WO1996031942A1 - Multiple access up converter/modulator and method - Google Patents
Multiple access up converter/modulator and method Download PDFInfo
- Publication number
- WO1996031942A1 WO1996031942A1 PCT/US1996/002746 US9602746W WO9631942A1 WO 1996031942 A1 WO1996031942 A1 WO 1996031942A1 US 9602746 W US9602746 W US 9602746W WO 9631942 A1 WO9631942 A1 WO 9631942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- output
- coupled
- signals
- inteφolating
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/0003—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
- H04B1/0007—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C3/00—Angle modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/26—Circuits for superheterodyne receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0802—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/22—Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
Definitions
- the present invention relates to communication system transceivers, and more particularly, to a multiple access digital up converter/modulator for use in communication system transceivers.
- Transmitters and receivers for communication systems generally are designed such that they are tuned to transmit and receive one of a multiplicity of signals having widely varying bandwidths and which may fall within a particular frequency range. It will be appreciated by those skilled in the art that these transmitters and receivers radiate or intercept, respectively, electromagnetic radiation within a desired frequency band.
- the electromagnetic radiation can be output from or input to the transmitter or receiver, respectively, by several types of devices including an antenna, a wave guide, a coaxial cable and an optical fiber.
- These communication system transmitters and receivers may be capable of transmitting and receiving a multiplicity of signals; however, such transmitters and receivers generally utilize circuitry which is duplicated for each respective signal to be transmitted or received which has a different frequency or bandwidth.
- This circuitry duplication is not an optimal multi-channel communication unit design architecture, because of the added cost and complexity associated with building complete independent transmitters and/or receivers for each communication channel.
- An alternative transmitter and receiver architecture is possible which would be capable of transmitting and receiving signals having a desired multi-channel wide bandwidth.
- This alternative transmitter and receiver may utilize a digitizer (e.g., an analog-to-digital converter) which operates at a sufficiently high sampling rate to ensure that the signal of the desired bandwidth can be digitized in accordance with the Nyquist criteria (e.g., digitizing at a sampling rate equal to at least twice the bandwidth to be digitized).
- the digitized signal preferably is pre- or post- processed using digital signal processing techniques to differentiate between the multiple channels within the digitized bandwidth.
- RF Radio frequency
- the digitized signals are processed through a discrete fourier transform (DFT) 108, a channel processor 110 and from channel processors 110 to a cellular network and a public switched telephone network (PSTN).
- DFT discrete fourier transform
- PSTN public switched telephone network
- signals received from the cellular network are processed through channel processors 110, inverse discrete fourier transform (IDFT) 1 14 and digital-to-analog converter 116.
- IDFT inverse discrete fourier transform
- Analog signals from digital-to- analog converter 116 are then up converted in RF up converter 1 18 and radiated from antenna 120.
- a disadvantage of this alternative type of communication unit is that the digital processing portion of the communication unit must have a sufficiently high sampling rate to ensure that the Nyquist criteria is met for the maximum bandwidth of the received electromagnetic radiation which is equal to the sum of the individual communication channels which form the composite received electromagnetic radiation bandwidth. If the composite bandwidth signal is sufficiently wide, the digital processing portion of the communication unit is very costly and consumes a considerable amount of power. Additionally, the channels produced by a DFT or IDFT filtering technique must typically be adjacent to each other. A need exists for a transmitter and a receiver, like the one which is described above, which is capable of transmitting and receiving a multiplicity of signals within corresponding channels with the same transmitter or receiver circuitry.
- this transmitter and receiver circuitry preferably should reduce communication unit design constraints associated with the above transceiver architecture. If such a transmitter and receiver architecture could be developed, then it would be ideally suited for cellular radiotelephone communication systems. Cellular base stations typically need to transmit and receive multiple channels within a wide frequency bandwidth (e.g., 824 megahertz to 894 megahertz). In addition, commercial pressures on cellular infrastructure and subscriber equipment manufacturers are prompting these manufacturers to find ways to reduce the cost of communication units. Similarly, such a multi-channel transmitter and receiver architecture would be well suited for personal communication systems (PCS) which will have smaller service regions (than their counterpart cellular service regions) for each base station and as such a corresponding larger number of base stations will be required to cover a given geographic region.
- PCS personal communication systems
- Multi-channel communication units which share the same analog signal processing portion.
- Traditional communication units are designed to operate under a single information signal coding and channelization standard.
- these multi-channel communication units include a digital signal processing portion which may be reprogrammed, at will, through software during the manufacturing process or in the field after installation such that these multi-channel communication units may operate in accordance with any one of several information signal coding and channelization standards.
- FIG. 1 is a block diagram of a prior art multi-channel transceiver
- FIG. 2 is a block diagram representation of a multi-channel receiver in accordance with a preferred embodiment of the present invention
- FIG. 3 is a block diagram representation of a multi-channel transmitter in accordance with a preferred embodiment of the present invention
- FIG. 4 is a block diagram representation of a multi-channel transceiver in accordance with a preferred embodiment of the present invention
- FIG. 5 is a block diagram representation of the multi-channel receiver shown in FIG. 2 and modified to provide per-channel scanning in accordance with another preferred embodiment of the present invention
- FIG. 6 is a block diagram representation of a multi-channel transceiver in accordance with another preferred embodiment of the present invention.
- FIG. 7 is a block diagram representation of a multi-channel transceiver in accordance with another preferred embodiment of the present invention.
- FIG. 8 is a block diagram representation of data routing in a multi-channel transceiver in accordance with a preferred embodiment of the present invention.
- FIG. 9 is a block diagram representation of data routing in a multi-channel transceiver in accordance with another preferred embodiment of the present invention.
- FIG. 10 is a block diagram representation of data routing in a multi-channel transceiver in accordance with another preferred embodiment of the present invention.
- FIG. 11 is a block diagram representation of a digital converter module for the multi-channel transmitter of FIG. 5 and further in accordance with a preferred embodiment of the present invention.
- FIG. 12 is a block diagram representation of a preferred embodiment of a digital down converter in accordance with the present invention.
- FIG. 13 is a block diagram representation of a preferred embodiment of a digital up converter in accordance with the present invention
- FIG. 14 is a block diagram representation of an up converter adaptable to the digital up converter of the present invention
- FIG. 15 is a block diagram representation of a modulator adaptable to the digital up converter of the present invention
- FIG. 16 is a block diagram representation of a preferred embodiment up converter/modulator for the digital up converter of the present invention
- FIG. 17 is a block diagram representation of a preferred embodiment of a channel processor card in accordance with the present invention.
- FIG. 18 is a block diagram representation of another preferred embodiment of a channel processor card in accordance with the present invention.
- FIG. 19 is a flowchart illustrating a scan procedure in accordance with a preferred embodiment of the present invention.
- the present invention is directed to a wideband multi-channel transmitter and receiver (transceiver) which incorporates a high degree of flexibility and redundancy and which is particularly adaptable to the cellular or PCS communication systems.
- the transceiver provides support for multiple antennas for either sectorized cellular operation, diversity reception, redundancy or as preferred, a combination of all of these features with enhanced user capacity at reduced cost.
- the transceiver of the present invention accomplishes these and many other features through a practical architecture which enhances performance through incorporation of substantial digital processing and dynamic equipment sharing (DES).
- DES digital processing and dynamic equipment sharing
- the present invention further provides for multiple access without significant hardware duplication.
- a transceiver according to the present invention incorporates programmable digital down converters (DDCs) and programmable digital up converters (DUCs).
- DDCs programmable digital down converters
- DUCs programmable digital up converters
- each of the DUCs and DDCs may be programmed to provide varying decimation/interpolation ratios to accommodate access methods with varying signal formats and bandwidths.
- the programmability of the DUC does not entirely provide for multiple access. Therefore, the DUC of the present invention also incorporates a unique hardware structure which provides both frequency modulation (FM) as well as quadrature (I and Q) up conversion without significant hardware duplication and associated cost.
- FM frequency modulation
- I and Q quadrature
- transceiver 400 according to a preferred embodiment of the present invention is shown.
- preferred embodiments of wideband multi-channel digital receiver and transmitter portions, 200 and 300, respectively, of transceiver 400 are discussed.
- a transceiver operable in the cellular radio frequency (RF) band is presented. It should be understood, however, that the present invention may be easily adapted to service any RF communication band including, for example, the PCS and the like bands.
- RF radio frequency
- the receiver 200 includes a plurality of antennas 202 (individually antennas l,3,...,n- 1) which are coupled, respectively, to a plurality of radio-frequency mixers 204 for converting RF signals received at antennas 202 to intermediate frequency (IF) signals.
- the mixers 204 contain the appropriate signal processing elements at least including filters, amplifiers, and oscillators for pre- conditioning the received RF signals, isolating the particular RF band of interest and mixing the RF signals to the desired IF signals.
- the IF signals are then communicated to a plurality of analog- to-digital converters (ADCs) 210 where the entire band of interest is digitized.
- ADCs analog- to-digital converters
- One past disadvantage of prior wideband receivers was the requirement that the ADC, to completely and accurately digitize the entire band, operate at a very high sampling rate.
- the cellular A and B bands occupy 25 megahertz (MHz) of RF spectrum.
- Nyquist criteria to accurately digitize the entire cellular bands with a single ADC would require a device capable of operating at a sampling rate of more than 50 MHz (or 50 million samples per second, 50 Ms/s). Such devices are becoming more common and it is contemplated within the scope of the present invention to utilize the latest ADC technology.
- the DDC 214 accepts a high speed stream of digital words (e.g. approximately 60 MHz) from the ADC 210 associated with the selected antenna, in the preferred embodiment via a backplane interconnect 1108, FIG. 11.
- the DDC 214 is operable to select a particular frequency (in the digital domain), to provide decimation (rate reduction) and to filter the signal to a bandwidth associated with channels of the communication system.
- each DDC 214 contains a numerically controlled oscillator (NCO) 1218 and a complex multiplier 1220 to perform a down conversion on the digital word stream. Note, this is a second down conversion since a first down conversion was performed on the received analog signal by mixers 204.
- NCO numerically controlled oscillator
- the result of the down conversion and complex multiplication is a data stream in quadrature, i.e., having in-phase, I, and quadrature, Q, components, which has been spectrally translated to a center frequency of zero hertz (baseband or zero IF).
- the I,Q components of the data stream are communicated to a pair of decimation filters 1222, respectively, to reduce the bandwidth and the data rate to a suitable rate for the particular communication system air interface (common air interface or CAI) being processed.
- the data rate output of the decimation filters is about 2.5 times the desired bandwidth of the CAI. It should be understood that the desired bandwidth may change the preferred decimation filters 1222 output rate.
- the decimated data stream is then low pass filtered to remove any undesirable alias components through digital filters 1224.
- Decimation filters 1222 and digital filters 1224 provide rough selectivity, final selectivity is accomplished within the channel processors 228 in a known manner.
- a plurality of DDCs 214 are provided in the preferred embodiment and each are interconnected to ADCs 210. Each of the DDCs 214 can select one of the plurality of ADCs 210/antennas 202 from which to receive a high speed digital word stream via backplane 1106.
- the outputs of the DDCs 214, a low speed data stream (e.g. approximately 10 MHz, baseband signal), are connected to a time domain multiplex (TDM) bus 226 for communication to a plurality of channel processors 228 via output formatter 1232.
- TDM time domain multiplex
- any one of the channel processors 228 select any one of the DDCs 214 for receiving a baseband signal.
- the channel processors 228 would be operable, via the control bus 224 and control bus interface 1234, to interconnect available channel processors to available DDCs with appropriate contention/arbitration processing to prevent two channel processors from attempting to access the same DDC.
- the DDCs 214 are allocated a dedicated time slot on TDM bus 226 for interconnection to a particular channel processor 228.
- the channel processors 228 are operable to send control signals via the control bus 224 to the DDCs 214 for setting digital word stream processing parameters. That is, the channel processors 228 can instruct the DDCs 214 to select a down conversion frequency, a decimation rate and filter characteristics (e.g., bandwidth shape, etc.) for processing the digital data streams. It is understood that the NCO 1218, complex multiplier 1220, decimator 1222 and digital filter 1224 are responsive to numerical control to modify the signal processing parameters. This allows receiver 200 to receive communication signals conforming to a number of different air interface standards.
- the receiver of the present invention further provides a plurality of receiver banks (two shown and illustrated as 230 and 230').
- Each of the receiver banks 230 and 230' include the elements described above prior to TDM bus 226 for receiving and processing a radio frequency signal.
- a pair of adjacent antennas one from antennas 202 and one from antennas 202' (individually referenced as 2,4,..., n), each associated with receiver banks 230 and 230', respectively, are designated to service a sector of the communication system.
- the signals received at each antenna 202 and 202' are processed independently through receiver banks 230 and 230', respectively.
- the outputs of the receiver banks 230 and 230' are communicated respectively on TDM buses 226 and 226', although it is understood that a single bus may be used, to the channel processors 228, wherein the diversity reception is accomplished.
- the channel processors 228 receive the baseband signals and perform the required baseband signal processing, selectivity to recover communication channels. This processing at least includes audio filtering in analog CAI communication systems, forward error correction in digital CAI communication systems, and receive signal strength indication (RSSI) in all communication systems. Each channel processor 228 recovers traffic channels independently. Furthermore, to provide diversity, each channel processor 228 is operable to listen to each of the pair of antennas assigned to a sector and to thereby receive and process two baseband signals, one per antenna.
- the channel processors 228 are further provided an interface 436, FIG. 4, to the communication network, for example in a cellular communication system to a base station controller or mobile switching center, via a suitable interconnect With reference to FIG. 17 a preferred embodiment of a channel processor 228 is shown.
- each of the channel processors is operable for both transmit and receive operations.
- each channel processor 228 is capable of servicing up to 8 communication channels of the communication system in both transmit and receive (4 channels in receive mode with diversity).
- the low speed baseband signal from TDM buses 226 or 226' are received respectively at input/output (I/O) ports 1740 and 1740' and are communicated to a pair of processors 1742 and 1742'.
- processors 1742 and 1742' Associated with each processor 1742 and 1742', are digital signal processors (DSPs) 1744 and 1744' and memory 1746 and 1746'.
- DSPs digital signal processors
- Each processor 1742 and 1742' is operable to service four (4) communication channels. As can be seen in FIG.
- the processors 1742 and 1742' are configured to listen to either one, or both as is required in the preferred diversity arrangement, of the receiver banks 230 or 230'. This structure, while also enabling diversity, provides redundancy. In the receive mode if one of the processors 1742 or 1742' fails, only diversity is lost as the other processor 1742 or 1742' is still available to process the uplink baseband signals from the other receiver bank. It should be appreciated that processors 1742 and 1742' can be implemented with appropriate diversity selection or diversity combining processing capability.
- Processors 1742 and 1742' are further in communication with control elements 1748 and 1748', respectively, for processing and communicating control information to the DDCs 214 via 1/0 ports 1740 and 1740' and the control bus 224 as described.
- the transmitter portion 300 (transmitter) of transceiver 400 will be described.
- the channel processors 228 receive downlink communication signals from the communication system network (via interface 436 not shown in FIG. 17) for communication over a communication channel.
- downlink signals can be, for example, control or signaling information intended for the entire cell (e.g., a page message) or a particular sector of a cell (e.g., a handoff command) or downlink voice and/or data (e.g., a traffic channel).
- processors 1742 and 1742' independently operate on the downlink signals to generate low speed baseband signals.
- the channel processors 228 are capable of servicing eight (8) communication channels (either traffic channels, signaling channels or a combination thereof)- If one of the processors 1742 or 1742' fails, the effect on the system is a loss of capacity, but not a loss of an entire sector or cell.
- the processing of the baseband signals through the transmitter 300 is complementary to the processing completed in the receiver 200.
- the low speed baseband signals are communicated from the channel processors 228 via I/O ports 1740 or 1740' to TDM downlink busses 300 and 300', although a single bus may be used, and from there to a plurality of digital up converters (DUCs) 302.
- the DUCs 302 interpolate the baseband signals to a suitable data rate. The interpolation is required so that all baseband signals from the channel processors 228 are at the same rate allowing for summing the baseband signals at a central location.
- the interpolated baseband signals are then up converted to an appropriate IF signal such as quadrature phase shift keying (QPSK) differential quadrature phase shift keying (DQPSK), frequency modulation (FM) or amplitude modulation (AM) signals (with I,Q input, the modulation is accomplished within the channel processors 228).
- the baseband signals are now carrier modulated high speed baseband data signals offset from zero hertz. The amount of offset is controlled by the programming of the DUCs 302.
- the modulated baseband signals are communicated on a high speed backplane interconnect 304 to signal selectors 306.
- the signal selectors are operable to select sub-groups of the modulated baseband signals.
- the selected sub-groups are communication channels which are to be transmitted within a particular sector of the communication system.
- the selected sub ⁇ group of modulated baseband signals are then communicated to digital summers 308 and summed.
- the summed signals still at high speed, are then communicated, via backplane interconnect 1130 to digital-to- analog converters (DACs) 310 and are converted to IF analog signals.
- DACs digital-to- analog converters
- IF analog signals are then up converted by up converters 314 to RF signals, amplified by amplifiers 418 (FIG. 4) and radiated from antennas 420 (FIG. 4).
- a plurality of DACs 310 are provided with groups 311 of three DACs being arranged on RF shelves, one DAC associated with a shelf.
- the groups of DACs 311 convert three summed signals, received on separate signal busses 313 of backplane interconnect 1130, to analog signals. This provides for increased dynamic range over what could be achieved with a single DAC. This arrangement further provides redundancy since if any of the DACs fail, there are others available. The result is merely a decrease in system capacity and not a loss of an entire sector or cell.
- the outputs of a group of DACs 311 receiving"signals for a sector of the communication system are then analog summed in summers 312, with the summed analog signal being communicated to up converters 314.
- the transmitter 300 is also arranged with a plurality of transmitter banks (two shown as 330 and 330').
- the transmitter banks 330 and 330' include all of the equipment for the transmitter 300 between the channel processors 228 and the amplifiers 418.
- the output of the up converters 314, up converting summed analog signals for a sector of the communication system, for each transmitter bank 330 and 330' are then summed in RF summers 316.
- the summed RF signals are then communicated to amplifiers 418 and radiated on antennas 420. If an entire transmitter bank 330 or 330' fails, the effect is still only a loss of system capacity and not a loss of an entire portion of the communication system.
- DUC 302 in accordance with a preferred embodiment of the present invention is shown.
- a plurality of DUCs 302 each of which includes an up converter/modulator 1340 which receives downlink baseband signals from busses 300 and 300' and control signals from control bus 224 via formater circuits 1341.
- the output of the up converter/modulator 1340 is then communicated to selector 306.
- selector 306 can take the form of banks of dual-input AND gates, one input of which is connected to one bit of the data word (i.e. the modulated baseband signal). With the control line held high (logical 1), the outputs will follow the transitions of the inputs.
- selector 306 is then communicated to a digital summer bank 1308, which adds data from previous digital summers associated with other DUCs onto one of a plurality of signal paths 313. Each signal path, as indicated, is associated with a sector of the communication system and communicates the summed signals to DAC groups 311. If selector 306 is open, the output of selector 306 is zeros, and as an input to summer 1308 leaves the incoming signal unchanged. It should also be understood that scaling may be required on the input, the output or both of summers 1308 for scaling the summed digital signal within the dynamic range of the summers 1308.
- the outputs of the DUCs representing signals destined for particular sectors of the communication system can be summed into a single signal for conversion to an analog signal. Or, as is accomplished in the preferred embodiment, may be further collected in sets and converted to analog signals by multiple DACs for enhancing the dynamic range and providing redundancy.
- an up converter 1400 for I,Q modulation in accordance with the present invention is shown.
- the up converter 1400 includes first and second interpolation filters 1402 and 1404 (e.g., finite impulse response (FIR) filters) for interpolating the I,Q portions of the baseband signal, respectively.
- the interpolated I,Q portions of the baseband signal are up converted in mixers 1406 and 1408, receiving input from numerically controlled oscillator 1410.
- Numerically controlled oscillator (NCO) 1410 receives as an input the product of the up conversion frequency, a>o, and the inverse sample rate, ⁇ , which is a fixed phase increment dependent on the up conversion frequency. This product is supplied to a phase accumulator 1412 within NCO 1410. The output of phase accumulator 1412 is a sample phase, ⁇ , which is communicated to sine and cosine generators 1414 and 1416, respectively, for generating the up conversion signals. The up converted I,Q portions of the baseband signal are then summed in summer 1418 providing the modulated IF signal output of up converter 1400.
- a modulator 1500 for R, ⁇ modulation, direct modulation of the phase is shown.
- Modulator 1500 provides a simplified way of generating FM over up converter 1400.
- the baseband signal is communicated to interpolation filter 1502( e.g., a FIR filter) which is then scaled by k ⁇ in sealer 1504.
- the interpolated and scaled baseband signal is then summed in summer 1506 with the fixed phase increment CuoT in a numerically controlled oscillator/modulator (NCOM) 1508.
- NCOM numerically controlled oscillator/modulator
- This sum is then communicated to a phase accumulator 1510 which outputs a sample phase, ⁇ , which in turn is communicated to a sinusoid generator 1512 for generating the modulated IF signal output of modulator 1500.
- the devices shown in FTGs. 14 and 15 are suitable for use in up converter/modulator 1340 of the present invention.
- the up converter 1400 is not efficient with respect to generating FM, while modulator 1500 does not provide I,Q up conversion.
- FIG. 16 a preferred up converter/modulator 1340 is shown which provides both I,Q up conversion and FM modulation, and hence, provides for multiple access using various access methods without significantly increasing base station hardware and cost.
- Up converter/modulator 1340 provides I,Q up conversion for a single baseband signal or R, ⁇ modulation for two baseband signals.
- the I,Q portions of the baseband signal or two R, ⁇ signals are input to up converter/modulator 1340 at ports 1602 and 1604, respectively.
- Signal selectors 1606 and 1608 are provided and select between the I,Q or R, ⁇ signals based upon the mode of operation of up converter/modulator 1340.
- the I portion of the signal is communicated from selector 1606 to inte ⁇ olation filter, (e.g., an FIR filter) 1610.
- inte ⁇ olated I signal is then communicated to mixer 1612 where it is up converted by a sinusoid from cosine generator 1614.
- Cosine generator 1614 receives an input sample phase ⁇ from phase accumulator 1616.
- a selector 1618 is provided and selects a zero input for I,Q up conversion.
- the output of selector 1618 is scaled by k ⁇ in sealer 1620 yielding a zero output which is added to C ⁇ oT in adder 1622.
- This sum, which is coot, in the I,Q up conversion case, is input to phase accumulator 1616 to produce the sample phase output, ⁇ .
- the Q signal is selected by selector 1608 and communicated to inte ⁇ olation filter (e.g., an FIR filter) 1626.
- inte ⁇ olation filter e.g., an FIR filter
- the inte ⁇ olated Q signal is then communicated to mixer 1628 where it is up converted by a sinusoid from sine generator 1630.
- Sine generator 1630 receives an input from selector 1632 which selects the sample phase, ⁇ , generated by phase accumulator 1616 in the I,Q case.
- the up converted I,Q signals are then summed in summer 1634 as the up converted/modulated output of up converter/modulator 1340 in the I,Q mode.
- the selectors 1606 and 1608 select two separate R, ⁇ signals.
- up converter/modulator 340 is operable to process two R, ⁇ signals simultaneously.
- the first signal, R, ⁇ -1 is inte ⁇ olated and filtered in inte ⁇ olation filter 1610.
- selector 1618 selects the inte ⁇ olated R, ⁇ -1 signal which is scaled by k ⁇ in sealer 1620 and added to ⁇ o ⁇ in adder 1622.
- the output of adder 1622 is then communicated to phase accumulator 1616 which produces a sample phase, ⁇ which is input to cosine generator 1614.
- the output of cosine generator 1614 is one of two modulated IF signal outputs of up converter/modulator 1340 in R, ⁇ processing mode.
- the second R, ⁇ signal, R, ⁇ -2 is selected by selector 1608 and is communicated to inte ⁇ olation filter 1626.
- the inte ⁇ olated R, ⁇ - 2 signal is then communicated to sealer 1636 where it is scaled by k ⁇ .
- the scaled signal is then summed with G)c. ⁇ in adder 1638.
- the output of adder 1638 is input to phase accumulator 1640 which produces an output sample phase, ⁇ , which is selected by selector 1632 and communicated to sine generator 1630.
- the output of sine generator 1630 is the second of two modulated IF signal outputs of up converter/modulator 1340 in R, ⁇ processing mode.
- CDo ⁇ communicated to adders 1622 and 1638 may be unique to provide the proper phase output associated with either cosine generator 1614 or sine generator 1630.
- the values of C0c. ⁇ may be programmable under control of the channel processors 228, for example, to select a particular carrier frequency output from cosine generator 1614 or sine generator 1630.
- the sealer value k ⁇ may be similarly programmable to select frequency deviation.
- Transceiver 400 is structured in a pair of transceiver banks 402 and 404. Each bank is identical and includes a plurality of RF processing shelves 406. Each RF processing shelf 406 houses a RF mixer 408 and an ADC 410 which are coupled to receive and digitize a signal from antenna 412. RF processing shelf 406 further includes three DACs 414, the outputs of which are summed by summer 416 and communicated to RF up converter 418. The output of RF up converter 417 is further communicated to an RF summer 419 for summing with a corresponding output from transceiver bank 404.
- the summed RF signal is then communicated to amplifier 418 where it is amplified before being radiated from antenna 420.
- Received signals from ADC 410 are interconnected to a plurality of digital converter modules (DCMs) 426 via receive busses 428.
- DCMs digital converter modules
- transmit signals are communicated from DCMs 426 to DACs 414 via transmit busses 430.
- receive busses 428 and transmit busses 430 are high speed data buses implemented into a backplane architecture within RF frame 432. In the preferred embodiment, communication over the backplane is at approximately 60 MHz, however, the close physical relationship of the elements allows for such high speed communication without significant errors in the high speed data signal.
- DCM 426 includes a plurality of DDC application specific integrated circuits (ASICs) 1102 and a plurality of DUC ASICs 1104 for providing receive and transmit signal processing. Receive signals are communicated from antennas 412 via a receive backplane interconnect 1108, backplane receiver 1106 and buffer/driver bank 1107 to DDC ASICs 1102 over communication links 1110.
- DCM 426 includes ten DDC ASICs 1102 each DDC ASIC 1102 having implemented therein three individual DDCs, as described above. In the preferred embodiment, eight of the DDC ASICs 1102 provide communication channel functions while two of the DDC ASICs 1102 provide scanning functions.
- the outputs of DDC ASICs 1102 are communicated via links 1112 and backplane formater 1114 and backplane drivers 1116 to the backplane interconnect 1118. From backplane interconnect 1118, receive signals are communicated to an interface media 450 (FIG. 4) for communication to a plurality of channel processors 448 arranged in groups in processor shelves 446.
- transmit signals are communicated from channel processors 448 over the interface media 450 and backplane interconnect 1118 through transmit backplane receivers 1120 to a plurality of DUC ASICs 1104 via selector/formater 1124.
- Each of the DUC ASICs 1104 contain four individual DUCs, the DUCs as described above, for processing four communication channels in R, ⁇ mode or two communication channels in I,Q mode.
- the outputs of DUC ASICs 1104 are communicated via links 1126 to transmit backplane drivers 1128 and backplane interconnect 1130 for communication to the DACs 414
- interface media 450 may be any suitable communication media.
- interface media may be a microwave link, TDM span or fiber optic link.
- channel processors 448 may be substantially remotely located with respect to the DCMs 426 and the RF processing shelves 406.
- the channel processing functions could be accomplished centrally, while the transceiver functions are accomplished at a communication cell site.
- This arrangement simplifies construction of communication cell sites as a substantial portion of the communication equipment can be remotely located from the actual communication cell site. The result is a savings to the operator by way of physical space required for equipment and in more centralized operation and maintenance activity.
- transceiver 400 includes three DCMs 426, with a capability of twelve communication channels per DCM 426. This arrangement provides system reliability. Should a DCM 426 fail, the system loses only a portion of the available communication channels. Moreover, DCMs may be modified to provide multiple air interface capability. That is the DDCs and DUCs on the DCMs may be individually programmed for particular air interfaces. Hence, transceiver 400 provides multiple air interface capability. As appreciated from the foregoing, there are numerous advantages to the structure of transceiver 400. With reference to FIG. 5 a receiver 500 of transceiver 400 is shown which is very similar to the receiver 200 shown in FIG. 2.
- Receiver 500 includes an additional DDC 502 interconnected as before via a selector 504 to ADCs 506 for receiving uplink digital signals from antennas 508/mixers 509 and for communicating data signals to channel processors 510 via data bus 514.
- ADCs 506 for receiving uplink digital signals from antennas 508/mixers 509 and for communicating data signals to channel processors 510 via data bus 514.
- the channel processor scans each sector of the communication cell. In the present invention, this is accomplished by having the channel processor 510 seize DDC 502 and program it, via the control bus 512, to receive communications from each of the antennas in the communication cell. The information received, for example received signal strength indications (RSSI) and the like, are evaluated by channel processors 510 to determine if a better antenna exists.
- the processing in DDC 502 is identical to the processing accomplished in DDCs 214, with the exception that DDC 502, under instruction of channel processor 510, receives signals from a plurality of the antennas in the communication cell as opposed to a single antenna servicing an active communication channel FIG.
- step 19 illustrates a method 1900-1926 of accomplishing this per-channel scanning feature.
- the method enters at bubble 1900 and proceeds to step 1902 where a timer is set.
- the channel processor checks if DDC 302 is idle, decision step 1904, i.e., not presently performing a scan for another channel processor; and, if it is idle, checks to see if the control bus 312 is also idle, decision step 1906. If it is, the timer is stopped 1908 and channel processor 310 seizes the control bus 312, 1909. If channel processor 310 is unable to seize the control bus 312, 1912, then the method loops back to step 1902.
- a time out check is made, 1910, if time out has not been reached, the method loops back to check if the DDC has become available. If a time out has been reached, an error is reported, 1920, i.e., channel processor 310 was unable to complete a desired scan. If the control bus 312 is successfully seized, 1912, channel processor programs DDC 302 for the scan function, 1914. If, however, DDC 302 has become active 1916, the programming is aborted and an error is reported, 1920. Otherwise, the DDC 302 accepts the programming and begins collecting samples, 1918, from the various antennas 308. When all the samples are collected, 1922, the DDC is programmed to an idle state, 1924, and the method ends 1926.
- transceiver 400 Another feature of transceiver 400 is an ability to provide signaling to particular sectors or to all sectors of a communication cell.
- the outputs of up converter/modulators 1340 are communicated to selectors 306 which are operable to select outputs from the plurality of up converter/modulators 1340 which are to be directed to a particular sector of the communication cell.
- selectors 306 As illustrated in FIG. 3, for a three sector communication cell, three data paths 313 are provided corresponding to the three sectors of the communication cell, and the function of selectors 306 is to sum the output of up converters/modulators 1340 onto one of these three data paths. In this manner, the downlink signals from up converters/modulators 1340 are communicated to an appropriate sector of the communication cell.
- Selector 306 is further operable to apply the output of an up converter/modulator 1340 to all of the signal paths 313.
- the downlink signals from the up converter/modulator 1340 is communicated to all sectors of the communication cell simultaneously.
- an omni like signaling channel, through simulcast is created by designating an up converter/modulator as a signaling channel and programming selector 306 to communicate the downlink signals from this up converter/modulator to all sectors of the communication cell.
- signaling to particular sectors may be accomplished by reprogramming selector 306 to communicate the downlink signals from a signaling up converter/modulator 1340 to one or more sectors of the communication cell.
- Transceiver 600 which, while containing the functional elements described with respect to transceiver 400, provides a different architectural arrangement.
- Transceiver 600 advantageously provides uplink digital down conversion and corresponding downlink digital up conversion within the channel processors.
- the channel processors are then interconnected to the RF hardware via a high speed link.
- RF signals are received at antennas 602
- Each receive RF shelf 604 contains an RF down converter 606 and an analog to digital converter 608.
- the outputs of the receive RF shelves 604 are high speed digital data streams which are communicated via an uplink bus 610 to a plurality of channel processors 612.
- the uplink bus 610 is a suitable high speed bus, such as a fiber optic bus or the like.
- the channel processors 612 include a selector for selecting one of the antennas from which to receive a data stream and a DDC and other baseband processing components 613 for selecting and processing a data stream from one of the antennas to recover a communication channel.
- the communication channel is then communicated via a suitable interconnect to the cellular network and PSTN.
- downlink signals are received by the channel processors 612 from the cellular network and PSTN.
- the channel processors include up converter/modulators 615 for up converting and modulating the downlink signals prior to communicating a downlink data stream to transmit RF processing shelves 614 over transmit bus 616.
- transmit bus 616 is also a suitable high speed bus.
- Transmit RF processing shelves 614 include the digital summers 618, DACs 620 and RF up converters 622 for processing the downlink data streams into RF analog signals.
- the RF analog signals are then communicated via an analog transmit bus 624 to power amplifier 626 and antennas 628 where the RF analog signals are radiated.
- transceiver 700 which, while also containing the functional elements described with respect to transceiver 400, provides still another architectural arrangement. Transceiver 700 is described for a single sector of a sectorized communication system. It should be appreciated that transceiver 700 is easily modified to service a plurality of sectors.
- RF signals are received by antennas 702 and communicated to receive RF processing shelves 704.
- Receive RF processing shelves 704 each contain an RF down converter 703 and an ADC 705.
- the output of receive RF processing shelves 704 is a high speed data stream which is communicated via high speed backplane 706 to a plurality of DDCs 708.
- DDCs 708 operate as previously described to select the high speed data streams and to down convert the data streams.
- the outputs of DDCs 708 are low speed data streams which are communicated on busses 710 and 712 to channel processors 714.
- Channel processors 714 operate as previously described to process a communication channel and to communicate the communication channel to the cellular network and PSTN via a channel bus 716 and network interfaces 718.
- the DDCs 708 of transceiver 700 may also be advantageously located on a channel processor shelf with an appropriate high speed backplane interconnect.
- downlink signals are communicated from the cellular network and PSTN via interfaces 718 and channel bus 716 to the channel processors 714.
- Channel processors 714 include DUCs and DACs for up converting and digitizing the downlink signals to analog IF signals.
- the analog IF signals are communicated via coaxial cable interconnects 722, or other suitable interconnection media, to a transmit matrix 724 where the downlink signals are combined with other downlink analog IF signals.
- the combined analog IF signals are then communicated, via coaxial interconnects 726, to RF up converters 728.
- RF up converterers 728 convert the IF signals to RF signals.
- the RF signals from up converters 728 are RF summed in summer 730 and are then communicated to power amplifiers and transmit antennas (not shown).
- channel processor 714 A preferred embodiment of a channel processor 714 is shown in FIG. 18.
- Channel processor 714 is similar in most aspects to channel processor 228 shown in FIG. 17 with like elements bearing like reference numeral.
- Channel processor 714 includes, in addition to these element, DUCs 1802 which are coupled to receive downlink signals from processors 1742, 1742'.
- DUCs 1802 up convert the downlink signals which are communicated to DACs 1806 where the downlink signals are converted to analog IF signals.
- the analog IF signals are then communicated, via ports 1740, 1740', to the transmit matrix 724.
- selectors 800 are provided in the DCMs 802 prior to DUCs 804 and DAC 806.
- Direct data links 808 are provided from DUCs 804 to selectors 800 from DCM 802 to DCM 802 and finally to DAC 806.
- Bypass data links 810 are also provided tapping into direct data links 808.
- selectors 800 are operable to activate the appropriate bypass data links 810 to bypass the failed DCM 802 and to allow continued communication of signals to amplifier 812 and transmit antenna 814. It should be understood that the uplink elements can be similarly connected to provide a fault tolerant receive portion of the transceiver.
- FIG. 9 shows an alternate arrangement.
- channel processors 920 are interconnected via a TDM bus 922 to DCMs 902.
- DCMs are interconnected as described in FIG. 8, selectors 900 associated with each DCM 902 are not shown, it being understood that selectors may easily be implemented directly in the DCMs 902.
- the selectors within the DCMs 902 can activate the appropriate bypass link 924 to allow continued communication of signals to DAC 906, amplifier 912 and transmit antenna 914.
- FIG. 10 shows still another alternate arrangement. Again,
- DCMs 1002 are interconnected as described in FIG. 8.
- direct links 1030 interconnect channel processors 820 in a daisy chain fashion, the output of each channel processor 1020 being summed in summers 1032 and then communicated to DCMs 1002 on a TDM bus 1034.
- pass links 1036 forming a second bus, are provided as are selectors 1038 in a fashion similar to that shown for DCMs 802 in FIG. 8.
- selectors 1038 are provided as are selectors 1038 in a fashion similar to that shown for DCMs 802 in FIG. 8.
- the signals from the remaining channel processors 1020 can be routed around the failed channel processors in the same manner as described for the DCMs 802, above to selector 1000, DAC, 1006, amplifier 1012 and antenna 1014.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Amplitude Modulation (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Transceivers (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Communication Control (AREA)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9624183A GB2304262A (en) | 1995-04-03 | 1996-02-29 | Multiple access up converter/modulator and method |
PL96317897A PL180753B1 (pl) | 1995-04-03 | 1996-02-29 | Sposób podwyższającego częstotliwość przetwarzania/modulacji sygnałów telekomunikacyjnych oraz podwyższający częstotliwość przetwornik/modulator sygnałów telekomunikacyjnych |
MX9606016A MX9606016A (es) | 1995-04-03 | 1996-02-29 | Convertidor ascendente/modulador de acceso multiple y metodo. |
JP8530282A JPH10501674A (ja) | 1995-04-03 | 1996-02-29 | マルチアクセスアップコンバータ/変調器および方法 |
BR9605951A BR9605951A (pt) | 1995-04-03 | 1996-02-29 | Conversor para cima/modulador conversor para cima/modulador de modos múltiplos aparelho para convenção para cima/modulação de sinais de comunicação de formatos de acesso múltiplo transmissor digital de acesso múltiplo |
CA002191098A CA2191098C (en) | 1995-04-03 | 1996-02-29 | Multiple access up converter/modulator and method |
KR1019960706895A KR100210633B1 (ko) | 1995-04-03 | 1996-02-29 | 업변환/변조장치및방법과,다중액세스디지탈송신기 |
AU53566/96A AU695320B2 (en) | 1995-04-03 | 1996-02-29 | Multiple access up converter/modulator and method |
DE19680328T DE19680328T1 (de) | 1995-04-03 | 1996-02-29 | Aufwärtsumsetzer/Modulator mit Mehrfachzugriff und Verfahren |
SE9604433A SE519826C2 (sv) | 1995-04-03 | 1996-12-02 | Flerkanalsuppkonverterare/modulator och sätt för uppkonvertering/modulering |
FI964824A FI964824A0 (fi) | 1995-04-03 | 1996-12-02 | Monikäyttöinen ylösmuunnin/modulaattori sekä siihen liittyvä menetelmä |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41538795A | 1995-04-03 | 1995-04-03 | |
US08/415,387 | 1995-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996031942A1 true WO1996031942A1 (en) | 1996-10-10 |
Family
ID=23645488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/002746 WO1996031942A1 (en) | 1995-04-03 | 1996-02-29 | Multiple access up converter/modulator and method |
Country Status (17)
Country | Link |
---|---|
JP (1) | JPH10501674A (pt) |
KR (1) | KR100210633B1 (pt) |
CN (1) | CN1064794C (pt) |
AU (1) | AU695320B2 (pt) |
BR (1) | BR9605951A (pt) |
CA (1) | CA2191098C (pt) |
DE (1) | DE19680328T1 (pt) |
FI (1) | FI964824A0 (pt) |
FR (1) | FR2732535B1 (pt) |
GB (1) | GB2304262A (pt) |
IL (1) | IL117369A0 (pt) |
IT (1) | IT1284306B1 (pt) |
MX (1) | MX9606016A (pt) |
PL (1) | PL180753B1 (pt) |
SE (1) | SE519826C2 (pt) |
TW (1) | TW287335B (pt) |
WO (1) | WO1996031942A1 (pt) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6034969A (en) * | 1998-05-26 | 2000-03-07 | Motorola, Inc. | Method and system for cross frame transmit combining of transmit signals |
JP5414484B2 (ja) * | 2009-12-01 | 2014-02-12 | 三菱電機株式会社 | フーリエ変換回路、受信装置およびフーリエ変換方法 |
US8174441B2 (en) * | 2010-06-01 | 2012-05-08 | Mediatek Inc. | Configurable calculating circuit and receiver having a plurality of configurable calculating circuits |
CN102147473B (zh) * | 2010-12-17 | 2012-09-26 | 航天恒星科技有限公司 | 一种同频多系统卫星导航信号生成系统 |
CN110995334B (zh) * | 2019-12-02 | 2022-04-19 | 西安航天天绘数据技术有限公司 | 一种多通道并行处理的天基跳频数据链系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462001A (en) * | 1982-02-22 | 1984-07-24 | Canadian Patents & Development Limited | Baseband linearizer for wideband, high power, nonlinear amplifiers |
US5325396A (en) * | 1989-08-14 | 1994-06-28 | Interdigital Technology Corporation | Subscriber unit for wireless digital subscriber communication system |
US5412351A (en) * | 1993-10-07 | 1995-05-02 | Nystrom; Christian | Quadrature local oscillator network |
US5412352A (en) * | 1994-04-18 | 1995-05-02 | Stanford Telecommunications, Inc. | Modulator having direct digital synthesis for broadband RF transmission |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2541533B1 (fr) * | 1983-02-21 | 1987-10-30 | Nippon Telegraph & Telephone | Oscillateur variable en phase et en frequence |
WO1986005936A1 (en) * | 1985-04-04 | 1986-10-09 | Motorola, Inc. | Digital zero-if selectivity section |
SE463390B (sv) * | 1989-03-13 | 1990-11-12 | Ericsson Telefon Ab L M | Vaagformsgenerator |
US5111163A (en) * | 1991-05-06 | 1992-05-05 | Hughes Aircraft Company | Digital FM modulator |
US5351016A (en) * | 1993-05-28 | 1994-09-27 | Ericsson Ge Mobile Communications Inc. | Adaptively self-correcting modulation system and method |
US5386202A (en) * | 1993-11-03 | 1995-01-31 | Sicom, Inc. | Data communication modulation with managed intersymbol interference |
-
1996
- 1996-02-29 WO PCT/US1996/002746 patent/WO1996031942A1/en active Application Filing
- 1996-02-29 MX MX9606016A patent/MX9606016A/es not_active IP Right Cessation
- 1996-02-29 AU AU53566/96A patent/AU695320B2/en not_active Ceased
- 1996-02-29 KR KR1019960706895A patent/KR100210633B1/ko not_active IP Right Cessation
- 1996-02-29 GB GB9624183A patent/GB2304262A/en not_active Withdrawn
- 1996-02-29 CA CA002191098A patent/CA2191098C/en not_active Expired - Fee Related
- 1996-02-29 JP JP8530282A patent/JPH10501674A/ja not_active Ceased
- 1996-02-29 PL PL96317897A patent/PL180753B1/pl unknown
- 1996-02-29 CN CN96190283A patent/CN1064794C/zh not_active Expired - Fee Related
- 1996-02-29 BR BR9605951A patent/BR9605951A/pt unknown
- 1996-02-29 DE DE19680328T patent/DE19680328T1/de not_active Ceased
- 1996-03-05 IL IL11736996A patent/IL117369A0/xx unknown
- 1996-03-06 TW TW085102739A patent/TW287335B/zh active
- 1996-03-25 IT IT96RM000188A patent/IT1284306B1/it active IP Right Grant
- 1996-03-27 FR FR9603788A patent/FR2732535B1/fr not_active Expired - Fee Related
- 1996-12-02 FI FI964824A patent/FI964824A0/fi unknown
- 1996-12-02 SE SE9604433A patent/SE519826C2/sv not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462001A (en) * | 1982-02-22 | 1984-07-24 | Canadian Patents & Development Limited | Baseband linearizer for wideband, high power, nonlinear amplifiers |
US5325396A (en) * | 1989-08-14 | 1994-06-28 | Interdigital Technology Corporation | Subscriber unit for wireless digital subscriber communication system |
US5412351A (en) * | 1993-10-07 | 1995-05-02 | Nystrom; Christian | Quadrature local oscillator network |
US5412352A (en) * | 1994-04-18 | 1995-05-02 | Stanford Telecommunications, Inc. | Modulator having direct digital synthesis for broadband RF transmission |
Also Published As
Publication number | Publication date |
---|---|
MX9606016A (es) | 1997-12-31 |
KR100210633B1 (ko) | 1999-07-15 |
CN1149941A (zh) | 1997-05-14 |
KR970703644A (ko) | 1997-07-03 |
SE519826C2 (sv) | 2003-04-15 |
PL180753B1 (pl) | 2001-04-30 |
AU695320B2 (en) | 1998-08-13 |
IT1284306B1 (it) | 1998-05-18 |
JPH10501674A (ja) | 1998-02-10 |
DE19680328T1 (de) | 1997-07-31 |
PL317897A1 (en) | 1997-04-28 |
FI964824A (fi) | 1996-12-02 |
SE9604433D0 (sv) | 1996-12-02 |
CA2191098A1 (en) | 1996-10-10 |
CN1064794C (zh) | 2001-04-18 |
GB2304262A (en) | 1997-03-12 |
FI964824A0 (fi) | 1996-12-02 |
CA2191098C (en) | 2000-05-02 |
ITRM960188A1 (it) | 1997-09-25 |
IL117369A0 (en) | 1996-07-23 |
TW287335B (pt) | 1996-10-01 |
BR9605951A (pt) | 1997-08-19 |
FR2732535B1 (fr) | 2002-11-29 |
FR2732535A1 (fr) | 1996-10-04 |
AU5356696A (en) | 1996-10-23 |
GB9624183D0 (en) | 1997-01-08 |
SE9604433L (sv) | 1996-12-02 |
ITRM960188A0 (pt) | 1996-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6167099A (en) | Multi-channel digital transceiver and method | |
US6009130A (en) | Multiple access digital transmitter and receiver | |
AU686046B2 (en) | Multiple access digital transmitter and receiver | |
US5854813A (en) | Multiple access up converter/modulator and method | |
US5748683A (en) | Multi-channel transceiver having an adaptive antenna array and method | |
WO1998037715A2 (en) | Scanning rssi receiver system using inverse fft | |
CA2191098C (en) | Multiple access up converter/modulator and method | |
JP2000510664A (ja) | ポイントツーマルチポイント無線通信システム | |
MXPA96003701A (en) | Multiple and met digital channel transceiver | |
EP0885510A1 (en) | Method and apparatus for routing a digitized rf signal to a plurality of paths | |
JPH09247121A (ja) | ディジタル無線通信用受信装置 | |
JPH04373220A (ja) | 衛星通信方式及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96190283.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2191098 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 96044334 Country of ref document: SE Ref document number: 964824 Country of ref document: FI Ref document number: PA/a/1996/006016 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: 96044334 Country of ref document: SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019960706895 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
RET | De translation (de og part 6b) |
Ref document number: 19680328 Country of ref document: DE Date of ref document: 19970731 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19680328 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: GB Free format text: 19960220 A 9624183 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |