oreal | Hair styling composition comprising adhesive particles |
EP1627664A1 (en) | 2004-07-30 | 2006-02-22 | L'oreal | Hair styling composition comprising adhesive particles and non-adhesive particles |
EP1972329A2 (en) | 2003-03-24 | 2008-09-24 | Unilever Plc | Hair treatment compositions comprising a silicone pressure sensitive adhesive |
DE102007023933A1 (de) * | 2007-05-23 | 2008-12-04 | Wacker Chemie Ag | Siliconisierte Vinylchlorid-Mischpolymerisate |
WO2011144406A1 (de) | 2010-05-19 | 2011-11-24 | Evonik Goldschmidt Gmbh | Polysiloxan blockcopolymere und deren verwendung in kosmetischen formulierungen |
WO2011144407A1 (de) | 2010-05-19 | 2011-11-24 | Evonik Goldschmidt Gmbh | Polysiloxan blockcopolymere und deren verwendung in kosmetischen formulierungen |
WO2013064596A1 (en) | 2011-11-04 | 2013-05-10 | Unilever Plc | Hair styling composition |
US9763871B2 (en) | 2013-11-15 | 2017-09-19 | Kao Corporation | Hair cosmetic composition |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI1006961B1 (pt) | 2009-01-21 | 2017-04-04 | Kao Corp | composição cosmética capilar compreendendo um policarbonato de poliéter |
EP2849854B1 (en) | 2012-05-15 | 2017-09-20 | Kao Corporation | Hair cosmetic composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993023009A1 (en) * | 1992-05-12 | 1993-11-25 | Minnesota Mining And Manufacturing Company | Polymers in cosmetics and personal care products |
WO1995003776A1 (en) * | 1993-08-03 | 1995-02-09 | Minnesota Mining And Manufacturing Company | Polymers in cosmetics and personal care products |
WO1995006079A1 (en) * | 1993-08-23 | 1995-03-02 | The Procter & Gamble Company | Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same |
WO1996032918A1 (en) * | 1995-04-21 | 1996-10-24 | The Procter & Gamble Company | Topical personal care composition containing alkenyl or styrene end-capped silicone grafted copolymer |
EP0766957A1 (en) * | 1995-10-05 | 1997-04-09 | Wako Pure Chemical Industries, Ltd | A base material for hair cosmetics |
-
1998
- 1998-04-24 JP JP54719898A patent/JP2001507368A/ja not_active Ceased
- 1998-04-24 EP EP98918734A patent/EP0977542A1/en not_active Withdrawn
- 1998-04-24 CA CA002288040A patent/CA2288040A1/en not_active Abandoned
- 1998-04-24 CN CN 98805780 patent/CN1259033A/zh active Pending
- 1998-04-24 WO PCT/US1998/008349 patent/WO1998048771A1/en not_active Application Discontinuation
- 1998-04-24 AU AU71605/98A patent/AU7160598A/en not_active Abandoned
- 1998-04-24 BR BR9812296-7A patent/BR9812296A/pt not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993023009A1 (en) * | 1992-05-12 | 1993-11-25 | Minnesota Mining And Manufacturing Company | Polymers in cosmetics and personal care products |
WO1995003776A1 (en) * | 1993-08-03 | 1995-02-09 | Minnesota Mining And Manufacturing Company | Polymers in cosmetics and personal care products |
WO1995006079A1 (en) * | 1993-08-23 | 1995-03-02 | The Procter & Gamble Company | Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same |
WO1996032918A1 (en) * | 1995-04-21 | 1996-10-24 | The Procter & Gamble Company | Topical personal care composition containing alkenyl or styrene end-capped silicone grafted copolymer |
EP0766957A1 (en) * | 1995-10-05 | 1997-04-09 | Wako Pure Chemical Industries, Ltd | A base material for hair cosmetics |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6106820A (en) * | 1997-05-12 | 2000-08-22 | Procter & Gamble Company | Cosmetic compositions |
WO2000028948A1 (en) * | 1998-11-12 | 2000-05-25 | The Procter & Gamble Company | Cosmetic compositions |
EP1013681A1 (en) * | 1998-12-21 | 2000-06-28 | Dow Corning Corporation | Organopolysiloxane-modified graft copolymers |
WO2000071607A1 (en) * | 1999-05-24 | 2000-11-30 | Unilever Plc | Polysiloxane block copolymers in topical cosmetic and personal care compositions |
US6365672B1 (en) | 1999-05-24 | 2002-04-02 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Polysiloxane block copolymers in topical cosmetic and personal care compositions |
US6548051B2 (en) | 2000-08-16 | 2003-04-15 | L′Oreal | Hair styling composition comprising adhesive particles |
EP1972329A2 (en) | 2003-03-24 | 2008-09-24 | Unilever Plc | Hair treatment compositions comprising a silicone pressure sensitive adhesive |
EP1627664A1 (en) | 2004-07-30 | 2006-02-22 | L'oreal | Hair styling composition comprising adhesive particles and non-adhesive particles |
DE102007023933A1 (de) * | 2007-05-23 | 2008-12-04 | Wacker Chemie Ag | Siliconisierte Vinylchlorid-Mischpolymerisate |
WO2011144406A1 (de) | 2010-05-19 | 2011-11-24 | Evonik Goldschmidt Gmbh | Polysiloxan blockcopolymere und deren verwendung in kosmetischen formulierungen |
WO2011144407A1 (de) | 2010-05-19 | 2011-11-24 | Evonik Goldschmidt Gmbh | Polysiloxan blockcopolymere und deren verwendung in kosmetischen formulierungen |
WO2013064596A1 (en) | 2011-11-04 | 2013-05-10 | Unilever Plc | Hair styling composition |
US9763871B2 (en) | 2013-11-15 | 2017-09-19 | Kao Corporation | Hair cosmetic composition |
Also Published As
Publication number | Publication date |
---|---|
AU7160598A (en) | 1998-11-24 |
BR9812296A (pt) | 2000-07-18 |
JP2001507368A (ja) | 2001-06-05 |
EP0977542A1 (en) | 2000-02-09 |
CN1259033A (zh) | 2000-07-05 |
CA2288040A1 (en) | 1998-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0983039B1 (en) | Hairspray compositions containing silicone block copolymers | |
JP3162401B2 (ja) | シリコーングラフト化ポリマーと低レベルの揮発性炭化水素溶媒を含有したヘアスタイリング組成物 | |
US6165457A (en) | Personal care compositions containing toughened grafted polymers | |
US5929173A (en) | Toughened grafted polymers | |
US6136296A (en) | Personal care compositions | |
CA2235813C (en) | Hair styling compositions containing non-silicone and silicone grafted polymers and low level of a volatile hydrocarbon solvent | |
WO1998048771A1 (en) | Hair spray compositions | |
US6113883A (en) | Hair styling compositions comprising silicone-containing copolymers | |
US20020064537A1 (en) | Personal care compositions containing linear toughened silicone grafted polymers | |
WO1998048772A1 (en) | Personal care compositions comprising a silicone-containing adhesive copolymer | |
WO1998048770A1 (en) | Personal care compositions comprising an adhesive copolymer | |
MXPA99009797A (en) | Personal care compositions comprising an adhesive copolymer | |
MXPA99009794A (en) | Hair spray compositions | |
KR20010013109A (ko) | 실리콘 블록 공중합체를 함유하는 헤어스프레이 조성물 | |
MXPA99010939A (en) | Hairspray compositions containing silicone block copolymers | |
MXPA99010937A (en) | Composition comprising a liquid absorbed on a support based on precipitate silica | |
MXPA99010405A (en) | Toughened grafted polymers | |
MXPA99010406A (en) | Personal care compositions containing toughened grafted polymers | |
CZ415799A3 (cs) | Laky na vlasy obsahující adhezivní blokkopolymery se silikonem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98805780.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 1998 547198 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2288040 Country of ref document: CA Ref document number: 2288040 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 71605/98 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998918734 Country of ref document: EP Ref document number: PA/a/1999/009794 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: 1998918734 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998918734 Country of ref document: EP |