US7088891B2 - Optical power splitter - Google Patents
Optical power splitter Download PDFInfo
- Publication number
- US7088891B2 US7088891B2 US10/391,671 US39167103A US7088891B2 US 7088891 B2 US7088891 B2 US 7088891B2 US 39167103 A US39167103 A US 39167103A US 7088891 B2 US7088891 B2 US 7088891B2
- Authority
- US
- United States
- Prior art keywords
- optical
- power splitter
- optical power
- splitters
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
Definitions
- the present invention relates to an optical communication element, and more particularly to an optical power splitter of a planar lightwave circuit (PLC) type.
- PLC planar lightwave circuit
- an optical power splitter is used for channeling input light into several different paths and has a wide application in an optical communication system, an optical access network, etc.
- the optical power splitter is classified into 1 ⁇ 2, 1 ⁇ 4, 1 ⁇ 8, . . . 1 ⁇ N (where N is a natural number) types according to the number of its output terminals.
- an optical power splitter There are two representative methods used to manufacture an optical power splitter: a method of fusing an optical fiber in a melting-drawing manner and a PLC type method.
- the melting-drawing method is used in the systems having low channels, such as 1 ⁇ 2, 1 ⁇ 4, etc.
- the PLC method is used in the systems with over 8 channels.
- the PLC method considered a better choice over the melting-drawing method, it is not widely used due to its limitation in the number of channels and its high manufacturing cost. Even when the number of channels are reduced, the manufacturing cost will not be reduced.
- the cost required for manufacturing an optical power splitter with four optical splitters of a 1 ⁇ 2 PLC type is twice or three times the cost of manufacturing an optical power splitter with one only optical splitter of a 1 ⁇ 8 PLC type.
- the manufacturing cost of the 1 ⁇ 2 PLC type per channel is twice or three times that of the 1 ⁇ 8 PLC type.
- FIG. 1 illustrates the basic structure of the conventional optical power splitter with four 1 ⁇ 2 (i.e., 4(1 ⁇ 2)) optical splitters.
- the conventional optical power splitter has a dicing line for cutting the splitter into individual elements.
- the conventional optical power splitter requires a space for accepting four divided modules which has an adverse effect in the in chip size.
- time for assembling the each optical splitter is mostly spent in housing the splitters, thus an efficient work time and material cost cannot be realized.
- the present invention has been made to solve the above-mentioned problems occurring in the prior art, by providing a PLC type optical power splitter that can minimize the size of the chip and greatly reduce its manufacturing cost.
- an optical power splitter having one input optical waveguide and N output optical waveguides for splitting an optical signal incident from the input optical waveguide into N optical signals
- the optical power splitter comprising: at least two optical splitters having a structure of a planar lightwave circuit element and arranged apart from one another at predetermined intervals in a single chip; and, an alignment waveguide for aligning the input and output optical waveguides of the plurality of optical splitters.
- the space between the optical waveguides of the arranged optical splitters is set to at least 127 ⁇ m.
- the space of the input optical waveguides of the arranged optical splitters is 250 ⁇ m and the space of the output optical waveguides is 127 ⁇ m.
- FIG. 1 shows a basic structure of the conventional optical power splitter having four optical splitters of a 1 ⁇ 2 PLC type.
- FIG. 2 shows a basic structure of an optical power splitter having four 1 ⁇ 2-type optical splitters according to an embodiment of the present invention.
- FIG. 3 illustrates the structure of a PLC chip part of four 1 ⁇ 2-type optical splitters according to an embodiment of the present invention.
- FIG. 2 depicts the basic structure of an optical power splitter having four 1 ⁇ 2-type optical splitters according to an embodiment of the present invention.
- the PLC-type optical power splitter includes an input optical fiber array 10 , a PLC chip 100 , and an output optical fiber array 20 .
- a space between optical fibers a and b of the input optical fiber array 10 is set to 250 ⁇ m, while a space between optical fibers c and d of the output optical fiber array 20 is set to 127 ⁇ m. These spaces comply with the industry standard, but the spaces may be varied in accordance with a user's demand.
- the space between the optical fibers In order to reduce the size of the element, it is logical to reduce the space between the optical fibers; however, it is difficult to manufacture optical fibers with a spacing below 127 ⁇ m between them. As such, the space of 127 ⁇ m is preferable in the present invention.
- the PLC chip 100 is configured so that four Y-junction 1 ⁇ 2 splitters are integrated into a single chip in the form of one PLC.
- the space (di) between the optical fibers at the input terminals 110 of the chip and the space between the optical fibers at the output terminals 120 are same as the spaces (between a and b, and between c and d) at the input and output optical fiber arrays 10 and 120 , respectively.
- the optical fibers arranged at the input terminals 110 of the chip at regular intervals are bent at an angle to accommodate proper spacing for the Y-junction portion 130 where the optical fibers are branched out to the output terminals of the output terminals 120 .
- an alignment optical waveguide 50 consists of lines ( 1 ) through ( 4 ) is provided for arranging the input and output optical fiber arrays 10 and 20 .
- the aligning method if a ray of light is incident on the line ( 1 ), the light is divided and propagated into lines ( 2 ) and ( 3 ), so that the output terminals are aligned using these lines. After aligning the output terminals, if the light is incident on the line ( 2 ), the light is divided and propagated into lines ( 4 ) and ( 1 ), so that the input terminals are aligned using these lines.
- each splitter must include a dicing line, thus increasing its size.
- the size of the splitters can be greatly reduced.
- the conventional optical splitters require four separate aligning and bonding operations, and further an extra time for assembling each of all four optical splitters is required.
- the aligning and bonding process needs only to be performed only once to manufacture a single element, and thus the manufacturing time can be reduced.
- the conventional optical splitters require four cases for the separately housing each of the optical splitters and the corresponding optical fiber array with four one-cores and four two-cores.
- one case and one optical fiber array with one four-core and one eight-core are only required, thereby reducing the material cost by 1 ⁇ 3.
- the present invention can be applied to any other structure in which P (where, P is a positive number more than 2) 1 ⁇ N-type (where, N is a positive number more than 2) or M ⁇ N-type (where, M is a positive number more than 1, and N is a positive number more than 2) splitters are integrated into a single chip, in addition to the structure in which four 1 ⁇ 2-type splitters are integrated. Therefore, the scope of the invention is not limited to the embodiment disclosed herein and is determined by the claims of the present and equivalents thereof.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Communication System (AREA)
- Optical Couplings Of Light Guides (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2002-39742 | 2002-07-09 | ||
KR10-2002-0039742A KR100513013B1 (ko) | 2002-07-09 | 2002-07-09 | 광파워 분할기 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040008946A1 US20040008946A1 (en) | 2004-01-15 |
US7088891B2 true US7088891B2 (en) | 2006-08-08 |
Family
ID=29728784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/391,671 Expired - Fee Related US7088891B2 (en) | 2002-07-09 | 2003-03-19 | Optical power splitter |
Country Status (5)
Country | Link |
---|---|
US (1) | US7088891B2 (ko) |
EP (1) | EP1380862A3 (ko) |
JP (1) | JP3612064B2 (ko) |
KR (1) | KR100513013B1 (ko) |
CN (1) | CN1228933C (ko) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100092133A1 (en) * | 2008-10-14 | 2010-04-15 | Conner Mark E | Optical Connection Terminal Having Port Mapping Scheme |
US8300996B2 (en) | 2010-07-30 | 2012-10-30 | Hewlett-Packard Development Company, L.P. | Optical bus for optical signal broadcasting |
US8792767B2 (en) | 2010-04-16 | 2014-07-29 | Ccs Technology, Inc. | Distribution device |
US8798427B2 (en) | 2007-09-05 | 2014-08-05 | Corning Cable Systems Llc | Fiber optic terminal assembly |
US8879882B2 (en) | 2008-10-27 | 2014-11-04 | Corning Cable Systems Llc | Variably configurable and modular local convergence point |
US8909019B2 (en) | 2012-10-11 | 2014-12-09 | Ccs Technology, Inc. | System comprising a plurality of distribution devices and distribution device |
US9004778B2 (en) | 2012-06-29 | 2015-04-14 | Corning Cable Systems Llc | Indexable optical fiber connectors and optical fiber connector arrays |
US9049500B2 (en) | 2012-08-31 | 2015-06-02 | Corning Cable Systems Llc | Fiber optic terminals, systems, and methods for network service management |
US9219546B2 (en) | 2011-12-12 | 2015-12-22 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US9285544B2 (en) | 2011-09-30 | 2016-03-15 | Hewlett Packard Enterprise Development Lp | Optical power splitter including a zig-zag |
US9323020B2 (en) | 2008-10-09 | 2016-04-26 | Corning Cable Systems (Shanghai) Co. Ltd | Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter |
US9547145B2 (en) | 2010-10-19 | 2017-01-17 | Corning Optical Communications LLC | Local convergence point for multiple dwelling unit fiber optic distribution network |
US9547144B2 (en) | 2010-03-16 | 2017-01-17 | Corning Optical Communications LLC | Fiber optic distribution network for multiple dwelling units |
US20170272845A1 (en) * | 2016-03-21 | 2017-09-21 | Kaiam Corp. | Optical interconnect having optical splitters and modulators integrated on same chip |
US10110307B2 (en) | 2012-03-02 | 2018-10-23 | Corning Optical Communications LLC | Optical network units (ONUs) for high bandwidth connectivity, and related components and methods |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2009013523A (es) * | 2007-06-14 | 2010-01-18 | Adc Telecommunications Inc | Modulo de fibra optica. |
US8406585B2 (en) * | 2009-03-30 | 2013-03-26 | Hitachi Cable, Ltd. | Optical waveguide, optical wiring member, and method of mounting optical device on optical wiring member |
JP5134028B2 (ja) * | 2010-03-16 | 2013-01-30 | 日本電信電話株式会社 | 光部品 |
CN102279442B (zh) * | 2010-06-11 | 2015-07-08 | 上海宽岱电讯科技发展有限公司 | 适用不同光功率传输的光分路装置 |
CN102354023B (zh) * | 2011-10-27 | 2012-11-07 | 电子科技大学 | 一种1×n波导型可调光功率分束器 |
CN106125198A (zh) * | 2014-02-21 | 2016-11-16 | 杭州天野通信设备有限公司 | 用于对全通信波段进行分光优化的光分路结构及制备方法 |
WO2016172886A1 (zh) * | 2015-04-29 | 2016-11-03 | 华为技术有限公司 | 分光器、信号传输方法和无源光网络 |
CN104865639B (zh) * | 2015-05-06 | 2017-10-31 | 东南大学 | 基于可调光栅型微环的三维集成光功分/波分器 |
CN106353858A (zh) * | 2016-10-21 | 2017-01-25 | 上海光芯集成光学股份有限公司 | 一种plc光背板 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4953935A (en) * | 1989-03-27 | 1990-09-04 | United Technologies Corporation | Integrated optic star coupler |
US5179604A (en) * | 1990-12-27 | 1993-01-12 | The Furukawa Electric Co., Ltd. | Waveguide-type coupler/splitter |
JPH055811A (ja) | 1991-06-28 | 1993-01-14 | Nippon Telegr & Teleph Corp <Ntt> | 導波路形光結合器 |
JPH08313744A (ja) | 1995-05-18 | 1996-11-29 | Nippon Telegr & Teleph Corp <Ntt> | 光回路部品 |
US5729642A (en) | 1995-10-02 | 1998-03-17 | The Boeing Company | N×N optical switch array using electro-optic and passive waveguide circuits on planar substrates |
JPH10227934A (ja) | 1997-02-14 | 1998-08-25 | Nippon Telegr & Teleph Corp <Ntt> | 光回路部品とその作製方法および光回路調心装置 |
US5970192A (en) * | 1996-10-03 | 1999-10-19 | Ngk Insulators, Ltd. | Method of aligning optical waveguide device |
GB2351360A (en) | 1999-06-21 | 2000-12-27 | Samsung Electronics Co Ltd | AWG WDM with alignment waveguides and aligning apparatus |
US6175675B1 (en) | 1998-09-14 | 2001-01-16 | Samsung Electronics Co., Ltd. | Apparatus for aligning and method of bonding optical waveguide device to optical fiber block |
US20010041034A1 (en) | 2000-05-12 | 2001-11-15 | Junichi Sasaki | Substrate, optical fiber connection end member, optical element housing member, and method of fabrication of an optical module and the substrate |
JP2002040284A (ja) | 2000-07-26 | 2002-02-06 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバアレイ装置およびそれを用いた導波路型多層光波回路モジュール |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05164924A (ja) * | 1991-12-11 | 1993-06-29 | Nippon Sheet Glass Co Ltd | 波長平坦化モニタ付導波型デバイス |
JPH063555A (ja) * | 1992-06-22 | 1994-01-14 | Nippon Sheet Glass Co Ltd | 光分岐デバイス |
JPH08190028A (ja) * | 1995-01-12 | 1996-07-23 | Hitachi Cable Ltd | N×mスプリッタ導波路素子及びその製造方法 |
JP3599080B2 (ja) * | 1997-02-19 | 2004-12-08 | 日本電信電話株式会社 | 導波型スプリッタアレイ |
-
2002
- 2002-07-09 KR KR10-2002-0039742A patent/KR100513013B1/ko not_active IP Right Cessation
-
2003
- 2003-03-19 US US10/391,671 patent/US7088891B2/en not_active Expired - Fee Related
- 2003-04-10 EP EP03007991A patent/EP1380862A3/en not_active Withdrawn
- 2003-04-25 CN CNB031224091A patent/CN1228933C/zh not_active Expired - Fee Related
- 2003-04-30 JP JP2003124913A patent/JP3612064B2/ja not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4953935A (en) * | 1989-03-27 | 1990-09-04 | United Technologies Corporation | Integrated optic star coupler |
US5179604A (en) * | 1990-12-27 | 1993-01-12 | The Furukawa Electric Co., Ltd. | Waveguide-type coupler/splitter |
JPH055811A (ja) | 1991-06-28 | 1993-01-14 | Nippon Telegr & Teleph Corp <Ntt> | 導波路形光結合器 |
JPH08313744A (ja) | 1995-05-18 | 1996-11-29 | Nippon Telegr & Teleph Corp <Ntt> | 光回路部品 |
US5729642A (en) | 1995-10-02 | 1998-03-17 | The Boeing Company | N×N optical switch array using electro-optic and passive waveguide circuits on planar substrates |
US5970192A (en) * | 1996-10-03 | 1999-10-19 | Ngk Insulators, Ltd. | Method of aligning optical waveguide device |
JPH10227934A (ja) | 1997-02-14 | 1998-08-25 | Nippon Telegr & Teleph Corp <Ntt> | 光回路部品とその作製方法および光回路調心装置 |
US6175675B1 (en) | 1998-09-14 | 2001-01-16 | Samsung Electronics Co., Ltd. | Apparatus for aligning and method of bonding optical waveguide device to optical fiber block |
GB2351360A (en) | 1999-06-21 | 2000-12-27 | Samsung Electronics Co Ltd | AWG WDM with alignment waveguides and aligning apparatus |
US20010041034A1 (en) | 2000-05-12 | 2001-11-15 | Junichi Sasaki | Substrate, optical fiber connection end member, optical element housing member, and method of fabrication of an optical module and the substrate |
JP2002040284A (ja) | 2000-07-26 | 2002-02-06 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバアレイ装置およびそれを用いた導波路型多層光波回路モジュール |
Non-Patent Citations (1)
Title |
---|
N. Momotsu et al.; "Compact and Economical High-Density PLC-Type Splitters;" 5<SUP>th </SUP> Asia Pacific Conference on Communications, vol. 2; Oct. 18, 1999; XP 002300028; 2 pgs. |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798427B2 (en) | 2007-09-05 | 2014-08-05 | Corning Cable Systems Llc | Fiber optic terminal assembly |
US9323020B2 (en) | 2008-10-09 | 2016-04-26 | Corning Cable Systems (Shanghai) Co. Ltd | Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter |
US20100092133A1 (en) * | 2008-10-14 | 2010-04-15 | Conner Mark E | Optical Connection Terminal Having Port Mapping Scheme |
US9188759B2 (en) * | 2008-10-14 | 2015-11-17 | Corning Cable Systems Llc | Optical connection terminal having port mapping scheme |
US8879882B2 (en) | 2008-10-27 | 2014-11-04 | Corning Cable Systems Llc | Variably configurable and modular local convergence point |
US9547144B2 (en) | 2010-03-16 | 2017-01-17 | Corning Optical Communications LLC | Fiber optic distribution network for multiple dwelling units |
US8792767B2 (en) | 2010-04-16 | 2014-07-29 | Ccs Technology, Inc. | Distribution device |
US8300996B2 (en) | 2010-07-30 | 2012-10-30 | Hewlett-Packard Development Company, L.P. | Optical bus for optical signal broadcasting |
US9720197B2 (en) | 2010-10-19 | 2017-08-01 | Corning Optical Communications LLC | Transition box for multiple dwelling unit fiber optic distribution network |
US9547145B2 (en) | 2010-10-19 | 2017-01-17 | Corning Optical Communications LLC | Local convergence point for multiple dwelling unit fiber optic distribution network |
US9285544B2 (en) | 2011-09-30 | 2016-03-15 | Hewlett Packard Enterprise Development Lp | Optical power splitter including a zig-zag |
US9219546B2 (en) | 2011-12-12 | 2015-12-22 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US9602209B2 (en) | 2011-12-12 | 2017-03-21 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US9800339B2 (en) | 2011-12-12 | 2017-10-24 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US10110305B2 (en) | 2011-12-12 | 2018-10-23 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US10110307B2 (en) | 2012-03-02 | 2018-10-23 | Corning Optical Communications LLC | Optical network units (ONUs) for high bandwidth connectivity, and related components and methods |
US9004778B2 (en) | 2012-06-29 | 2015-04-14 | Corning Cable Systems Llc | Indexable optical fiber connectors and optical fiber connector arrays |
US9049500B2 (en) | 2012-08-31 | 2015-06-02 | Corning Cable Systems Llc | Fiber optic terminals, systems, and methods for network service management |
US8909019B2 (en) | 2012-10-11 | 2014-12-09 | Ccs Technology, Inc. | System comprising a plurality of distribution devices and distribution device |
US20170272845A1 (en) * | 2016-03-21 | 2017-09-21 | Kaiam Corp. | Optical interconnect having optical splitters and modulators integrated on same chip |
US10178452B2 (en) * | 2016-03-21 | 2019-01-08 | Kaiam Corp. | Optical interconnect having optical splitters and modulators integrated on same chip |
Also Published As
Publication number | Publication date |
---|---|
KR20040005254A (ko) | 2004-01-16 |
JP3612064B2 (ja) | 2005-01-19 |
JP2004046096A (ja) | 2004-02-12 |
CN1467926A (zh) | 2004-01-14 |
US20040008946A1 (en) | 2004-01-15 |
CN1228933C (zh) | 2005-11-23 |
EP1380862A3 (en) | 2005-01-05 |
EP1380862A2 (en) | 2004-01-14 |
KR100513013B1 (ko) | 2005-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7088891B2 (en) | Optical power splitter | |
US10451805B2 (en) | Wavelength division multiplexing/demultiplexing optical transceiving assembly based on diffraction grating | |
KR101159049B1 (ko) | 광 파이버 전력 분할기 모듈 장치 | |
US6222976B1 (en) | Optical harness and cross-connect method | |
JP3287773B2 (ja) | 光導波路デバイスの製造方法 | |
US5946435A (en) | Method and system for providing an improved three port wavelength division multiplexer | |
US9069134B2 (en) | Method for producing an optical splitter cascade and optical assembly | |
US20090148116A1 (en) | Communication apparatus for communication between housing slots, wiring change unit and wiring method | |
JPH10123373A (ja) | 導波路型光モジュール | |
CN203502618U (zh) | 多路波分复用器 | |
US20020197008A1 (en) | Wavelength division multiplexer using planar lightwave circuit | |
US7076129B2 (en) | Apparatus and method for a filterless parallel WDM multiplexer | |
US6556743B2 (en) | Optical signal add and drop apparatus | |
CN114200588A (zh) | 一种光解复用组件结构和封装方法 | |
US6437929B1 (en) | Piezo-actuator based optical add/drop module | |
US6128428A (en) | Single-type array optical conversion apparatus | |
CN112882158A (zh) | 一种可实现波分复用和解复用功能的小型化光学组合件 | |
US20070003190A1 (en) | Optical planar splitter | |
JP2003195071A (ja) | 光波長合分波モジュール | |
US20040033012A1 (en) | Wavelength division multiplexer | |
KR100442657B1 (ko) | 광도파로열 격자를 포함하는 파장 분할 다중화기 | |
US20030012494A1 (en) | Compact optical beam separator and method | |
JPS6017706A (ja) | 平面型光分配回路 | |
JPH0293406A (ja) | アレイ光ファイバ端末 | |
JPS60140207A (ja) | 光分波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, SUN-TAE;KWON, OH-DAL;REEL/FRAME:013895/0278 Effective date: 20030310 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140808 |