[go: up one dir, main page]

WO1995026469A1 - Pulsationsarme hubkolbenpumpe - Google Patents

Pulsationsarme hubkolbenpumpe Download PDF

Info

Publication number
WO1995026469A1
WO1995026469A1 PCT/EP1995/001093 EP9501093W WO9526469A1 WO 1995026469 A1 WO1995026469 A1 WO 1995026469A1 EP 9501093 W EP9501093 W EP 9501093W WO 9526469 A1 WO9526469 A1 WO 9526469A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
fluid
pistons
piston pump
reciprocating piston
Prior art date
Application number
PCT/EP1995/001093
Other languages
English (en)
French (fr)
Other versions
WO1995026469A9 (de
Inventor
Peter Lamp
Original Assignee
Mediador Pumpentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediador Pumpentechnik Gmbh filed Critical Mediador Pumpentechnik Gmbh
Publication of WO1995026469A1 publication Critical patent/WO1995026469A1/de
Publication of WO1995026469A9 publication Critical patent/WO1995026469A9/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0058Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
    • F04B11/0066Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control with special shape of the actuating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]

Definitions

  • the invention relates to a reciprocating piston pump for a fluid with at least one pair of cylinders, the pistons of which can be driven continuously by a transmission shaft, which can be driven in particular by a motor, the connections of the piston rods belonging to the pistons being offset from one another by an angle of 90 ° on the transmission shaft.
  • a reciprocating pump is known from DE 32 03 722 AI.
  • the invention relates to a reciprocating piston pump for a fluid with at least one pair of cylinders, the pistons of which can be driven continuously by independent electrical drives forming a frequency-controlled transmission, the piston rods belonging to the pistons being driven at an angle of 90 ° to one another.
  • Reciprocating piston pumps have the disadvantage that they usually convey the medium (fluid) to be pumped in an uneven flow, which causes pressure surges which are caused by the pulsation of the fluid.
  • pressure surges which are caused by the pulsation of the fluid.
  • Such reciprocating piston pumps which are driven by a rotary drive via a crank mechanism, considerable differences in the flow velocities and shocks occur during operation when the Piston reverses its direction of movement.
  • These pressure surges must be mitigated by compensators in the lines, or wind boilers are used on the suction side and pressure side, which should equalize the flow rate.
  • the pump takes up a large amount of space and is complex in its construction.
  • Other known pumps use compensating pumps or pilot control devices.
  • a metering pump is known, the two oppositely oscillating pistons are each operatively connected to one of two cams offset by 180 °, the cam curve being designed such that the positive region of each cam curve is used to achieve a pulsation-free flow rate is divided into a work area and a pre-compression area.
  • the working area of the cam curve of both cams is designed such that the sum of the piston speeds in the displacement direction is constant, while the pre-compression area is designed such that the piston has reached its working pressure position when the cam is at the transition between the pre-compression area and the working area.
  • the invention has for its object to design a reciprocating pump so that a constant total volume flow of the fluid can be achieved with reasonable technical effort.
  • this object is achieved in a first variant in that the cam control of the respective piston rod takes place via a cam disk in which a guideway for the piston rods is dimensioned such that the piston stroke (X) and angle of rotation on the crank disk (Y) relative to one another according to the equation
  • C is a constant
  • the cam controls of the two piston rods take place along their respective trajectory such that the total volume flow of the fluid displaced by the cylinder spaces of the cylinder pair is constant over time.
  • the solution according to the invention is characterized in that the 90 ° displacement of the piston rods on the one hand and the cam control of the two piston rods with a view to achieving a constant total volume flow on the other hand creates a pulsation-free device.
  • compensators, pilot control devices or wind boilers are not required.
  • the acceleration of the first piston in one cylinder is offset by a correspondingly large deceleration of the piston in the other cylinder, so that the sum of the volume flow delivered in both cylinders remains the same for the same volumes.
  • the usable volumes of the cylinder chambers of both cylinders are dimensioned such that the first and second pistons displace the same volume of the medium to be pumped with each stroke.
  • the pump works according to a displacement function, according to which the sum of the piston strokes is superimposed in such a way that the total volume flow is constant over time.
  • a particularly preferred embodiment of the invention provides that valves are provided in the supply lines and discharge lines for controlling the inflow and outflow of the fluid to the cylinder spaces, the material density of the valve body of the valves approximately corresponding to the density of the fluid.
  • Such a valve arrangement enables an inertia-free valve function, which is particularly important in connection with the reciprocating pump control according to the invention.
  • the accelerating masses of the valve body are adapted to those of the fluid to be pumped, there is no inertia-related vibration or
  • valve body tracks the movement of the fluid without delay.
  • the above-mentioned object is achieved in that the respective piston rods are driven in such a way that the piston stroke and angle of rotation relative to one another according to the equation
  • C is a constant
  • control of the piston rods is carried out such that the total volume flow of the fluid displaced by the cylinder space of the cylinder pair is constant over time.
  • This variant is characterized in that a frequency-controlled electrical gear unit acts instead of the gear shaft, via which the piston rods are controlled.
  • Each of the piston rods is controlled by an associated electric motor.
  • FIG. 1 shows a first embodiment of the reciprocating piston pump according to the invention in schematic cross section
  • Fig. 3 is a representation of the displacement function, according to which the reciprocating pump according to the invention works and
  • Fig. 4 is a detailed drawing that shows the detail of the pump in the region of a valve 25.
  • Fig. 5 shows a second embodiment of the invention in cross section.
  • a first cylinder bore 12 and a second cylinder bore 13 are arranged parallel to one another at a lateral distance from one another.
  • the first cylinder 12 is divided by a first, double-acting piston 14 into an upper cylinder chamber 12a and a lower cylinder chamber 12b.
  • a second double-acting piston 15 also divides the second cylinder 13 into an upper cylinder chamber 13a and a lower cylinder chamber 13b.
  • a feed line 16, 17, 18, 19 opens into each cylinder chamber 12a and 12b or 13a and 13b, and a discharge line 20, 21, 22, 23 for the medium (fluid) to be pumped is connected to each cylinder chamber.
  • automatic spring-loaded valves 24 and 25 are arranged, of which the valves open in the supply lines 16-19, if, in the cylinder chambers to which the respective supply lines are connected, a vacuum occurs during the suction stroke of the piston and from which the valves 25 in the lines 20-23 open when the pistons 14 and 15 exert a pressure stroke.
  • All supply lines are connected to a common collective supply line 26, while all of the pumps' discharge lines are connected to a common collective lead, not shown here, which leads to a consumer (not shown).
  • the pump 10 is driven by a controllable electric motor 27 via a crank mechanism 28, to the triple-bearing crankshaft 29 of which the connecting rods 30 for the first piston 14 and 31 for the second piston 15 are connected.
  • the push rods 30 and 31 are connected via slide tracks 32 and 33 to the piston rods 34 and 35 of the first piston 14 and the second piston 15, which are guided in slide guides 36 and are sealed with the stuffing boxes 37 with respect to the pump housing 11.
  • connection 38 of the cam pin 39 of the push rod 35 for the second piston 15 is offset on the crankshaft 29 relative to the connection 40 of the cam pin 41 of the push rod 30 for the first piston 14 by an angle of 90 °, so that the second piston 15 is exactly is in the middle of the cylinder 13 when the first piston 14 reaches its bottom or top dead center.
  • that position is shown in which the first piston 14 is at its bottom dead center and has ended the pressure stroke in the lower chamber and the suction stroke in the upper chamber, while the second piston 15 with its maximum piston speed the pressure stroke for the lower Cylinder chamber 13b and the suction stroke for the upper cylinder chamber 13a.
  • the volumes of the cylinder chamber 12a, 12b, 13a, 13b of both cylinders 12 and 13 must be dimensioned and matched to one another such that both pistons 14 and 15 displace equal volumes of the medium to be pumped with each stroke, which is simple can be achieved in that the shape and dimensions of both cylinders and pistons in the individual cylinder spaces are the same or are balanced by a predeterminable factor in the cam track.
  • Fig. 2 shows a detail from which the control of the push rods 30 and 31 can be seen by means of a cam plate 43.
  • the cam plate 43 has a circular circumference, but is eccentric on the Crankshaft 29 attached. It is attached using a feather key.
  • the cam plate 43 has a guide track 44 for the push rod 30 or 31, which is incorporated as a recess.
  • crankshaft 29 The course of the guideway results from a calculation such that piston stroke X and angle of rotation Y (measured in rad) of crankshaft 29 satisfy the following equation:
  • the guideway can be milled into the cam plate 43 based on its calculation derived from the formula.
  • FIG. 4 shows a detail of the reciprocating piston pump according to the invention in the region of the valves 24 and 25.
  • a valve 25 consists of a valve body 25a, which is acted upon by a compression spring 25b against the valve seat 25c.
  • the opening length of the valve 25 is limited by the stop 25d.
  • the valve body 25a consists of Teflon, which has a low specific weight, the value of which corresponds approximately to that of the fluid to be pumped and is compatible with the fluid.
  • the second exemplary embodiment of the invention shown in FIG. 5 differs from that which was shown in FIG. 1 or was previously explained essentially only in that the cam mechanism 28 is formed from a disk, one end face of which is a first guide track 44 for the one push rod 30 and the other end face has a guide track 44 for the other push rod 31.
  • the design of the guideways is dimensioned as previously described.
  • the disk is mounted in the pump housing (dashed line) and is driven by a gear 45, which is set in rotation by the electric motor 27.
  • the speed ratios can be adjusted accordingly by dimensioning the gearwheels of the gearbox 45 accordingly.
  • the main feature of this pump is that it enables an extremely slim design to be achieved and that the disk itself can be used as a gearbox.
  • the unit consisting of the crankshaft and cam disks can be dispensed with, and instead the piston rods 30, 31 of the pistons 14, 15 can be operated directly by electric motors.
  • the electric motors are controlled in such a way that the piston rods 30, 31 on the one hand are moved at 90 ° to one another and, on the other hand, the characteristic of the control is such that the above-mentioned equation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Die Erfindung betrifft eine Hubkolbenpumpe für ein Fluid mit mindestens einem Zylinderpaar (12, 13), dessen Kolben (14, 15) von einer insbesondere motorisch antreibbaren Getriebewelle (29) kontinuierlich antreibbar sind. Um einen praktisch pulsationsfreien Betrieb zu ermöglichen, ist erfindungsgemäß vorgesehen, daß die Anschlüsse der zu den Kolben (14, 15) gehörigen Kolbenstangen (30, 31) um einen Winkel von 90° an der Getriebewelle (29) zueinander versetzt angeordnet sind und daß die Kurvensteuerungen der beiden Kolbenstangen (30, 31) entlang ihrer jeweiligen Bahnkurve derart erfolgen, daß der von den Zylinderräumen (12a, 13a) des Zylinderpaares (12, 13) verdrängte Gesamtvolumenstrom des Fluids zeitlich konstant ist.

Description

Pulsationsarme Hubkolbenpumpe
Die Erfindung betrifft eine Hubkolbenpumpe für ein Fluid mit mindestens einem Zylinderpaar, dessen Kolben von einer insbesondere motorisch antreibbaren Getriebewelle kontinuierlich antreibbar sind, wobei die Anschlüsse der zu den Kolben gehörigen Kolbenstangen um einen Winkel von 90° an der Getriebewelle zueinander versetzt angeordnet sind. Eine solche Hubkolbenpumpe ist aus der DE 32 03 722 AI bekannt.
Ferner betrifft die Erfindung eine Hubkolbenpumpe für ein Fluid mit mindestens einem Zylinderpaar, dessen Kolben von voneinander unabhängigen, ein frequenzgeregeltes Getriebe bildenden elektrischen Antrieben kontinuierlich antreibbar sind, wobei die zu den Kolben gehörigen Kolbenstangen zeitlich 90° zueinander versetzt angetrieben werden.
Hubkolbenpumpen haben den Nachteil, daß sie das zu pumpende Medium (Fluid) üblicherweise in einem ungleichmäßigen Mengenstrom fördern, wodurch Druckstöße auftreten, die in der Pulsation des Fluids ihre Ursache haben. Insbesondere bei solchen Hubkolbenpumpen, die über ein Kurbelgetriebe von einem Drehantrieb angetrieben werden, treten im Betrieb erhebliche Unterschiede in den Strömungsgeschwindigkeiten sowie Stöße auf, wenn der Hubkolben seine Bewegungsrichtung umkehrt. Diese Druckstöße müssen durch Kompensatoren in den Leitungen gemildert werden, oder es werden Windkessel auf der Saugseite und Druckseite eingesetzt, welche den Förderstrom vergleichmäßigen sollen. Die Pumpe hat hierdurch einen großen Raumbedarf und ist aufwendig in ihrer Bauart. Weitere bekannte Pumpen setzen Ausgleichspumpen oder Vorsteuereinrichtungen ein.
Um die Fluktuationen des geförderten Flüssigkeitsvolumens so gering wie möglich zu halten, sind einfach wirkende Dreizylinderpumpen bekannt (z.B. deutsche Patentschrift 430610) . Durch diese Kombination kann zwar die Pulsation verringert, aber nicht völlig ausgeschaltet werden.
Aus der DE-OS 24 46 805 ist eine Dosierpumpe bekannt, deren beide gegenläufig oszillierende Kolben jeweils mit einem von zwei gegeneinander 180° versetzten Nocken in Wirkverbindung stehen, wobei die Nockenkurve so ausgelegt ist, daß zur Erzielung eines pulsationsfreien Mengenstromes der positive Bereich jeder Nockenkurve in einen Arbeitsbereich und in einen Vorkompressionsbereich unterteilt ist. Dabei ist der Arbeitsbereich der Nockenkurve beider Nocken derart ausgestaltet, daß die Summe der Kolbengeschwindigkeiten in Verdrängerrichtung konstant ist, während der Vorkompressionsbereich derart ausgestaltet ist, daß der Kolben bei der Nockenstellung am Übergang zwischen Vorkompressionsbereich und Arbeitsbereich seine Arbeitsdruckstellung erreicht hat. Auf diese Weise ist gewährleistet, daß beim Übergang der Förderung von dem einen zum anderen Pumpenkopf keinerlei Mengenstromabfall eintritt, da in diesem Augenblick der mit der Arbeit beginnende Kolben aufgrund des Vorkompressionsbereiches der Nockenkurve bereits eine Stellung erreicht hat, in der er mit dem Arbeitsdruck zu arbeiten beginnt. Eine solche Pumpe hat jedoch den Nachteil, daß sie aufgrund der durch Federn erzeugten Ansaugung nicht voll drehzahlregelungsf hig ist.
Der Erfindung liegt die Aufgabe zugrunde, eine Hubkolbenpumpe so auszubilden, daß mit vertretbarem technischen Aufwand ein konstanter Gesamtvolumenstrom des Fluids erreichbar ist.
Diese Aufgabe wird erfindungsgemäß in einer ersten Variante dadurch gelöst, daß die Kurvensteuerung der jeweiligen Kolbenstange über eine Kurvenscheibe erfolgt, in der eine Führungsbahn für die Kolbenstangen derart bemessen ist, daß Kolbenhub (X) und Drehwinkel auf der Kurbelscheibe (Y) zueinander nach der Gleichung
X = H C
in Beziehung stehen, wobei C eine Konstante ist, und wobei die Kurvensteuerungen der beiden Kolbenstangen entlang ihrer jeweiligen Bahnkurve derart erfolgen, daß der von den Zylinderräumen des Zylinderpaares verdrängte Gesamtvolumenstrom des Fluids zeitlich konstant ist.
Die erfindungsgemäße Lösung zeichnet sich dadurch aus, daß durch die 90° Versetzung der Kolbenstangen einerseits und die Kurvensteuerung der beiden Kolbenstangen mit Hinblick auf ein Erreichen eines konstanten Gesamtvolumenstromes andererseits eine pulsationsfreie Vorrichtung geschaffen wird. Hierdurch sind Kompensatoren, Vorsteuereinrichtungen oder Windkessel nicht erforderlich. Darüber hinaus ist es möglich, Fluide, deren Viskosität sich in Abhängigkeit von der Temperatur stark ändert, mit gleichbleibender Geschwindigkeit zu pumpen. Die Konstanz des Gesamtvolumenstroms des Fluids ergibt sich dadurch, daß der Kolben des einen Zylinders gerade zu dem Zeitpunkt sein maximale Geschwindigkeit hat, zu dem der andere Kolben seinen oberen oder unteren Totpunkt erreicht hat. Gleichzeitig steht der Beschleunigung des ersten Kolbens in einem Zylinder eine entsprechende große Verlangsamung des Kolbens im anderen Zylinder gegenüber, so daß bei gleichen Volumina die Summe des geförderten Mengenstromes in beiden Zylinder immer gleich bleibt. Dabei sind die nutzbaren Volumina der Zylinderkammern beider Zylinder so bemessen, daß der erste und der zweite Kolben bei jedem Hub das gleiche Volumen des zu pumpenden Mediums verdrängen.
Durch die Erfüllung der arithmetischen Bedingung
X = c
arbeitet die Pumpe nach einer Verdrängungsfunktion, gemäß der die Summe der Kolbenhübe so überlagert wird, daß der Gesamtvolumenstrom zeitlich konstant ist.
Eine besonders bevorzugte Ausführungsform der Erfindung sieht vor, daß zum Steuern des Zu- und Abflusses des Fluids zu den Zylinderräumen Ventile in den Zuleitungen und Ableitungen vorgesehen sind, wobei die Materialdichte des Ventilkörpers der Ventile näherungsweise der Dichte des Fluids entspricht. Eine derartig gestaltete Ventilanordnung ermöglicht eine trägheitsfreie Ventilfunktion, die insbesondere im Zusammenhang mit der erfindungsgemäßen Hubkolbenpumpensteuerung von erheblicher Bedeutung ist. Dadurch, daß die zu beschleunigenden Massen des Ventilkörpers an diejenigen des zu pumpenden Fluids angepaßt sind, kommt es nicht zu trägheitsbedingten Schwingungs- bzw.
Verzogerungseffekten. Vielmehr vollzieht der Ventilkörper verzögerungsfrei die Bewegung des Fluids nach.
Weitere bevorzugte Ausführungsformen sind in den nachfolgenden Unteransprüchen dargestellt.
Nach einer zweiten Variante der Erfindung wird die genannte Aufgabe dadurch gelöst, daß der Antrieb der jeweiligen Kolbenstangen derart erfolgt, daß Kolbenhub und Drehwinkel zueinander nach der Gleichung
X
C
in Beziehung stehen, wobei C eine Konstante ist, und wobei die Steuerung der Kolbenstangen derart erfolgt, daß der von den Zylinderraum des Zylinderpaares verdrängte Gesamtvolumenstrom des Fluids zeitlich konstant ist.
Diese Variante zeichnet sich dadurch aus, daß anstelle der Getriebewelle, über die die Kolbenstangen gesteuert werden, eine freguenzgeregelte elektrische Getriebeeinheit wirkt. Jede der Kolbenstangen wird dabei von einem zugehörigen Elektromotor gesteuert. Diese Variante weist dieselben oben genannten Vorteile auf, zeichnet sich aber durch einen einfacheren mechanischen Aufbau aus.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert. Dabei zeigen:
Fig. 1 ein erstes Ausführungsbeispiel der erfindungsgemäßen Hubkolbenpumpe im schematischen Querschnitt,
Fig. 2 einen Schnitt durch die Kurvenscheibe zur Steuerung der Kolbenstange,
Fig. 3 eine Darstellung der Verdrängungsfunktion, nach der die erfindungsgemäße Hubkolbenpumpe arbeitet und
Fig. 4 eine Detailzeichnung, die den Ausschnitt der Pumpe im Bereich eines Ventils 25 darstellt.
Fig. 5 ein zweites Ausführungsbeispiel der Erfindung im Querschnitt.
Im Pumpengehäuse 11 einer Hubkolbenpumpe 10 sind eine erste Zylinderbohrung 12 und eine zweite Zylinderbohrung 13 parallel zueinander in seitlichem Abstand voneinander angeordnet. Der erste Zylinder 12 wird durch einen ersten, doppeltwirkenden Kolben 14 in eine obere Zylinderkammer 12a und in eine untere Zylinderkammer 12b unterteilt. In gleicher Weise unterteilt auch ein zweiter doppeltwirkender Kolben 15 den zweiten Zylinder 13 in eine obere Zylinderkammer 13a und in eine untere Zylinderkammer 13b. In jede Zylinderkammer 12a und 12b bzw. 13a und 13b mündet je eine Zuleitung 16,17,18,19 und an jede Zylinderkammer ist eine Ableitung 20,21,22,23 für das zu pumpende Medium (Fluid) angeschlossen.
In allen Zu- und Ableitungen sind selbsttätige federbeaufschlagte Ventile 24 bzw. 25 angeordnet, von denen sich die Ventile in den Zuleitungen 16 - 19 öffnen, wenn in den Zylinderkammern, an die die jeweiligen Zuleitungen angeschlossen sind, beim Saughub des Kolbens ein Unterdruck auftritt und von denen sich die Ventile 25 in den Ableitungen 20 - 23 öffnen, wenn die Kolben 14 und 15 einen Druckhub ausüben.
Alle Zuleitungen sind an eine gemeinsame SammelZuleitung 26 angeschlossen, während alle Ableitungen der Pumpe an eine hier nicht näher dargestellte, gemeinsame Sammelableitung angeschlossen sind, die zu einem (nicht dargestellten) Verbraucher führt.
Die Pumpe 10 wird von einem regelbaren Elektromotor 27 über ein Kurbelgetriebe 28 angetrieben, an dessen dreifach gelagerter Kurbelwelle 29 die Schubstangen 30 für den ersten Kolben 14 und 31 für den zweiten Kolben 15 angeschlossen sind. Die Schubstangen 30 und 31 sind über Gleitbahnen 32 und 33 mit den Kolbenstangen 34 und 35 des ersten Kolbens 14 und des zweiten Kolbens 15 verbunden, die in Gleitführungen 36 geführt und gegenüber dem Pumpengehäuse 11 mit Stopfbuchsen 37 abgedichtet sind.
Der Anschluß 38 des Kurvenzapfens 39 der Schubstange 35 für den zweiten Kolben 15 ist an der Kurbelwelle 29 gegenüber dem Anschluß 40 des Kurvenzapfens 41 der Schubstange 30 für den ersten Kolben 14 um einen Winkel von 90° versetzt, so daß sich der zweite Kolben 15 genau in der Mitte des Zylinder 13 befindet, wenn der erste Kolben 14 seinen unteren oder oberen Totpunkt erreicht. In der Zeichnung iεt diejenige Stellung dargestellt, in der sich der erste Kolben 14 in seinem unteren Totpunkt befindet und den Druckhub in der unteren Kammer und den Saughub in der oberen Kammer beendet hat, während der zweite Kolben 15 mit seiner maximalen Kolbengeschwindigkeit den Druckhub für die untere Zylinderkammer 13b und den Saughub für die obere Zylinderkammer 13a ausführt.
Wenn sich die Kurbelwelle 29 im Sinne des Pfeiles 42 in die dargestellte Y-Richtung weiterdreht, setzt der zweite Kolben 15 seinen Hub in gleicher Richtung (dargestellte X-Richtung) zunächst weiter fort, wobei die Kolbengeschwindigkeit zum unteren Totpunkt hin immer langsamer wird, während der erste Kolben seine Bewegungsrichtung umkehrt und das zu fördernde Fluid durch die Zuleitung 16 in den unteren Zylinderraum 12b einsaugt und das im oberen Zylinderraum 12a befindliche Fluid zusammenpreßt und durch die Ableitung 21 ausstößt, wobei das Ventil 25 in der Ableitung 21 geöffnet und das Ventil 24 in der Zuleitung 17 geschlossen wird.
Im gleichen Maße, in dem die Geschwindigkeit des zweiten Kolbens 15 abnimmt, nimmt die Geschwindigkeit des ersten Kolbens 14 zu, so daß die Summe der Volumenstrome VI und V2 des von beiden Kolben 14 und 15 geförderten Mediums konstant ist.
Um dies zu erreichen, müssen die Volumina der Zylinderkammer 12a,12b,13a,13b beider Zylinder 12 und 13 so bemessen und aufeinander abgestimmt sein, daß beide Kolben 14 und 15 bei jedem Hub gleiche Volumina des zu pumpenden Mediums verdrängen, was in einfacher Weise dadurch erreicht werden kann, daß Form und Abmessungen beider Zylinder und Kolben in den einzelnen Zylinderräumen gleich sind bzw. durch einen vorgebbaren Faktor in der Kurvenbahn ausgeglichen sind.
Fig. 2 zeigt ein Detail, aus dem die Steuerung der Schubstangen 30 bzw. 31 mittels einer Kurvenscheibe 43 erkennbar wird. Die Kurvenscheibe 43 weist einen kreisrunden Umfang auf, ist jedoch exzentrisch an der Kurbelwelle 29 befestigt. Die Befestigung erfolgt mittels einer Paßfeder. Die Kurvenscheibe 43 weist eine Führungsbahn 44 für die Schubstange 30 bzw. 31 auf, die als Vertiefung eingearbeitet ist.
Der Verlauf der Führungsbahn ergibt sich gemäß einer Berechnung derart, daß Kolbenhub X und Drehwinkel Y (gemessen in rad) der Kurbelwelle 29 folgende Gleichung erfüllen:
X = IL C
wobei die Konstante C nach vorgegebenen Dimensionierungsgrößen festgelegt ist.
Die Führungsbahn kann nach ihrer aus der Formel abgeleiteten Berechnung in die Kurvenscheibe 43 eingefräst werden.
Wie aus der obigen Gleichung entsprechenden Verdrängungsfunktion nach Fig. 3 hervorgeht, ist für jeden Winkel (Y-Richtung) erfüllt, daß sich die Volumenströme in den beiden Zylindern 12,13 jeweils zu einem konstanten Gesamtvolumenstrom überlagern.
Fig. 4 zeigt eine Einzelheit der erfindungsgemäßen Hubkolbenpumpe im Bereich der Ventile 24 bzw. 25.
Ein Ventil 25 besteht aus einem Ventilkörper 25a, welcher mittels einer Druckfeder 25b gegen den Ventilsitz 25c beaufschlagt wird. Die Öffnungslänge des Ventils 25 wird durch den Anschlag 25d begrenzt. Der Ventilkörper 25a besteht aus Teflon, welches ein geringes spezifisches Gewicht besitzt, dessen Wert in etwa demjenigen des zu pumpenden Fluids entspricht sowie mit dem Fluid verträglich ist.
Diese Gestaltung führt dazu, daß jedes Ventil praktisch trägheitsfrei dem zu verdrängenden Fluid nachfolgt, ohne daß es zu überlagerten Pulsationen kommt.
Das in Fig. 5 dargestellte zweite Ausführungsbeispiel der Erfindung unterscheidet sich von demjenigen, welches in Fig.l dargestellt oder zuvor erläutert wurde wesentlich nur dadurch, daß das Kurvengetriebe 28 aus einer Scheibe gebildet ist, deren eine Stirnseite eine erste Führungsbahn 44 für die eine Schubstange 30 und deren andere Stirnseite eine Führungsbahn 44 für die andere Schubstange 31 aufweist. Die Ausbildung der Führungsbahnen ist dabei so dimensioniert, wie zuvor beschrieben wurde. Die Scheibe ist im Pumpengehäuse gelagert (strichlinierte Linie) und wird von einem Getriebe 45 angetrieben, welches vom Elektromotor 27 in Drehung versetzt wird. Durch die entsprechende Dimensionierung der Getriebezahnräder des Getriebes 45 können die Drehzahlverhältnisse entsprechend angepaßt werden.
Diese Pumpe zeichnet sich vor allem dadurch aus, daß hierdurch eine extrem schlanke Bauart realisiert werden kann und die Scheibe selber als Getriebe genutzt werden kann.
In einer Variante der Erfindung als Alternative zu der in Figur 1 dargestellten Ausführungsform kann vorgesehen sein, daß auf die aus Kurbelwelle und Kurvenscheiben bestehende Einheit verzichtet werden kann, und stattdessen die Kolbenstangen 30,31 der Kolben 14,15 direkt jeweils von Elektromotoren betätigt werden. Dabei sind die Elektromotoren so gesteuert, daß die Kolbenstangen 30,31 einerseits zeitlich zueinander 90° versetzt bewegt werden und zum anderen die Charakteristik der Steuerung so erfolgt, daß die oben genannte Gleichung
X =
zu jedem Zeitpunkt erfüllt ist. Diese Bedingung kann dadurch erfüllt sein, daß die Elektromotoren eine frequenzgeregelte Getriebeeinheit bilden, in denen ein entsprechendes Steuerprogramm für die Kolbenstangen hinterlegt ist. Es handelt sich hierbei um ein technisches Äquivalent zu der in Fig. 1 dargestellten Ausführungsform der Erfindung.

Claims

PATENTANSPRÜCHE
1. Hubkolbenpumpe für ein Fluid mit mindestens einem Zylinderpaar (12,13), dessen Kolben (14,15) von einer insbesondere motorisch antreibbaren Kurbelwelle (29) kontinuierlich antreibbar sind, wobei die Anschlüsse der zu den Kolben (14,15) gehörigen Kolbenstangen (30,31) um einen Winkel von 90° an der Getriebewelle (29) zueinander versetzt angeordnet sind, d a d u r c h g e k e n n z e i c h n e t, daß die Kurvensteuerung der jeweiligen Kolbenstange (30,31) über eine Kurvenscheibe erfolgt, in der eine Führungsbahn für die Kolbenstangen (30,31) derart bemessen ist, daß Kolbenhub (X) und Drehwinkel auf der Kurbelscheibe (Y) zueinander nach der Gleichung
X =
in Beziehung stehen, wobei C eine Konstante ist, und wobei die Kurvensteuerungen der beiden Kolbenstangen (30,31) entlang ihrer jeweiligen Bahnkurve derart erfolgen, daß der von den Zylinderräumen (12a,13a) des Zylinderpaares (12,13) verdrängte Gesamtvolumenstrom des Fluids zeitlich konstant ist.
2. Hubkolbenpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die Führungsbahn exzentrisch auf der Kurbelscheibe angeordnet ist.
3. Hubkolbenpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß zum Steuern des Zu- und Abflusses des Fluids zu den Zylinderräumen (12a,12b,13a,13b) Ventile (24,25)in den Zuleitungen (16 - 19) und Ableitungen (20 - 23) vorgesehen sind, die der kinematischen Masse des Fluids angepaßt sind.
4. Hubkolbenpumpe nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß die Materialdichte des Ventilkörpers der Ventile (24,25) näherungsweise der Dichte des Fluids entspricht.
5. Hubkolbenpumpe nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß das Ventilkörpermaterial ein Kunststoff, insbesondere Teflon ist.
6. Hubkolbenpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß alle Zuleitungen (16 - 19) zu den Zylinderräumen (12a, 12b, 13a,13b) eine gemeinsame SammelZuleitung (26) und alle Ableitungen (20 - 23) von den Zylinderräumen (12a, 12b, 13a,13b) an eine gemeinsame Sammelableitung angeschlossen sind.
7. Hubkolbenpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Antrieb ein regelbarer Motor (27) ist.
8. Hubkolbenpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß mehrere Zylinderpaare, deren Kolben alle an eine gemeinsame Getriebewelle angeschlossen sind, vorgesehen sind.
9. Hubkolbenpumpe für ein Fluid mit mindestens einem Zylinderpaar, dessen Kolben (14,15) von voneinander unabhängigen, ein frequenzgeregeltes Getriebe bildenden elektrischen Antrieben kontinuierlich antreibbar sind, wobei die zu den Kolben (14,15) gehörigen Kolbenstangen
(30,31) zeitlich 90° zueinander versetzt angetrieben werden, d a d u r c h g e k e n n z e i c h n e t, daß der
Antrieb der jeweiligen Kolbenstangen (30,31) derart erfolgt, daß Kolbenhub (X) und Drehwinkel (Y) zueinander nach der Gleichung
X = li c
in Beziehung stehen, wobei C eine Konstante ist, und wobei die Steuerung der Kolbenstangen derart erfolgt, daß der von den Zylinderräumen (12a,13a) des Zylinderpaares (12,13) verdrängte Gesamtvolumenstrom des Fluids zeitlich konstant ist.
PCT/EP1995/001093 1994-03-29 1995-03-23 Pulsationsarme hubkolbenpumpe WO1995026469A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944410910 DE4410910C2 (de) 1994-03-29 1994-03-29 Pulsationsarme Hubkolbenpumpe
DEP4410910.5 1994-03-29

Publications (2)

Publication Number Publication Date
WO1995026469A1 true WO1995026469A1 (de) 1995-10-05
WO1995026469A9 WO1995026469A9 (de) 1995-11-02

Family

ID=6514167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/001093 WO1995026469A1 (de) 1994-03-29 1995-03-23 Pulsationsarme hubkolbenpumpe

Country Status (2)

Country Link
DE (1) DE4410910C2 (de)
WO (1) WO1995026469A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817594B1 (fr) 2000-12-04 2005-07-01 Exel Ind Dispositif de pompage pour produits epais ou sensibles a la turbulence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH543673A (de) * 1973-01-03 1973-10-31 Fimian Beck Arno Steuerkörper zu Axial- oder Radialkolbenmaschine für pulsationsfreien Förderfluss
DE8708405U1 (de) * 1987-06-15 1988-02-11 Neuhaus, Hermann, Ing.(grad.), 4224 Hünxe Radialkolbenmaschine
DE4130295A1 (de) * 1991-09-12 1993-03-25 Ludwig Bluecher Foerdereinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1117942A (en) * 1912-07-15 1914-11-17 J B Mcritchie Pump.
DE430610C (de) * 1925-04-12 1926-06-21 Eduard Gerberich Vorrichtung zur Erzielung gleichbleibender Foerdergeschwindigkeit bei mehr als zweifach wirkenden Pumpen mit hin und her gehenden oder umlaufenden Kolben
DE2446805A1 (de) * 1974-10-01 1976-04-08 Ott Kg Lewa Pulsationsfrei arbeitende dosierpumpe
DE3203722C2 (de) * 1982-02-04 1985-08-01 Gynkotek Gesellschaft für den Bau wissenschaftlich-technischer Geräte mbH, 8000 München Schubkolbenpumpe zur pulsationsarmen Förderung einer Flüssigkeit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH543673A (de) * 1973-01-03 1973-10-31 Fimian Beck Arno Steuerkörper zu Axial- oder Radialkolbenmaschine für pulsationsfreien Förderfluss
DE8708405U1 (de) * 1987-06-15 1988-02-11 Neuhaus, Hermann, Ing.(grad.), 4224 Hünxe Radialkolbenmaschine
DE4130295A1 (de) * 1991-09-12 1993-03-25 Ludwig Bluecher Foerdereinrichtung

Also Published As

Publication number Publication date
DE4410910A1 (de) 1995-10-05
DE4410910C2 (de) 1998-02-26

Similar Documents

Publication Publication Date Title
EP2024140B1 (de) Selbsttätige schmierpumpe mit doppelt wirkendem antriebskolben
DE4138313C2 (de) Radialkolbenpumpe
WO1996024767A1 (de) Verfahren und vorrichtung zum fördern von beton oder anderen dickstoffen
EP2128443A1 (de) Pumpenelement
EP0226070B1 (de) Pumpenanordnung zur dosierten Abgabe von mindestens zwei Komponenten
DE4311877A1 (de) Nockenwellenantrieb
DE2147984C3 (de) Steuervorrichtung für einen Druckflüssigkeits-Schubkolbenmotor
DE1961391C2 (de) Torschranke
DE4410910C2 (de) Pulsationsarme Hubkolbenpumpe
DE3200531A1 (de) Anordnung fuer die zufuhr eines kompressiblen antriebsmediums zu einem antrieb
WO1995026469A9 (de) Pulsationsarme hubkolbenpumpe
DE19954639C2 (de) Hydraulische Kolbenpumpe, insb. für Common Rail-Einspritzsysteme
DE3003741A1 (de) Tuerbetaetigungsanordnung
DE1703210A1 (de) Als Pumpe oder Motor verwendbare Hydromaschine
EP1538336B1 (de) Dosierpumpe
DE4322614C2 (de) Innenachsige Zahnradpumpe mit umlaufenden Förderräumen, vorzugsweise mit Trochoidenverzahnung
EP0375848B1 (de) Dosierpumpe
DE2554763A1 (de) Vorrichtung zum schmieren von anlagen ueber zwei schmierleitungen
EP1409827B1 (de) Hydraulischer drehflügelantrieb
DE2249683B2 (de) Steuervorrichtung fuer einen druckfluessigkeits-schubkolbenmotor
DE2249683C2 (de) Steuervorrichtung für einen Druckflüssigkeits-Schubkolbenmotor
CH404326A (de) Antriebsvorrichtung mit gradlinigen, nach Länge und Geschwindigkeit veränderbaren Hubbewegungen
DE2944471A1 (de) Pneumatisches antriebselement
DE102021125005A1 (de) Membranpumpe mit hydraulischem Antrieb
DE10054834B4 (de) Dosiervorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 1-11,DESCRIPTION;PAGES 12-14,CLAIMS,AND PAGES 1/5-5/5,DRAWINGS,REPLACED BY NEW PAGES BEARING THE SAME NUMBER

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase