US8064283B2 - Semiconductor memory apparatus and a method for reading data stored therein - Google Patents
Semiconductor memory apparatus and a method for reading data stored therein Download PDFInfo
- Publication number
- US8064283B2 US8064283B2 US12/470,836 US47083609A US8064283B2 US 8064283 B2 US8064283 B2 US 8064283B2 US 47083609 A US47083609 A US 47083609A US 8064283 B2 US8064283 B2 US 8064283B2
- Authority
- US
- United States
- Prior art keywords
- data
- semiconductor memory
- invert
- memory apparatus
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1006—Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/02—Arrangements for writing information into, or reading information out from, a digital store with means for avoiding parasitic signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1048—Data bus control circuits, e.g. precharging, presetting, equalising
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
Definitions
- the present invention relates to a semiconductor memory apparatus, and, more particularly, to a semiconductor memory apparatus which adopts a data bus inversion scheme and a method for reading data stored in a semiconductor memory apparatus.
- DBI data bus inversion
- FIG. 1 is a block diagram illustrating the schematic configuration of a conventional semiconductor memory apparatus.
- the conventional semiconductor memory apparatus 10 includes a DBI decision section 11 and a data output section 12 .
- the DBI decision section 11 is enabled by receiving an enabled mode signal ‘mode’ from a mode register set.
- the DBI decision section 11 receives data ‘GIO ⁇ 0:7>’ transmitted from a data input and output line, and generates a decision signal ‘flag’ for deciding whether to invert the data, depending upon the logic levels of the data ‘GIO ⁇ 0:7>’.
- the data output section 12 has a plurality of data output drivers DQ 1 through DQ 8 .
- the data output section 12 receives the data ‘GIO ⁇ 0:7>’ transmitted from the data input and output line and the decision signal ‘flag’ and decides whether to output the data by inverting the data or without inverting the data. If the mode signal ‘mode’ is enabled, the decision signal ‘flag’ is transmitted to a chipset which is connected with the semiconductor memory apparatus 10 . Therefore, even though inverted data is outputted, the chipset can sense that the data having the logic levels opposite to those of the inverted output data are correct output data.
- a semiconductor memory apparatus which may solve the difficulties in interfacing among chips so that data inversion can be performed not only in a DBI mode but also in a normal mode and may reduce current consumption due to toggling of data input and output lines and a method for reading data in a semiconductor memory apparatus, are described hereinafter.
- a semiconductor memory apparatus includes a data bus inversion (DBI) section configured to receive a plurality of input data, decide whether to invert or output without an inversion the plurality of data depending upon logic levels of the plurality of data, and generate a plurality of inversion data based on the decision; and a data output section configured to receive the plurality of inversion data, invert or output, without an inversion, the plurality of inversion data in response to a mode signal, and generate a plurality of output data.
- DBI data bus inversion
- a semiconductor memory apparatus in another aspect, includes a plurality of memory banks; a first data input and output line configured to transmit a plurality of data inputted from the plurality of memory banks; a DBI section configured to decide whether to invert or output, without an inversion, the plurality of input data depending upon logic levels of the plurality of input data transmitted from the first data input and output line and generate a plurality of inversion data based on the decision; a second data input and output line configured to transmit the plurality of inversion data; and a data output section configured to receive the plurality of inversion data transmitted from the second data input to output line and generate a plurality of output data.
- a method for reading data in a semiconductor memory apparatus having a plurality of memory banks and operating in first and second modes includes deciding whether to invert or output, without an inversion, a plurality of data outputted from the plurality of memory banks depending upon logic levels of the plurality of data to generate a plurality of inversion data based on the decision; transmitting the plurality of inversion data through a data input and output line; and receiving the plurality of inversion data and generating a plurality of output data depending upon whether the semiconductor memory apparatus operates in the first mode or the second mode.
- FIG. 1 is a schematic diagram illustrating the configuration of a conventional semiconductor memory apparatus
- FIG. 2 is a schematic diagram illustrating the configuration of an exemplary semiconductor memory apparatus in accordance with a first embodiment of the present invention
- FIG. 3 is a schematic diagram illustrating the configuration of a data output section capable of being implemented in a semiconductor memory apparatus in accordance with the first embodiment
- FIGS. 4 and 5 are timing diagrams illustrating the operation of the semiconductor memory apparatus in accordance with the first embodiment.
- FIG. 6 is a schematic block diagram illustrating the configuration of an exemplary semiconductor memory apparatus in accordance with a second embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating the configuration of an exemplary semiconductor memory apparatus in accordance with a first embodiment of the present invention.
- a semiconductor memory apparatus 100 in accordance with a first embodiment can include a data bus inversion (DBI) section 110 and a data output section 120 .
- DBI data bus inversion
- the DBI section 110 can be configured to receive a plurality of data ‘GIO ⁇ 0:7>’, decide whether to invert the plurality of data ‘GIO ⁇ 0:7>’ depending upon the logic levels of the plurality of data ‘GIO ⁇ 0:7>’, to generate a plurality of inversion data ‘TGIO ⁇ 0:7>’.
- the DBI section 110 can include a DBI decision unit 111 and a data repeater 112 .
- the DBI decision unit 111 can be configured to receive the plurality of data ‘GIO ⁇ 0:7>’ from a data input and output line GIO 1 and decide whether to invert or not invert the plurality of data ‘GIO ⁇ 0:7>’.
- the DBI decision unit 111 can generate a decision signal ‘flag’ for deciding whether to invert the plurality of data ‘GIO ⁇ 0:7>’ depending upon the logic levels of the plurality of data ‘GIO ⁇ 0:7>’.
- the decision signal ‘flag’ can be generated in such a way as to invert the plurality of data ‘GIO ⁇ 0:7>’
- the decision signal ‘flag’ can be generated in such a way as not to invert the plurality of data ‘GIO ⁇ 0:7>’.
- the first logic level can be a logic low level
- the second logic level can be a logic high level.
- the DBI decision unit 111 can be configured in a manner such that it enables the decision signal ‘flag’ when the majority of the plurality of data ‘GIO ⁇ 0:7>’ has the first logic level and disables the decision signal ‘flag’ when the majority of the plurality of data ‘GIO ⁇ 0:7>’ has the second logic level.
- the decision signal ‘flag’ is also transmitted to a chipset coupled to the semiconductor memory apparatus 100 , depending upon an operation mode. For example, the decision signal ‘flag’ can be transmitted to the chipset in a first mode and cannot be transmitted to the chipset in a second mode.
- the first mode can be a DBI mode in which data inversion is performed
- the second mode can be a normal mode in which data inversion is not performed.
- a mode signal ‘mode’ can be used as a signal for indicating that the semiconductor memory apparatus 100 operates in the first mode or the second mode.
- the mode signal ‘mode’ is a signal that can be generated through a mode register set of the semiconductor memory apparatus 100 .
- a test mode signal can be employed as the mode signal ‘mode’.
- the semiconductor memory apparatus 100 according to the first embodiment can further include a transmission section (not shown) capable of deciding whether or not to transmit the decision signal ‘flag’ to the chipset.
- the decision signal ‘flag’ can be transmitted to the chipset when the mode signal ‘mode’ is enabled and cannot be transmitted to the chipset when the mode signal ‘mode’ is disabled.
- the DBI decision unit 111 of the semiconductor memory apparatus 100 according to the first embodiment can be distinguished from the conventional art as described hereinafter.
- the DBI decision section 11 of the conventional art is decided to be enabled or not, by the mode signal ‘mode’. That is, if the mode signal ‘mode’ is enabled, the DBI decision section 11 of the conventional art is activated to decide whether to invert data, and if the mode signal ‘mode’ is disabled, the DBI decision section 11 of the conventional art does not decide whether to invert data.
- the DBI decision unit 111 of the semiconductor memory apparatus 100 according to the first embodiment decides whether to invert data, depending upon the logic values of the plurality of data ‘GIO ⁇ 0:7>’ irrespective of the first mode and the second mode.
- the DBI decision unit 111 of the semiconductor memory apparatus 100 decides whether to invert data, irrespective of the DBI mode and the normal mode. Accordingly, it is possible to minimize current consumption due to the toggling of a data input and output line through which inversion data ‘TGIO ⁇ 0:7>’ generated by inverting or outputting, without an inversion, the plurality of data ‘GIO ⁇ 0:7>’ are transmitted.
- the data repeater 112 inverts or outputs, without an inversion, the plurality of data ‘GIO ⁇ 0:7>’ which are inputted through the data input and output line GIO 1 , in conformity with the decision made by the DBI decision unit 111 , and generates the plurality of inversion data ‘TGIO ⁇ 0:7>’.
- the data repeater 112 inverts or outputs, without an inversion, the plurality of data ‘GIO ⁇ 0:7>’ in response to the decision signal ‘flag’ which is generated in the DBI decision unit 111 .
- the data repeater 112 If the decision signal ‘flag’ is enabled, the data repeater 112 generates the plurality of inversion data ‘TGIO ⁇ 0:7>’ by inverting the plurality of data ‘GIO ⁇ 0:7>’. If the decision signal ‘flag’ is disabled, the data repeater 112 generates the plurality of inversion data ‘TGIO ⁇ 0:7>’ by outputting, without inversion, the plurality of data ‘GIO ⁇ 0:7>’.
- the DBI section 110 can consider the logic levels of the plurality of data ‘GIO ⁇ 0:7>’ which are transmitted through the data input and output line GIO 1 , and can decide whether to invert or output, without an inversion, the plurality of data ‘GIO ⁇ 0:7>’, depending upon the logic levels of the plurality of data ‘GIO ⁇ 0:7>’.
- the data output section 120 is inputted with the plurality of inversion data ‘TGIO ⁇ 0:7>’, inverts or outputs, without an inversion, the plurality of inversion data ‘TGIO ⁇ 0:7>’ in response to a mode signal ‘mode’, and generates output data ‘DQ ⁇ 0:7>’. If the mode signal ‘mode’ is enabled, the data output section 120 generates the output data ‘DQ ⁇ 0:7>’ by outputting, without an inversion, the plurality of inversion data ‘TGIO ⁇ 0:7>’. If the mode signal ‘mode’ is disabled, the data output section 120 generates the output data ‘DQ ⁇ 0:7>’ by inverting the plurality of inversion data ‘TGIO ⁇ 0:7>’.
- FIG. 3 is a schematic diagram illustrating the configuration of a data output section capable of being implemented in the semiconductor memory apparatus of FIG. 1 in accordance with the first embodiment.
- the data output section 120 can be configured to be inputted with 8-bit data and output 8-bit data.
- Respective data output drivers DQ 1 through DQ 8 which constitute the data output section 120 , are inputted with the corresponding inversion data ‘TGIO ⁇ 0>’ through ‘TGIO ⁇ 7>’ and generate the corresponding output data ‘DQ ⁇ 0>’ through ‘DQ ⁇ 7>’.
- the respective data output drivers DQ 1 through DQ 8 are inputted with the corresponding inversion data ‘TGIO ⁇ 0>’ through ‘TGIO ⁇ 7>’ and generate the corresponding output data ‘DQ ⁇ 0>’ through ‘DQ ⁇ 7>’ by inverting or outputting, without an inversion, the inversion data ‘TGIO ⁇ 0>’ through ‘TGIO ⁇ 7>’ depending upon whether the mode signal ‘mode’ is disabled or enabled.
- FIGS. 4 and 5 are timing diagrams illustrating the operation of the semiconductor memory apparatus 100 in accordance with the first embodiment.
- FIG. 4 is a timing diagram illustrating the operation of the semiconductor memory apparatus 100 according to the first embodiment in the first mode, that is, the DBI mode
- FIG. 5 is a timing diagram illustrating the operation of the semiconductor memory apparatus 100 according to the first embodiment in the second mode, that is, the normal mode. The operation of the semiconductor memory apparatus 100 according to the first embodiment will be described below with reference to FIGS. 2 through 5 .
- the semiconductor memory apparatus 100 After the mode signal ‘mode’ is enabled through the mode register set or by employing the test mode signal and the semiconductor memory apparatus 100 is set to operate in the first mode, if the semiconductor memory apparatus 100 is activated by being inputted with an active command ‘ACT’ and performs read operation in response to a read command ‘Read’, the data stored in the memory cells of a memory bank of the semiconductor memory apparatus 100 are loaded on the data input and output line GIO 1 .
- the plurality of data ‘GIO ⁇ 0:7>’ loaded on the data input and output line GIO 1 are inputted to the DBI decision unit 111 and the data repeater 112 .
- the DBI decision unit 111 decides whether to enable or disable the decision signal ‘flag’, depending upon the logic levels of the plurality of data ‘GIO ⁇ 0:7>’ inputted thereto.
- the DBI decision unit 111 enables the decision signal ‘flag’.
- the data repeater 112 is inputted with the enabled decision signal ‘flag’, inverts the plurality of data ‘GIO ⁇ 0:7>’, and outputs ‘1, 1, 1, 1, 1, 0, 0, 0’ as the plurality of inversion data ‘TGIO ⁇ 0:7>’.
- the number of the data having the low level is greater than the number of the data having the high level, current consumption increases due to the toggling of data input and output lines GIO 1 and GIO 2 .
- the plurality of data ‘GIO ⁇ 0:7>’ are inverted and then inputted to the data output section 120 , so that current consumption due to the toggling of the data input and output line GIO 2 , through which the plurality of inversion data ‘TGIO ⁇ 0:7>’ are transmitted, can decrease.
- the data output section 120 Since the mode signal ‘mode’ is enabled in the first mode, the data output section 120 generates the plurality of output data ‘DQ ⁇ 0:7>’ by outputting, without an inversion, the plurality of inversion data ‘TGIO ⁇ 0:7>’. Further, in the first mode, the decision signal ‘flag’ is inputted to the data repeater 112 and at the same time is transmitted to the chipset connected with the semiconductor memory apparatus 100 .
- the plurality of output data ‘DQ ⁇ 0:7>’ generated by the data output section 120 are transmitted to the chipset, and the chipset is also inputted with the enabled decision signal ‘flag’, whereby the chipset can sense that the data having the levels opposite to those of the plurality of output data ‘DQ ⁇ 0:7>’ are correct output data. That is, even though the data output section 120 outputs ‘1, 1, 1, 1, 1, 0, 0, 0’ as the output data ‘DQ ⁇ 0:7>’, the chipset can sense that the output data of ‘0, 0, 0, 0, 0, 1, 1, 1’ should have been outputted as the correct output data.
- the semiconductor memory apparatus 100 is activated by being inputted with an active command ‘ACT’ and performs read operation in response to a read command ‘Read’, the data stored in the memory cells of a memory bank of the semiconductor memory apparatus 100 are loaded on the data input and output line GIO 1 .
- the plurality of data ‘GIO ⁇ 0:7>’ loaded on the data input and output line GIO 1 are inputted to the DBI decision unit 111 and the data repeater 112 .
- the DBI decision unit 111 decides whether to enable or disable the decision signal ‘flag’, depending upon the logic levels of the plurality of data ‘GIO ⁇ 0:7>’ inputted thereto.
- the DBI decision unit 111 enables the decision signal ‘flag’.
- the data repeater 112 is inputted with the enabled decision signal ‘flag’, inverts the plurality of data ‘GIO ⁇ 0:7>’, and outputs ‘1, 1, 1, 1, 1, 0, 0, 0’ as the plurality of inversion data ‘TGIO ⁇ 0:7>’.
- the number of the data having the low level is greater than the number of the data having the high level, current consumption increases due to the toggling of data input and output lines GIO 1 and GIO 2 .
- the plurality of data ‘GIO ⁇ 0:7>’ are inverted and then inputted to the data output section 120 , so that current consumption due to the toggling of the data input and output line GIO 2 , through which the plurality of inversion data ‘TGIO ⁇ 0:7>’ are transmitted, can decrease.
- the data output section 120 Since the mode signal ‘mode’ is disabled in the second mode, the data output section 120 generates the plurality of output data ‘DQ ⁇ 0:7>’ by inverting the plurality of inversion data ‘TGIO ⁇ 0:7>’. That is, the data output section 120 generates the output data ‘DQ ⁇ 0:7>’ of ‘0, 0, 0, 0, 0, 1, 1, 1’ by inverting the inversion data ‘TGIO ⁇ 0:7>’ of ‘1, 1, 1, 1, 1, 0, 0, 0’. In the second mode, the decision signal ‘flag’ is not transmitted to the chipset.
- the plurality of output data ‘DQ ⁇ 0:7>’ generated by the data output section 120 are transmitted to the chipset, and the chipset can sense that the levels of the plurality of output data ‘DQ ⁇ 0:7>’ correspond to those of correct output data. That is, when the data output section 120 outputs ‘0, 0, 0, 0, 0, 1, 1, 1’ as the output data ‘DQ ⁇ 0:7>’, the chipset can sense ‘0, 0, 0, 0, 0, 1, 1, 1’ as correct output data.
- the data output section 120 is inputted with the mode signal ‘mode’ for selecting the first mode and the second mode, decides whether to invert the inversion data ‘TGIO ⁇ 0:7>’ and generates the output data ‘DQ ⁇ 0:7>’, data inversion is performed irrespective of the first mode and the second mode, whereby it is possible to completely overcome the difficulties caused when interfacing between the semiconductor memory apparatus 100 and the chipset.
- FIG. 6 is a schematic block diagram illustrating the configuration of an exemplary semiconductor memory apparatus in accordance with a second embodiment.
- the semiconductor memory apparatus 200 can include a plurality of memory banks Bank 0 through Bank 3 , a first data input and output line GIO 1 , a DBI section 210 , a second data input and output line GIO 2 , and a data output section 220 .
- the data input and output line GIO 1 transmits a plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ which are applied from the plurality of memory banks Bank 0 through Bank 3 .
- the DBI section 210 is positioned at a cross area ‘Cross Area’, is inputted with the plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ transmitted from the first data input and output line GIO 1 , and decides whether to invert the plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’, depending upon the logic levels of the plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’.
- the cross area ‘Cross Area’ indicates an area where a row control circuit and a column control circuit cross with each other in a semiconductor memory apparatus. Since a number of data input and output lines are densely aggregated in the cross area Cross Area, power drop and current consumption can frequently occur therein.
- the DBI section 210 inverts or outputs, without an inversion, the plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ depending upon the logic levels of the plurality of data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ and generates a plurality of inversion data ‘GIO 2 - 1 ⁇ 0:7>’ and ‘GIO 2 - 2 ⁇ 0:7>’.
- the second data input and output line GIO 2 transmits the plurality of inversion data ‘GIO 2 - 1 ⁇ 0:7>’ and ‘GIO 2 - 2 ⁇ 0:7>’.
- the data output section 220 generates output data ‘DQ 1 ⁇ 0:7>’ and ‘DQ 2 ⁇ 0:7>’ depending upon the plurality of inversion data ‘GIO 2 - 1 ⁇ 0:7>’ and ‘GIO 2 - 2 ⁇ 0:7>’ transmitted from the second data input and output line GIO 2 .
- a decision whether to invert data is made immediately before the data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ are inputted to the data output section 220 , so that current consumption due to the toggling of the first and second data input and output lines GIO 1 and GIO 2 may occur.
- the DBI section 210 positioned at the cross area ‘Cross Area’ is inputted with the data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’ which are applied from the respective memory banks Bank 0 through Bank 3 , and then decides whether to invert the data ‘GIO 1 - 1 ⁇ 0:7>’ and ‘GIO 1 - 2 ⁇ 0:7>’.
- the DBI section 210 when the number of the data having a low level is greater than the number of the data having a high level, the DBI section 210 generates the inverted data as the inversion data ‘GIO 2 - 1 ⁇ 0:7>’ and ‘GIO 2 - 2 ⁇ 0:7>’, so that current consumption due to the toggling of the second input and output line GIO 2 may decrease.
- the DBI section 210 When the number of the data having a high level is greater than the number of the data having a low level, the DBI section 210 generates the non-inverted data as the inversion data ‘GIO 2 - 1 ⁇ 0:7>’ and ‘GIO 2 - 2 ⁇ 0:7>’, so that current consumption due to the toggling of the second data input and output line GIO 2 decreases. Also, in the semiconductor memory apparatus 200 according to the second embodiment, because the DBI section 210 is provided in the cross area ‘Cross Area’ being a dense region, the problems caused due to power drop and current consumption can be solved.
- whether to invert data is decided by receiving data, outputted from memory banks, at a cross area, whereby it is possible to reduce current consumption due to toggling of data input and output lines.
Landscapes
- Dram (AREA)
Abstract
Description
Claims (26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0133351 | 2008-12-24 | ||
KR1020080133351A KR100980424B1 (en) | 2008-12-24 | 2008-12-24 | Semiconductor memory device and data read method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100157696A1 US20100157696A1 (en) | 2010-06-24 |
US8064283B2 true US8064283B2 (en) | 2011-11-22 |
Family
ID=42265829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/470,836 Active 2029-09-27 US8064283B2 (en) | 2008-12-24 | 2009-05-22 | Semiconductor memory apparatus and a method for reading data stored therein |
Country Status (2)
Country | Link |
---|---|
US (1) | US8064283B2 (en) |
KR (1) | KR100980424B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180143922A1 (en) * | 2016-11-21 | 2018-05-24 | SK Hynix Inc. | Data inversion circuit |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120098326A (en) | 2011-02-28 | 2012-09-05 | 에스케이하이닉스 주식회사 | Semiconductor apparatus and method of processing data |
KR20120110798A (en) | 2011-03-30 | 2012-10-10 | 에스케이하이닉스 주식회사 | Data transferring circuit and data transferring/receiving systerm |
KR20130098681A (en) * | 2012-02-28 | 2013-09-05 | 삼성전자주식회사 | Semiconductor memory device |
US10373657B2 (en) * | 2016-08-10 | 2019-08-06 | Micron Technology, Inc. | Semiconductor layered device with data bus |
KR20180063475A (en) * | 2016-12-02 | 2018-06-12 | 삼성전자주식회사 | error detection code generator of a semiconductor device, a memory controller including the same and a semiconductor memory device including the same |
KR102432849B1 (en) * | 2017-09-08 | 2022-08-17 | 에스케이하이닉스 주식회사 | Data control circuit, semiconductor memory apparatus and semiconductor system including the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219851A (en) | 1990-12-20 | 1992-08-10 | Fujitsu Ltd | Semiconductor integrated circuit |
JPH1153885A (en) | 1997-08-01 | 1999-02-26 | Matsushita Electric Ind Co Ltd | Method and circuit of differential transmission |
KR20050058914A (en) | 2003-12-13 | 2005-06-17 | 삼성전자주식회사 | Data inversion circuit of multi-bit pre-fetch semiconductor device and method of the same |
KR20070045644A (en) | 2005-10-28 | 2007-05-02 | 삼성전자주식회사 | Inverting / non-inverting test apparatus and method of semiconductor device |
US20070103996A1 (en) * | 2005-11-08 | 2007-05-10 | Samsung Electronics Co., Ltd. | Data input/output circuit having data inversion determination function and semiconductor memory device having the same |
US7280412B2 (en) * | 2005-11-21 | 2007-10-09 | Samsung Electronics Co., Ltd. | Circuits and methods for data bus inversion in a semiconductor memory |
US20070247989A1 (en) | 2006-03-31 | 2007-10-25 | Thomas Hein | Integrated semiconductor memory with generation of data |
-
2008
- 2008-12-24 KR KR1020080133351A patent/KR100980424B1/en not_active IP Right Cessation
-
2009
- 2009-05-22 US US12/470,836 patent/US8064283B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219851A (en) | 1990-12-20 | 1992-08-10 | Fujitsu Ltd | Semiconductor integrated circuit |
JPH1153885A (en) | 1997-08-01 | 1999-02-26 | Matsushita Electric Ind Co Ltd | Method and circuit of differential transmission |
KR20050058914A (en) | 2003-12-13 | 2005-06-17 | 삼성전자주식회사 | Data inversion circuit of multi-bit pre-fetch semiconductor device and method of the same |
KR20070045644A (en) | 2005-10-28 | 2007-05-02 | 삼성전자주식회사 | Inverting / non-inverting test apparatus and method of semiconductor device |
US20070103996A1 (en) * | 2005-11-08 | 2007-05-10 | Samsung Electronics Co., Ltd. | Data input/output circuit having data inversion determination function and semiconductor memory device having the same |
US7280412B2 (en) * | 2005-11-21 | 2007-10-09 | Samsung Electronics Co., Ltd. | Circuits and methods for data bus inversion in a semiconductor memory |
US20080019451A1 (en) | 2005-11-21 | 2008-01-24 | Seong-Jin Jang | Circuits and methods for data bus inversion in a semiconductor memory |
US20070247989A1 (en) | 2006-03-31 | 2007-10-25 | Thomas Hein | Integrated semiconductor memory with generation of data |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180143922A1 (en) * | 2016-11-21 | 2018-05-24 | SK Hynix Inc. | Data inversion circuit |
US10545888B2 (en) * | 2016-11-21 | 2020-01-28 | SK Hynix Inc. | Data inversion circuit |
Also Published As
Publication number | Publication date |
---|---|
KR20100074823A (en) | 2010-07-02 |
KR100980424B1 (en) | 2010-09-07 |
US20100157696A1 (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8064283B2 (en) | Semiconductor memory apparatus and a method for reading data stored therein | |
US10424367B2 (en) | Method and apparatus for decoding command operations for a semiconductor device | |
US20150095520A1 (en) | Semiconductor memory apparatus and data input and output method thereof | |
JP4948952B2 (en) | Multi-port memory device with serial input / output interface | |
US7995403B2 (en) | Semiconductor integrated circuit with data bus inversion function | |
US7436204B2 (en) | Apparatus and method for determining on die termination modes in memory device | |
KR20130045257A (en) | Reducing simultaneous switching outputs using data bus inversion signaling | |
US8270229B2 (en) | Semiconductor memory apparatus | |
US9244873B2 (en) | Semiconductor device and method of operating the same | |
US10318464B1 (en) | Memory system and method for accessing memory system | |
US8364913B2 (en) | Semiconductor memory apparatus and data input and output method thereof | |
KR100321164B1 (en) | Data write/read control method and circuit in memory device | |
US10579280B2 (en) | On-die termination control for memory systems | |
US7405973B2 (en) | Repair circuit of semiconductor memory device | |
JP2013073664A (en) | Semiconductor device | |
US7656729B2 (en) | Circuit and method for decoding column addresses in semiconductor memory apparatus | |
US20080285374A1 (en) | Semiconductor memory device | |
US8374042B2 (en) | Command decoder and a semiconductor memory device including the same | |
US7898883B2 (en) | Method for controlling access of a memory | |
US20180032392A1 (en) | Data bus inversion controller and semiconductor device including the same | |
US7821852B2 (en) | Write driving circuit | |
US20090059708A1 (en) | Semiconductor integrated circuit including bank selection control block | |
US8127169B2 (en) | Semiconductor memory device and method for generating internal control signal | |
US7304906B2 (en) | Method of controlling mode register set operation in memory device and circuit thereof | |
US11094372B1 (en) | Partial writing method of dram memoryl device to reduce power consumption associated with large voltage swing of internal input/output lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYNIX SEMICONDUCTOR INC.,KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNG WOOK;REEL/FRAME:022726/0014 Effective date: 20090513 Owner name: HYNIX SEMICONDUCTOR INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNG WOOK;REEL/FRAME:022726/0014 Effective date: 20090513 |
|
AS | Assignment |
Owner name: HYNIX SEMICONDUCTOR, INC.,KOREA, REPUBLIC OF Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INVENTOR LIST TO ADD AN INVENTOR. PREVIOUSLY RECORDED ON REEL 022726 FRAME 0014. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:KWAK, SEUNG WOOK;KIM, KWAN WEON;REEL/FRAME:022747/0760 Effective date: 20090513 Owner name: HYNIX SEMICONDUCTOR, INC., KOREA, REPUBLIC OF Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INVENTOR LIST TO ADD AN INVENTOR. PREVIOUSLY RECORDED ON REEL 022726 FRAME 0014. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:KWAK, SEUNG WOOK;KIM, KWAN WEON;REEL/FRAME:022747/0760 Effective date: 20090513 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |