[go: up one dir, main page]

WO1997019924A1 - Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide - Google Patents

Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide Download PDF

Info

Publication number
WO1997019924A1
WO1997019924A1 PCT/EP1996/004985 EP9604985W WO9719924A1 WO 1997019924 A1 WO1997019924 A1 WO 1997019924A1 EP 9604985 W EP9604985 W EP 9604985W WO 9719924 A1 WO9719924 A1 WO 9719924A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
compound
alkyl
formula
alkenyl
Prior art date
Application number
PCT/EP1996/004985
Other languages
English (en)
French (fr)
Inventor
Adolf Heinz Linkies
Dieter Bernd Reuschling
Werner Bonin
Ralf Braun
Harald Jakobi
Gerhard Krautstrunk
Martin Märkl
Wolfgang Schaper
Werner Knauf
Manfred Kern
Ulrich Sanft
Original Assignee
Hoechst Schering Agrevo Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo Gmbh filed Critical Hoechst Schering Agrevo Gmbh
Priority to AU75711/96A priority Critical patent/AU7571196A/en
Publication of WO1997019924A1 publication Critical patent/WO1997019924A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/65One oxygen atom attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom

Definitions

  • the invention relates to new substituted pyridines, processes for their preparation and their use as pesticides, in particular as insecticides, acaricides and fungicides.
  • the invention therefore relates to compounds of formula I and their N-oxides, in which
  • R represents identical or different radicals which are selected from the
  • n denotes 0, 1, 2, 3 or 4, preferably 0, 1 or 2, in particular 2,
  • R 1 and R 2 are identical or different and are selected from the series hydrogen, (C r C 4 ) alkyl, (C 2 -C 4 ) alkenyl, halogen (C 1 -C 4 ) alkyl, halogen (C 2 -C 4 ⁇ alkenyl, aryl and aralkenyl; and
  • R 3 represents hydrogen, or
  • R 1 and R 3 together represent a bond
  • R is as defined above;
  • R represents identical or different radicals which are selected from the
  • (C r C 4 ) alkyl (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C r C 4 ) alkoxy, (C 1 -C 4 ) alkanoyloxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 4 ) acyl, (C r C 4 ) alkoxycarbonyl, (C 2 -C 4 ) alkenyloxycarbonyl, Halogen (C r C 4 ) alkyl,
  • Radicals R 1 and R 2 bearing carbon atoms are cis-configured
  • n denotes 1, 2 or 3, preferably 1,
  • R 6 is defined as R 5 or is halo (C j -C ⁇ alkyl, halo (C 2 -C 10 ) alkenyl or aryl;
  • Aryl means phenyl or substituted phenyl;
  • Aralkyl means aryl (C r C 4 ) alkyl
  • halogen means a fluorine, chlorine, bromine or iodine atom, preferably a fluorine, chlorine or bromine atom;
  • (C 1 -C 4 ) alkyl an unbranched or branched hydrocarbon radical having 1 to 4 carbon atoms, such as, for example, methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl - Or 1, 1-dimethylethyl radical
  • (C r C 10 ) alkyl the aforementioned alkyl radicals and, for example, the pentyl, 2-methylbutyl or
  • halogen (C 1 -C 4 ) alkyl or "halogen (C 1 -C 10 ) alkyl” one under the expression “(C r C 4 ) alkyl” or “(C r C 10 ) -Alkyl "called alkyl group in which one or more hydrogen atoms have been replaced by the above-mentioned halogen atoms, preferably chlorine or fluorine, such as, for example, the trifluoromethyl group, the 2,2,2-trifluoroethyl group, the chloromethyl, fluoromethyl group, the difluoromethyl group or the 1, 1, 2,2-tetrafluoroethyl group (the same applies to "haloalkenyl”);
  • Substituted phenyl means a phenyl radical which has one or more, preferably up to three identical or different substituents from the series (C r C 4 ) alkyl, halogen (C r C 4 ) alkyl, hydroxy (C r C 4 ) alkyl, (C r C 4 ) alkoxy, halogen (C 2 -C 4 ) - alkoxy, phenoxy, phenyl, nitro, hydroxy, cyano, (C r C 4 ) alkanoyl, benzoyl, (C 1 -C 4 ) alkanoyloxy and (C r C 4 ) alkoxycarbonyl;
  • substituted amino means an amino group which is substituted by one or two (C 1 -C 4 ) -alkyl groups or a (C, -C 4 ) -alkanoyl group;
  • (C 2 -C 4 ) acyl in particular a (C 2 -C 4 ) alkanoyl radical, such as acetyl, propionyl or butyryl.
  • radicals derived therefrom such as haloalkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl. They also apply to homologues.
  • R represents identical or different radicals which are selected from the
  • R and R are the same or different and are selected from the series
  • At least one of the radicals R 4 preferably has the cis configuration with respect to the carbon atom carrying the radicals R 1 and R 2 , unless R 1 and R 3 together represent a bond.
  • Compounds of the formula I, their N-oxides and salts, where n 1 and R 4 is in the 4-position of the cyclohexyl or cyclohexylidene radical.
  • the present invention relates to the compounds of the formula I in the form of the free base or a salt, in particular an acid addition salt.
  • Acids which can be used to bind salt are inorganic acids, such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid or organic acids, such as formic acid, acetic acid, propionic acid, malonic acid, oxalic acid, fumaric acid, adipic acid, stearic acid, oleic acid, methanesulfonic acid or toluenesulfonic acid, toluenesulfonic acid .
  • Racemates and diastereomers can therefore occur.
  • the invention encompasses both the pure isomers and their mixtures.
  • the mixtures of diastereomers can be made by conventional methods, e.g. be separated into the components by selective crystallization from suitable solvents or by chromatography. Racemates can be separated into the enantiomers by the usual methods, e.g. by salt formation with an optically active acid, separation of the diastereomeric salts and release of the pure enantiomers using a base.
  • the invention also relates to a process for the preparation of compounds of the formula I or their N-oxides, which is characterized in that
  • R, R 2 and m are as defined above, R 7 is aryl or (C 1 -C 4 ) - alkoxy, R 8 is aryl, aryl is as defined above and X ⁇ is halide, or
  • R, R 1 , R 2 , R 4 , m and n are as defined in claim 1.
  • the olefination is usually carried out in a suitable solvent in the presence of a base.
  • a suitable solvent examples include ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, aromatic solvents such as benzene, toluene and xylene; and aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide, preferred solvents are tetrahydrofuran and dimethyl sulfoxide.
  • Suitable bases are e.g.
  • organic lithium compounds such as butyllithium, phenylithium; Lithium diisopropylamide, alkali metal hydrides such as sodium hydride, alkali metal alcoholates such as sodium methylate and potassium tert. -butylate and alkali metal amides such as sodium amide and potassium amide.
  • the preferred base is sodium hydride.
  • the amount of base used per mole of phosphorus compound can be: 0.8 to 1.5 moles. Excesses of 5 to 10% base per mole of phosphorus compound are preferred.
  • the reaction temperature depends on the reactivity of the two components and is in the range between -50 ° C and -i- 200 o C.
  • the carbonyl compound is used in excess for complete conversion of the phosphorus compounds, the excess being up to 100%. Excesses of 10 to 20% are preferred.
  • the hydrogenation can be carried out in non-polar solvents such as aliphatic hydrocarbons or ethers or esters. Polar aprotic or protic solvents such as alcohols and carboxylic acids can also be used as solvents. Furthermore, the hydrogenation can be carried out in aqueous mineral acids or in mixtures of the solvents described. The hydrogenations can be carried out under normal pressure or under pressure. You can at temperatures between 0 ° C and 100 ° C. Hydrogenation at ambient temperature is preferred.
  • the usual hydrogenation catalysts can be used as catalysts, such as nickel catalysts or noble metal catalysts, in particular platinum and palladium catalysts.
  • the hydrogenation can provide different stereoisomers depending on the olefin used. The type and proportion of the possible isomers depends on the hydrogenation system and can be influenced by a suitable choice of the solvent and the catalyst.
  • the hydrogenation of 2-ethionyl-3-methoxy-4- (4-phenyl-cyclohexylidene methyD-pyridine in methanol with palladium on carbon largely yields the cis isomer.
  • the selection of the catalyst must also be made from the point of view of whether there are any more hydrogenable ones Groups are present in the molecule, for example halogen can be removed hydrolytically.
  • the isomers formed can be separated by chromatographic methods or by crystallization of salts with suitable acids. Another preferred synthetic route is via variant a 2 )
  • a cycloalkyl ketone is added to a 4-alkyl pyrid, at least one hydrogen having to be in the ⁇ position of the alkyl group. This type of reaction has been described (by O.F. Beumel, Jr., W.N. Smith v. B. Rybalka; Synthesis 1974, 43).
  • the reaction is carried out in ethers such as diethyl ether, tetrahydrofuran or dimethoxyethane.
  • solvents such as dimethyl sulfoxide or liquid ammonia can also be used.
  • the bases can be organic Lithium compounds such as lithium butyl, lithium phenyl or lithium diisopropylamide can be used. Alkali metal hydrides and alkali amides can also be used for this.
  • the reaction runs at temperatures between -100 ° C and + 30 ° C, the activity of the base used and the stability of the intermediate carbanion determine the temperature limits. Lithium diisopropylamide in THF at -70 ° C has proven to be the preferred system.
  • the carbonyl compound is used in an equimolar amount or preferably in excess.
  • Formed isomer mixtures can be separated by the usual methods, such as, for example, chromatographic methods or, for example, by the crystallization of suitable acid addition salts.
  • the alcohols are converted into the olefins by the customary methods (Houben-Weyl Alkene, Volume V / 1b pages 62-104, Georg Thiem Verlag Stuttgart 1972). It takes place in the liquid phase and can be alkaline or acid catalyzed.
  • Acidic catalysts which can be used are inorganic acids or organic acids, such as, for example, sulfonic acids, such as, for example, para-toluenesulfonic acid, or carboxylic acid, such as, for example, oxalic acid or trifluoroacetic acid.
  • Other catalysts are Lewis acids, such as BF 3 etherate or zinc chloride.
  • the reaction can be carried out at temperatures between 0 ° C and 200 ° C. To increase the reaction rate, the water can be distilled off azeotropically with a tug such as xylene or removed by a water-binding agent such as anhydrides such as acetic anhydride or trifluoroacetic anhydride.
  • Preferred reaction conditions are the elimination of the water with trifluoroacetic acid and trifluoroacetic anhydride and the azeotropic elimination with para-toluenesulfonic acid and xylene.
  • the hydroxyl group can also be converted into a leaving group by derivatization, which can then be used for one of the known elimination reactions.
  • Various isomers are possible for the elimination. In this way, compounds with an exocyclic or endocyclic double bond can form. They can be separated using the customary methods, such as, for example, chromatographic methods or crystallization of the acid addition salts suitable acids.
  • Bistriphenylphosphine palladium dichloride and copper iodide It is carried out at temperatures between 0 ° C and the boiling point of the solvent. In the present case, temperatures between 20 and 50 ° C were preferred.
  • substitution on the pyridine ring can also be made in another way, e.g. according to one of the methods that are reported by D. Spitzner (Houben-Weyl, Hetarene II, Volume E 7b, 1992, pages 568 to 659).
  • the T ⁇ methylsiiyl devis can be split off from the substituted 2-Tr ⁇ methyls ⁇ lyleth ⁇ nylpyr ⁇ d ⁇ n with acetic acid and Nat ⁇ umfluo ⁇ d at room temperature.
  • the other usual cleavage reagents for C-Si bonds can also be used for this purpose, such as tetraalkylammonium fluids, HF, etc.
  • the hydrogenation of the triple bond can be carried out using the systems customary for this. It can be carried out in protic solvents such as alcohols or carboxylic acids or in aprotic solvents such as ethers or esters and is catalyzed by the customary catalysts such as platinum, palladium, nickel. Of course, it can also be carried out in stages as a partial hydrogenation. Another important reaction is the subsequent filling of substituents on the pyridine, e.g. in the following way.
  • the type of reaction is described in F. Minisci (Synthesis 1973, 1).
  • the carboxylic acid on which the alkyl radical is based is used as the alkylating agent.
  • Other carboxylic acids such as propionic acid and pivalic acid can of course also be used, for example.
  • the reaction is silver catalyzed.
  • oxidizing agents such as ammonium peroxodisulfate, diacyl peroxides, carbonic acid peresters or perborates. It can be carried out in water, in carboxylic acids and in aromatic hydrocarbons and takes place at temperatures between 0 and 100 ° C.
  • Another important reaction sequence is:
  • N-oxides of pyridines are comprehensively described in A. Albani et al. S. Pietra (Heterocyclic N-oxides, CRC-Press, Inc. Boca Raton, USA, 1991). It is possible with peracids such as peracetic acid or 3-chloroperbenzoic acid, but can also be carried out with hydrogen peroxide in glacial acetic acid.
  • the reaction of the N-oxide to 2-cyanopyridine is described as a type of reaction (for Vorbrüggen (Synthesis 1 983, 316). Trimethylsilyl cyanide is used as the cyanide source, but the use of alkali metal cyanide and trimethylsilyl chloride is also possible.
  • the reaction of nitrile to the ketone represents an addition of an organometallic compound to a nitrile with subsequent hydrolysis of the.
  • organometallic compound e.g. Use lithium, magnesium, zinc, aluminum organyle to name just a few.
  • the type of reaction is described by G. Sumrell (J. Org. Chem. 19, 81 7 (1 954)).
  • the reduction of the formyl compound to the hydroxymethyl compound was carried out in the manner customary for this using sodium borohydride in tetrahydrofuran.
  • the conversion of the hydroxymethyl compounds into the chloromethyl compound was carried out in the usual way. It was done with thionyl chloride in methylene chloride. DMF was used as the catalyst.
  • the conversion of the chloroacetyl compound into the phosphonic acid ester was carried out by a Michaehs-Arbusov reaction as in G.M. Kosolapoff (Am. Soc. 67, 2259 (1 945))
  • the active compounds of the formula I are suitable, with good plant tolerance and favorable warm-blood toxicity, for combating animal pests, in particular insects, arachnids, nematodes, helminths and molluscs, very particularly preferably for combating insects and arachnids which are used in agriculture, in animal husbandry Forests, in the protection of stored goods and materials as well as in the hygiene sector. They are effective against normally sensitive and resistant species as well as all or individual stages of development.
  • the pests mentioned above include.
  • Thysanoptera e.g. Hercinoth ⁇ ps femorahs, Thrips tabaci.
  • Trialeurodes vaporariorum Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ⁇ bis, Doralis fabae, Doralis pomi, E ⁇ osoma lanigerum, Hyalopterus arundinis,
  • Oryzaephilus surinamensis Anthonumus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopohtes sordidus, Ceuthorrynchus assimihs, Hypera postica,
  • T ⁇ boiium spp. Teneb ⁇ o molitor, Agriotes spp. , Conoderus spp. , Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.
  • Hymenoptera e.g. Diprion s ⁇ p, Hoplocampa spp., Lasius spp. , Monomo ⁇ um pharaonis, Vespa spp ..
  • Helminths for example Haemonchus, Trichostrongulus, Ostertagia, Coope ⁇ a, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Asca ⁇ s and Heterakis as well as Fasciola.
  • Gastropoda e.g. Deroceras spp., A ⁇ on spp., Lymnaea spp., Galba spp., Succinea spp., Biomphala ⁇ a spp., Bulinus spp., Oncomelania spp ..
  • Bivalva e.g. Dreissena spp ..
  • Plant-parasitic nematodes that can be controlled according to the invention include, for example, the root-parasitic soil nematodes, such as those of the genera Meloidogyne (root-knot nematodes such as Meloidogyne incognita, Meloidogyne hapla and Meloidogyne javanica), Heterodera and Globodera (cyst-forming nematodes, such as Globodera rostochiensis, Globodera pallida, Heterodera trifoln) and of the genera Radopholus, such as simihs Radopholus, Pratylenchus such as Pratylenchus neglectus, Pratylenchus penetrans and Pratylenchus curvitatus;
  • the root-parasitic soil nematodes such as those of the genera Meloidogyne (root-knot nematodes such as Meloidogyne
  • Tylenchulus such as Tylenchulus semipenetrans, Tylenchorhynchus, such as Tylenchorhynchus dubius and Tylenchorhynchus elaytoni, Rotylenchus such as Rotylenchus robustus, Heliocotylenchus such as Haliöcotylenchus multicinetus, and Longonoimine such as Tongus longusudema longus
  • the compounds of the invention can also be used to combat the nematode genera Ditylenchus (stem parasites such as Ditylenchus dipsaci and Ditylenchus destructor), Aphelenchoides (leaf nematodes such as Aphelenchoides ⁇ tzemabosi) and Anguina (flower nematodes such as Anguina t ⁇ tici).
  • Ditylenchus stem parasites such as Ditylenchus dipsaci and Ditylenchus destructor
  • Aphelenchoides leaf nematodes such as Aphelenchoides ⁇ tzemabosi
  • Anguina flower nematodes such as Anguina t ⁇ tici.
  • the invention also relates to compositions, in particular insecticidal and acaricidal compositions, which contain the compounds of the formula I in addition to suitable formulation auxiliaries
  • compositions in particular insecticidal and acaricidal compositions, which contain the compounds of the formula I in addition to suitable formulation auxiliaries
  • the agents according to the invention generally contain the active ingredients of the formula I in an amount of 1 to 95% by weight.
  • WP Wettable powder
  • EC emulsifiable concentrates
  • SL aqueous solutions
  • SC oil or water-based dispersions
  • SE suspoemulsions
  • SE dusting agents
  • DP pickling agents
  • the necessary molding aids such as inert materials, surfactants, solvents and other additives are also known and are described, for example, in:
  • Spray powders are preparations which are uniformly dispersible in water and which, in addition to the active substance, contain wetting agents, e.g. polyoxethylated alkylphenols, polyoxethylated fatty alcohols, alkyl or alkylphenol sulfonates and dispersants, e.g. B. sodium lignosulfonate, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium.
  • wetting agents e.g. polyoxethylated alkylphenols, polyoxethylated fatty alcohols, alkyl or alkylphenol sulfonates and dispersants, e.g. B. sodium lignosulfonate, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium.
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent, e.g. Butanol, cyelohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons with the addition of one or more emulsifiers.
  • organic solvent e.g. Butanol, cyelohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons.
  • alkylarylsulfonic acid calcium salts such as Ca-dodecylbenzene sulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan ethyl fatty acid sorboxate or sorboxethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty acid sorboxate or sorbitan ethyl fatty
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite, pyrophillite or diatomaceous earth.
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates by means of adhesives, for example polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material.
  • Suitable active ingredients can also be used in the production of Fertilizer granules in the usual way - if desired in a mixture with fertilizers - are granulated.
  • the active substance concentration in wettable powders is e.g. about 10 to 90% by weight, the remainder to 100% by weight consists of conventional formulation components. In the case of emulsifiable concentrates, the active substance concentration can be approximately 5 to 80% by weight. Dust-like formulations usually contain 5 to 20 wt .-% of active ingredient, sprayable solutions about 2 to 20 wt .-%. In the case of granules, the active ingredient content depends in part on whether the active compound is in liquid or solid form and which granulation aids, fillers, etc. are used.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers.
  • the concentrates which are commercially available, are diluted in the customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and sometimes also for microgranules using water. Dusty and granulated preparations and sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate varies. It can vary within wide limits, for example between 0.0005 and 1.0 kg / ha or more of active substance, but is preferably between 0.001 and 5 kg / ha.
  • the active compounds according to the invention can be used in their commercially available formulations and in the use forms prepared from these formulations in mixtures with other active compounds, such as insecticides, Attractants, Ste ⁇ lantien, Aka ⁇ ziden, nematicides, fungicides, growth regulating substances or herbicides are present.
  • the pesticides include, for example, phosphoric acid esters, carbamates, carboxylic acid esters, formamidines, tin compounds, substances produced by microorganisms, etc.
  • Preferred mixing partners are
  • the active substance content of the use forms prepared from the commercially available formulations can be from 0.00000001 to 95% by weight of active substance, preferably between 0.00001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms.
  • the active compounds according to the invention are also suitable for controlling endo- and ectoparasites in the veterinary field or in the field of animal husbandry.
  • the active compounds according to the invention are used here in a known manner, such as by oral use in the form of, for example, tablets, capsules, drinkers, granules, by dermal use in the form of, for example, dipping (dipping), spraying (spraying), pouring on (pour-on and spot) -on) and powdering and by parenteral use in the form of, for example, injection.
  • novel compounds of the formula I according to the invention can accordingly also be used particularly advantageously in animal husbandry (for example cattle, sheep, pigs and poultry such as chickens, geese, etc.).
  • animal husbandry for example cattle, sheep, pigs and poultry such as chickens, geese, etc.
  • the animals are given the new compounds, if appropriate in suitable formulations (see above) and if necessary administered orally with the drinking water or feed. Since excretion in the faeces is effective, the development of insects in the faeces of the animals can be prevented very easily in this way.
  • the appropriate dosages and formulations depend in particular on the type and stage of development of the livestock and also on the infestation pressure and can be easily determined and determined using the usual methods.
  • the new compounds can be used in cattle, for example, in doses of 0.01 to 1 mg / kg body weight.
  • the compounds of the formula I according to the invention are also notable for an excellent fungicidal action.
  • Fungal pathogens that have already penetrated into the plant tissue can be successfully combated curatively. This is particularly important and advantageous in the case of those fungal diseases which can no longer be effectively combated with the usual fungicides after infection has occurred.
  • the spectrum of action of the claimed compounds covers various economically important phytopathogenic fungi, such as e.g. Plasmopara viticola, Phytophthora infestans, Erysiphe graminis, Pyricularia oryzae, Pyrenophora teres, Leptosphaeria nodorum and Pellicularia sasakii and Puccinia recondita.
  • the compounds of the formula I according to the invention are therefore also suitable for treating seed (seed dressing).
  • the compounds according to the invention are also suitable for use in technical fields, for example as wood preservatives, as preservatives in paints, in cooling lubricants for metalworking or as preservatives in drilling and cutting oils.
  • the active compounds according to the invention can be used in their commercially available formulations either alone or in combination with other fungicides known from the literature.
  • fungicides known from the literature which can be combined according to the invention with the compounds of the formula I include the following products: aldimorph, andoprim, anilazines, BAS 480F, BAS 450F, benalaxyl, benodanil, benomyl, binapacryl, bitertanol, bromuconazole, buthiobate, captafol , Captan, Carbendazim, Carboxin, CGA 1 73506, Cyprofuram, Dichlofluanid, Dichlomezin, Diclobutrazol, Diethofencarb, Difenconazol (CGA 1 69374), Difluconazole, Dimethirimol, Dimethomorph, Diniconazole, Dinocap, Dithorphifonol, Dodimolidol, Dodimidolidol, Dodimidolol, Dodimidol, Dodimolidol, Dodim
  • Drug concentration of use forms can range from 0.0001 to
  • active ingredient 95% by weight of active ingredient, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms.
  • Example 8 4- (4-tert-butyl-cyclohexyl-1-methyl) -3-methoxy-2-tr-methyl-silylethynyl-pyridine
  • a dusting agent is obtained by mixing 10 parts by weight of active ingredient and 90 parts by weight of talc as an inert substance and comminuting them in a hammer mill.
  • a wettable powder which is readily dispersible in water is obtained by adding 25 parts by weight of active compound, 65 parts by weight of quartz containing inert matter, 10 parts by weight of potassium sulphonate and 1 part by weight of sodium oleoylmethyltau ⁇ nsauresodium as a and dispersant mixes and grinds in a pin mill.
  • a dispersion concentrate which is easily dispersible in water is prepared by mixing 40 parts by weight of active compound with 7 parts by weight of a sulfosuccinic acid half-ester, 2 parts by weight of a lignosulfonic acid sodium salt and 51 parts by weight of water and in a attritor a fineness of less than 5 microns is ground.
  • An emulsifiable concentrate can be prepared from 1 5 parts by weight of active ingredient, 75 parts by weight of cyelohexane as a solvent and 10 parts by weight of oxyhydrogenated nonylphenol (1 0 EO) as an emulsifier.
  • Granules can be produced from 2 to 15 parts by weight of active ingredient and an inert granule carrier material such as attapulgite, pumice granules and / or quartz sand.
  • a suspension of the wettable powder from example b) having a solids content of 30% is expediently used and sprayed onto the surface of an attapulgite granulate, dried and mixed intimately.
  • the proportion by weight of the wettable powder is approximately 5% and that of the inert carrier material approximately 95% of the finished granulate.
  • Rice seed was germinated on cotton wool in cultivated glasses and after growing to a stalk length of approx. 8 cm, the leaves were added to the test solution to be tested. After draining, the rice plants treated in this way were placed separately in the breeding container according to the test concentration and were each populated with 10 larvae (L3) of the species Nilaparvata lugens. After storing the closed breeding containers at 21 ° C, the mortality of the cicada larvae can be determined after 4 days.
  • the compounds according to Example 2 at a concentration of 250 ppm (based on the active ingredient) have a 100% effect on the test animals.
  • Tomato plants "first in the field" were sprayed to drip wet in the 3-4 leaf stage with 40% acetone / 60% water solutions of the claimed compounds. 24 hours later, the plants were inoculated with a spore suspension (20,000 spores / ml) from Phytophthora infestans and placed in a climatic chamber of approx. 15 ° C. and a relative humidity of approx. 99% for 2 days, followed by 3 to 4 days a relative humidity of 75 - 80%. The experiments are evaluated about 6 days after the treatment.
  • Wheat plants of the "Hörnet” variety were sprayed to runoff point in a 2-leaf stage with 40% acetone / 60% water solutions of the claimed compounds. 24 hours after the treatment, the plants were inoculated with an aqueous pycnospore suspension (0.5 million spores / ml) from the Leptosphaeria nodorum. The plants were grown in a climatic chamber at 1 8-20 ° C and a relative humidity of approx. 99% cultivated. The attempts were Evaluated 14 days after the inoculation.
  • the compounds from Example 6 gave a 2 when 50 mg of active substance / liter were used for spraying.
  • the active compounds were dissolved in 10% (w / v) in a mixture consisting of dimethylformamide (85 g), nonylphenyl polyglycol ether (3 g) and oxyethylated castor oil (7 g), and the emulsion concentrates thus obtained were dissolved in water diluted a test concentration of 500 ppm.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

Die Erfindung betrifft Verbindungen der Formel (a), sowie deren N-Oxide und Salze, worin Q ggf. substituiertes 4-Pyridyl bedeutet; R?1 und R2¿ H, Alkyl, Alkenyl, Halogenalkyl, Halogenalkenyl, Aryl oder Aralkyl bedeutet; R3 H bedeutet; oder R1 + R3 gemeinsam eine Bindung sind und R2 wie oben definiert ist; R4 Alkyl, Alkenyl, Alkoxy, Alkanoyloxy, Alkenyloxy, Acyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Halogenalkyl, Halogenalkenyl, Halogenalkoxy, Halogenalkenyloxy, Halogenaryl, Halogenalkoxycarbonyl, Halogen oder OH bedeutet; und n = 1, 2 oder 3 ist. Die Erfindung betrifft weiterhin Verfahren zu deren Herstellung, diese enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide.

Description

Beschreibung
Cyclohexylmethyl- und Cyclohexylidenmethyl-Pyridine, Verfahren zu ihrer Herstellung, diese enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
Die Erfindung betrifft neue substituierte Pyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingbekämpfungsmittel, insbesonders als Insektizide, Akarizide und Fungizide.
Es ist bereits bekannt, daß bestimmte substituierte 4-Aminopyridine und 4-Hydroxypyridine eine fungizide, akarizide und insektizide Wirkung zeigen (vgl. WO-A- 93/05050) . Weiterhin sind aus WO-A-93/04579 4-Aralkyipyridine mit nematizider Wirkung bekannt. Schließlich betrifft US-Patent 2 505 461 Alkyicyclohexylmethylpyridine und deren Verwendung als Fungizide.
Die biologische Wirkung dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht in allen Anwendungsbereichen zufriedenstellend .
Es wurden neue substituierte 4-Cyclohexylmethyl- und 4-Cyclohexylidenmethyl- Pyridine der Formel I gefunden, die biologisch aktiv sind.
Figure imgf000003_0001
Die Erfindung betrifft daher Verbindungen der Formel I und deren N-Oxide, in welcher
R für gleich oder verschieden Reste steht, die ausgewählt sind aus der
Reihe:
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(C2-C4)-Alkinyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl-
Halogen-(C2-C4)-alkenyl,
Halogen-(C2-C4)-alkιnyl,
Halogen-(CrC4)-alkoxy,
Halogen-(C1-C4)-alkenyloxy,
R5-O-CH2-,
R5-O-CO-,
R6-CO-,
Halogen- (CrC4)-alkoxymethyl,
Halogen-(C-| -C4)-alkoxycarbonyl,
Halogen-(C2-C4)-alkenyloxymethyl,
Halogen-(C2-C4)-alkenyloxycarbonyl,
(C1 -C4)-Alkylthio,
(C2-C4)-Alkenylthιo,
(CrC4)-Alkylsulfιnyl,
(C2-C4)-Alkenylsulfinyl,
(CrC4)-Alkylsulfonyl,
(C2-C4)-Alkeny Isulf onyl,
Aryl,
Aralkyl, substituiertes Amino, Cyano und Halogen,
m 0, 1 , 2, 3 oder 4, vorzugsweise 0, 1 oder 2, insbesondere 2 bedeutet,
R1 und R2 gleich oder verschieden sind und ausgewählt sind aus der Reihe Wasserstoff, (CrC4)-Alkyl, (C2-C4)-Alkenyl, Halogen-(C1 -C4)-alkyl, Halogen- (C2-C4}-alkenyI, Aryl und Aralkenyl; und
R3 Wasserstoff bedeutet, oder
R1 und R3 gemeinsam für eine Bindung stehen und
R wie vorstehend definiert ist;
R für gleiche oder verschiedene Reste steht, die ausgewählt sind aus der
Reihe
(CrC4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C rC4)-Alkoxy, (C1 -C4)-Alkanoyloxy, (C2-C4)-Alkenyloxy, (C2-C4)-Acyl, (CrC4)-Alkoxy-carbonyl, (C2-C4)-Alkenyloxy-carbonyl, Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl,
Halogen-(C1 -C4)-alkoxy,
Halogen-(C2-C4)-alkenyloxy,
Halogen-(C2-C4)-acyl,
Halogen-(C1 -C4)-alkoxy-carbonyl,
Halogen-(C2-C4)-alkenyloxy-carbonyl,
Halogen und
Hydroxy, mit der Maßgabe, daß, falls R (CrC4)-Alkyl bedeutet; m 0, 1 oder 2 bedeutet, und R1 und R3 nicht gemeinsam für eine Bindung stehen; der Cyclohexylrest in 4-Position mit R4 einfach substituiert sein muß und dessen Substituent bezüglich des die
Reste R1 und R2 tragenden Kohlenstoffatoms cis-konfiguriert ist;
n 1 , 2 oder 3, vorzugsweise 1 , bedeutet,
R5 (CrC10)-Alkyl,
(C2-C10)-Alkenyl, (C2-C10)-Alkinyl, (C3-C8)-Cycloalkyl oder Aralkyl bedeutet;
R6 wie R5 definiert ist oder Halogen- (Cj -C^-alkyl, Halogen-(C2-C10)-alkenyl oder Aryl bedeutet; Aryl Phenyl oder substiutiertes Phenyl bedeutet; und
Aralkyl Aryl-(CrC4)-alkyl bedeutet;
oder deren Salze.
In der obigen Formel I ist unter "Halogen" ein Fluor-, Chlor-, Brom- oder lodatom, vorzugsweise ein Fluor-, Chlor- oder Bromatom zu verstehen;
unter dem Ausdruck "(C1 -C4)-Alkyl" ein unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1 -4 Kohlenstoffatomen, wie z.B der Methyl-, Ethyl-, Propyl-, 1 -Methylethyl-, 1 -Methylpropyl-, 2-Methylpropyl- oder 1 , 1 -Dιmethylethylrest, unter dem Ausdruck "(CrC10)-Alkyl" die vorgenannten Alkylreste sowie z.B. der Pentyl, 2-Methylbutyl- oder der
1 , 1 -Dιmethylpropylrest, der Hexyl-, Heptyl-, Octyl-, 1 , 1 ,3,3-Tetramethylbutyl-, Nonyl- oder Decylrest;
unter "Alkenyl" und "Alkinyl" von diesen Alkylresten abgeleitete ein- oder mehrfach ungesättigte Reste,
unter dem Ausdruck "Halogen-(C1-C4)-alkyl" bzw "Halogen-(C1 -C10)-alkyl" eine unter dem Ausdruck "(CrC4)-Alkyl" bzw "(CrC10)-Alkyl" genannte Alkylgruppe, in der eines oder mehrere Wasserstoffatome durch die obengenannten Halogenatome, bevorzugt Chlor oder Fluor, ersetzt sind, wie beispielsweise die Tπfluormethylgruppe, die 2,2,2-Trιfluorethylgruppe, die Chlormethyl-, Fluormethylgruppe, die Difluormethylgruppe oder die 1 , 1 ,2,2- tetrafluorethylgruppe (entsprechendes gilt für " Halogenalkenyl");
unter "substituiertem Phenyl" einen Phenylrest, der einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Substituenten aus der Reihe (CrC4)-Alkyl, Halogen-(CrC4)-alkyl, Hydroxy-(CrC4)-alkyl, (CrC4)-Alkoxy, Halogen-(C2-C4)-alkoxy, Phenoxy, Phenyl, Nitro, Hydroxy, Cyano, (CrC4)- Alkanoyl, Benzoyl, (C1-C4)-Alkanoyloxy und (CrC4)-Alkoxycarbonyl trägt;
unter "substituiertem Amino" eine Aminogruppe, die mit einer oder zwei (C1 -C4)-Alkylgruppen oder einer (C,-C4)-Alkanoylgruppe substituiert ist;
unter "(C2-C4)-Acyl" insbesondere einen (C2-C4)-Alkanoylrest, wie Acetyl, Propionyl oder Butyryl.
Die oben gegebenen Erläuterungen gelten, falls im einzelnen nicht anders definiert, entsprechend für davon abgeleitete Reste, wie Halogenalkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl. Sie gelten auch für Homologe.
Bevorzugt sind Verbindungen der Formel I, deren N-Oxide und Salze, worin
R für gleiche oder verschiedene Reste steht, die ausgewählt sind aus der
Reihe
(CrC4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (CrC4)-Alkoxy, (C2-C4)-Alkenyloxy, Halogen-(CrC4)-alkyl, Halogen-(C2-C4)-alkenyl, Halogen-(C2-C4)-alkinyl, Halogen-(CrC4)-alkoxy, Halogen-(C1 -C4)-alkenyloxy, R5-O-CH2-, R5-O-CO-, Halogen-(C1 -C4)-alkoxymethyl,
Halogen- (C1-C4)-alkoxycarbonyl,
Halogen- (C2-C4)-alkenyloxymethyl,
Halogen-(C2-C4)-alkenyloxycarbonyl,
(CrC4)-Alkylthio,
(C2-C4)-Alkenyltιo,
(CrC4)-Alkylsulfinyl,
(C2-C4)-Alkenylsulfinyl,
(CrC4)-Alkylsulfonyl,
(C2-C4)-Alkenylsulfonyl,
Aryl,
Aralkyl, substituierte Amino,
Cyano und
Halogen;
und die übrigen Reste und Variablen wie oben definiert sind, insbesondere solche, worin
R und R gleich oder verschieden sind und ausgewählt sind aus der Reihe
Wasserstoff und (CrC4)-Alkyl oder
R1 und R gemeinsam für eine Bindung stehen und R2 wie vorstehend definiert sind . Falls m = 2 ist, sind die Reste R vorzugsweise benachbart.
In Verbindungen der Formel I besitzt mindestens einer der Reste R4 vorzugsweise die cis-Konfiguration bezüglich des die Reste R1 und R2 tragenden Kohlenstoffatoms, falls nicht R1 und R3 gemeinsam für eine Bindung stehen. Besonders bevorzugt sind Verbindungen der Formel I, deren N-Oxide und Salze, worin n = 1 ist und R4 in der 4-Positιon des Cyclohexyl oder Cyclohexyliden- restes steht.
Die vorliegende Erfindung betrifft die Verbindungen der Formel I in Form der freien Base oder eines Salzes, insbesondere eines Säureadditionssalzes. Säuren, die zur Salzbindung herangezogen werden können, sind anorganische Säuren, wie Salzsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure oder organische Säuren wie Ameisensäure, Essigsäure, Propionsäure, Malonsäure, Oxalsäure, Fumarsaure, Adipinsäure, Stearinsäure, Ölsaure, Methansulfonsäure, Benzolsulfonsaure oder Toluolsulfonsäure.
Die Verbindungen der Formel I weisen zum Teil ein oder mehrere asymmtπsche Kohlenstoffatome auf. Es können daher Racemate und Diastereomere auftreten. Die Erfindung umfaßt sowohl die reinen Isomeren als auch deren Gemische. Die Gemische von Diastereomeren können nach gebräuchlichen Methoden, z.B. durch selektive Kristallisation aus geeigneten Lösungsmitteln oder durch Chromatographie in die Komponenten aufgetrennt werden. Racemate können nach den üblichen Methoden in die Enatiomeren aufgetrennt werden, so z.B. durch Salzbildung mit einer optisch aktiven Saure, Trennung der diastereomeren Salze und Freisetzung der reinen Enantiomeren mittels einer Base.
Die Erfindung betrifft auch ein Verfahren zur Herstellung von Verbindungen der Formel I oder deren N-Oxide, das dadurch gekennzeichnet ist, daß man
a) zur Herstellung einer Verbindung der Formel I, in der R1 und R3 gemeinsam für eine Bindung stehen, O 97/19924 PC17EP96/04985
a-, ) eine Verbindung der Formel II,
Figure imgf000011_0001
in der R4 und n wie in oben definiert sind, in Gegenwart einer Base umsetzt mit einer Verbindung der Formel III oder Formel IV
Figure imgf000011_0002
in welchen R, R2 und m wie oben definiert sind, R7 Aryl oder (C1 -C4)- Alkoxy bedeutet, R8 Aryl bedeutet, Aryl wie oben definiert ist und Xθ für Halogenid steht, oder
a2) aus einer Verbindung der Formel V,
Figure imgf000011_0003
in der R, R1 , R2, R4, m und n wie oben definiert sind, in Gegenwart eines basischen oder eines sauren Katalysators Wasser abspaltet, oder die Hydroxygruppe nach Umwandlung in eine Fluchtgruppe unter Bildung der Doppelbindung abspaltet, wobei außerdem eine Verbindung der Formel VI entstehen kann,
Figure imgf000012_0001
in der R, R1 , R2, R4, m und n wie in Anspruch 1 definiert sind.
b) zur Herstellung einer Verbindung der Formel I, in der R1 und R3 nicht gemeinsam für eine Bindung stehen, eine Verbindung der Formel I, in der R1 und R gemeinsam für eine Bindung stehen und die übrigen Reste und Variablen wie oben definiert sind, oder eine wie oben unter a2) definierte Verbindung der Formel VI hydriert; und gegebenenfalls einem oder mehrere der folgenden Schritte durchführt:
Einführung von Substituenten am Pyridin; Austausch oder Modifikation reaktiver Reste am Pyridin; Überführung mit geeignetem Oxidationsmitteln in die N-Oxide, Überführung in ihre Salze.
Die oben unter a-, ) genannten Methoden der Carbonyl-Olefinierung sind als Horner- bzw. Wittig-Reaktion bekannt und in eine Reihe von Übersichtsartikeln ausführlich beschrieben (vgl. z.B. Chem. Rev. 24 [1974] 87 ff.; Org. React. IA, [ 1 965] 270 ff.).
Die Olefinierung wird normalerweise in einem geeigneten Lösungsmittel in der Gegenwart einer Base durchgeführt. Beispiele für das Lösungsmittel sind Ether wie Diethylether, Tetrahydrofuran, Dioxan und Dimethoxyethan, aromatische Lösungsmittel wie Benzol, Toluol und Xylol; und aprotische polare Lösungsmittel wie Dimethylformamid, und Dimethylsulfoxid, bevorzugte Lösungsmittel sind Tetrahydrofuran und Dimethylsulfoxid. Geeignete Basen sind z.B. organische Lithiumverbindungen wie Butyllithiurπ, Phenylithium; Lithiumdiisopropylamid, Alkalimetallhydride wie Natriumhydrid, Alkalimetallalkoholate wie Natriummethylat und Kalium-tert. -butylat und Alkalimetallamide wie Natriumamid und Kaliumamid. Bevorzugte Base ist Natriumhydrid.
Die Menge der eingesetzten Base pro Mol Phosphorverbindung kann: 0,8 bis 1 , 5 Mol betragen. Bevorzugt sind Überschüsse von 5 bis 10 % Base pro Mol Phosphorverbindung . Die Reaktionstemperatur hängt von der Reaktivität der beiden Komponenten ab und liegt im Bereich zwischen -50°C und -i- 200oC. Für einen vollständigen Umsatz der Phosphorverbindungen wird die Carbonylverbindung im Überschuß eingesetzt, wobei der Überschuß bis zu 100 % betragen kann. Bevorzugt sind Überschüsse von 10 bis 20 %. Die Hydrierung in den Verbindungen der Formel I (R + R = Bindung) und (VI) der Doppelbindung kann nach den üblichen Methoden erfolgen, wie sie z.B. im Houben-Weyl beschrieben sind . (Houben-Weyl, Reduktion I und II, Bände 4/1 c und 4/1 d, Thieme Verlag Stuttgart, New York 1 980) . Die Hydrierung kann in unpolaren Lösungsmitteln wie z.B. aliphatischen Kohlenwasserstoffen oder Ethern oder Estern durchgeführt werden. Ferner können als Lösungsmittel polare aprotische oder protische Lösungsmittel verwendet werden wie z.B. Alkohole und Carbonsäuren. Ferner kann die Hydrierung in wäßrigen Mineralsäuren erfolgen oder in Gemischen der beschriebenen Lösungsmittel. Die Hydrierungen können bei Normaldruck oder unter Druck erfolgen. Sie können bei Temperaturen zwischen 0°C und 100°C erfolgen. Bevorzugt ist die Hydrierung bei Umgebungstemperatur. Als Katalysatoren können die üblichen Hydrierkatalysatoren benutzt werden wie Nickelkatalysatoren oder Edelmetall¬ katalysatoren hier insbesonders Platin- und Palladiumkatalysatoren. Die Hydrierung kann je nach eingesetztem Olefin verschiedene Stereoisomere liefern. Art und Anteil der möglichen Isomeren ist abhängig vom Hydriersystem und kann durch geeignete Wahl des Lösungsmittels und des Katalysators beeinflußt werden. So liefert die Hydrierung des 2-Ethιnyl-3-methoxy-4-(4- phenyl-cyclohexylidenmethyD-pyridin in Methanol mit Palladium auf Kohle weitgehend das cis-lsomer. Die Auswahl des Katalysators muß auch unter dem Gesichspunkt getroffen werden ob noch weitere hydrierbare Gruppen im Molekül vorhanden sind. So kann z.B. Halogen hydrolytisch entfernt werden. Die Trennung der entstehenden Isomeren ist möglich durch chromatographische Methoden oder durch Kristallisation von Salzen mit geeigneten Säuren. Ein weiterer bevorzugter Syntheseweg läuft über Variante a2)
l (R1 und R3 jeweils = H)
Ein Cycloalkylketon wird an ein 4-Alkylpyrιdιn addiert, wobei in α-Position der Alkylgruppe sich mindestens ein Wasserstoff befinden muß. Dieser Reaktionstyp ist beschrieben worden (bei O.F. Beumel, jr., W.N. Smith v. B. Rybalka; Synthesis 1974, 43) .
Die Reaktion wird in Ethern durchgeführt wie Diethylether, Tetrahydrofuran oder Dimethoxyethan. Daneben können auch Lösungsmittel wie Dimethylsulfoxid oder flüssiger Ammoniak benutzt werden. Als Basen kόnnen organische Lithiumverbindungen wie Lithiumbutyl, Lithiumphenyl oder Lithiumdiisopropylamid verwendet werden. Auch Alkalimetallhydride und Alkaliamide können hierfür verwendet werden. Die Reaktion läuft bei Temperaturen zwischen -100°C und + 30°C, wobei die Aktivität der verwendeten Base und die Stabilität des intermediär gebildeten Carbanions die Temperaturgrenzen bestimmen. Als bevorzugtes System hat sich Lithiumdiisopropylamid in THF bei -70°C bewährt. Die Carbonylverbindung wird in äquimolarer Menge oder vorzugsweise im Überschuß eingesetzt. Gebildete Isomerengemische können durch die üblichen Methoden aufgetrennt werden, wie z.B. chromatographische Methoden oder z.B. durch die Kristallisation geeigneter Säureadditionsalze. Die Überführung der Alkohole in die Olefine erfolgt nach den üblichen Methoden (Houben-Weyl Alkene, Band V/1 b Seite 62- 104, Georg Thiem Verlag Stuttgart 1972) . Sie erfolgt in flüssiger Phase und kann alkalisch oder sauer katalysiert sein. Als saure Katalysatoren können anorganische Säuren oder organische Säuren dienen wie z.B. Sulfonsäuren wie z.B. para-Toluolsulfonsäure, oder Carbonsäure wie z.B. Oxalsäure oder Trifluoressigsäure. Weitere Katalysatoren sind Lewissäuren, wie z.B. BF3 - Etherat oder Zinkchlorid. Die Reaktion kann bei Temperaturen zwischen 0°C und 200°C durchgeführt werden. Zur Erhöhung der Reaktionsgeschwindigkeit kann das Wasser mit einem Schlepper wie z.B. Xylol azeotrop abdestilliert werden oder durch ein wasserbindendes Mittel wie z.B. Anhydride wie Acetanhydrid oder Trifluoracetanhydrid entfernt werden. Bevorzugte Reaktionsbedingungen sind die Abspaltung des Wassers mit Trifluoressigsäure und Trifluoressigsäureanhydrid und die azeotrope Abspaltung mit para- Toluolsulfonsäure und Xylol. Selbstverständlich kann die Hydroxygruppe auch durch Derivatisierung in eine Fluchtgruppe umgewandelt werden, die dann für eine der bekannten Eliminierungsreaktionen eingesetzt werden kann. Bei der Eliminierung sind verschiedene Isomeren möglich. So können sich Verbindungen mit exocyclischer oder endocyclischer Doppelbindung bilden. Sie können durch die üblichen Methoden getrennt werden wie z.B. chromatographische Methoden oder Kristallisation der Säureadditionsalze mit geeigneten Säuren. Für die Hydrierung der Olefine gilt, was auf vorher bei der Hydrierung der Olefine aus den Carbonylolefinierungen gesagt wurde. Selbstverständlich sind auch noch andere Wege vom Alkohol zum Kohlenwasserstoff denkbar, so z.B. eine "ionische" Hydrierung der Hydroxygruppe (Kursanov, Synthesis, 633 ( 1974)) oder eine Reduktion der in eine Fluchtgruppe umgewandelten Hydroxygruppe z.B. nach Chin (Tetrahedron; Asymetry, Vol. 6, No. 4, pp. 881 -884, 1 995) . Ein weiterer wichtiger Reaktionsschritt ist die Modifikation reaktiver Gruppen und der Austausch reaktiver Gruppen am Pyridin gegen geeignete Partner wie folgende Reaktions¬ sequenzen zeigen
Figure imgf000016_0001
Der Austausch des Broms gegen die Methoxygruppe ist beschrieben durch Testaferπ et al. (Tetrahedron Vol. 41 , No. 7, 1 373, 1 985) . Er wird in Dimethylformamid bei 80°C mit einem vierfachen Überschuß an Natriummethylat vorgenommen. Selbstverständlich kann man an Stelle von Natriummethylat auch andere Nucleophile einsetzen wie z.B. Alkoholate, Phenolate, Mercaptide, Azid, Cyanid, Halogenide, Carboxylate. Auch C-C Verknüpfungen können auf diesem Wege hergestellt werden wie die obige Reduktion zeigt, die als Heck-Reaktion bekannt ist. Ihre Durchführung ist für Pyridine beschrieben bei T. Sakamoto et al. (Synthesis, 1 983, 31 2). Sie wird durchgeführt in tertiären Aminen wie Triethylamin oder in sekundären Aminen wie Diisopropylamin als Lösungsmittel und ist katalysiert durch Palladium und Kupfer. Besonders bevorzugt werden
Bistriphenylphosphinpalladiumdichloπd und Kupferjodid. Durchgeführt wird sie bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösungsmittels. Im vorliegenden Fall waren Temperaturen zwischen 20 und 50°C bevorzugt. Selbstverständlich kann eine Substitution am Pyridinring auch noch auf einem anderen Weg vorgenommen z.B. nach einer der Methoden, die von D. Spitzner referiert werden (Houben-Weyl, Hetarene II, Band E 7b, 1992, Seite 568 bis 659).
Aus dem substituierten 2-Trιmethylsιlylethιnylpyrιdιn läßt sich die Tπmethylsiiylgruppe mit Essigsäure und Natπumfluoπd bei Raumtemperatur abspalten. Hierzu können selbstverständlich auch die anderen üblichen Spaltungsreagenzen für C-Si-Bindungen benutzt werden wie Tetraalkyl- ammoniumfluoπde, HF usw. Die Hydrierung der Dreifachbindung kann mit den hierfür üblichen Systemen erfolgen. Sie kann in protischen Lösungsmitteln wie Alkoholen oder Carbonsäuren oder in aprotischen Lösungsmitteln wie Ethern oder Estern erfolgen und wird durch die hierfür üblichen Katalysatoren wie Platin, Palladium, Nickel katalysiert. Selbstverständlich kann sie auch als partielle Hydrierung stufenweise durchgeführt werden. Eine weitere wichtige Reaktion ist die nachträgliche Emfullung von Substituenten am Pyridin, z.B. auf folgendem Weg.
Figure imgf000017_0001
Der Reaktionstyp ist beschrieben bei F. Minisci (Synthesis 1973, 1 ). Als Alkylierungsmittel wird die dem Alkylrest zugrundeliegende Carbonsäure eingesetzt. Es können selbstverständlich auch andere Carbonsäuren wie Propionsäure und Pivalinsäure z.B. eingesetzt werden. Die Reaktion ist silberkatalysiert. Als Oxidationsmittel können neben Bleitetraacetat eine Vielzahl anderer Oxidationsmittel eingesetzt werden wie Ammoniumperoxodisulfat, Diacylperoxide, Kohlensäureperester oder Perborate. Sie kann in Wasser, in Carbonsäuren und in aromatischen Kohlenwasserstoffen durchgeführt werden und läuft bei Temperaturen zwischen 0 und 100°C ab. Eine weitere wichtige Reaktionsfolge ist:
Figure imgf000018_0001
Die Bildung von N-oxiden der Pyridine ist umfassend beschrieben bei A. Albani u. S. Pietra (Heterocyclic N-oxides, CRC-Press, Inc. Boca Raton, USA, 1991 ). Sie ist mit Persäuren wie Peressigsäure oder 3-Chlorperbenzoesäure möglich, kann aber auch mit Wasserstoffperoxid in Eisessig durchgeführt werden. Die Reaktion des N-Oxids zum 2-Cyanopyridin ist als Reaktionstyp beschrieben (bei Vorbrüggen (Synthesis 1 983, 316). Als Cyanidquelle benutzt man Trimethyl- silylcyanid, jedoch ist auch die Verwendung von Alkalicyanid und Trimethyl- silylchlorid möglich.
Die Reaktion von Nitril zum Keton stellt eine Anlagerung einer metallorganischen Verbindung an ein Nitril mit anschließender Hydrolyse der . Als metallorganische Verbindung kann man z.B. Lithium-, Magnesium-, Zink-, Aluminiumorganyle einsetzen um nur einige zu nennen. Der Reaktionstyp ist beschrieben bei G. Sumrell (J. Org. Chem. 19, 81 7 ( 1 954)) .
Die Vorstufen zur Herstellung der hier beschriebenen Pyridine sind teilweise käuflich. Der ander Teil wurde nach bekannten Methoden synthetisiert. Zur Herstellung des 2-Brom-3-methoxy-4-diethoxyphosphonomethylpyridins diente folgender Syntheseweg.
Figure imgf000019_0001
Das 2-Brom-3-methoxy-pyrιdιn wurde mit der bei Effenberger (Chem. Ber. 1 24 ( 1 991 ) 21 1 9) beschriebenen Methode silyhert. Dazu wurde es im Tetrahydrofuran bei -70°C mit Trimethylsilylchlorid und Lithiumdiisopropylamid umgesetzt. Nach der Aufarbeitung und Säulenreinigung fiel es in 90 %ιger Ausbeute an. Die Umwandlung der Silylgruppe in eine Formylgruppe ist beschrieben bei Effenberger (Chem. Ber. 1 18 ( 10) 3900 ( 1985)). Das als Formylquelle dienende DMF ist gleichzeitig Losungsmittel. Als Fluoπdquelle diente im dreifachen Überschuß eingesetztes Caesiumfluoπd, als Katalysator Tetrabutylammoniumbromid
Die Reduktion der Formylverbindung zur Hydroxymethylverbindung geschah in der hierfür gebräuchlichen Weise mit Natnumborhydridid in Tetrahydrofuran. Die Umwandlung der Hydroxymethylverbindungen in die Chlormethylverbindung geschah in der hierfür üblichen Weise. Sie erfolgte mit Thionylchlorid in Methylenchloπd. Als Katalysator wurde DMF verwendet. Die Umwandlung der Chloracetylverbindung in den Phosphonsaureester geschah durch eine Michaehs-Arbusov-Reaktion wie bei G.M. Kosolapoff (Am. Soc. 67, 2259 ( 1 945) ) beschrieben
Die Wirkstoffe der Formel I eignen sich bei guter Pflanzenvertraglichkeit und gunstiger Warmblutertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Nematoden, Helminthen und Mollusken, ganz besonders bevorzugt zur Bekämpfung von Insekten und Spinnentieren, die in der Landwirtschaft, bei der Tierzucht, in Forsten, im Vorrats- und Mateπalschutz sowie auf dem Hygienesektor vorkommen Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne Eπtwicklungsstadien wirksam Zu den oben erwähnten Schädlingen gehören. Aus der Ordnung der Acaπna z.B Acarus siro, Argas spp , Ornithodoros spp , Dermanyssus gallinae, Eπophyes πbis, Phyllocoptruta oleivora, Boophilus spp , Rhipicephalus spp. , Amblyomma spp , Hyalomma spp , Ixodes spp , Psoroptes spp., Choπoptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa,
Panonychus spp., Tetranychus spp., Eotetranychus spp., Oligonychus spp.,
Eutetranychus spp..
Aus der Ordnung der Isopoda z.B. Oniscus asselus, Armadium vulgär, Porcellio scaber.
Aus der Ordnung der Dipiopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp..
Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z. B. Lepisma sacchaπna.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.
Aus der Ordnung der Orthoptera z.B Blatta orientalis, Peπplaneta americana,
Leucophaea madeirae, Blatella germanica, Acheta domesticus, Gryllotalpa spp. ,
Locusta migratoπa migratoπoides, Melanoplus differentialis, Schistocerca gregaπa.
Aus der Ordnung des Isoptera z.B. Reticulitermes spp..
Aus der Ordnung der Anoplura z.B. Phylloera vastatπx, Pemphigus spp.,
Pediculus humanus corpoπs, Haematopinus spp., Linognathus spp..
Aus der Ordnung der Mallophaga z.B. Tπchodectes pp., Damahnea spp..
Aus der Ordnung der Thysanoptera z.B Hercinothπps femorahs, Thrips tabaci.
Aus der Ordnung der Heteroptera z.B Eurygaster spp., Dysdercus intermedius,
Piesma quadrata, Cimex lectulaπus, Rhodnius prolixus, Tπatoma spp..
Aus der Ordnung der Homoptera z.B Aleurodes brassicae, Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus πbis, Doralis fabae, Doralis pomi, Eπosoma lanigerum, Hyalopterus arundinis,
Macrosiphum avenae, Myzus spp. , Phorodon humuli, Rhopalosiphum padi,
Empoasca spp. , Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni,
Saissetia oleae, Laodelphax stπatellus, Nilaparvata lugens, Aonidiella aurantu,
Aspidtotus hederae, Pseudococcus spp , Psylla spp..
Aus der Ordnung der Lepidoptera z.B Pectinophora gossypiella, Bupalus piniaπus, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustπa, Euproctis chrysorrhoea, Lymantria spp., Bucculatπx thurbeπella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp. , Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieπs spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleπa mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus,
Agelastica alni, Leptinotarsa decemhneata, Phaedon cochleariae, Diabrotica spp . , Psylloides chrysocephala, Epilachna vaπvestis, Atomaπa spp.,
Oryzaephilus surinamensis, Anthonumus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopohtes sordidus, Ceuthorrynchus assimihs, Hypera postica,
Dermestes spp., Trogoderma, Anthrenus spp., Attagenus spp., Lyctus spp. ,
Meligethes aeneus, Ptinus spp. , Niptus hololeucus, Gibbium psylloides,
Tπboiium spp., Tenebπo molitor, Agriotes spp. , Conoderus spp. , Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.
Aus der Ordnung der Hymenoptera z.B. Diprion sμp , Hoplocampa spp., Lasius spp. , Monomoπum pharaonis, Vespa spp..
Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp.,
Drosophila melanogaster, Musca spp. , Fannia spp., Calliphora erythrocephala,
Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp. , Stomoxys spp. , Oestrus spp., Hypoderma spp. , Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella fπt, Phorbia spp. , Pegomyia hyoscyami,
Ceratitis capitata, Dacus oleae, Tipula paludosa.
Aus der Ordnung der Siphonaptera z.B Xenopsylla cheopsis, Ceratophyllus spp.
Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.
Aus der Klasse der Helminthen z.B. Haemonchus, Trichostrongulus, Ostertagia, Coopeπa, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaπs und Heterakis sowie Fasciola.
Aus der Klasse der Gastropoda z.B. Deroceras spp., Aπon spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaπa spp., Bulinus spp., Oncomelania spp.. Aus der Klasse der Bivalva z.B. Dreissena spp..
Zu den pflanzenparasitaren Nematoden, die erfindungsgemäß bekämpft werden können, gehören beispielsweise die wurzelparasitären Bodennematoden wie z.B. solche der Gattungen Meloidogyne (Wurzelgallennematoden, wie Meloidogyne incognita, Meloidogyne hapla und Meloidogyne javanica), Heterodera und Globodera (zystenbildende Nematoden, wie Globodera rostochiensis, Globodera pallida, Heterodera trifoln) sowie der Gattungen Radopholus wie Radopholus simihs, Pratylenchus wie Pratylenchus neglectus, Pratylenchus penetrans und Pratylenchus curvitatus;
Tylenchulus wie Tylenchulus semipenetrans, Tylenchorhynchus, wie Tylenchorhynchus dubius und Tylenchorhynchus elaytoni, Rotylenchus wie Rotylenchus robustus, Heliocotylenchus wie Haliöcotylenchus multicinetus, Belonoaimus wie Belonoaimus longicaudatus, Longidorus wie Longidorus elongatus, Tπchodorus wie Tπchodorus pπmitivus und Xiphinema wie Xiphinema index
Ferner lassen sich mit den erfindungsgemäßen Verbindungen die Nematodengattungen Ditylenchus (Stengelparasiten, wie Ditylenchus dipsaci und Ditylenchus destructor), Aphelenchoides (Blattnematoden, wie Aphelenchoides πtzemabosi) und Anguina (Blütennematoden, wie Anguina tπtici) bekämpfen.
Die Erfindung betrifft auch Mittel, insbesondere insektizide und akarizide Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel I im allgemeinen zu 1 bis 95 Gew.-%.
Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage:
Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SL), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SE), Staubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formuiierungen, Mikrokapseln, Wachse oder Köder.
Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in:
Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y. , 2nd Ed. 1 972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1 979, G. Goodwin Ltd. London.
Die notwendigen Formuherungshilfsmittel wie Inertmateπalien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in:
Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H v. Olphen, "Introduction to Clay Colloid Chemistry" , 2nd Ed ., J Wiley & Sons, N.Y. , Marsden, "Solvents Guide", 2nd Ed . , Interscience, N Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ Corp , Ridgewood N .J. , Sisiey and Wood, "Encyclopedia of Surface Active Agents", Chem Publ Co Inc., N Y. 1 964; Schόnfeldt, "Grenzflächenaktive Athylenoxidaddukte" , Wiss. Verlagsgesell. , Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1 986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z. B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyelohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-Dodecylbenzol-sulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propy lenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanf ettsaureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein zerteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-% der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Tragerstoffe.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Losungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z.B zwischen 0,0005 und 1 0,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,001 und 5 kg/ha.
Die erfindungsgemaßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Steπlantien, Akaπziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.
Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u.a.. Bevorzugte Mischungspartner sind
1 . aus der Gruppe der Phosphorverbindungen
Acephate, Azamethiphos, Azinphos-ethyl-, Azinphosmethyl, Bromophos, Bromophos-ethyl, Chlorfenvinphos, Chlormephos, Chlorpyπfos, Chlorpyπfos- methyl, Demeton, Demeton-S-methyl, Demeton-S-methyl sulphone, Dialifos, Diazinon, Dichlorvos, Dicrotophos, O,O- 1 , 2,2,2-Tetrachlorethylphosphorthιoate (SD 208 304), Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etπmfos, Famphur, Fenamiphos, Fenitπothion, Fensulfothion, Fenthion, Fonofos, Formothion, Heptenophos, Isazophos, Isothioate, Isoxathion, Malathion, Methacπfos, Methamidophos, Methidathion, Sahthion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion- methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosmet, Phosphamidon, Phoxim, Pirimiphos, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyπdapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Tπazophos, Tπchlorphon, Vamidothion,
2 aus der Gruppe der Carbamate
Aldicarb, 2-sec-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, Isoprocaib, Methomyl, 5-Methyl-m-cumenylbutyryl(methyl)carbamate, Oxamyl, Piπmicarb, Propoxur, Thiodicarb, Thiofanox, Ethyl-4,6,9-trιaza-4-benzyl-6, 10-dιmethyl-8- oxa-7-oxo-5, 1 1 -dιthιa-9-dodecenoate (OK 1 35), I -Methylthιo(ethylιdeneamιno)- N-methyl-N-(morpholιnothιo)carbamate (UC 51 71 7), 3. aus der Gruppe der Carbonsäureester
Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1 R)-cis, 2,2-di-methyl-3-(2- oxothiolan-3-ylideπemethyl)cyclopropanecarboxylate, Bioallethrin, Bioallethrin((S)-cyclopentylisomer), Bioresmethrin, Biphenate, (RS)-1 -Cyano-1 - (6-phenoxy-2-pyridyl)methyl-( 1 RS)-trans-3-(4-tert.butylphenyl)-2,2- dimethylcyclopropanecarboxylate (NCI 851 93), Cycloprothrin, Cyhalothrin, Cythithrin, Cypermethπn, Cyphenothrin, Deltamethrin, Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathπn, Fenvalerate, Flucythrinate, Flumethrin, Fluvahnate (D-Isomer), Permethrin, Phenothπn ((R)-Isomer), d-Pralethπn, Pyrethπne (natürliche Produkte), Resmethπn, Tefluthrin, Tetramethrin, Tralomethrin;
4. aus der Gruppe der Amidine Amitraz, Chlordimeform;
5. aus der Gruppe der Zinnverbindungen Cyhexatin, Fenbutatinoxid;
6. Sonstige
Abamectin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfluazuron, 2-(4-Chlorphenyl)-4, 5-dιphenylthιophen (UBI-T 930), Chlorfentezine, Cyclopropancarbonsäure-(2-naphthylmethyl)ester (Ro1 2-0470), Cyromazin, N- (3, 5-Dichlor-4-( 1 , 1 ,2,3,3,3-hexafluor- 1 -propy loxy (phenyl )carbamoyl)-2- chlorbenzcarboximidsäureethylester, DDT, Dicofol, N-(N-(3,5-Di-chlor-4- ( 1 , 1 ,2,2-tetrafluorethoxy)phenylamιno)carbonyl)-2,6-dιfluorbenzamid (XRD 473), Diflubenzuron, N-(2, 3-Dιhydro-3-methyl- 1 ,3-thιazol-2-ylιdene)-2,4- xylidine, Dinobuton, Dinocap, Endosulfan, Ethofenprox, (4-Ethoxypheπyl)(dιmethyl) (3-(3-phenoxyphenyl)propyl)sιlan, (4-Ethoxyphenyl)(3-(4-fluoro-3-phenoxyphenyl) propyDdimethylsilan, Fenoxycarb, 2-Fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1 - pentyDdiphenylether (MTI 800), Granulöse- und Kernpolyederviren, Fenthiocarb, Flubenzimine, Flucycloxuron, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnon (AC 21 7300), Ivermectin, 2-Nιtrorπethyl-4,5-dihydro-6H-thiazin (DS 5261 8), 2-Nιtromethyl-3,4-dihydrothiazol (SD 35651 ), 2-Nιtromethylene-1 ,2-thiazιnan-3-ylcarbamaldehyde (WL 108477), Propargite, Tefiubenzuron, Tetradifon, Tetrasul, Thiocyclam, Trifumuron, Imidacloprid .
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endo- und Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion.
Die erfindungsgemäßen neuen Verbindungen der Formel I können demgemäß auch besonders vorteilhaft in der Viehhaltung (z.B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw. ) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die neuen Verbindungen, gegebenenfalls in geeigneten Formulierungen (vgl. oben) und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, läßt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und festlegen. Die neuen Verbindungen können bei Rindern z.B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.
Die erfindungsgemäßen Verbindungen der Formel I zeichnen sich auch durch eine hervorragende fungizide Wirkung aus. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich kurativ bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt verschiedene wirtschaftlich bedeutende, phytopathogener Pilze, wie z.B. Plasmopara viticola, Phytophthora infestans, Erysiphe graminis, Pyricularia oryzae, Pyrenophora teres, Leptosphaeria nodorum und Pellicularia sasakii und Puccinia recondita.
Die erfindungsgemäßen Verbindungen der Formel I eignen sich daher auch zum Behandeln von Saatgut (Saatgutbeize) .
Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel in Anstrichfarben, in Kühlschmiermittel für die Metallbearbeitung oder als Konservierungsmittel in Bohr- und Schπeidölen. Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.
Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind z.B. folgende Produkte zu nennen: Aldimorph, Andoprim, Anilazine, BAS 480F, BAS 450F, Benalaxyl, Benodanil, Benomyl, Binapacryl, Bitertanol, Bromuconazol, Buthiobate, Captafol, Captan, Carbendazim, Carboxin, CGA 1 73506, Cyprofuram, Dichlofluanid, Dichlomezin, Diclobutrazol, Diethofencarb, Difenconazol (CGA 1 69374), Difluconazole, Dimethirimol, Dimethomorph, Diniconazole, Dinocap, Dithianon, Dodemorph, Dodine, Edifenfos, Ethirimol, Etridiazol, Fenarimol, Fenfuram, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetate, Fentinhydroxide, Ferimzone (TF1 64), Fiuazinam, Fluobenzimine,Fluquinconazole, Fluorimide, Flusilazole, Flutolanil, Flutriafol, Folpet, Fosetylaluminium,Fuberidazole, Fulsulfamide (MT-F 651 ), Furalaxyl, Furconazol, Furmecyclox, Guazatine, Hexaconazole, ICI A5504, Imazalil, Imibenconazole, Iprobenfos, Iprodione, Isoprothiolane, KNF 31 7, Kupferverbindungen wie Cu-oxychlorid, Oxine-Cu, Cu-oxide, Mancozeb, Maneb, Mepanipyrim (KIF 3535), Metconazol, Mepronil, Metalaxyl, Methasulfocarb, Methfuroxam, MON 24000, Myclobutanil, Nabam, Nitrothalidopropyl, Nuarimol, Ofurace, Oxadixyl, Oxycarboxin, Penconazol, Pencycuron, PP 969, Probenazole, Propineb, Prochloraz, Procymidon, Propamocarb, Propiconazol, Prothiocarb, Pyracarbolid, Pyrazophos, Pyrifenox, Pyroquilon, Rabenzazole, RH7592, Schwefel, Tebuconazole, TF 167, Thiabendazole, Thicyofen, Thiofanatemethyl, Thiram, Tolclofos-methyl, Tolylfluanid, Triadimefon, Tπadimenol, Tricyclazole, Tπdemorph, Triflumizol, Triforine, Validamycin, Vinchlozohn, XRD 563, Zineb, Natriumdodecylsulfonate, Natrium-dodecyl-sulfat, Natrιum-C1 3/C 1 5-alkohol-ethersulfonat, Natrium- cetostearyl-phosphatester, Dioctyl-natrium-sulfosuccinat, Natπum-isopropyl- naphthalenesulfonat, Natrium-methylenebisnaphthalene-sυlfonat, Cetyl- trimethyl-ammoniumchlorid , Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propyleneamine, Lauryl-pyrimidiniumbromid, ethoxylierte quarternierte Fettamine, Alkyl-dimethyl-benzyl-ammoniumchlorid und 1 - Hydroxyethyl-2-alkyl-ιmιdazolιn.
Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in Ch.R Worthing, S.B. Walker, The Pesticide Manual,
7. Auflage ( 1983), Bπtish Crop Protection Council beschrieben sind.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten
Anwendungsformen kann in weiten Bereichen variieren, die
Wirkstoffkonzentration der Anwendungsformen kann von 0,0001 bis zu
95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Nachfolgende Beispiele dienen zur Erläuterung der Erfindung, ohne daß diese darauf beschränkt wäre.
A. Chemische Beispiele
Beispiel 1 :
4-(4-tert -Butyl-cyclohexylιdenmethyl)-pyrιdιn-Hydrochlorιd
5, 1 g 80 %ιges Natriumhydrid werden unter Stickstoff bei 40 bis 50°C in 300 ml trockenem DMSO gelöst. Dann gab man 34,5 g Trιphenyl-(pyrιd-4-yl- methyD-phosphonium-acetat-Hydrochloπd dazu und nach 10 Minuten 1 5,4 g 4-tert. -Butylcyclohexanon. Anschließend rührte man 3 Stunden bei 1 10°C. Danach wird der Ansatz in Wasser gegossen und mit Ethylacetat extrahiert. Das Produkt wird durch Saulenchromatographie an Kieselgel mit Ethylacetat gereinigt. Danach wird mit etheπscher HCl das Hydrochlorid gebildet. Ausbeute. 5, 5 g = 26 % d.Th 1H-NMR (100 MHz, CD3OD)
8,7 (m, 2H), 7,8-7,9 (m, 2H), 6, 5 (s, 1H), 3,0-3,1 (m, 1H), 2,5-2,6 (m, 1H),
2,3-2,4 (m, 1H), 2,1-2,2 (m, 1H), 2,0-2,1 (m, 2H), 1,1-1,5 (m, 3H), 0,9 (s, 9H) ppm.
Beispiel 2: 4-(4-cis-tert.-Butyl-cyclohexyl-methyl)-pyridin-Hydrochlorid
7.7 g 4-(4-tert.-Butyl-cyclohexylidenmethyl)-pyridin-Hydrochlorid werden in 120 ml Isopropanol mit 1 g Palladium auf Kohle (10 %ig) hydriert. Nach dem Filtrieren und Einengen erhält man 7,5 g cis/trans-lsomerengemisch. Durch mehrfaches Umkristallisieren aus Acetonitril erhält man das reine cis-lsomer. Ausbeute: 5 g (64 % d. Th.)
1H-NMR (100 MHz, CDCI3):
8.8 (d, 2H), 7,7 (d, 2H), 3,0 (d, 2H), 2,2 (m, 1H), 1,0-1,7 (multipletts 9H), 0,9 (s, 9 H) ppm.
Beispiel 3: 4-(4-tert.-Butyl-cyclohexylidenmethyI)-2-isopropyl-pyridin
2.3 g 4-(4-cis-tert.-Butyl-cyclohexyl-methyl)-pyridin-Hydrochlorid wurden in 20 ml Toluol mit 1 ml Isobuttersäure, 0,8 ml Trifluoressigsäure und 4,5 g Bleitetraacetat 3 Stunden bei 80°C gerührt. Danach goß man auf Sodalösung und extrahierte mit Ethylacetat. Das Produkt wurde über Kieselgel gereinigt mit Ethylacetat/Hexan 1/6 als Eluent.
Ausbeute: 0,7 g (26 % d.Th.).
*H-NMR (100 MHz, CDCI3):
8.4 (d, 1H), 7,0 (s, 1H), 6,9 (d, 1H), 6,2 (s, IH), 3,0 (m, 1H), 2,0 (m, 1H), 1,9-2 ,5 (multipletts 8H), 1,3 (d, 6H), 0,9 (s, 9H) ppm. Beispiel 4: 4-(4-cis-tert.-Butyl-cyclohexylmethyl)-pyridιn-oxid
10 g 4(4-cis-tert.-Butyl-cyclohexylmethyl)-pyridin (Beispiel 2) wurde in 100 ml Eisessig 2 Stunden bei 70°C mit 20 ml 35 %igem Wasserstoffperoxid gerührt. Anschließend wurde der Überschuß an Wasserstoffperoxid mit Natriumbisulfit zerstört. Nach dem Einengen wurde erschöpfend mit Ethylacetat extrahiert. Die Säulenreinigung mit Ethylacetat/Methanol 9/1 an Kieselgel ergab 8,7 g (94 % d.Th. Produkt)
1 H-NMR ( 100 MHz, CDCI3):
8, 1 (d, 2H), 7, 1 (d, 2H), 2,7 (d, 2H), 0,8-2,0 (multiplett, 10 H), 0,9 (s, 9H) ppm.
Beispiel 5: 4-(4-cis-tert.-Butyl-cyclohexylmethyl)-pyrιdιn-2-carbonιtrιl
20,9 g 4-(4-cis-tert.-Butyl-cyclohexylmethyl)-pyridιn-oxιd (Beispiel 4) wurde in 50 ml Acetonitril mit 24 ml Triethylamin und 50 g Tπmethylsilylcyanid 8 Stunden gekocht. Dann wurde alles Flüchtige im Vakuum abdestilliert und der Rückstand mit Natπumbicarbonatlόsung und Ethylacetat geschüttelt. Die organische Phase wurde eingeengt und das Produkt durch Säulenchromatographie an Kieselgel gereinigt. Als Eluent diente Hexan/Ethylacetat 4/1 . Ausbeute: 14,5 g (67 % d .Th. ), Fp. : 65 °C.
1 H-NMR ( 100 MHz, CDCI3):
8, 6 (d, 1 H), 7,5 (s, 1 H), 73, (q, 1 H), 2, 7 (d, 2H), 1 ,0-2, 1 (multipletts, 10 H),
0,9 (s, 9H) ppm. Beispiel 6: 2-Valeroyl-4-(4-tert.-butyl-cyclohexylmethyl)-pyridin
Zu 2,6 g 4-(4-cis-tert.-Butyl-cyclohexylmethyl)-pyridin-2-carbonitril in 30 ml abs. THF tropfte man bei -70°C 6,2 ml 1,6 n Butyllithiumlosung in Hexan und rührte 10 Minuten bei dieser Temperatur. Dann gab man 1,5 ml Trimethylsilylchlorid zur Lösung und laß den Ansatz auf Raumtemperatur kommen. Danach wurde das Lösungsmittel im Vakuum entfernt und der Ansatz mit Natriumbicarbonat- lösung und Ethylacetat aufgearbeitet. Säulenchromatographie mit Hexan/Ethylacetat 19/1 an Kieselgel ergab 1 g (32 % d.Th. Sirup).
1H-NMR (100 MHz, CDCI3):
8,6 (d, 1H), 7,9 (s, 1H), 7,3 (q, 1H), 3,2 (t, 2H), 2,7 (d, 2H), 1,0-2,1
(multipletts 10H), 1,0 (t, 3H), 0,9 (s, 9H) ppm.
Beispiel 7:
2-Brom-4- (4-tert. -butyl-cyclohexylidenmethyl)-3-methoxy-pyridin
1,05 g Natriumhydrid (80 %ig) werden bei 40-50°C in 100 ml trockenem Dimethylsulfoxid gelöst. Als alles gelöst war kühlte man auf Raumtemperatur ab und gab 11,3 g 2-Brom-4-(diethylphosphonomethyl)-3-methoxy-pyridin zur Lösung. Danach gab man 5,4 g 4-tert. -Butylcyclohexanon in 20 ml THF zur Lösung. Die Reaktion wurde dünnschichtschromatographisch verfolgt (Kieselgel; Ethylacetat (Hexan 1/6). Als sie beendet war, goß man den Ansatz in Natriumbicarbonatlösung und extrahiert mit Ethylacetat. Nach Säulenreinigung an Kieselgel mit Ethylacetat/Hexan 1/6 erhielt man 11,3 g (95 % d.Th. Produkt)
^-NMR (100 MHz, CDCI3)
8,1 (d, 1H), 7,1 (d, 1H), 6,2 (s, 1H), 3,8 (s, 3H), 2,7-2,8 (m, 1H), 2,4-2,5
(m, 1H), 2,1-2,3 (m, 1H), 1,8-2,0 (m, 3H), 1,0-1,3 (m, 3H), 0,9 (s, 9H) ppm. Beispiel 8: 4-(4-tert.-Butyl-cyclohexylιdenmethyl)-3-methoxy-2-trιmethylsilylethinyl-pyridin
9,8 g 2-Brom-4-(4-tert.-butyl-cyclohexylidenmethyl)-3-methoxy-pyridιn in 60 ml Diisopropylamin werden mit 5,0 ml Tπmethylsilylacetylen, 0,3 g Kupferjodid und 1 , 1 g Bistπphenylphosphinopalladiumdichlorid gerührt. Nach 2 Stunden wurde der Ansatz mit Natriumbicarbonatlösung und Ethylacetat ausgeschüttelt. Die Ethylacetatphase wurde eingeengt und das Produkt durch Saulenchromatographie an Kieselgel mit Ethylacetat/Hexan 1 /6 als Eluent gereinigt. Ausbeute: 8,5 g (82 % d .Th. )
1 H-NMR (100 MHz-CDCI3)
8,2 (d, 1 H), 7,0 (d, 1 H), 6,2 (s, 1 H), 3,9 (s, 3H), 2,7-2,8 (m, 1 H), 2,4-2,5 (m, 1 H), 2, 1 -2,3 (m, 1 H), 1 ,8-2,0 (m, 3H), 1 ,0- 1 ,3 (m, 3H), 0,9 (s, 9H), 0,3 (s, 9H) ppm.
Beispiel 9:
4-(4-tert.-Butyl-cyclohexylιdenmethyl)-2-ethιnyl-3-methoxy-pyrιdιn
8,5 g 4- (4-tert. -Butyl-cyclohexylιdenmethyl)-3-methoxy-2-trιmethylsιlylethιnyl- pyπdm, 10 g Natπumfluoπd, 100 ml Eisessig und 0,5 ml Acetanhydrid werden bei Raumtemperatur gerührt, bis die Silylverbindung vollständig umgesetzt war. Die Reaktion wurde dunnschichtchromatographisch verfolgt (Kieselgel; Ethylacetat/Hexan 1 /6) . Der Ansatz wurde im Vakuum eingeengt, der Rückstand mit Natriumbicarbonatlösung und Ethylacetat ausgeschüttelt und das Produkt durch Saulenchromatographie an Kieselgel mit Ethylacetat/Hexan 1 /6 als Eluenten isoliert Ausbeute. 5,7 g (84 % d .Th.) 1H-NMR (100 MHz, CDCI3):
8,3 (d, 1H), 7,1 (d, 1H), 6,2 (s, 1H), 3,9 (s, 3H), 3,4 (s, 1H), 2,7-2,8 (m, 1H),
2,4-2,6 (m, 1H), 2,2-2,3 (m, 1H), 1,8-2,0 (m, 3H), 1,0-1,3 (m, 3H), 0,9 (s, 9H) ppm.
Beispiel 10: 4-(4-tert-Butyl-cyclohexylidenmethyl)-2-ethyl-3-methoxy-pyridin
4,8 g 4-(4-tert.-Butyl-cyclohexylidenmethyl)-2-ethinyl-3-methoxy-pyridin in 50 ml Methanol wurden mit 17 ml etherischer HCl (1n) versetzt. Dann wurde nach Zugabe von 0,5 g Palladium auf Kohle (10 %ig) bei Raumtemperatur und Normaldruck hydriert. Nach Aufnahme von 720 ml Wasserstoff hörte die Wasserstoffaufnahme auf. Nach dem Filtrieren und Einengen wurde der Rückstand mit Natriumbicarbonatlösung und Ethylacetat geschüttelt und das Endprodukt durch Säulenchromatographie an Kieselgel mit Ethylacetat/Hexan 1/6 als Eluenten isoliert. Ausbeute: 3,9 g (80 % d.Th.).
1H-NMR (100 MHz, CDCI3):
8,2 (d, 1H), 6,9 (d, 1H), 62, (s, 1H), 3,8 (s, 3H), 2,8 (q, 2H), 2,7-2,9 (m, 1H),
2,4-2,6 (m, 1H), 2,2-2,3 (m, 1H), 1,8-2,0 (m, 3H), 1,3 (t, 3H), 0,9-1,3
(m, 3H), 0,9 (s, 9H) ppm.
Beispiel 11 : 4-(4-cιs-tert.-Butyl-cyclohexylmethyl)-2-ethyl-3-methoxy-pyridin-hydrochlorid
3,0 g 4-(4-tert-Butyl-cyclohexylιdenmethyl)-2-ethyl-3-methoxy-pyrιdιn in 50 ml Methanol werden mit 0,5 g Palladium auf Kohle (10 %ιg) hydriert. Nach Beendigung der Wasserstoffaufnahme wurde filtriert und eingeengt. Das Produkt wurde durch Säulenchromatographie an Kieselgel mit Ethylacetat/Hexan 1/6 als Eluenten gereinigt. Ausbeute: 2,9 g (96 % d.Th.) (cis/trans-Gemisch) Das Produkt wird in Ether gelöst und mit etherischer HCl ins Hydrochlorid überführt. Durch Kristallisation aus Acetonitril erhält man das reine cis-lsomer. Ausbeute: 1 ,6 g (47 % d.Th.)
1 H-NMR ( 100 MHz, CDCI3):
8,4 (d, 1 H), 7,5 (d, 1 H), 3,9 (s, 3H), 3,2 (q, 2H), 2,9 (d, 2H), 2, 1 -2,2 (m, 1 H),
1 , 5- 1 ,7 (m, 6H), 1 ,5 (t, 3H), 1 ,0-1 ,3 (m, 3H), 0,9 (s, 9H) ppm.
B. Formulierungsbeispiele
a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaohnhaltigen Quarz als Inertstoff, 10 Gew.-Teile hgninsulfonsaures Kalium und 1 Gew. -Teil oleoylmethyltauπnsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew. -teile Wirkstoff mit 7 Gew. -Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew. -Teilen eines Ligninsulfonsäure- Natπumsalzes und 51 Gew -Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
d) Ein emulgierbares Konzentrat laßt sich herstellen aus 1 5 Gew. -Teilen Wirkstoff, 75 Gew -Teilen Cyelohexan als Lösungsmittel und 10 Gew.- Teilen oxethyhertem Nonylphenol ( 1 0 EO) als Emulgator. e) Ein Granulat läßt sich herstellen aus 2 bis 1 5 Gew. -Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.
C. Biologische Beispiele
Beispiel 1 : Nilaparvata lugens
Reissaatgut wurde auf Watte in Zuchtgläsern feucht zur Keimung gebracht und nach dem Heranwachsen auf ca. 8 cm Halmlänge mit den Blättern in die zu prüfende Testlösung gegeben. Nach dem Abtropfen wurden die so behandelten Reispflanzen getrennt nach Prüfkonzentration in Zuchtbehälter gegeben und mit je 10 Larven (L3) der Art Nilaparvata lugens besetzt. Nach Aufbewahren der verschlossenen Zuchtbehälter bei 21 °C kan nach 4 Tagen die Mortalität der Zikadenlarven bestimmt werden.
Unter diesen Bedingungen zeigen die Verbindungen gemäß Beispiel 2 bei einer Konzentration von 250 ppm (bezogen auf den Wirkstoff) bei den Versuchstieren eine 100 %ιge Wirkung.
Beispiel 2: Diabrotica undecimpunctata-Larven
Weizensaatgut wird unter Wasser 6 Stunden vorgekeimt, danach in 10 ml Glasprüfröhrchen gegeben und mit je 2 ml Erde abgedeckt. Nach Zugabe von 1 ml Wasser blieben die Pflanzen in den Zuchtgläschen bis zum Erreichen einer Wuchshöhe von ca. 3 cm unter Raumtemperatur (21 °C) stehen. Anschließend wurden mittlere Diabrotica undecimpunctata-Larvenstadien (je 10 Stück) in die 38
Gläschen auf die Erde gegeben und nach 2 Stunden 1 ml der zu überprüfenden Konzentration an Testflüssigkeit auf die Erdoberfläche in den Gläschen pipettiert. Nach 5 Tagen Standzeit unter Laborbedingungen (21 °C) wurden die Erde bzw. die Wurzelteile auf lebende Diabrotica-Larven durchsucht und die Mortalität festgestellt. Die Verbindungen gemäß Beispiel 1 , 1 1 , 7 und 2 zeigten unter den gewählten Versuchsbedingungen eine Wirkung, die zu 100 % Mortalität bei den Versuchstieren führt.
Beispiel 3: Tetranychus urticae
Mit Bohnenspinnmilben (Tetranychus urticae, Vollpopulation) stark befallene Bohnenpflanzen (Phaseolus v. ) wurden mit der wassrigen Verdünnung eines Spritzpulverkonzentrates, das 250 ppm des jeweiligen Wirkstoffes enthielt, gespritzt. Die Mortalität der Milben wurde nach 7 Tagen kontrolliert. 100 % Abtötung wurde mit den Verbindungen gemäß 9, 10, 1 1 erzielt.
Verwendung als Fungizid
Beispiel 4: Plasmopara viticola
Weinsäumlinge der Sorte "Grüner Veltliner" wurden ca. 6 Wochen nach der Aussaat mit 40 % Aceton/60 % Wasser-Lösungen der beanspruchten Verbindungen tropfnaß behandelt. 24 Stunden nach dem Besprühen werden die Pflanzen durch Besprühen mit einer Zoosporangiensuspension von Plasmopara viticola inokuliert und in eine Klimakammer gestellt mit ca. 20°C und ca. 99 % rei. Luftfeuchte. Die Experimente wurden ca . 14 Tage nach der Behandlung ausgewertet. Der Befallsgrad der Pflanzen wurden bewertet auf einer Skala von 0 bis 4, in der 0 = 0-24 % Befallsunterdrückung 1 = 25-49 % Befalls¬ unterdrückung, 2 = 50-74 % Befallsunterdrückung, 3 = 75-97 % Befallsunterdrückung und 4 = 98-100 % Befallsunterdrückung bedeuten. Die Verbindungen aus Beispiel 6 und 5 ergaben eine 2 oder 3, wenn Sprüh¬ lösungen mit einem Gehalt von 50 mg Aktivsubstanz/Liter benutzt wurden.
Beispiel 5: Phytophthora infestans
Tomatenpflanzen "First in the field" wurden in 3-4-Blattstadium mit 40 % Aceton/60 % Wasser-Lösungen der beanspruchten Verbindungen tropfnaß besprüht. 24 Stunden später wurden die Pflanzen inokuliert mit einer Sporensuspension (20.000 Sporen/ml) von Phytophthora infestans und für 2 Tage in eine Klimakammer von ca. 1 5 °C und einer relativen Luftfeuchte von ca. 99 % gestellt gefolgt von 3 bis 4 Tagen bei einer relativen Luftfeuchte von 75 - 80 %. Die Experimente werden ca. 6 Tage nach der Behandlung ausgewertet.
Der Befallsgrad der Pflanzen wurde bewertet auf einer Skala von 0 bis 4, in der 0 = 0-24 % Befallsunterdrückung, 1 = 25-49 % Befallsunterdrückung, 2 = 50-74 % Befallsuπterdrückung, 3 = 75-97 % Befallsuntedrückung und 4 = 98 - 100 % Befallsunterdrückung bedeuten.
Die Verbindungen aus Beispiel 7 und 1 1 wurden mit 3 bewertet, wenn Sprühlösungen mit einem Gehalt von 50 mg Aktivsubstanz/Liter eingesetzt wurden.
Beispiel 6' Leptosphaeria nodorum
Weizenpflanzen der Sorte "Hörnet" wurden in 2-Blatt-Stadιum mit 40 % Aceton/ 60 % Wasser-Lösungen der beanspruchten Verbindungen tropfnaß gespritzt. 24 Stunden nach der Behandlung wurden die Pflanzen mit einer wäßrigen Pyknosporen-Suspension (0, 5 Millionen Sporen/ml) vom Leptosphaeria nodorum inokuliert. Die Pflanzen wurden in einer Klimakammer bei 1 8-20°C und einer relativen Luftfeuchte von ca . 99 % kultiviert. Die Versuche wurden ca. 14 Tage nach der Inokulation ausgewertet.
Der Befallsgrad der Pflanzen wurden bewertet auf einer Skala von 0 bis 4, in der 0 = 0-24 % Befallsunterdrückung, 1 = 25-49 % Befallsunterdrückung, 2 = 50-74 % Befallsunterdrückung, 3 = 75-97 % Befallsunterdrückung und 4 = 98 -100 % Befallsunterdrückung bedeuten.
Die Verbindungen aus Beispiel 6 ergaben eine 2, wenn 50 mg Aktivsubstanz/Liter zum Besprühen eingesetzt wurden.
Verwendung als Antiparasitikum
Beispiel 7: In vitro-Test an tropischen Rinderzecken (Boophilus microplus)
In folgender Versuchsanordnung ließ sich die Wirksamkeit der erfindungsgemäßen Verbindungen gegen Zecken nachweisen:
Zur Herstellung einer geeigneten Wirkstoffzubereitung wurden die Wirkstoffe 10 % ig (G/V) in einer Mischung, bestehend aus Dimethylformamid (85 g), Nonylphenylpolyglykolether (3 g) und oxethyliertes Rizinusöl (7 g), gelöst und die so erhaltenen Emulsionskonzentrate mit Wasser auf eine Prüfkonzentration von 500 ppm verdünnt.
In diese Wirkstoffverdünnungen wurden jeweils zehn vollgesogene Weibchen der tropischen Zecke, Boophilus microplus, für fünf Minuten eingetaucht. Die Zecken wurden anschließend auf Filterpapier getrocknet und dann zum Zwecke der Eiablage mit der Rückseite auf einer Klebfohe befestigt. Die Aufbewahrung der Zecken erfolgte im Wärmeschrank bei 28°C und einer Luftfeuchtigkeit von 90 % . Zur Kontrolle wurden Zeckenweibchen lediglich in Wasser eingetaucht. Zur Berwertung der Wirksamkeit wurde zwei Wochen nach der Behandlung die Hemmung der Eiablage herangezogen. Dabei besagen 100 %, daß keine, 0 daß alle Zecken Eier abgelegt haben.
In diesem Test bewirkte die Verbindungen gemäß Beispiel 10 und 1 1 eine Hemmung der Eiablage.

Claims

Patentansprüche
Verbindung der Formel I oder deren N-Oxid
Figure imgf000044_0001
in welcher
R für gleiche oder verschieden Reste steht, die ausgewählt und aus der
Reihe
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(C2-C4)-Alkinyl,
(CrC4)-Alkoxy,
(C2-C4)- Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen- (C2-C4)-alkenyl,
Halogen- (C2-C4)-alkinyl,
Halogen- (C1 -C4)-alkoxy,
Halogen- (C1 -C4)-alkeny loxy,
R5-0-CH2-,
R5-O-CO-,
R6-CO-,
Halogen- (CrC4)-alkoxy methyl,
Halogen- (CrC4)-alkoxγcarbonyl,
Halogen- (C2-C4)-alkeny loxy methyl,
Halogen- (C2-C4) -alkenyloxycarbonyl, (CrC4)-Alkylthιo,
(C2-C4)-Alkenylthιo,
(CrC4)-Alkylsulfιnyl,
(C2-C4)-Alkenylsulfιnyl,
(CrC4)-Alkylsulfonyl,
(C2-C4)-Alkenylsulfonyl,
Aryl,
Aralkyl, substituiertes Amino,
Cyano und
Halogen;
m 0, 1 , 2, 3 oder 4 bedeutet;
R1 und R2 gleich oder verschieden sind und ausgewählt sind aus der Reihe
Wasserstoff,
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
Halogen-(C2-C4)-alkenyl,
Aryl und
Aralkyl, und
R3 Wasserstoff bedeutet oder
R1 und R3 gemeinsam für eine Bindung stehen und R2 wie vorstehend definiert ist;
R4 für gleiche oder verschiedene Reste steht, die ausgewählt sind aus der Reihe
(CrC4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkιnyl, (CrC4)-Alkoxy,
(C1 -C4)-Alkanoyloxy,
(C2-C4)-Alkenyloxy,
(C2-C4)-Acyl,
(C1-C4)-Alkoxy-carbonyl,
(C2-C4)-Alkenyloxy-carbonyl,
Halogen-(CrC4)-alkyl,
Halogen- (C2-C4)-alkenyl,
Halogen- (C1 -C4)-alkoxy,
Halogen-(C2-C4)-alkenyloxy,
Halogen-(C2-C4)-acyl,
Haiogen-(C1 -C4)-alkoxy-carbonyl,
Halogen- (C2-C4)-alkenyloxy-carbonyl,
Halogen und
Hydroxy, mit der Maßgabe, daß, falls R (CrC4)-Alkyl bedeutet; m 0, 1 oder 2 bedeutet, und R1 und R3 nicht gemeinsam für eine Bindung stehen; der Cyclohexylrest in 4-Position mit R4 einfach substituiert sein muß und dessen Substituent bezüglich des die
Reste R1 und R2 tragenden Kohlenstoffatoms cis-konfiguriert ist;
n 1 , 2 oder 3 bedeutet,
R5 (CrC10)-Alkyl,
(C2-C10)-Alkenyl, (C2-C10)-Alkinyl, (C3-C8)-Cycloalkyl oder Aralkyl bedeutet; R6 wie R5 definiert ist oder Halogen-(C1 -C10)-alkyl, Halogen-(C2-C10)-alkenyl oder Aryl bedeutet;
Aryl Phenyl oder substitutiertes Phenyl bedeutet; und
Aralkyl Aryl-(CrC4)-alkyl bedeutet; oder deren Salze.
2. Verbindung der Formel I gemäß Anspruch 1 oder deren N-Oxid, in welcher R für gleiche oder verschiedene Reste steht, die ausgewählt sind aus der Reihe
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(C2-C4)-Alkinyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl,
Halogen-(C2-C4)-alkinyl,
Halogen-(C1-C4)-alkoxy,
Halogen-(C1-C4)-alkenyloxy,
R5-0-CH2-,
R5-0-CO-,
R6-CO-,
Halogen- (C1 -C4)-alkoxymethyl,
Halogen- (C1 -C4)-alkoxycarbonyl,
Halogeπ-(C2-C4)-alkenyloxy methyl, Halogen- (C2-C4)-alkenyloxycarbonyl,
(CrC4)-Alkylthio,
(C2-C4)-Alkenylthio,
(CrC4)-Alkylsulfinyl,
(C2-C4)-Alkenylsulfinyl,
(CrC4)-Alkylsulfonyl,
(C2-C4)-Alkenylsulfonyl,
Aryl,
Aralkyl, substituiertes Amino,
Cyano und
Halogen,
und die übrigen Reste und Variablen von im Anspruch 1 definiert sind, oder deren Salze.
3. Verbindung der Formel I gemäß Anspruch 1 oder 2 oder deren N-Oxid, in welcher
R1 und R gleich oder verschieden sind und ausgewählt sind aus der Reihe
Wasserstoff und (CrC4)-Alkyl oder
R ' und R3 gemeinsam für eine Bindung stehen und R2 wie vorstehend definiert ist; und die übrigen Reste und Variablen wie in einem der vorangehenden Ansprüche definiert sind; oder deren Salze.
4. Verbindung der Formel I gemäß einem der Ansprüche 1 bis 3 oder deren N-Oxid, in welcher R1 und R3 nicht gemeinsam für eine Bindung stehen und mindestens einer der Reste R4 bezüglich das die Reste R1 und R2 tragenden Kohlenstoffatoms cis-konfiguriert ist; oder deren Salze.
5. Verbindung der Formel I gemäß einem der Ansprüche 1 bis 4 oder deren N-Oxid, in welcher n = 1 ist und R4 in der 4-Position des Cyclohexyliden steht, oder deren Salze.
6. Verfahren zur Herstellung einer Verwendung der Formel I gemäß einem der Ansprüche 1 bis 5 oder deren N-Oxid, dadurch gekennzeichnet, daß man
a) zur Herstellung einer Verbindung der Formel I, in der R1 und R3 gemeinsam für eine Bindung stehen, a^ eine Verbindung der Formel II,
Figure imgf000049_0001
in der R4 und n wie im Anspruch 1 definiert sind , in Gegenwart einer Base umsetzt mit einer Verbindung der Formel III oder Formel IV,
Figure imgf000050_0001
in welchen R, R2 und m wie im Anspruch 1 definiert sind, R7 Aryl oder
(C1 -C4)-Alkoxy be :ddeι utet, R8 Aryl bedeutet, Aryl wie im Anspruch 1 definiert ist und Xθ für Halogenid steht; oder
a2) aus einer Verbindung der Formel V,
Figure imgf000050_0002
in der R, R1 , R2, R4, m und n im Anspruch 1 definiert sind, im Gegenwart eines basischen oder eines sauren Katalysators Wasser abspaltet, oder die Hydroxygruppe nach Umwandlung in eine Fluchtgruppe unter Bildung der Doppelbindung abspaltet, wobei außerdem eine Verbindung der Formel VI entstehen kann,
Figure imgf000051_0001
in der R, R1 , R2, R4 m und n wie im Anspruch 1 definiert sind;
b) zur Herstellung einer Verbindung der Formel I, in der R1 und R3 nicht gemeinsam für eine Bindung stehen, eine Verbindung der Formel I, in der R1 und R3 gemeinsam für eine Bindung stehen und die übrigen Reste und Variablen wie im Anspruch 1 definiert sind, oder eine wie oben unter a2) definierte Verbindung der Formel VI hydriert; und gegebenenfalls einem oder mehrere der folgenden Schritte durchführt:
Einführung von Substituenten am Pyridin; Austausch oder Modifikation reaktiver Reste am Pyridin; Überführung mit geeignetem Oxidationsmitteln in das N-Oxid; Überführung in ihr Salz.
7. Mittel, enthaltend mindestens eine Verbindung gemäß einem der Ansprüche 1 bis 5 und mindestens ein Formulierungsmittel.
8. Fungizides Mittel gemäß Anspruch 7, enthaltend eine fungizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendung üblichen Zusatz- oder Hilfsstoffen.
9. Insektizides, akarizides oder nematizides Mittel gemäß Anspruch 7, enthaltend eine wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendungen üblichen Zusatz- oder Hilfsstoffen.
10. Pflanzenschutzmittel, enthaltend eine fungizid, insektizid, akarizid oder nematizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 und mindestens einem weiteren Wirkstoff, vorzugsweise aus der Reihe der Fungizide, Insektizide, Lockstoffe, Sterilantien, Akarizide, Nematizide und Herbizide zusammen mit den für diese Anwendung üblichen Hilfs- und Zusatzstoffen.
1 1 . Mittel zur Anwendung im Holzschutz oder als Konservierungsmittel in Dichtmitteln, in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen, enthaltend eine wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendungen üblichen Hilfs- und Zusatzstoffen.
1 2. Verbindung gemäß einem der Ansprüche 1 bis 5 oder Mittel gemäß Anspruch 7, zur Anwendung als Tierarzneimittel, vorzugsweise bei der Bekämpfung von Endo- oder Ektoparasiten.
13. Verfahren zur Herstellung eines Mittels gemäß einem der Ansprüche 7 bis 1 2, dadurch gekennzeichnet, daß man den Wirkstoff und die weiteren Zusätze zusammen gibt und in eine geeignete Anwendungsform bringt.
14. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1 als Fungizid .
1 5. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8 und 1 1 als Holzschutzmittel oder als Konservierungsmittel in Dichtmitteln, in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen.
16. Verfahren zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, daß man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate oder auf Saatgut eine fungizid wirksame Menge einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1 appliziert.
17. Verfahren zur Bekämpfung von Schadinsekten, Acaπna und Nematoden, bei welchem man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 9 und 10 appliziert.
18. Verwendung von Verbindungen gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 9 und 10 zur Bekämpfung von Schadinsekten, Acaπna und Nematoden.
19. Saatgut, behandelt oder beschichtet mit einer wirksame Menge eine Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1 .
PCT/EP1996/004985 1995-11-27 1996-11-14 Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide WO1997019924A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75711/96A AU7571196A (en) 1995-11-27 1996-11-14 Cyclohexylmethyl- and cyclohexylidenemethyl pyridines, processes for their production, agents containing them and their use as pesticides and fungicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19544100A DE19544100A1 (de) 1995-11-27 1995-11-27 Cyclohexylmethyl- und Cyclohexylidenmethyl-Pyridine, Verfahren zu ihrer Herstellung, diese enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
DE19544100.1 1995-11-27

Publications (1)

Publication Number Publication Date
WO1997019924A1 true WO1997019924A1 (de) 1997-06-05

Family

ID=7778483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004985 WO1997019924A1 (de) 1995-11-27 1996-11-14 Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide

Country Status (4)

Country Link
AU (1) AU7571196A (de)
DE (1) DE19544100A1 (de)
WO (1) WO1997019924A1 (de)
ZA (1) ZA969864B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980928B2 (ja) * 2004-12-24 2012-07-18 プロシディオン・リミテッド Gタンパク質共役受容体(gpr116)作動薬および肥満および糖尿病治療のためのその使用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505461A (en) * 1947-08-04 1950-04-25 Reilly Tar & Chem Corp Alkylcyclohexylmethylpyridines
WO1993004579A1 (en) * 1991-09-03 1993-03-18 Dowelanco Nematicidal use of 4-aralkylpyridines
WO1993005050A1 (en) * 1991-09-03 1993-03-18 Dowelanco 4-(aralkoxy or aralkylamino)pyridine pesticides_________________

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505461A (en) * 1947-08-04 1950-04-25 Reilly Tar & Chem Corp Alkylcyclohexylmethylpyridines
WO1993004579A1 (en) * 1991-09-03 1993-03-18 Dowelanco Nematicidal use of 4-aralkylpyridines
WO1993005050A1 (en) * 1991-09-03 1993-03-18 Dowelanco 4-(aralkoxy or aralkylamino)pyridine pesticides_________________

Also Published As

Publication number Publication date
DE19544100A1 (de) 1997-05-28
AU7571196A (en) 1997-06-19
ZA969864B (en) 1997-05-27

Similar Documents

Publication Publication Date Title
EP0631575B1 (de) Substituierte pyrimidine und ihre verwendung als schädlingsbekämpfungsmittel
US5852042A (en) Substituted pyridines, processes for their preparation and their use as pesticides and fungicides
US5821244A (en) Condensed nitrogen heterocycles and their use as pesticides, fungicides and antimycotics
WO1993006091A1 (de) Substituierte 4-alkoxypyrimidine, verfahren zu ihrer herstellung, diese enthaltende mittel, und ihre verwendung als schädlingsbekämpfungsmittel
EP0519211A1 (de) Substituierte 4-Aminopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
WO1998022446A1 (de) Quartaere stickstoff-heterocyclen, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
EP0898565A1 (de) Substituierte pyridine/pyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
US5723450A (en) Substituted pyridines, their preparation, and their use as pesticides and fungicides
DE4436509A1 (de) Substituierte Spiroalkylamino- und alkoxy-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
DE19858192A1 (de) 4-Trifluormethyl-3-oxazolylpyridine, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel
EP0719259B1 (de) Substituierte pyridine und pyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
EP0719255A1 (de) Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
EP0892798A1 (de) Substituierte pyridine/pyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
US5877322A (en) Substituted pyridines, their preparation, and their use as pesticides and fungicides
EP0325983A2 (de) N-Phenylbenzamide und N-Phenylbenzamidoxime, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel
DE4437137A1 (de) Substituierte Cycloalkylamino- und -alkoxy-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE4438807A1 (de) Heterocyclyl-amino- und Heterocyclyl-oxy-cycloalkenyl-Derivate, ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
WO1997019924A1 (de) Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
DE19544098A1 (de) Cycloalkylmethyl- und Cycloalkylidenmethyl-Pyridine, Verfahren zu ihrer Herstellung, diese enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE HU IL IS JP KG KP KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97520114

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA