USRE36747E - Light-emitting device of gallium nitride compound semiconductor - Google Patents
Light-emitting device of gallium nitride compound semiconductor Download PDFInfo
- Publication number
- USRE36747E USRE36747E US08/844,386 US84438697A USRE36747E US RE36747 E USRE36747 E US RE36747E US 84438697 A US84438697 A US 84438697A US RE36747 E USRE36747 E US RE36747E
- Authority
- US
- United States
- Prior art keywords
- layer
- compound semiconductor
- gallium nitride
- light
- nitride compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 229910002601 GaN Inorganic materials 0.000 title claims description 57
- -1 gallium nitride compound Chemical class 0.000 title claims description 49
- 239000012535 impurity Substances 0.000 claims abstract description 59
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 43
- 239000000956 alloy Substances 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000009977 dual effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 185
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/052—Light-emitting semiconductor devices having Schottky type light-emitting regions; Light emitting semiconductor devices having Metal-Insulator-Semiconductor type light-emitting regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8312—Electrodes characterised by their shape extending at least partially through the bodies
Definitions
- the present invention relates to a light-emitting device of gallium nitride compound semiconductor which emits a blue light.
- the gallium nitride compound semiconductor As the gallium nitride compound semiconductor, it attracts attention because of its high luminous efficiency resulting from the direct transition and its ability to emit a blue light, one of the three primary colors of light.
- the light-emitting diode of gallium nitride compound semiconductor is made up of a sapphire substrate, an n-layer grown on the substrate from a GaN compound semiconductor of n-type conduction, with or without a buffer layer of aluminum nitride interposed between them, and .[.an i-layer.]. .Iadd.a p-type impurity doped layer .Iaddend.grown on the n-layer from a GaN compound semiconductor which is made .[.i-type.]. by doping with a p-type impurity. (Japanese Patent Laid-open Nos. 119196/1987 and 188977/1988)
- the electrode for the i-layer has the layer structure as shown in vertical section in FIG. 8 which is a reproduction from the Japanese patent just given above.
- a light-emitting diode 60 which has an electrode 67 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.and an electrode 68 for the n-layer.
- the electrode 67 is formed from nickel deposited on an aluminum substrate deposited directly on the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend..
- the electrode 68 is also formed from nickel deposited on an aluminum substrate deposited in a hole penetrating the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend..
- a disadvantage of forming the electrode on aluminum in direct contact with the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend. is that light is emitted from coarse dots rather than a uniform plane, as shown in FIG. 5(a).
- the resulting light-emitting diode does not have increased luminous intensity despite its large light-emitting area.
- the present invention was completed to address the above-mentioned problem. It is an object of the present invention to provide a light-emitting diode of GaN compound semiconductor which emits a blue light from a plane, rather than dots, to improve luminous intensity.
- the present invention is embodied in a light-emitting device of gallium nitride compound semiconductor having an n-layer of n-type gallium nitride compound semiconductor (Al x Ga 1-x N, x ⁇ 0) and .[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer of .Iaddend.gallium nitride compound semiconductor (Al x Ga 1-x N, x ⁇ 0) .[.doped with a p-type impurity.]., characterized in that said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.has a Ni layer in contact therewith which functions as an electrode therefor.
- the present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor as defined above, wherein the n-layer has a Ni layer in contact therewith which functions as an electrode therefor.
- the present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor material as defined above, wherein the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is of multi-layer structure composed of a first Ni layer (which is thin), a second Ni layer (which is thicker than the first Ni layer), an Al layer, a Ti layer, and a third Ni layer (which is thick), all of which are arranged upward in the order mentioned.
- the present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor material having an n-layer of n-type gallium nitride compound semiconductor (Al x Ga 1-x N, x ⁇ 0) material and .[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer of .Iaddend.gallium nitride compound semiconductor (Al x Ga 1-x N, x ⁇ 0) material .[.doped with a p-type impurity.]., characterized in that the n-layer and .[.i-layer.].
- .Iadd.p-type impurity doped layer .Iaddend. have their respective electrodes on the same surface, with the electrode for the n-layer being made of Al or an alloy containing Al, and the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.being made of Ni, Ag, or Ti, or an alloy containing any of them.
- the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend. is in contact with the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.through a Ni layer.
- This structure permits the light-emitting device to emit light from a plane rather than dots, which leads to improved luminous intensity. In addition, it decreases the driving voltage, alleviating thermal degradation and improving reliability.
- the nickel electrode for the n-layer only slightly increases the driving voltage for light emission and it poses no problems (normally associated with a decrease in luminous intensity) even when it is made in the same structure as the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend.. Making the electrodes for both the n-layer and .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.from nickel simplifies the production of the light-emitting diode.
- the electrode is of multi-layer structure composed of a first Ni layer (which is thin), a second Ni layer (which is thicker than the first Ni layer), an Al layer, a Ti layer, and a third Ni layer (which is thick). This produces the following two effects.
- the n-layer and .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend. have their respective electrodes on the same surface, with the electrode for the n-layer being made of Al or an alloy containing Al, and the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.having a lower layer made of Ni, Ag, or Ti, or an alloy containing any of them and a higher layer made of Al or an alloy containing Al.
- This structure permits the light-emitting diode to emit light from a plane rather than dots.
- FIG. 1 is a vertical sectional view showing the structure of the light-emitting diode pertaining to first embodiment of the present invention.
- FIGS. 5(A) to 5(d) are photomicrographs showing the metal surface structure (as the light-emitting pattern) of each substrate metal of the electrode for the i-layer.
- FIG. 6 is a vertical sectional view showing the structure of the light-emitting diode pertaining to a second embodiment of the present invention.
- FIG. 7 is a vertical sectional view showing the structure of the light-emitting diode pertaining to yet a further embodiment of the present invention.
- FIG. 1 shows a vertical section of a light-emitting diode 10 pertaining to the present invention. It has a sapphire substrate 1, on which there are successively formed a buffer layer 2 of AlN (500 ⁇ thick), a high-carrier density n + -layer 3 of GaN (2.2 ⁇ m thick), a low-carrier density n-layer 4 of GaN (1.5 ⁇ m thick), an .[.i-layer.]. .Iadd.a p-type impurity doped layer .Iaddend.5 of GaN (0.1 ⁇ m thick), an electrode 7 of aluminum, and an electrode 8 of aluminum (in contact with the high-carrier density n + -layer 3).
- This light-emitting diode 10 is produced by the steps which are explained below with reference to FIGS. 2(A) to 4(C).
- the entire process was carried out using NH 3 , H 2 (carrier gas), trimethyl gallium Ga(CH 3 ) 3 (TMG for short), trimethyl aluminum Al(CH 3 ) 3 (TMA for short), silane SiH 4 and diethyl zinc (DEZ for short).
- TMG trimethyl gallium Ga(CH 3 ) 3
- TMA trimethyl aluminum Al(CH 3 ) 3
- DEZ diethyl zinc
- sapphire substrate 1 of single crystal (with the a-plane (i.e., ⁇ 1120 ⁇ as the principal plane) was cleaned by washing with an organic solvent and by subsequent heat treatment. Then, it was placed on the susceptor in the reaction chamber for metal-organic vaporphase epitaxy (MOVPE). H 2 was fed to the reaction chamber under normal pressure at a flow rate of 2 L/min to perform vapor phase etching on the sapphire substrate 1 at 1100° C.
- MOVPE metal-organic vaporphase epitaxy
- the reaction chamber was supplied with H 2 , NH 3 , and TMA at a flow rate of 20 L/min, 10 L/min, and 1.8 ⁇ 10 -5 mol/min, respectively, to form the buffer layer 2 of AlN (500 ⁇ thick).
- the reaction chamber was supplied with H 2 , NH 3 , TMG, and SiH 4 (diluted to 0.86 ppm with H 2 ) at a flow rate of 20 L/min, 10 L/min, 1.7 ⁇ 10 -4 mol/min, and 200 mL/min, respectively, for 30 minutes to form the high-carrier density n + -layer 3 of GaN (2.2 ⁇ m thick), with a carrier density of 1.5 ⁇ 10 18 /cm 3 .
- the reaction chamber was supplied with H 2 , NH 3 , and TMG at a flow rate of 20 L/min, 10 L/min, and 1.7 ⁇ 10 -4 mol/min, respectively, for 20 minutes to form the low-carrier density n-layer 4 of GaN (1.5 ⁇ m thick), with a carrier density of 1 ⁇ 10 15 /cm 3 .
- .Iadd.p-type impurity doped layer .Iaddend.5 the underlying part of the low-carrier density n-layer 4, and the underlying upper part of the high-carrier density n + -layer 3 were removed by dry etching with BCl 3 gas fed at a flow rate of 10 mL/min at 0.04 Torr in conjunction with a high-frequency power of 0.44 W/cm 2 , followed by Ar dry etching, as shown in FIG. 3(A).
- the SiO 2 layer 11 remaining on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 was removed with the aid of hydrofluoric acid, as shown in FIG. 3(B).
- the sample was entirely coated with the Ni layer 13 (3000 ⁇ thick) by vapor deposition, as shown in FIG. 3(C).
- the Ni layer 13 was coated with a photoresist 14, which was subsequently patterned by photolithography after the configuration of the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5.
- the sample was entirely coated with the Al layer 15 (3000 ⁇ thick) by vapor deposition, as shown in FIG. 4(B).
- the Al layer 15 was coated with a photoresist 16, which was subsequently patterned by photolithography after the configuration of the respective electrodes for the high-carrier density n + -layer 3 and the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5, as shown in FIG. 4(C).
- the exposed part of the Al layer 15 was etched off using nitric acid and the remaining photoresist 16 was removed by acetone, Thus there were formed the electrode 7 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 and the electrode 8 for the high-carrier density n + -layer 3.
- the undercoating layer 13 on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 may be formed from Ag or Ti or an alloy thereof in place of Ni.
- the electrode 7 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 and the electrode 8 for the high-carrier density n + -layer 3 may be formed from any metal such as Ti, in place of Al, which permits ohmic contact.
- the thus prepared light-emitting diode 10 was tested for luminous intensity and drive voltage by applying current (10 mA) across the electrodes. The results were compared with those of the conventional one having the Al layer formed directly on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5, which gave a luminous intensity of 30 mcd. The results vary depending on the metal used for the undercoating of the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.as shown in the table below. The data of luminous intensity and drive voltage are given in terms of index values compared with those of a conventional sample.
- the light-emitting diode pertaining to the present invention has a higher luminous intensity and a lower drive voltage than conventional diodes.
- a light-emitting diode was prepared in the same manner as in Example 1. As shown in FIG. 6, it is composed of a sapphire substrate 1, a buffer layer 2 of AlN, a high-carrier density n + -layer 3 of GaN, a low-carrier density n-layer 4 (1.1 ⁇ m thick) having a carrier density of 1 ⁇ 10 15 /cm 3 , a low-impurity density .[.i L -layer.]. .Iadd.L-layer .Iaddend.51 (1.1 ⁇ m thick) having a Zn density of 2 ⁇ 10 18 /cm 3 , and a high-impurity density .[.i H -layer.].
- .Iadd.H-layer .Iaddend.52 (0.2 ⁇ m thick) having a Zn density of 1 ⁇ 10 20 /cm 3 . It should be noted that the .[.i-layer.]. .Iadd.p-impurity doped layer .Iaddend.is of dual structure with 51 and 52.
- a hole 60 was formed which penetrates the high-impurity density .[.i H layer.]. .Iadd.H-layer .Iaddend.52, the low-impurity density .[.i L layer.]. .Iadd.L-layer .Iaddend.51, and the low-carrier density n-layer 4, reaching the high-carrier density n + -layer 3.
- an electrode 80 for the high-carrier density n + -layer 3.
- An electrode 70 was also formed for the high-impurity density .[.i H -layer.]. .Iadd.H-layer .Iaddend.52.
- the electrode 70 is composed of a first Ni layer 71 (100 ⁇ thick), a second Ni layer 72 (1000 ⁇ thick), an Al layer 73 (1500 ⁇ thick), a Ti layer 74 (1000 ⁇ thick), and a third Ni layer 75 (2500 ⁇ thick).
- the electrode 80 is also composed of a first Ni layer 81 (100 ⁇ thick), a second Ni layer 82 (1000 ⁇ thick), an Al layer 83 (1500 ⁇ thick), a Ti layer 84 (1000 ⁇ thick), and a third Ni layer 85 (2500 ⁇ thick).
- the first Ni layer 71 (81) was formed by vacuum deposition at 225° C.
- the second Ni layer 72 (82) was also formed by vacuum deposition with heating. (The two steps were separated by an interval in which the vacuum chamber was opened and the water was conditioned at normal pressure and normal temperature.)
- the Al layer 73 (83), Ti layer 74 (84), and third Ni layer 75 (85) were formed successively by vacuum deposition.
- the Al layer 73 (83) and Ti layer 74 (84) permit a solder bump to be formed on the third Ni layer 75 (85).
- the thus prepared light-emitting diode has a drive voltage for light emission which is 0.8 times that of a conventional diode having an aluminum electrode. In addition, it also exhibits a luminous intensity of 150 mcd at 10 mA current, which is 1.5 times that (100 mcd) of the conventional diode having an aluminum electrode.
- the same result as mentioned above is obtained even in the case where the electrode 70 for the high-impurity density .[.i H -layer.]. .Iadd.H-layer .Iaddend.52 is made of Ni in multi-layer structure and the electrode 80 for the high-carrier density n + -layer 3 is made of aluminum in single-layer structure.
Landscapes
- Led Devices (AREA)
Abstract
A light-emitting diode of GaN compound semiconductor emits a blue light from a plane rather than dots for improved luminous intensity. This diode includes a first electrode associated with a high-carrier density n+ layer and a second electrode associated with a high-impurity density [iH-layer] H-layer. These electrodes are made up of a first Ni layer (110 ANGSTROM thick), a second Ni layer (1000 ANGSTROM thick), an Al layer (1500 ANGSTROM thick), a Ti layer (1000 ANGSTROM thick), and a third Ni layer (2500 ANGSTROM thick). The Ni layers of dual structure permit a buffer layer to be formed between them. This buffer layer prevents the Ni layer from peeling. The direct contact of the Ni layer with GaN lowers a drive voltage for light emission and increases luminous intensity.
Description
1. Field of the Invention
The present invention relates to a light-emitting device of gallium nitride compound semiconductor which emits a blue light.
2. Description of the Prior Art
Among the conventional light-emitting diodes which emit a blue light is the gallium nitride compound semiconductor. It attracts attention because of its high luminous efficiency resulting from the direct transition and its ability to emit a blue light, one of the three primary colors of light.
The light-emitting diode of gallium nitride compound semiconductor is made up of a sapphire substrate, an n-layer grown on the substrate from a GaN compound semiconductor of n-type conduction, with or without a buffer layer of aluminum nitride interposed between them, and .[.an i-layer.]. .Iadd.a p-type impurity doped layer .Iaddend.grown on the n-layer from a GaN compound semiconductor which is made .[.i-type.]. by doping with a p-type impurity. (Japanese Patent Laid-open Nos. 119196/1987 and 188977/1988)
It is known that the above-mentioned light-emitting diode will be improved in luminous intensity when the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is provided with an electrode of large area because light emission takes place directly under or near the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend..
Much has been reported on the study of crystal growth for light-emitting diodes of GaN compound semiconductors. However, only a little has been reported on the process of producing such light-emitting diodes. This is true particularly of the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.in a light-emitting diode .[.having a MIS (metal insulator semiconductor) structure.].. It has been disclosed only in Japanese Patent Laid-open No. 46669/1982, and nothing has so far been discussed about how the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is associated with light emission.
The electrode for the i-layer has the layer structure as shown in vertical section in FIG. 8 which is a reproduction from the Japanese patent just given above. Referring to FIG. 8, there is shown a light-emitting diode 60, which has an electrode 67 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.and an electrode 68 for the n-layer. The electrode 67 is formed from nickel deposited on an aluminum substrate deposited directly on the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend.. The electrode 68 is also formed from nickel deposited on an aluminum substrate deposited in a hole penetrating the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend..
A disadvantage of forming the electrode on aluminum in direct contact with the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is that light is emitted from coarse dots rather than a uniform plane, as shown in FIG. 5(a). The resulting light-emitting diode does not have increased luminous intensity despite its large light-emitting area.
The present invention was completed to address the above-mentioned problem. It is an object of the present invention to provide a light-emitting diode of GaN compound semiconductor which emits a blue light from a plane, rather than dots, to improve luminous intensity.
The present invention is embodied in a light-emitting device of gallium nitride compound semiconductor having an n-layer of n-type gallium nitride compound semiconductor (Alx Ga1-x N, x≧0) and .[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer of .Iaddend.gallium nitride compound semiconductor (Alx Ga1-x N, x≧0) .[.doped with a p-type impurity.]., characterized in that said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.has a Ni layer in contact therewith which functions as an electrode therefor.
The present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor as defined above, wherein the n-layer has a Ni layer in contact therewith which functions as an electrode therefor.
The present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor material as defined above, wherein the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is of multi-layer structure composed of a first Ni layer (which is thin), a second Ni layer (which is thicker than the first Ni layer), an Al layer, a Ti layer, and a third Ni layer (which is thick), all of which are arranged upward in the order mentioned.
The present invention is also embodied in a light-emitting device of gallium nitride compound semiconductor material having an n-layer of n-type gallium nitride compound semiconductor (Alx Ga1-x N, x≧0) material and .[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer of .Iaddend.gallium nitride compound semiconductor (Alx Ga1-x N, x≧0) material .[.doped with a p-type impurity.]., characterized in that the n-layer and .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.have their respective electrodes on the same surface, with the electrode for the n-layer being made of Al or an alloy containing Al, and the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.being made of Ni, Ag, or Ti, or an alloy containing any of them.
According to the present invention, the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.is in contact with the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.through a Ni layer. This structure permits the light-emitting device to emit light from a plane rather than dots, which leads to improved luminous intensity. In addition, it decreases the driving voltage, alleviating thermal degradation and improving reliability.
In the present invention, the nickel electrode for the n-layer only slightly increases the driving voltage for light emission and it poses no problems (normally associated with a decrease in luminous intensity) even when it is made in the same structure as the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend.. Making the electrodes for both the n-layer and .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.from nickel simplifies the production of the light-emitting diode.
According to the present invention, the electrode is of multi-layer structure composed of a first Ni layer (which is thin), a second Ni layer (which is thicker than the first Ni layer), an Al layer, a Ti layer, and a third Ni layer (which is thick). This produces the following two effects.
(1) Forming a first Ni layer (which is thin) directly on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.and a second Ni layer (which is thick) subsequently permits a thermal stress buffer layer to be formed between the two Ni layers, and it prevents the peeling of the Ni layers due to thermal expansion and contraction at the time of soldering and reflowing.
(2) The formation of an Al layer, a Ti layer, and a third Ni layer on the second Ni layer permits the electrode to be connected by soldering.
According to the present invention, the n-layer and .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.have their respective electrodes on the same surface, with the electrode for the n-layer being made of Al or an alloy containing Al, and the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.having a lower layer made of Ni, Ag, or Ti, or an alloy containing any of them and a higher layer made of Al or an alloy containing Al. This structure permits the light-emitting diode to emit light from a plane rather than dots.
FIG. 1 is a vertical sectional view showing the structure of the light-emitting diode pertaining to first embodiment of the present invention.
FIGS. 2(A) to 4(C) are vertical sectional views showing the steps of producing the light-emitting diode pertaining to the first embodiment of the present invention.
FIGS. 5(A) to 5(d) are photomicrographs showing the metal surface structure (as the light-emitting pattern) of each substrate metal of the electrode for the i-layer.
FIG. 6 is a vertical sectional view showing the structure of the light-emitting diode pertaining to a second embodiment of the present invention.
FIG. 7 is a vertical sectional view showing the structure of the light-emitting diode pertaining to yet a further embodiment of the present invention.
FIG. 8 is a vertical sectional view showing the structure of a conventional light-emitting diode.
The present invention will be described in more detail with reference to a first disclosed embodiment. FIG. 1 shows a vertical section of a light-emitting diode 10 pertaining to the present invention. It has a sapphire substrate 1, on which there are successively formed a buffer layer 2 of AlN (500 Å thick), a high-carrier density n+ -layer 3 of GaN (2.2 μm thick), a low-carrier density n-layer 4 of GaN (1.5 μm thick), an .[.i-layer.]. .Iadd.a p-type impurity doped layer .Iaddend.5 of GaN (0.1 μm thick), an electrode 7 of aluminum, and an electrode 8 of aluminum (in contact with the high-carrier density n+ -layer 3).
This light-emitting diode 10 is produced by the steps which are explained below with reference to FIGS. 2(A) to 4(C).
The entire process was carried out using NH3, H2 (carrier gas), trimethyl gallium Ga(CH3)3 (TMG for short), trimethyl aluminum Al(CH3)3 (TMA for short), silane SiH4 and diethyl zinc (DEZ for short).
Firstly, sapphire substrate 1 of single crystal (with the a-plane (i.e., {1120} as the principal plane) was cleaned by washing with an organic solvent and by subsequent heat treatment. Then, it was placed on the susceptor in the reaction chamber for metal-organic vaporphase epitaxy (MOVPE). H2 was fed to the reaction chamber under normal pressure at a flow rate of 2 L/min to perform vapor phase etching on the sapphire substrate 1 at 1100° C.
With the temperature lowered to 400° C., the reaction chamber was supplied with H2, NH3, and TMA at a flow rate of 20 L/min, 10 L/min, and 1.8×10-5 mol/min, respectively, to form the buffer layer 2 of AlN (500 Å thick).
With the temperature of the sapphire substrate 1 kept at 1150° C., the reaction chamber was supplied with H2, NH3, TMG, and SiH4 (diluted to 0.86 ppm with H2) at a flow rate of 20 L/min, 10 L/min, 1.7×10-4 mol/min, and 200 mL/min, respectively, for 30 minutes to form the high-carrier density n+ -layer 3 of GaN (2.2 μm thick), with a carrier density of 1.5×1018 /cm3.
With the temperature of the sapphire substrate 1 kept at 1150° C., the reaction chamber was supplied with H2, NH3, and TMG at a flow rate of 20 L/min, 10 L/min, and 1.7×10-4 mol/min, respectively, for 20 minutes to form the low-carrier density n-layer 4 of GaN (1.5 μm thick), with a carrier density of 1×1015 /cm3.
With the temperature of the sapphire substrate 1 kept at 900° C., the reaction chamber was supplied with H2, NH3, TMG, and DEZ at a flow rate of 20 L/min, 10 L/min, 1.7×10-4 mol/min, and 1.5×10-4 mol/min, respectively, for 1 minute to form the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 of GaN (0.1 μm thick).
In this way there was obtained the multi-layer structure as shown in FIG. 2(a).
On the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 was formed the SiO2 layer 11 (2000 Å thick) by sputtering, as shown in FIG. 2(b). The SiO2 layer 11 was coated with a photoresist 12, which was subsequently patterned by photolithography after the configuration of the electrode for the high-carrier density n+ -layer 3. The exposed part of the SiO2 layer 11 was removed by etching with hydrofluoric acid, as shown in FIG. 2(c). The exposed part of the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5, the underlying part of the low-carrier density n-layer 4, and the underlying upper part of the high-carrier density n+ -layer 3 were removed by dry etching with BCl3 gas fed at a flow rate of 10 mL/min at 0.04 Torr in conjunction with a high-frequency power of 0.44 W/cm2, followed by Ar dry etching, as shown in FIG. 3(A). The SiO2 layer 11 remaining on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 was removed with the aid of hydrofluoric acid, as shown in FIG. 3(B).
With the temperature kept at 225° C. and the degree of vacuum kept at 8×10-7 Torr, the sample was entirely coated with the Ni layer 13 (3000 Å thick) by vapor deposition, as shown in FIG. 3(C). The Ni layer 13 was coated with a photoresist 14, which was subsequently patterned by photolithography after the configuration of the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5.
The unmasked part of the Ni layer 13 was etched off using nitric acid and the photoresist 14 was removed by acetone, so that the Ni layer 13 partly remained on which the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 was formed afterward, as shown in FIG. 4(A).
With the temperature kept at 225° C. and the degree of vacuum kept at 8×10-7 Torr, the sample was entirely coated with the Al layer 15 (3000 Å thick) by vapor deposition, as shown in FIG. 4(B).
The Al layer 15 was coated with a photoresist 16, which was subsequently patterned by photolithography after the configuration of the respective electrodes for the high-carrier density n+ -layer 3 and the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5, as shown in FIG. 4(C).
The exposed part of the Al layer 15 was etched off using nitric acid and the remaining photoresist 16 was removed by acetone, Thus there were formed the electrode 7 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 and the electrode 8 for the high-carrier density n+ -layer 3.
In this way there was obtained the GaN light-emitting device of MIS structure as shown in FIG. 1.
Incidentally, the undercoating layer 13 on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 may be formed from Ag or Ti or an alloy thereof in place of Ni. Also, the electrode 7 for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5 and the electrode 8 for the high-carrier density n+ -layer 3 may be formed from any metal such as Ti, in place of Al, which permits ohmic contact.
The thus prepared light-emitting diode 10 was tested for luminous intensity and drive voltage by applying current (10 mA) across the electrodes. The results were compared with those of the conventional one having the Al layer formed directly on the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.5, which gave a luminous intensity of 30 mcd. The results vary depending on the metal used for the undercoating of the electrode for the .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.as shown in the table below. The data of luminous intensity and drive voltage are given in terms of index values compared with those of a conventional sample.
______________________________________ Undercoating Luminous Drive Light-emitting metal intensity voltage pattern ______________________________________ Ni 1.5 0.82 FIG. 5(b) Ag 1.4 0.90 FIG. 5(c) Ti 1.05 0.95 FIG. 5(d) ______________________________________
It is noted that the light-emitting diode pertaining to the present invention has a higher luminous intensity and a lower drive voltage than conventional diodes.
A light-emitting diode was prepared in the same manner as in Example 1. As shown in FIG. 6, it is composed of a sapphire substrate 1, a buffer layer 2 of AlN, a high-carrier density n+ -layer 3 of GaN, a low-carrier density n-layer 4 (1.1 μm thick) having a carrier density of 1×1015 /cm3, a low-impurity density .[.iL -layer.]. .Iadd.L-layer .Iaddend.51 (1.1 μm thick) having a Zn density of 2×1018 /cm3, and a high-impurity density .[.iH -layer.]. .Iadd.H-layer .Iaddend.52 (0.2 μm thick) having a Zn density of 1×1020 /cm3. It should be noted that the .[.i-layer.]. .Iadd.p-impurity doped layer .Iaddend.is of dual structure with 51 and 52.
A hole 60 was formed which penetrates the high-impurity density .[.iH layer.]. .Iadd.H-layer .Iaddend.52, the low-impurity density .[.iL layer.]. .Iadd.L-layer .Iaddend.51, and the low-carrier density n-layer 4, reaching the high-carrier density n+ -layer 3. In this hole 60 was formed an electrode 80 for the high-carrier density n+ -layer 3. An electrode 70 was also formed for the high-impurity density .[.iH -layer.]. .Iadd.H-layer .Iaddend.52.
The electrode 70 is composed of a first Ni layer 71 (100 Å thick), a second Ni layer 72 (1000 Å thick), an Al layer 73 (1500 Å thick), a Ti layer 74 (1000 Å thick), and a third Ni layer 75 (2500 Å thick). The electrode 80 is also composed of a first Ni layer 81 (100 Å thick), a second Ni layer 82 (1000 Å thick), an Al layer 83 (1500 Å thick), a Ti layer 84 (1000 Å thick), and a third Ni layer 85 (2500 Å thick).
The first Ni layer 71 (81) was formed by vacuum deposition at 225° C. The second Ni layer 72 (82) was also formed by vacuum deposition with heating. (The two steps were separated by an interval in which the vacuum chamber was opened and the water was conditioned at normal pressure and normal temperature.) The Al layer 73 (83), Ti layer 74 (84), and third Ni layer 75 (85) were formed successively by vacuum deposition. The Al layer 73 (83) and Ti layer 74 (84) permit a solder bump to be formed on the third Ni layer 75 (85).
The thus prepared light-emitting diode has a drive voltage for light emission which is 0.8 times that of a conventional diode having an aluminum electrode. In addition, it also exhibits a luminous intensity of 150 mcd at 10 mA current, which is 1.5 times that (100 mcd) of the conventional diode having an aluminum electrode.
It was also found that the same result as mentioned above is obtained even in the case where the electrode 70 for the high-impurity density .[.iH -layer.]. .Iadd.H-layer .Iaddend.52 is made of Ni in multi-layer structure and the electrode 80 for the high-carrier density n+ -layer 3 is made of aluminum in single-layer structure.
The light-emitting diode in this example differs from that in the previous example in that the first Ni layer 71 (81) and second Ni layer 72 (82) are replaced by a Ni layer 710 (810) of single-layer structure, which is 300 Å thick, as shown in FIG. 7. This difference in structure has nothing to do with its performance. The Ni layer 710 (810) should preferably have a thickness in the range of 50 Å to 3000 Å. With a thickness lower than specified, it will be subject to attack by solder when a solder bump is formed. With a thickness greater than specified, it causes the light source to be localized near the electrode rather than the center and it is liable to peeling at the time of soldering in a solder bath.
Claims (19)
1. A light-emitting device of gallium nitride compound semiconductor material comprising:
an n-layer of n-type gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0); and
.[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer .Iaddend.gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0) .[.doped with a p-type impurity.].;
wherein a first electrode layer including Ni is formed in contact with said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.and functions as an electrode .[.therefore.]. .Iadd.therefor.Iaddend.; and
wherein said first electrode layer is a multi-layer structure having a first Ni layer of predetermined thickness formed over said .[.i-layer.]. .Iadd.p-type impurity doped layer.Iaddend., a second Ni layer which is thicker than said first Ni layer and formed thereon, an Al layer formed over said second Ni layer, a Ti layer formed over said Al layer, and a third Ni layer which is thicker than said first Ni layer formed over said Ti layer.
2. A light-emitting device of gallium nitride compound semiconductor material comprising:
an n-layer of n-type gallium nitride compound semiconductor .Iadd.material .Iaddend.(Alx Ga1-x N, x≧0) .[.material.].; and
.[.an i-layer of i-type.]. .Iadd.a p-type impurity doped layer .Iaddend.gallium nitride compound semiconductor .Iadd.material .Iaddend.(Alx Ga1-x N, x≧0) .[.material doped with a p-type impurity.].;
wherein each of said n-layer and said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.include respective electrodes formed on a same relative surface, the electrode for said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.being composed of at least one layer with each said at least one layer being made of one of Ni, Ag, Ti, an alloy including Ni, an alloy including Ag, and an alloy including Ti; and
wherein the electrode for said .[.i-layer.]. .Iadd.p-type impurity doped layer .Iaddend.has an over layer formed thereon which is made of one of Al and an alloy containing Al.
3. A light-emitting device of gallium nitride compound semiconductor, comprising:
at least two layers of gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0);
a first electrode layer for one layer of said at least two layers; and
a second electrode layer for another of said at least two layers;
said first and second electrode layers provide an improved luminous intensity of said light-emitting device;
wherein at least one layer of said first and second electrode layers includes a contact layer made of one of Ni, Ag, an alloy including Ni, an alloy including Ag, and an alloy including Ti, said contact layer being directly contacted with any of said at least two layers of gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0).
4. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein said contact layer of said first electrode layer is uniformly formed on a light emitting surface of said one layer, said one layer being .[.an i-layer of semi-insulation doped with a p-type impurity.]. .Iadd.p-type impurity doped layer .Iaddend.and said another layer being an n-layer with n-type conduction.
5. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein said second electrode layer includes a contact layer made of one of Ni, Ag, an alloy including Ni, an alloy including Ag, and an alloy including Ti, said contact layer being directly contacted with said another layer and said another layer being an n-layer with n-type conduction.
6. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein said first electrode layer is a multi-layer structure having a first Ni layer of predetermined thickness formed over said one layer, a second Ni layer which is thicker than said first Ni layer and formed thereon, an Al layer formed over said second Ni layer, a Ti layer formed over said Al layer, and a third Ni layer which is thicker than said first Ni layer formed over said Ti layer.
7. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein at least one layer of said first and second electrode layers has an over layer which is made of one of Ni, Ag, Ti, an alloy including Ni, an alloy including Ag, and an alloy including Ti.
8. A light-emitting device of gallium nitride compound semiconductor material according to claim 4, wherein at least one layer of said first and second electrode layers has an over layer which is made of one of Ni, Ag, Ti, an alloy including Ni, an alloy including Ag, and an alloy including Ti.
9. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein at least one layer of said first and second electrode layers has over layer formed thereon which is made of one of Al and an alloy containing Al.
10. A light-emitting device of gallium nitride compound semiconductor according to claim 4, wherein at least one layer of said first and second electrode layers has over layer formed thereon which is made of one of Al and an alloy containing Al.
11. A light-emitting device of gallium nitride compound semiconductor according to claim 7, wherein at least one layer of said first and second electrode layers has over layer formed thereon which is made of one of Al and an alloy containing Al.
12. A light-emitting device of gallium nitride compound semiconductor according to claim 8, wherein at least one layer of said first and second electrode layers has over layer formed thereon which is made of one of Al and an alloy containing Al.
13. A light-emitting device of gallium nitride compound semiconductor according to claim 4, wherein said second electrode layer is made of one of Al and an alloy containing Al, and said first electrode has an over layer which is made of one of Ni, Ag, Ti, an alloy including Ni, an alloy including Ag, and an alloy including Ti.
14. A light-emitting device of gallium nitride compound semiconductor material according to claim 4, wherein said first electrode layer is a multi-layer structure having a first Ni layer of predetermined thickness formed over said i-layer, a second Ni layer which is thicker than said first Ni layer and formed thereon, an Al layer formed over said second Ni layer, a Ti layer formed over said Al layer, and a third Ni layer which is thicker than said first Ni layer formed over said Ti layer. .Iadd.15. A light-emitting device of gallium nitride compound semiconductor, comprising:
a first layer of gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0) doped with p-type impurity;
a second layer of n-type gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0);
a first electrode layer for said first layer;
a second electrode layer for said second layer; and
wherein said first electrode layer is made of at least one of Ni, Ag, an alloy including Ni, an alloy including Ag, and an alloy including Ti and said second electrode layer is made of at least one of Al, Ti, an alloy
including Al, and an alloy including Ti. .Iaddend..Iadd.16. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein said first and second layers are formed on a buffer layer and said buffer layer is formed on a sapphire substrate. .Iaddend..Iadd.17. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein said second layer is gallium nitride (GaN) of low resistivity doped with silicon (Si) for uniform flow
of current through said first layer. .Iaddend..Iadd.18. A light-emitting device of gallium nitride compound semiconductor according to claim 17, wherein said first electrode layer is made of one of Ni and an alloy including Ni and second electrode layer is made of one of Al and an alloy including Al. .Iaddend..Iadd.19. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein said first electrode layer further comprises a multi-layer structure having at least one over layer made of metal different from metal of a layer under said over layer. .Iaddend..Iadd.20. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein said first electrode layer is uniformly formed on a light emitting surface of said first layer.
.Iaddend..Iadd.21. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein at least one layer of said first and second electrode layers further comprises at least one over layer made of one of Ni, Ti, an alloy including Ni, and an alloy including Ti. .Iaddend..Iadd.22. A light-emitting device of gallium nitride compound semiconductor according to claim 15, wherein said second electrode layer further comprises at least one over layer made of one of Al and an alloy containing Al. .Iaddend..Iadd.23. A light-emitting device of gallium nitride compound semiconductor according to claim 18, wherein said first electrode layer further comprises at least one over layer made of metal
excluding Ni. .Iaddend..Iadd.24. A light-emitting device of gallium nitride compound semiconductor, comprising:
a first layer of gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0) doped with p-type impurity;
a second layer of n-type gallium nitride compound semiconductor material (Alx Ga1-x N, x≧0);
a first electrode layer for said first layer;
a second electrode layer for said second layer; and
wherein said first electrode layer is made of at least one of Ni and an alloy including Ni and said second electrode layer is made of Al, Ti, an
alloy including Al, and an alloy including Ti. .Iaddend..Iadd.25. A light-emitting device of gallium nitride compound semiconductor according to claim 24, wherein said first electrode layer has a multi-layer structure comprising at least one over layer made of metal different from metal of a layer under said over layer. .Iaddend..Iadd.26. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein said improved luminous intensity is achieved by reduction of driving voltage for supplying a predetermined current. .Iaddend..Iadd.27. A light-emitting device of gallium nitride compound semiconductor according to claim 3, wherein said at least one layer of said first and second electrode layers further comprises at least one over layer made of a metal excluding a metal of said contact layer. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/844,386 USRE36747E (en) | 1992-07-23 | 1997-04-18 | Light-emitting device of gallium nitride compound semiconductor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-218595 | 1992-07-23 | ||
JP21859592A JP2658009B2 (en) | 1991-07-23 | 1992-07-23 | Gallium nitride based compound semiconductor light emitting device |
US08/006,301 US5408120A (en) | 1992-07-23 | 1993-01-22 | Light-emitting device of gallium nitride compound semiconductor |
US08/844,386 USRE36747E (en) | 1992-07-23 | 1997-04-18 | Light-emitting device of gallium nitride compound semiconductor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/006,301 Reissue US5408120A (en) | 1992-07-23 | 1993-01-22 | Light-emitting device of gallium nitride compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36747E true USRE36747E (en) | 2000-06-27 |
Family
ID=16722426
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/006,301 Ceased US5408120A (en) | 1992-07-23 | 1993-01-22 | Light-emitting device of gallium nitride compound semiconductor |
US08/844,386 Expired - Lifetime USRE36747E (en) | 1992-07-23 | 1997-04-18 | Light-emitting device of gallium nitride compound semiconductor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/006,301 Ceased US5408120A (en) | 1992-07-23 | 1993-01-22 | Light-emitting device of gallium nitride compound semiconductor |
Country Status (3)
Country | Link |
---|---|
US (2) | US5408120A (en) |
EP (2) | EP1313153A3 (en) |
DE (1) | DE69333250T2 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020070386A1 (en) * | 1999-12-22 | 2002-06-13 | Krames Michael R. | III-nitride light-emitting device with increased light generating capability |
US20020093020A1 (en) * | 2001-01-16 | 2002-07-18 | Edmond John Adam | Group III nitride LED with undoped cladding layer (5000.137) |
US6514782B1 (en) | 1999-12-22 | 2003-02-04 | Lumileds Lighting, U.S., Llc | Method of making a III-nitride light-emitting device with increased light generating capability |
US6521998B1 (en) * | 1998-12-28 | 2003-02-18 | Sharp Kabushiki Kaisha | Electrode structure for nitride III-V compound semiconductor devices |
US6534797B1 (en) | 2000-11-03 | 2003-03-18 | Cree, Inc. | Group III nitride light emitting devices with gallium-free layers |
US6573537B1 (en) | 1999-12-22 | 2003-06-03 | Lumileds Lighting, U.S., Llc | Highly reflective ohmic contacts to III-nitride flip-chip LEDs |
US6734515B1 (en) * | 1998-09-18 | 2004-05-11 | Mitsubishi Cable Industries, Ltd. | Semiconductor light receiving element |
US20040095977A1 (en) * | 1993-04-28 | 2004-05-20 | Nichia Corporation | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US6828596B2 (en) * | 2002-06-13 | 2004-12-07 | Lumileds Lighting U.S., Llc | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
US6885035B2 (en) | 1999-12-22 | 2005-04-26 | Lumileds Lighting U.S., Llc | Multi-chip semiconductor LED assembly |
US6888171B2 (en) * | 2000-12-22 | 2005-05-03 | Dallan Luming Science & Technology Group Co., Ltd. | Light emitting diode |
US6903376B2 (en) | 1999-12-22 | 2005-06-07 | Lumileds Lighting U.S., Llc | Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction |
US6906352B2 (en) | 2001-01-16 | 2005-06-14 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
WO2005081319A1 (en) * | 2004-02-20 | 2005-09-01 | Osram Opto Semiconductors Gmbh | Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component |
GB2412234A (en) * | 2004-03-18 | 2005-09-21 | Sharp Kk | Manufacture of a semiconductor light-emitting device |
US20060091786A1 (en) * | 2004-11-01 | 2006-05-04 | The Regents Of The University Of California | Interdigitated multi-pixel arrays for the fabrication of light-emitting devices with very low series-resistances and improved heat-sinking |
US20090267083A1 (en) * | 2008-04-28 | 2009-10-29 | Jie Cui | Trenched substrate for crystal growth and wafer bonding |
US20100171135A1 (en) * | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
US20100314651A1 (en) * | 2009-06-10 | 2010-12-16 | Bridgelux, Inc. | Thin-film led with p and n contacts electrically isolated from the substrate |
US20110050681A1 (en) * | 2009-08-27 | 2011-03-03 | Novatek Microelectronics Corp. | Low voltage differential signal output stage |
US8395165B2 (en) | 2011-07-08 | 2013-03-12 | Bridelux, Inc. | Laterally contacted blue LED with superlattice current spreading layer |
US8525221B2 (en) | 2009-11-25 | 2013-09-03 | Toshiba Techno Center, Inc. | LED with improved injection efficiency |
US8552465B2 (en) | 2011-11-09 | 2013-10-08 | Toshiba Techno Center Inc. | Method for reducing stress in epitaxial growth |
US8558247B2 (en) | 2011-09-06 | 2013-10-15 | Toshiba Techno Center Inc. | GaN LEDs with improved area and method for making the same |
US8564010B2 (en) | 2011-08-04 | 2013-10-22 | Toshiba Techno Center Inc. | Distributed current blocking structures for light emitting diodes |
US8581267B2 (en) | 2011-11-09 | 2013-11-12 | Toshiba Techno Center Inc. | Series connected segmented LED |
US8624482B2 (en) | 2011-09-01 | 2014-01-07 | Toshiba Techno Center Inc. | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8664679B2 (en) | 2011-09-29 | 2014-03-04 | Toshiba Techno Center Inc. | Light emitting devices having light coupling layers with recessed electrodes |
US8669585B1 (en) | 2011-09-03 | 2014-03-11 | Toshiba Techno Center Inc. | LED that has bounding silicon-doped regions on either side of a strain release layer |
US8686430B2 (en) | 2011-09-07 | 2014-04-01 | Toshiba Techno Center Inc. | Buffer layer for GaN-on-Si LED |
US8698163B2 (en) | 2011-09-29 | 2014-04-15 | Toshiba Techno Center Inc. | P-type doping layers for use with light emitting devices |
US8853668B2 (en) | 2011-09-29 | 2014-10-07 | Kabushiki Kaisha Toshiba | Light emitting regions for use with light emitting devices |
US8865565B2 (en) | 2011-08-02 | 2014-10-21 | Kabushiki Kaisha Toshiba | LED having a low defect N-type layer that has grown on a silicon substrate |
US8916906B2 (en) | 2011-07-29 | 2014-12-23 | Kabushiki Kaisha Toshiba | Boron-containing buffer layer for growing gallium nitride on silicon |
US9012921B2 (en) | 2011-09-29 | 2015-04-21 | Kabushiki Kaisha Toshiba | Light emitting devices having light coupling layers |
US9012939B2 (en) | 2011-08-02 | 2015-04-21 | Kabushiki Kaisha Toshiba | N-type gallium-nitride layer having multiple conductive intervening layers |
US9130068B2 (en) | 2011-09-29 | 2015-09-08 | Manutius Ip, Inc. | Light emitting devices having dislocation density maintaining buffer layers |
US9142743B2 (en) | 2011-08-02 | 2015-09-22 | Kabushiki Kaisha Toshiba | High temperature gold-free wafer bonding for light emitting diodes |
US9159869B2 (en) | 2011-08-03 | 2015-10-13 | Kabushiki Kaisha Toshiba | LED on silicon substrate using zinc-sulfide as buffer layer |
US9178114B2 (en) | 2011-09-29 | 2015-11-03 | Manutius Ip, Inc. | P-type doping layers for use with light emitting devices |
US9343641B2 (en) | 2011-08-02 | 2016-05-17 | Manutius Ip, Inc. | Non-reactive barrier metal for eutectic bonding process |
US9543490B2 (en) | 2010-09-24 | 2017-01-10 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US9617656B2 (en) | 2011-07-25 | 2017-04-11 | Toshiba Corporation | Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow |
USRE46589E1 (en) | 2001-01-16 | 2017-10-24 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
US20180047826A1 (en) * | 2016-01-12 | 2018-02-15 | Tsinghua University | Semiconductor structure and method for forming the same |
US10580929B2 (en) | 2016-03-30 | 2020-03-03 | Seoul Viosys Co., Ltd. | UV light emitting diode package and light emitting diode module having the same |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6362017B1 (en) * | 1990-02-28 | 2002-03-26 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US6005258A (en) * | 1994-03-22 | 1999-12-21 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities |
JPH0832112A (en) * | 1994-07-20 | 1996-02-02 | Toyoda Gosei Co Ltd | Group III nitride semiconductor light emitting device |
JP2666237B2 (en) * | 1994-09-20 | 1997-10-22 | 豊田合成株式会社 | Group III nitride semiconductor light emitting device |
US5843590A (en) * | 1994-12-26 | 1998-12-01 | Sumitomo Electric Industries, Ltd. | Epitaxial wafer and method of preparing the same |
US5739554A (en) * | 1995-05-08 | 1998-04-14 | Cree Research, Inc. | Double heterojunction light emitting diode with gallium nitride active layer |
JP3620926B2 (en) * | 1995-06-16 | 2005-02-16 | 豊田合成株式会社 | P-conducting group III nitride semiconductor electrode, electrode forming method and device |
US5641975A (en) * | 1995-11-09 | 1997-06-24 | Northrop Grumman Corporation | Aluminum gallium nitride based heterojunction bipolar transistor |
JP3409958B2 (en) * | 1995-12-15 | 2003-05-26 | 株式会社東芝 | Semiconductor light emitting device |
JP3700872B2 (en) * | 1995-12-28 | 2005-09-28 | シャープ株式会社 | Nitride III-V compound semiconductor device and method for manufacturing the same |
JPH09213918A (en) * | 1996-02-01 | 1997-08-15 | Furukawa Electric Co Ltd:The | Optoelectronic integrated circuit device |
JP3164016B2 (en) * | 1996-05-31 | 2001-05-08 | 住友電気工業株式会社 | Light emitting device and method for manufacturing wafer for light emitting device |
JP3292044B2 (en) * | 1996-05-31 | 2002-06-17 | 豊田合成株式会社 | P-conductivity group III nitride semiconductor electrode pad, device having the same, and device manufacturing method |
US6121127A (en) * | 1996-06-14 | 2000-09-19 | Toyoda Gosei Co., Ltd. | Methods and devices related to electrodes for p-type group III nitride compound semiconductors |
TW383508B (en) * | 1996-07-29 | 2000-03-01 | Nichia Kagaku Kogyo Kk | Light emitting device and display |
JP3289617B2 (en) * | 1996-10-03 | 2002-06-10 | 豊田合成株式会社 | Manufacturing method of GaN-based semiconductor device |
US6284395B1 (en) | 1997-03-05 | 2001-09-04 | Corning Applied Technologies Corp. | Nitride based semiconductors and devices |
EP1014455B1 (en) | 1997-07-25 | 2006-07-12 | Nichia Corporation | Nitride semiconductor device |
US5998232A (en) * | 1998-01-16 | 1999-12-07 | Implant Sciences Corporation | Planar technology for producing light-emitting devices |
US6936859B1 (en) | 1998-05-13 | 2005-08-30 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using group III nitride compound |
JP2000114302A (en) * | 1998-10-08 | 2000-04-21 | Fuji Electric Co Ltd | Semiconductor device |
JP3770014B2 (en) | 1999-02-09 | 2006-04-26 | 日亜化学工業株式会社 | Nitride semiconductor device |
US6711191B1 (en) | 1999-03-04 | 2004-03-23 | Nichia Corporation | Nitride semiconductor laser device |
TW497277B (en) * | 2000-03-10 | 2002-08-01 | Toshiba Corp | Semiconductor light emitting device and method for manufacturing the same |
JP2002076023A (en) * | 2000-09-01 | 2002-03-15 | Nec Corp | Semiconductor device |
US6881983B2 (en) * | 2002-02-25 | 2005-04-19 | Kopin Corporation | Efficient light emitting diodes and lasers |
US6911079B2 (en) * | 2002-04-19 | 2005-06-28 | Kopin Corporation | Method for reducing the resistivity of p-type II-VI and III-V semiconductors |
TW200401462A (en) | 2002-06-17 | 2004-01-16 | Kopin Corp | Light-emitting diode device geometry |
US6734091B2 (en) | 2002-06-28 | 2004-05-11 | Kopin Corporation | Electrode for p-type gallium nitride-based semiconductors |
US7002180B2 (en) * | 2002-06-28 | 2006-02-21 | Kopin Corporation | Bonding pad for gallium nitride-based light-emitting device |
US6955985B2 (en) | 2002-06-28 | 2005-10-18 | Kopin Corporation | Domain epitaxy for thin film growth |
US7122841B2 (en) | 2003-06-04 | 2006-10-17 | Kopin Corporation | Bonding pad for gallium nitride-based light-emitting devices |
US20050179046A1 (en) * | 2004-02-13 | 2005-08-18 | Kopin Corporation | P-type electrodes in gallium nitride-based light-emitting devices |
US20050179042A1 (en) * | 2004-02-13 | 2005-08-18 | Kopin Corporation | Monolithic integration and enhanced light extraction in gallium nitride-based light-emitting devices |
EP1836879A2 (en) * | 2004-12-27 | 2007-09-26 | Quantum Paper, Inc. | Addressable and printable emissive display |
JP5225549B2 (en) * | 2006-03-15 | 2013-07-03 | 日本碍子株式会社 | Semiconductor element |
JP5313457B2 (en) * | 2007-03-09 | 2013-10-09 | パナソニック株式会社 | Nitride semiconductor device and manufacturing method thereof |
US8846457B2 (en) | 2007-05-31 | 2014-09-30 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8809126B2 (en) | 2007-05-31 | 2014-08-19 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8889216B2 (en) * | 2007-05-31 | 2014-11-18 | Nthdegree Technologies Worldwide Inc | Method of manufacturing addressable and static electronic displays |
US8133768B2 (en) * | 2007-05-31 | 2012-03-13 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system |
US9343593B2 (en) | 2007-05-31 | 2016-05-17 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8877101B2 (en) | 2007-05-31 | 2014-11-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, power generating or other electronic apparatus |
US8456393B2 (en) * | 2007-05-31 | 2013-06-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system |
US8852467B2 (en) | 2007-05-31 | 2014-10-07 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a printable composition of a liquid or gel suspension of diodes |
US8415879B2 (en) | 2007-05-31 | 2013-04-09 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US9425357B2 (en) | 2007-05-31 | 2016-08-23 | Nthdegree Technologies Worldwide Inc. | Diode for a printable composition |
US9018833B2 (en) | 2007-05-31 | 2015-04-28 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting or absorbing diodes |
US9534772B2 (en) | 2007-05-31 | 2017-01-03 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting diodes |
US8674593B2 (en) | 2007-05-31 | 2014-03-18 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US9419179B2 (en) | 2007-05-31 | 2016-08-16 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
KR101449005B1 (en) | 2007-11-26 | 2014-10-08 | 엘지이노텍 주식회사 | Semiconductor light emitting device and manufacturing method thereof |
TWI362769B (en) * | 2008-05-09 | 2012-04-21 | Univ Nat Chiao Tung | Light emitting device and fabrication method therefor |
US7992332B2 (en) | 2008-05-13 | 2011-08-09 | Nthdegree Technologies Worldwide Inc. | Apparatuses for providing power for illumination of a display object |
US8127477B2 (en) | 2008-05-13 | 2012-03-06 | Nthdegree Technologies Worldwide Inc | Illuminating display systems |
US10312731B2 (en) | 2014-04-24 | 2019-06-04 | Westrock Shared Services, Llc | Powered shelf system for inductively powering electrical components of consumer product packages |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3783353A (en) * | 1972-10-27 | 1974-01-01 | Rca Corp | Electroluminescent semiconductor device capable of emitting light of three different wavelengths |
DE2738329A1 (en) * | 1976-09-06 | 1978-03-09 | Philips Nv | ELECTROLUMINESCENT GALLIUM NITRIDE SEMI-CONDUCTOR ARRANGEMENT AND METHOD OF MANUFACTURING IT |
US4153905A (en) * | 1977-04-01 | 1979-05-08 | Charmakadze Revaz A | Semiconductor light-emitting device |
JPS5471590A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Gan light emitting element and production of the same |
JPS5471589A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Production of gan light emitting element |
US4158849A (en) * | 1978-03-27 | 1979-06-19 | Rca Corporation | Heterojunction semiconductor device |
JPS5659699A (en) * | 1979-10-17 | 1981-05-23 | Matsushita Electric Ind Co Ltd | Gallium nitride growing method |
DE3046018A1 (en) * | 1979-12-05 | 1981-09-03 | Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Osaka | ELECTROLUMINISCENCE SEMICONDUCTOR COMPONENT WITH GALLIUM NITRIDE AND METHOD FOR THE PRODUCTION THEREOF |
US4297717A (en) * | 1965-09-28 | 1981-10-27 | Li Chou H | Semiconductor device |
JPS5746669A (en) * | 1980-09-03 | 1982-03-17 | Japanese National Railways<Jnr> | Stop position detector for linear motor |
JPS5787184A (en) * | 1980-11-19 | 1982-05-31 | Sanyo Electric Co Ltd | Gan blue light emitting element |
JPS57153479A (en) * | 1981-03-17 | 1982-09-22 | Matsushita Electric Ind Co Ltd | Nitride gallium light emitting element |
JPS5812381A (en) * | 1981-07-16 | 1983-01-24 | Sanyo Electric Co Ltd | GaN blue light emitting device |
JPS5846686A (en) * | 1981-09-14 | 1983-03-18 | Sanyo Electric Co Ltd | Blue light emitting diode |
US4396929A (en) * | 1979-10-19 | 1983-08-02 | Matsushita Electric Industrial Company, Ltd. | Gallium nitride light-emitting element and method of manufacturing the same |
JPS59228776A (en) * | 1983-06-10 | 1984-12-22 | Nippon Telegr & Teleph Corp <Ntt> | semiconductor heterojunction device |
JPS617671A (en) * | 1984-06-21 | 1986-01-14 | Matsushita Electric Ind Co Ltd | Gallium nitride semiconductor device |
US4608581A (en) * | 1982-02-02 | 1986-08-26 | Bagratishvili Givi D | Semiconductor light emitter based on gallium nitride and process for manufacture thereof |
US4614961A (en) * | 1984-10-09 | 1986-09-30 | Honeywell Inc. | Tunable cut-off UV detector based on the aluminum gallium nitride material system |
JPS62119196A (en) * | 1985-11-18 | 1987-05-30 | Univ Nagoya | How to grow compound semiconductors |
JPS63188977A (en) * | 1987-01-31 | 1988-08-04 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
EP0277567A2 (en) * | 1987-01-23 | 1988-08-10 | Toray Industries, Inc. | Liquid crystal element |
JPH0281484A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
JPH0281482A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
JPH0281483A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
US4911102A (en) * | 1987-01-31 | 1990-03-27 | Toyoda Gosei Co., Ltd. | Process of vapor growth of gallium nitride and its apparatus |
US4946548A (en) * | 1988-04-29 | 1990-08-07 | Toyoda Gosei Co., Ltd. | Dry etching method for semiconductor |
JPH02275682A (en) * | 1989-01-13 | 1990-11-09 | Toshiba Corp | Compound semiconductor material, semiconductor device using the same, and manufacturing method thereof |
US5005057A (en) * | 1989-04-28 | 1991-04-02 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting diode and method of manufacturing the same |
US5006908A (en) * | 1989-02-13 | 1991-04-09 | Nippon Telegraph And Telephone Corporation | Epitaxial Wurtzite growth structure for semiconductor light-emitting device |
JPH03183173A (en) * | 1989-12-13 | 1991-08-09 | Canon Inc | Optical element |
EP0444630A1 (en) * | 1990-02-28 | 1991-09-04 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
JPH0468579A (en) * | 1990-07-09 | 1992-03-04 | Sharp Corp | Compound semiconductor light emitting element |
US5182670A (en) * | 1991-08-30 | 1993-01-26 | Apa Optics, Inc. | Narrow band algan filter |
US5205905A (en) * | 1990-05-30 | 1993-04-27 | Toyoda Gosei Co., Ltd. | Dry etching method for semiconductor |
US5278433A (en) * | 1990-02-28 | 1994-01-11 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer |
US5281830A (en) * | 1990-10-27 | 1994-01-25 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS559442A (en) * | 1978-07-05 | 1980-01-23 | Matsushita Electric Ind Co Ltd | Light emission element and its manufacturing method |
JPS5679482A (en) * | 1979-11-30 | 1981-06-30 | Matsushita Electric Ind Co Ltd | Luminous element of semiconductor |
DE3850582T2 (en) * | 1987-01-31 | 1994-11-10 | Toyoda Gosei Kk | Gallium nitride semiconductor luminescence diode and process for its production. |
GB2250862B (en) * | 1990-11-26 | 1994-10-19 | Sharp Kk | Electroluminescent device of compound semiconductor |
-
1993
- 1993-01-21 EP EP03001190A patent/EP1313153A3/en not_active Withdrawn
- 1993-01-21 EP EP93100870A patent/EP0579897B1/en not_active Expired - Lifetime
- 1993-01-21 DE DE69333250T patent/DE69333250T2/en not_active Expired - Fee Related
- 1993-01-22 US US08/006,301 patent/US5408120A/en not_active Ceased
-
1997
- 1997-04-18 US US08/844,386 patent/USRE36747E/en not_active Expired - Lifetime
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4297717A (en) * | 1965-09-28 | 1981-10-27 | Li Chou H | Semiconductor device |
US3783353A (en) * | 1972-10-27 | 1974-01-01 | Rca Corp | Electroluminescent semiconductor device capable of emitting light of three different wavelengths |
DE2738329A1 (en) * | 1976-09-06 | 1978-03-09 | Philips Nv | ELECTROLUMINESCENT GALLIUM NITRIDE SEMI-CONDUCTOR ARRANGEMENT AND METHOD OF MANUFACTURING IT |
GB1589351A (en) * | 1976-09-06 | 1981-05-13 | Philips Nv | Electroluminescent device manufacture |
US4268842A (en) * | 1976-09-06 | 1981-05-19 | U.S. Philips Corporation | Electroluminescent gallium nitride semiconductor device |
US4153905A (en) * | 1977-04-01 | 1979-05-08 | Charmakadze Revaz A | Semiconductor light-emitting device |
JPS5471590A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Gan light emitting element and production of the same |
JPS5471589A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Production of gan light emitting element |
US4158849A (en) * | 1978-03-27 | 1979-06-19 | Rca Corporation | Heterojunction semiconductor device |
JPS5659699A (en) * | 1979-10-17 | 1981-05-23 | Matsushita Electric Ind Co Ltd | Gallium nitride growing method |
US4396929A (en) * | 1979-10-19 | 1983-08-02 | Matsushita Electric Industrial Company, Ltd. | Gallium nitride light-emitting element and method of manufacturing the same |
DE3046018A1 (en) * | 1979-12-05 | 1981-09-03 | Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Osaka | ELECTROLUMINISCENCE SEMICONDUCTOR COMPONENT WITH GALLIUM NITRIDE AND METHOD FOR THE PRODUCTION THEREOF |
US4408217A (en) * | 1979-12-05 | 1983-10-04 | Matsushita Electric Industrial Company, Limited | GaN Electroluminescent semiconductor device and method for making the same |
US4473938A (en) * | 1979-12-05 | 1984-10-02 | Matsushita Electric Industrial Co., Limited | Method for making a GaN electroluminescent semiconductor device utilizing epitaxial deposition |
JPS5746669A (en) * | 1980-09-03 | 1982-03-17 | Japanese National Railways<Jnr> | Stop position detector for linear motor |
JPS5787184A (en) * | 1980-11-19 | 1982-05-31 | Sanyo Electric Co Ltd | Gan blue light emitting element |
JPS57153479A (en) * | 1981-03-17 | 1982-09-22 | Matsushita Electric Ind Co Ltd | Nitride gallium light emitting element |
JPS5812381A (en) * | 1981-07-16 | 1983-01-24 | Sanyo Electric Co Ltd | GaN blue light emitting device |
JPS5846686A (en) * | 1981-09-14 | 1983-03-18 | Sanyo Electric Co Ltd | Blue light emitting diode |
US4608581A (en) * | 1982-02-02 | 1986-08-26 | Bagratishvili Givi D | Semiconductor light emitter based on gallium nitride and process for manufacture thereof |
JPS59228776A (en) * | 1983-06-10 | 1984-12-22 | Nippon Telegr & Teleph Corp <Ntt> | semiconductor heterojunction device |
JPS617671A (en) * | 1984-06-21 | 1986-01-14 | Matsushita Electric Ind Co Ltd | Gallium nitride semiconductor device |
US4614961A (en) * | 1984-10-09 | 1986-09-30 | Honeywell Inc. | Tunable cut-off UV detector based on the aluminum gallium nitride material system |
JPS62119196A (en) * | 1985-11-18 | 1987-05-30 | Univ Nagoya | How to grow compound semiconductors |
US4855249A (en) * | 1985-11-18 | 1989-08-08 | Nagoya University | Process for growing III-V compound semiconductors on sapphire using a buffer layer |
EP0277567A2 (en) * | 1987-01-23 | 1988-08-10 | Toray Industries, Inc. | Liquid crystal element |
JPS63188977A (en) * | 1987-01-31 | 1988-08-04 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
US4911102A (en) * | 1987-01-31 | 1990-03-27 | Toyoda Gosei Co., Ltd. | Process of vapor growth of gallium nitride and its apparatus |
US4946548A (en) * | 1988-04-29 | 1990-08-07 | Toyoda Gosei Co., Ltd. | Dry etching method for semiconductor |
JPH0281484A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
JPH0281482A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
JPH0281483A (en) * | 1988-09-16 | 1990-03-22 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emitting device |
JPH02275682A (en) * | 1989-01-13 | 1990-11-09 | Toshiba Corp | Compound semiconductor material, semiconductor device using the same, and manufacturing method thereof |
US5006908A (en) * | 1989-02-13 | 1991-04-09 | Nippon Telegraph And Telephone Corporation | Epitaxial Wurtzite growth structure for semiconductor light-emitting device |
US5005057A (en) * | 1989-04-28 | 1991-04-02 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting diode and method of manufacturing the same |
JPH03183173A (en) * | 1989-12-13 | 1991-08-09 | Canon Inc | Optical element |
EP0444630A1 (en) * | 1990-02-28 | 1991-09-04 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US5278433A (en) * | 1990-02-28 | 1994-01-11 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer |
US5205905A (en) * | 1990-05-30 | 1993-04-27 | Toyoda Gosei Co., Ltd. | Dry etching method for semiconductor |
JPH0468579A (en) * | 1990-07-09 | 1992-03-04 | Sharp Corp | Compound semiconductor light emitting element |
US5281830A (en) * | 1990-10-27 | 1994-01-25 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US5182670A (en) * | 1991-08-30 | 1993-01-26 | Apa Optics, Inc. | Narrow band algan filter |
Non-Patent Citations (9)
Title |
---|
Boulou et al., "Light Emitting Diodes Based on GaN," Philips Tech. Rev. 37, 237-240 No. 9/10, 1977. |
Boulou et al., Light Emitting Diodes Based on GaN, Philips Tech. Rev. 37, 237 240 No. 9/10, 1977. * |
Patent Abstract of Japan, vol. 4 No. 36 (E 3) re JP A 55009442, Jul. 1978. * |
Patent Abstract of Japan, vol. 4 No. 36 (E-3) re JP-A-55009442, Jul. 1978. |
Patent Abstract of Japan, vol. 5, No. 145 (E 74)(817) re JP A 5679482, Sep. 1981. * |
Patent Abstract of Japan, vol. 5, No. 145 (E-74)(817) re JP-A-5679482, Sep. 1981. |
U.S. application Ser. No. 7,708,883, Apr. 1993, Kotaki et al. * |
U.S. application Ser. No. 7,781,913, Jan. 1994, Kotaki et al. * |
U.S. application Ser. No. 7,926,022, Jan. 1994, Manabe et al. * |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6998690B2 (en) * | 1993-04-28 | 2006-02-14 | Nichia Corporation | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US7205220B2 (en) | 1993-04-28 | 2007-04-17 | Nichia Corporation | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US7375383B2 (en) | 1993-04-28 | 2008-05-20 | Nichia Corporation | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US20060006399A1 (en) * | 1993-04-28 | 2006-01-12 | Nichia Corporation | Gallium nitride based Ill-V group compound semiconductor device and method of producing the same |
US20040095977A1 (en) * | 1993-04-28 | 2004-05-20 | Nichia Corporation | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US6734515B1 (en) * | 1998-09-18 | 2004-05-11 | Mitsubishi Cable Industries, Ltd. | Semiconductor light receiving element |
US6521998B1 (en) * | 1998-12-28 | 2003-02-18 | Sharp Kabushiki Kaisha | Electrode structure for nitride III-V compound semiconductor devices |
US6573537B1 (en) | 1999-12-22 | 2003-06-03 | Lumileds Lighting, U.S., Llc | Highly reflective ohmic contacts to III-nitride flip-chip LEDs |
US6521914B2 (en) | 1999-12-22 | 2003-02-18 | Lumileds Lighting, U.S., Llc | III-Nitride Light-emitting device with increased light generating capability |
US6514782B1 (en) | 1999-12-22 | 2003-02-04 | Lumileds Lighting, U.S., Llc | Method of making a III-nitride light-emitting device with increased light generating capability |
US6486499B1 (en) | 1999-12-22 | 2002-11-26 | Lumileds Lighting U.S., Llc | III-nitride light-emitting device with increased light generating capability |
US6844571B2 (en) | 1999-12-22 | 2005-01-18 | Lumileds Lighting U.S., Llc | III-nitride light-emitting device with increased light generating capability |
US20020070386A1 (en) * | 1999-12-22 | 2002-06-13 | Krames Michael R. | III-nitride light-emitting device with increased light generating capability |
US6885035B2 (en) | 1999-12-22 | 2005-04-26 | Lumileds Lighting U.S., Llc | Multi-chip semiconductor LED assembly |
US6903376B2 (en) | 1999-12-22 | 2005-06-07 | Lumileds Lighting U.S., Llc | Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction |
US6717185B2 (en) | 2000-11-03 | 2004-04-06 | Cree, Inc. | Light emitting devices with Group III nitride contact layer and superlattice |
US6534797B1 (en) | 2000-11-03 | 2003-03-18 | Cree, Inc. | Group III nitride light emitting devices with gallium-free layers |
US6784461B2 (en) | 2000-11-03 | 2004-08-31 | Cree, Inc. | Group III nitride light emitting devices with progressively graded layers |
US6888171B2 (en) * | 2000-12-22 | 2005-05-03 | Dallan Luming Science & Technology Group Co., Ltd. | Light emitting diode |
US7071490B2 (en) | 2001-01-16 | 2006-07-04 | Czee, Inc. | Group III nitride LED with silicon carbide substrate |
US20020093020A1 (en) * | 2001-01-16 | 2002-07-18 | Edmond John Adam | Group III nitride LED with undoped cladding layer (5000.137) |
USRE46589E1 (en) | 2001-01-16 | 2017-10-24 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
US6906352B2 (en) | 2001-01-16 | 2005-06-14 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
USRE46588E1 (en) | 2001-01-16 | 2017-10-24 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
USRE45059E1 (en) | 2001-01-16 | 2014-08-05 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
US7692209B2 (en) | 2001-01-16 | 2010-04-06 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
US6800876B2 (en) | 2001-01-16 | 2004-10-05 | Cree, Inc. | Group III nitride LED with undoped cladding layer (5000.137) |
US20060233211A1 (en) * | 2001-01-16 | 2006-10-19 | Edmond John A | Group III Nitride LED with Undoped Cladding Layer |
US20060273339A1 (en) * | 2002-06-13 | 2006-12-07 | Philips Lumileds Lighting Company, Llc | Contacting Scheme for Large and Small Area Semiconductor Light Emitting Flip Chip Devices |
US6828596B2 (en) * | 2002-06-13 | 2004-12-07 | Lumileds Lighting U.S., Llc | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
US7095061B2 (en) | 2002-06-13 | 2006-08-22 | Philips Lumileds Lighting Company, Llc | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
US20050067624A1 (en) * | 2002-06-13 | 2005-03-31 | Steigerwald Daniel A. | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
US7652304B2 (en) | 2002-06-13 | 2010-01-26 | Philips Lumileds Lighting Company, Llc | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
US20090065800A1 (en) * | 2004-02-20 | 2009-03-12 | Ralf Wirth | Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component |
WO2005081319A1 (en) * | 2004-02-20 | 2005-09-01 | Osram Opto Semiconductors Gmbh | Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component |
US8835937B2 (en) | 2004-02-20 | 2014-09-16 | Osram Opto Semiconductors Gmbh | Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component |
GB2412234A (en) * | 2004-03-18 | 2005-09-21 | Sharp Kk | Manufacture of a semiconductor light-emitting device |
US9263423B2 (en) | 2004-11-01 | 2016-02-16 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US8922110B2 (en) | 2004-11-01 | 2014-12-30 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US7911126B2 (en) | 2004-11-01 | 2011-03-22 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US20110156572A1 (en) * | 2004-11-01 | 2011-06-30 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US8274206B2 (en) | 2004-11-01 | 2012-09-25 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US20060091786A1 (en) * | 2004-11-01 | 2006-05-04 | The Regents Of The University Of California | Interdigitated multi-pixel arrays for the fabrication of light-emitting devices with very low series-resistances and improved heat-sinking |
US8796912B2 (en) | 2004-11-01 | 2014-08-05 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US20090230411A1 (en) * | 2004-11-01 | 2009-09-17 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US9076711B2 (en) | 2004-11-01 | 2015-07-07 | The Regents Of The University Of California | Interdigitated multiple pixel arrays of light-emitting devices |
US7518305B2 (en) | 2004-11-01 | 2009-04-14 | The Regents Of The University Of California | Interdigitated multi-pixel arrays for the fabrication of light-emitting devices with very low series-resistances and improved heat-sinking |
US20100171135A1 (en) * | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
US8653540B2 (en) | 2007-04-26 | 2014-02-18 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body and method for producing the same |
US8450751B2 (en) | 2007-04-26 | 2013-05-28 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor body and method for producing the same |
US8664747B2 (en) | 2008-04-28 | 2014-03-04 | Toshiba Techno Center Inc. | Trenched substrate for crystal growth and wafer bonding |
US20090267083A1 (en) * | 2008-04-28 | 2009-10-29 | Jie Cui | Trenched substrate for crystal growth and wafer bonding |
US20100314651A1 (en) * | 2009-06-10 | 2010-12-16 | Bridgelux, Inc. | Thin-film led with p and n contacts electrically isolated from the substrate |
US20100314649A1 (en) * | 2009-06-10 | 2010-12-16 | Bridgelux, Inc. | Thin-film led with p and n contacts electricall isolated from the substrate |
US9142742B2 (en) | 2009-06-10 | 2015-09-22 | Kabushiki Kaisha Toshiba | Thin-film LED with P and N contacts electrically isolated from the substrate |
US8871539B2 (en) | 2009-06-10 | 2014-10-28 | Kabushiki Kaisha Toshiba | Thin-film LED with P and N contacts electrically isolated from the substrate |
US8546832B2 (en) | 2009-06-10 | 2013-10-01 | Toshiba Techno Center Inc. | Thin-film LED with p and n contacts electrically isolated from the substrate |
US8536601B2 (en) | 2009-06-10 | 2013-09-17 | Toshiba Techno Center, Inc. | Thin-film LED with P and N contacts electrically isolated from the substrate |
US20110050681A1 (en) * | 2009-08-27 | 2011-03-03 | Novatek Microelectronics Corp. | Low voltage differential signal output stage |
US8684749B2 (en) | 2009-11-25 | 2014-04-01 | Toshiba Techno Center Inc. | LED with improved injection efficiency |
US9012953B2 (en) | 2009-11-25 | 2015-04-21 | Kabushiki Kaisha Toshiba | LED with improved injection efficiency |
US8525221B2 (en) | 2009-11-25 | 2013-09-03 | Toshiba Techno Center, Inc. | LED with improved injection efficiency |
US9882102B2 (en) | 2010-09-24 | 2018-01-30 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode and wafer-level light emitting diode package |
US10069048B2 (en) | 2010-09-24 | 2018-09-04 | Seoul Viosys Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US10892386B2 (en) | 2010-09-24 | 2021-01-12 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US9543490B2 (en) | 2010-09-24 | 2017-01-10 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US10879437B2 (en) | 2010-09-24 | 2020-12-29 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US8395165B2 (en) | 2011-07-08 | 2013-03-12 | Bridelux, Inc. | Laterally contacted blue LED with superlattice current spreading layer |
US9617656B2 (en) | 2011-07-25 | 2017-04-11 | Toshiba Corporation | Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow |
US10174439B2 (en) | 2011-07-25 | 2019-01-08 | Samsung Electronics Co., Ltd. | Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow |
US8916906B2 (en) | 2011-07-29 | 2014-12-23 | Kabushiki Kaisha Toshiba | Boron-containing buffer layer for growing gallium nitride on silicon |
US9343641B2 (en) | 2011-08-02 | 2016-05-17 | Manutius Ip, Inc. | Non-reactive barrier metal for eutectic bonding process |
US9142743B2 (en) | 2011-08-02 | 2015-09-22 | Kabushiki Kaisha Toshiba | High temperature gold-free wafer bonding for light emitting diodes |
US9012939B2 (en) | 2011-08-02 | 2015-04-21 | Kabushiki Kaisha Toshiba | N-type gallium-nitride layer having multiple conductive intervening layers |
US8865565B2 (en) | 2011-08-02 | 2014-10-21 | Kabushiki Kaisha Toshiba | LED having a low defect N-type layer that has grown on a silicon substrate |
US9159869B2 (en) | 2011-08-03 | 2015-10-13 | Kabushiki Kaisha Toshiba | LED on silicon substrate using zinc-sulfide as buffer layer |
US9070833B2 (en) | 2011-08-04 | 2015-06-30 | Kabushiki Kaisha Toshiba | Distributed current blocking structures for light emitting diodes |
US8564010B2 (en) | 2011-08-04 | 2013-10-22 | Toshiba Techno Center Inc. | Distributed current blocking structures for light emitting diodes |
US8624482B2 (en) | 2011-09-01 | 2014-01-07 | Toshiba Techno Center Inc. | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8981410B1 (en) | 2011-09-01 | 2015-03-17 | Kabushiki Kaisha Toshiba | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8994064B2 (en) | 2011-09-03 | 2015-03-31 | Kabushiki Kaisha Toshiba | Led that has bounding silicon-doped regions on either side of a strain release layer |
US8669585B1 (en) | 2011-09-03 | 2014-03-11 | Toshiba Techno Center Inc. | LED that has bounding silicon-doped regions on either side of a strain release layer |
US8558247B2 (en) | 2011-09-06 | 2013-10-15 | Toshiba Techno Center Inc. | GaN LEDs with improved area and method for making the same |
US9018643B2 (en) | 2011-09-06 | 2015-04-28 | Kabushiki Kaisha Toshiba | GaN LEDs with improved area and method for making the same |
US8686430B2 (en) | 2011-09-07 | 2014-04-01 | Toshiba Techno Center Inc. | Buffer layer for GaN-on-Si LED |
US9178114B2 (en) | 2011-09-29 | 2015-11-03 | Manutius Ip, Inc. | P-type doping layers for use with light emitting devices |
US9012921B2 (en) | 2011-09-29 | 2015-04-21 | Kabushiki Kaisha Toshiba | Light emitting devices having light coupling layers |
US9490392B2 (en) | 2011-09-29 | 2016-11-08 | Toshiba Corporation | P-type doping layers for use with light emitting devices |
US8698163B2 (en) | 2011-09-29 | 2014-04-15 | Toshiba Techno Center Inc. | P-type doping layers for use with light emitting devices |
US8853668B2 (en) | 2011-09-29 | 2014-10-07 | Kabushiki Kaisha Toshiba | Light emitting regions for use with light emitting devices |
US9299881B2 (en) | 2011-09-29 | 2016-03-29 | Kabishiki Kaisha Toshiba | Light emitting devices having light coupling layers |
US8664679B2 (en) | 2011-09-29 | 2014-03-04 | Toshiba Techno Center Inc. | Light emitting devices having light coupling layers with recessed electrodes |
US9130068B2 (en) | 2011-09-29 | 2015-09-08 | Manutius Ip, Inc. | Light emitting devices having dislocation density maintaining buffer layers |
US8581267B2 (en) | 2011-11-09 | 2013-11-12 | Toshiba Techno Center Inc. | Series connected segmented LED |
US9391234B2 (en) | 2011-11-09 | 2016-07-12 | Toshiba Corporation | Series connected segmented LED |
US9123853B2 (en) | 2011-11-09 | 2015-09-01 | Manutius Ip, Inc. | Series connected segmented LED |
US8552465B2 (en) | 2011-11-09 | 2013-10-08 | Toshiba Techno Center Inc. | Method for reducing stress in epitaxial growth |
US20180047826A1 (en) * | 2016-01-12 | 2018-02-15 | Tsinghua University | Semiconductor structure and method for forming the same |
US10388750B2 (en) * | 2016-01-12 | 2019-08-20 | Tsinghua University | Semiconductor structure and method for forming the same |
US10580929B2 (en) | 2016-03-30 | 2020-03-03 | Seoul Viosys Co., Ltd. | UV light emitting diode package and light emitting diode module having the same |
Also Published As
Publication number | Publication date |
---|---|
DE69333250D1 (en) | 2003-11-20 |
DE69333250T2 (en) | 2004-09-16 |
EP1313153A2 (en) | 2003-05-21 |
US5408120A (en) | 1995-04-18 |
EP0579897A1 (en) | 1994-01-26 |
EP1313153A3 (en) | 2005-05-04 |
EP0579897B1 (en) | 2003-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36747E (en) | Light-emitting device of gallium nitride compound semiconductor | |
US7867800B2 (en) | Light-emitting semiconductor device using group III nitrogen compound | |
US5620557A (en) | Sapphireless group III nitride semiconductor and method for making same | |
US5587593A (en) | Light-emitting semiconductor device using group III nitrogen compound | |
US5959401A (en) | Light-emitting semiconductor device using group III nitride compound | |
JP2681733B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
US5905276A (en) | Light emitting semiconductor device using nitrogen-Group III compound | |
US5700713A (en) | Light emitting semiconductor device using group III nitride compound and method of producing the same | |
JP3795624B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
JPH05129658A (en) | Gallium nitride compound semiconductor light emission device | |
JP2626431B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
JP3654738B2 (en) | Group 3 nitride semiconductor light emitting device | |
JP3506874B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
US5953581A (en) | Methods for manufacturing group III nitride compound semiconductor laser diodes | |
JP2658009B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3028809B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPH0521846A (en) | Gallium nitride compound semiconductor light emitting element | |
JPH07131068A (en) | Nitrogen-group-iii element compound semiconductor light emitting element | |
JPH08274372A (en) | Group III nitride semiconductor light emitting device | |
JP3705637B2 (en) | Group 3 nitride semiconductor light emitting device and method of manufacturing the same | |
JPH09266326A (en) | Iii group nitride compound semiconductor light emitting device | |
JPH0992880A (en) | Group iii nitride semiconductor light emitting device | |
JP3019085B1 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JPH08125222A (en) | Method for manufacture of group iii nitride semiconductor | |
JP2663814B2 (en) | Nitrogen-3 element compound semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |