US6884556B2 - Electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptor Download PDFInfo
- Publication number
- US6884556B2 US6884556B2 US10/224,352 US22435202A US6884556B2 US 6884556 B2 US6884556 B2 US 6884556B2 US 22435202 A US22435202 A US 22435202A US 6884556 B2 US6884556 B2 US 6884556B2
- Authority
- US
- United States
- Prior art keywords
- group
- formula
- resin
- substituted
- unsubstituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108091008695 photoreceptors Proteins 0.000 title claims abstract description 94
- 229920005989 resin Polymers 0.000 claims abstract description 205
- 239000011347 resin Substances 0.000 claims abstract description 205
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 229920001577 copolymer Polymers 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 43
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 41
- 125000003118 aryl group Chemical group 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 27
- 229930185605 Bisphenol Natural products 0.000 claims description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 21
- 125000005843 halogen group Chemical group 0.000 claims description 21
- 125000000623 heterocyclic group Chemical group 0.000 claims description 20
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 14
- 125000000732 arylene group Chemical group 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 7
- 125000000962 organic group Chemical group 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 5
- 150000004982 aromatic amines Chemical class 0.000 claims description 5
- 230000001588 bifunctional effect Effects 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 5
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 claims description 5
- 125000000609 carbazolyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 150000007857 hydrazones Chemical class 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229920001230 polyarylate Polymers 0.000 abstract description 143
- 239000011230 binding agent Substances 0.000 abstract description 29
- 230000004044 response Effects 0.000 abstract description 13
- 239000003063 flame retardant Substances 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 237
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 189
- 238000003756 stirring Methods 0.000 description 155
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 96
- 239000012044 organic layer Substances 0.000 description 94
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 93
- 239000007864 aqueous solution Substances 0.000 description 93
- 238000002360 preparation method Methods 0.000 description 85
- 239000000243 solution Substances 0.000 description 83
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 78
- 239000010410 layer Substances 0.000 description 67
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 64
- 238000006243 chemical reaction Methods 0.000 description 64
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 63
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 62
- 238000006116 polymerization reaction Methods 0.000 description 39
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 38
- 239000000470 constituent Substances 0.000 description 37
- 125000001424 substituent group Chemical group 0.000 description 36
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 35
- 238000000576 coating method Methods 0.000 description 34
- 239000011248 coating agent Substances 0.000 description 33
- -1 polysiloxane structure Polymers 0.000 description 33
- 238000005406 washing Methods 0.000 description 32
- 230000005587 bubbling Effects 0.000 description 31
- 238000001914 filtration Methods 0.000 description 31
- 229910052757 nitrogen Inorganic materials 0.000 description 31
- 239000002244 precipitate Substances 0.000 description 31
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 26
- LVLNPXCISNPHLE-UHFFFAOYSA-N 2-[(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1CC1=CC=CC=C1O LVLNPXCISNPHLE-UHFFFAOYSA-N 0.000 description 24
- 239000000126 substance Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 20
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 14
- 0 C1=CC=CC=C1.CC(C)=O.CO*OC(C)=O Chemical compound C1=CC=CC=C1.CC(C)=O.CO*OC(C)=O 0.000 description 13
- 238000005299 abrasion Methods 0.000 description 12
- 239000000049 pigment Substances 0.000 description 12
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 10
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 7
- 229920000515 polycarbonate Polymers 0.000 description 7
- 239000004417 polycarbonate Substances 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 6
- MEPYMUOZRROULQ-UHFFFAOYSA-N 4-tert-butyl-2,6-dimethylphenol Chemical compound CC1=CC(C(C)(C)C)=CC(C)=C1O MEPYMUOZRROULQ-UHFFFAOYSA-N 0.000 description 6
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000123 paper Substances 0.000 description 6
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 5
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 4
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 description 4
- GIXXQTYGFOHYPT-UHFFFAOYSA-N Bisphenol P Chemical compound C=1C=C(C(C)(C)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 GIXXQTYGFOHYPT-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- AMNPXXIGUOKIPP-UHFFFAOYSA-N [4-(carbamothioylamino)phenyl]thiourea Chemical compound NC(=S)NC1=CC=C(NC(N)=S)C=C1 AMNPXXIGUOKIPP-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 3
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 3
- 150000000345 2,6-xylenols Chemical class 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- BKTRENAPTCBBFA-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-phenylphenyl)propan-2-yl]-2-phenylphenol Chemical compound C=1C=C(O)C(C=2C=CC=CC=2)=CC=1C(C)(C)C(C=1)=CC=C(O)C=1C1=CC=CC=C1 BKTRENAPTCBBFA-UHFFFAOYSA-N 0.000 description 3
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 3
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 2
- OWEYKIWAZBBXJK-UHFFFAOYSA-N 1,1-Dichloro-2,2-bis(4-hydroxyphenyl)ethylene Chemical compound C1=CC(O)=CC=C1C(=C(Cl)Cl)C1=CC=C(O)C=C1 OWEYKIWAZBBXJK-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- MQXNNWDXHFBFEB-UHFFFAOYSA-N 2,2-bis(2-hydroxyphenyl)propane Chemical compound C=1C=CC=C(O)C=1C(C)(C)C1=CC=CC=C1O MQXNNWDXHFBFEB-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- URFNSYWAGGETFK-UHFFFAOYSA-N 4,4'-Dihydroxybibenzyl Chemical compound C1=CC(O)=CC=C1CCC1=CC=C(O)C=C1 URFNSYWAGGETFK-UHFFFAOYSA-N 0.000 description 2
- MIFGCULLADMRTF-UHFFFAOYSA-N 4-[(4-hydroxy-3-methylphenyl)methyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(CC=2C=C(C)C(O)=CC=2)=C1 MIFGCULLADMRTF-UHFFFAOYSA-N 0.000 description 2
- WZDLEYNMGWZAEJ-UHFFFAOYSA-N 4-[1-(4-hydroxy-3,5-dimethylphenyl)ethyl]-2,6-dimethylphenol Chemical compound C=1C(C)=C(O)C(C)=CC=1C(C)C1=CC(C)=C(O)C(C)=C1 WZDLEYNMGWZAEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- JBLIQDGHJZEURV-UHFFFAOYSA-N C1=CC=CC=C1.CC(=O)C1=CC=C(C(C)=O)C=C1.CC(=O)C1=CC=CC(C(C)=O)=C1.CC(C)=O.CC(C)=O Chemical compound C1=CC=CC=C1.CC(=O)C1=CC=C(C(C)=O)C=C1.CC(=O)C1=CC=CC(C(C)=O)=C1.CC(C)=O.CC(C)=O JBLIQDGHJZEURV-UHFFFAOYSA-N 0.000 description 2
- IIXNBOKURVYTGC-UHFFFAOYSA-N C1=CC=CC=C1.CC(C)=O.COBOC(C)=O Chemical compound C1=CC=CC=C1.CC(C)=O.COBOC(C)=O IIXNBOKURVYTGC-UHFFFAOYSA-N 0.000 description 2
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- DKENIBCTMGZSNM-UHFFFAOYSA-N benzenesulfinyl chloride Chemical compound ClS(=O)C1=CC=CC=C1 DKENIBCTMGZSNM-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- IMHDGJOMLMDPJN-UHFFFAOYSA-N biphenyl-2,2'-diol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 2
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- OENHRRVNRZBNNS-UHFFFAOYSA-N naphthalene-1,8-diol Chemical compound C1=CC(O)=C2C(O)=CC=CC2=C1 OENHRRVNRZBNNS-UHFFFAOYSA-N 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- SJHHDDDGXWOYOE-UHFFFAOYSA-N oxytitamium phthalocyanine Chemical compound [Ti+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 SJHHDDDGXWOYOE-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 150000004714 phosphonium salts Chemical group 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 125000005023 xylyl group Chemical group 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- HUYKZYIAFUBPAQ-UHFFFAOYSA-N (2-hydroxyphenyl)-(4-hydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=CC=C1O HUYKZYIAFUBPAQ-UHFFFAOYSA-N 0.000 description 1
- 125000006727 (C1-C6) alkenyl group Chemical group 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- YKPAABNCNAGAAJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)propane Chemical compound C=1C=C(O)C=CC=1C(CC)C1=CC=C(O)C=C1 YKPAABNCNAGAAJ-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-dioxonaphthalene Natural products C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- BOKGTLAJQHTOKE-UHFFFAOYSA-N 1,5-dihydroxynaphthalene Chemical compound C1=CC=C2C(O)=CC=CC2=C1O BOKGTLAJQHTOKE-UHFFFAOYSA-N 0.000 description 1
- MUWPKXVVEOGKNO-UHFFFAOYSA-N 1-(4-hydroxy-3,5-dimethylphenyl)ethanone Chemical compound CC(=O)C1=CC(C)=C(O)C(C)=C1 MUWPKXVVEOGKNO-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- TVFWSIQTAXZIPC-UHFFFAOYSA-M 1-dodecyl-2-methylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+]1=CC=CC=C1C TVFWSIQTAXZIPC-UHFFFAOYSA-M 0.000 description 1
- GKQHIYSTBXDYNQ-UHFFFAOYSA-M 1-dodecylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+]1=CC=CC=C1 GKQHIYSTBXDYNQ-UHFFFAOYSA-M 0.000 description 1
- AHXBXWOHQZBGFT-UHFFFAOYSA-M 19631-19-7 Chemical compound N1=C(C2=CC=CC=C2C2=NC=3C4=CC=CC=C4C(=N4)N=3)N2[In](Cl)N2C4=C(C=CC=C3)C3=C2N=C2C3=CC=CC=C3C1=N2 AHXBXWOHQZBGFT-UHFFFAOYSA-M 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- WEJVHFVGNQBRGH-UHFFFAOYSA-N 2,3,4,6-tetramethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1C WEJVHFVGNQBRGH-UHFFFAOYSA-N 0.000 description 1
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 1
- VHQGURIJMFPBKS-UHFFFAOYSA-N 2,4,7-trinitrofluoren-9-one Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C2C3=CC=C([N+](=O)[O-])C=C3C(=O)C2=C1 VHQGURIJMFPBKS-UHFFFAOYSA-N 0.000 description 1
- OJFDKJIDBSKDRV-UHFFFAOYSA-N 2,6-dimethyl-4-nonylphenol Chemical compound CCCCCCCCCC1=CC(C)=C(O)C(C)=C1 OJFDKJIDBSKDRV-UHFFFAOYSA-N 0.000 description 1
- JHOPNNNTBHXSHY-UHFFFAOYSA-N 2-(4-hydroxyphenyl)phenol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1O JHOPNNNTBHXSHY-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- XACVRCGRFRDJTE-UHFFFAOYSA-N 2-[(2-hydroxy-3-methylphenyl)methyl]-6-methylphenol Chemical compound CC1=CC=CC(CC=2C(=C(C)C=CC=2)O)=C1O XACVRCGRFRDJTE-UHFFFAOYSA-N 0.000 description 1
- FGPFTFZUNNTNOS-UHFFFAOYSA-N 2-[(2-hydroxy-4-methoxyphenyl)methyl]-5-methoxyphenol Chemical compound OC1=CC(OC)=CC=C1CC1=CC=C(OC)C=C1O FGPFTFZUNNTNOS-UHFFFAOYSA-N 0.000 description 1
- VXZMMGBQTKQVIJ-UHFFFAOYSA-N 2-[(2-hydroxy-4-phenylmethoxyphenyl)methyl]-5-phenylmethoxyphenol Chemical compound C=1C=C(CC=2C(=CC(OCC=3C=CC=CC=3)=CC=2)O)C(O)=CC=1OCC1=CC=CC=C1 VXZMMGBQTKQVIJ-UHFFFAOYSA-N 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- QFRGOKROCCEIBK-UHFFFAOYSA-N 2-[(4-hydroxy-3-methoxyphenyl)methyl]-6-methoxyphenol Chemical compound C1=C(O)C(OC)=CC(CC=2C(=C(OC)C=CC=2)O)=C1 QFRGOKROCCEIBK-UHFFFAOYSA-N 0.000 description 1
- RSEHCQOHRKHYRR-UHFFFAOYSA-N 2-[(4-hydroxy-3-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C=C(C)C(O)=CC=2)=C1 RSEHCQOHRKHYRR-UHFFFAOYSA-N 0.000 description 1
- PEHXKUVLLWGBJS-UHFFFAOYSA-N 2-[1-(2-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=CC=C(O)C=1C(C)C1=CC=CC=C1O PEHXKUVLLWGBJS-UHFFFAOYSA-N 0.000 description 1
- PDFIIHNUDFWDNM-UHFFFAOYSA-N 2-[1-(2-hydroxyphenyl)propyl]phenol Chemical compound C=1C=CC=C(O)C=1C(CC)C1=CC=CC=C1O PDFIIHNUDFWDNM-UHFFFAOYSA-N 0.000 description 1
- TYAHIHMYMVZOEC-UHFFFAOYSA-N 2-[2-(2-hydroxyphenyl)ethyl]phenol Chemical compound OC1=CC=CC=C1CCC1=CC=CC=C1O TYAHIHMYMVZOEC-UHFFFAOYSA-N 0.000 description 1
- KNTILYAOZSPWRL-UHFFFAOYSA-N 2-[2-(4-hydroxyphenyl)ethyl]phenol Chemical compound C1=CC(O)=CC=C1CCC1=CC=CC=C1O KNTILYAOZSPWRL-UHFFFAOYSA-N 0.000 description 1
- SYQDRHFONMISET-UHFFFAOYSA-N 2-[[2-hydroxy-3-(4-methylphenyl)phenyl]methyl]-6-(4-methylphenyl)phenol Chemical compound C1=CC(C)=CC=C1C1=CC=CC(CC=2C(=C(C=CC=2)C=2C=CC(C)=CC=2)O)=C1O SYQDRHFONMISET-UHFFFAOYSA-N 0.000 description 1
- XCUMMFDPFFDQEX-UHFFFAOYSA-N 2-butan-2-yl-4-[2-(3-butan-2-yl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C1=C(O)C(C(C)CC)=CC(C(C)(C)C=2C=C(C(O)=CC=2)C(C)CC)=C1 XCUMMFDPFFDQEX-UHFFFAOYSA-N 0.000 description 1
- XQOAPEATHLRJMI-UHFFFAOYSA-N 2-ethyl-4-[2-(3-ethyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C1=C(O)C(CC)=CC(C(C)(C)C=2C=C(CC)C(O)=CC=2)=C1 XQOAPEATHLRJMI-UHFFFAOYSA-N 0.000 description 1
- ABMULKFGWTYIIK-UHFFFAOYSA-N 2-hexylphenol Chemical compound CCCCCCC1=CC=CC=C1O ABMULKFGWTYIIK-UHFFFAOYSA-N 0.000 description 1
- MEEKGULDSDXFCN-UHFFFAOYSA-N 2-pentylphenol Chemical compound CCCCCC1=CC=CC=C1O MEEKGULDSDXFCN-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- WWHHPOAJVOMEAI-UHFFFAOYSA-N 3-(2,3-dihydroxyphenyl)sulfanylbenzene-1,2-diol Chemical compound OC1=CC=CC(SC=2C(=C(O)C=CC=2)O)=C1O WWHHPOAJVOMEAI-UHFFFAOYSA-N 0.000 description 1
- RDOWUVCTFWJRIW-UHFFFAOYSA-N 3-benzyl-4-[(2-benzyl-4-hydroxyphenyl)methyl]phenol Chemical compound C=1C=CC=CC=1CC1=CC(O)=CC=C1CC1=CC=C(O)C=C1CC1=CC=CC=C1 RDOWUVCTFWJRIW-UHFFFAOYSA-N 0.000 description 1
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- VWGKEVWFBOUAND-UHFFFAOYSA-N 4,4'-thiodiphenol Chemical compound C1=CC(O)=CC=C1SC1=CC=C(O)C=C1 VWGKEVWFBOUAND-UHFFFAOYSA-N 0.000 description 1
- YMVXZMOEVXBZTE-UHFFFAOYSA-N 4-(4,4-dihydroxycyclohexa-1,5-dien-1-yl)sulfonylcyclohexa-2,4-diene-1,1-diol Chemical compound C1=CC(O)(O)CC=C1S(=O)(=O)C1=CCC(O)(O)C=C1 YMVXZMOEVXBZTE-UHFFFAOYSA-N 0.000 description 1
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- KLSLBUSXWBJMEC-UHFFFAOYSA-N 4-Propylphenol Chemical compound CCCC1=CC=C(O)C=C1 KLSLBUSXWBJMEC-UHFFFAOYSA-N 0.000 description 1
- DVWHWAHASZOMMB-UHFFFAOYSA-N 4-[(4-hydroxy-2,3,5-trimethylphenyl)-phenylmethyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C=2C=CC=CC=2)C=2C(=C(C)C(O)=C(C)C=2)C)=C1C DVWHWAHASZOMMB-UHFFFAOYSA-N 0.000 description 1
- AKRWBYMONJDTKS-UHFFFAOYSA-N 4-[(4-hydroxy-2,3,5-trimethylphenyl)methyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C(=C(C)C(O)=C(C)C=2)C)=C1C AKRWBYMONJDTKS-UHFFFAOYSA-N 0.000 description 1
- PGRKJLUQWDQFNJ-UHFFFAOYSA-N 4-[(4-hydroxy-2-methoxyphenyl)methyl]-3-methoxyphenol Chemical compound COC1=CC(O)=CC=C1CC1=CC=C(O)C=C1OC PGRKJLUQWDQFNJ-UHFFFAOYSA-N 0.000 description 1
- UIVPCNRACDFQLF-UHFFFAOYSA-N 4-[(4-hydroxy-2-phenylmethoxyphenyl)methyl]-3-phenylmethoxyphenol Chemical compound C=1C=CC=CC=1COC1=CC(O)=CC=C1CC1=CC=C(O)C=C1OCC1=CC=CC=C1 UIVPCNRACDFQLF-UHFFFAOYSA-N 0.000 description 1
- DFAXBVOHLIMORA-UHFFFAOYSA-N 4-[(4-hydroxy-3-phenylphenyl)methyl]-2-phenylphenol Chemical compound C1=C(C=2C=CC=CC=2)C(O)=CC=C1CC(C=1)=CC=C(O)C=1C1=CC=CC=C1 DFAXBVOHLIMORA-UHFFFAOYSA-N 0.000 description 1
- BATCUENAARTUKW-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)-diphenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BATCUENAARTUKW-UHFFFAOYSA-N 0.000 description 1
- RSSGMIIGVQRGDS-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C1=CC=CC=C1 RSSGMIIGVQRGDS-UHFFFAOYSA-N 0.000 description 1
- YYSSDSDRJPBASG-UHFFFAOYSA-N 4-[1-(4-hydroxy-2,3,5-trimethylphenyl)cyclohexyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(C2(CCCCC2)C=2C(=C(C)C(O)=C(C)C=2)C)=C1C YYSSDSDRJPBASG-UHFFFAOYSA-N 0.000 description 1
- DVSOHCUSLQLEHF-UHFFFAOYSA-N 4-[1-(4-hydroxy-2,3,5-trimethylphenyl)ethyl]-2,3,6-trimethylphenol Chemical compound C=1C(C)=C(O)C(C)=C(C)C=1C(C)C1=CC(C)=C(O)C(C)=C1C DVSOHCUSLQLEHF-UHFFFAOYSA-N 0.000 description 1
- GUTXHCCMQDOMQG-UHFFFAOYSA-N 4-[1-(4-hydroxy-2,5-dimethylphenyl)ethyl]-2,5-dimethylphenol Chemical compound C=1C(C)=C(O)C=C(C)C=1C(C)C1=CC(C)=C(O)C=C1C GUTXHCCMQDOMQG-UHFFFAOYSA-N 0.000 description 1
- XDGXPHFWSPGAIB-UHFFFAOYSA-N 4-[1-(4-hydroxy-3-methylphenyl)ethyl]-2-methylphenol Chemical compound C=1C=C(O)C(C)=CC=1C(C)C1=CC=C(O)C(C)=C1 XDGXPHFWSPGAIB-UHFFFAOYSA-N 0.000 description 1
- BNGGVJXIUPQHJA-UHFFFAOYSA-N 4-[1-(4-hydroxy-3-phenylphenyl)ethyl]-2-phenylphenol Chemical compound C=1C=C(O)C(C=2C=CC=CC=2)=CC=1C(C)C(C=1)=CC=C(O)C=1C1=CC=CC=C1 BNGGVJXIUPQHJA-UHFFFAOYSA-N 0.000 description 1
- VCJACCZVYXRZMP-UHFFFAOYSA-N 4-[1-(4-hydroxy-3-phenylphenyl)propyl]-2-phenylphenol Chemical compound C=1C=C(O)C(C=2C=CC=CC=2)=CC=1C(CC)C(C=1)=CC=C(O)C=1C1=CC=CC=C1 VCJACCZVYXRZMP-UHFFFAOYSA-N 0.000 description 1
- CNMNEYFYZTUKLS-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-1-phenylpropyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(CC)C1=CC=CC=C1 CNMNEYFYZTUKLS-UHFFFAOYSA-N 0.000 description 1
- OVVCSFQRAXVPGT-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)cyclopentyl]phenol Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCC1 OVVCSFQRAXVPGT-UHFFFAOYSA-N 0.000 description 1
- DRSXRGHFNQKGOB-UHFFFAOYSA-N 4-[2-(4-hydroxy-2,3,5-trimethylphenyl)propan-2-yl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C(=C(C)C(O)=C(C)C=2)C)=C1C DRSXRGHFNQKGOB-UHFFFAOYSA-N 0.000 description 1
- IJWIRZQYWANBMP-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-propan-2-ylphenyl)propan-2-yl]-2-propan-2-ylphenol Chemical compound C1=C(O)C(C(C)C)=CC(C(C)(C)C=2C=C(C(O)=CC=2)C(C)C)=C1 IJWIRZQYWANBMP-UHFFFAOYSA-N 0.000 description 1
- RCBCKMFUCKSULG-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)-1,3-diphenylpropan-2-yl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(CC=1C=CC=CC=1)CC1=CC=CC=C1 RCBCKMFUCKSULG-UHFFFAOYSA-N 0.000 description 1
- KANXFMWQMYCHHH-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)-3-methylbutan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C(C)C)C1=CC=C(O)C=C1 KANXFMWQMYCHHH-UHFFFAOYSA-N 0.000 description 1
- VHLLJTHDWPAQEM-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)-4-methylpentan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CC(C)C)C1=CC=C(O)C=C1 VHLLJTHDWPAQEM-UHFFFAOYSA-N 0.000 description 1
- ZQTPHEAGPRFALE-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)hexan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCCC)C1=CC=C(O)C=C1 ZQTPHEAGPRFALE-UHFFFAOYSA-N 0.000 description 1
- WCUDAIJOADOKAW-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)pentan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCC)C1=CC=C(O)C=C1 WCUDAIJOADOKAW-UHFFFAOYSA-N 0.000 description 1
- NRGICQZRWLDSJM-UHFFFAOYSA-N 4-[[4-[(4-hydroxy-2,3,5-trimethylphenyl)methyl]phenyl]methyl]-2,3,6-trimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=CC(CC=3C(=C(C)C(O)=C(C)C=3)C)=CC=2)=C1C NRGICQZRWLDSJM-UHFFFAOYSA-N 0.000 description 1
- RPWUJNUSSDPLDJ-UHFFFAOYSA-N 4-[[4-[(4-hydroxy-3,5-dimethylphenyl)methyl]phenyl]methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=CC(CC=3C=C(C)C(O)=C(C)C=3)=CC=2)=C1 RPWUJNUSSDPLDJ-UHFFFAOYSA-N 0.000 description 1
- UHJYHYMHMYSURX-UHFFFAOYSA-N 4-[[4-[(4-hydroxyphenyl)methyl]phenyl]methyl]phenol Chemical compound C1=CC(O)=CC=C1CC(C=C1)=CC=C1CC1=CC=C(O)C=C1 UHJYHYMHMYSURX-UHFFFAOYSA-N 0.000 description 1
- BCYKGOSWGUHJLX-UHFFFAOYSA-N 4-[[4-hydroxy-3-(4-methylphenyl)phenyl]methyl]-2-(4-methylphenyl)phenol Chemical compound C1=CC(C)=CC=C1C1=CC(CC=2C=C(C(O)=CC=2)C=2C=CC(C)=CC=2)=CC=C1O BCYKGOSWGUHJLX-UHFFFAOYSA-N 0.000 description 1
- KOKPBCHLPVDQTK-UHFFFAOYSA-N 4-methoxy-4-methylpentan-2-one Chemical compound COC(C)(C)CC(C)=O KOKPBCHLPVDQTK-UHFFFAOYSA-N 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- JKPIIBRSOVYMEE-UHFFFAOYSA-N 5-benzyl-2-[(2-benzyl-4-hydroxyphenyl)methyl]phenol Chemical compound C=1C=CC=CC=1CC1=CC(O)=CC=C1CC(C(=C1)O)=CC=C1CC1=CC=CC=C1 JKPIIBRSOVYMEE-UHFFFAOYSA-N 0.000 description 1
- AAGFWPQEZVPOQB-UHFFFAOYSA-N 5-benzyl-2-[(4-benzyl-2-hydroxyphenyl)methyl]phenol Chemical compound C=1C=C(CC=2C(=CC(CC=3C=CC=CC=3)=CC=2)O)C(O)=CC=1CC1=CC=CC=C1 AAGFWPQEZVPOQB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910001370 Se alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QLNFINLXAKOTJB-UHFFFAOYSA-N [As].[Se] Chemical compound [As].[Se] QLNFINLXAKOTJB-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 125000002490 anilino group Chemical class [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- PGEHNUUBUQTUJB-UHFFFAOYSA-N anthanthrone Chemical compound C1=CC=C2C(=O)C3=CC=C4C=CC=C5C(=O)C6=CC=C1C2=C6C3=C54 PGEHNUUBUQTUJB-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229940054051 antipsychotic indole derivative Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- VJGNLOIQCWLBJR-UHFFFAOYSA-M benzyl(tributyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CC1=CC=CC=C1 VJGNLOIQCWLBJR-UHFFFAOYSA-M 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical compound CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 125000004772 dichloromethyl group Chemical group [H]C(Cl)(Cl)* 0.000 description 1
- IBDMRHDXAQZJAP-UHFFFAOYSA-N dichlorophosphorylbenzene Chemical compound ClP(Cl)(=O)C1=CC=CC=C1 IBDMRHDXAQZJAP-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- GRPQBOKWXNIQMF-UHFFFAOYSA-N indium(3+) oxygen(2-) tin(4+) Chemical compound [Sn+4].[O-2].[In+3] GRPQBOKWXNIQMF-UHFFFAOYSA-N 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- PRMHOXAMWFXGCO-UHFFFAOYSA-M molport-000-691-708 Chemical compound N1=C(C2=CC=CC=C2C2=NC=3C4=CC=CC=C4C(=N4)N=3)N2[Ga](Cl)N2C4=C(C=CC=C3)C3=C2N=C2C3=CC=CC=C3C1=N2 PRMHOXAMWFXGCO-UHFFFAOYSA-M 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XOOMNEFVDUTJPP-UHFFFAOYSA-N naphthalene-1,3-diol Chemical compound C1=CC=CC2=CC(O)=CC(O)=C21 XOOMNEFVDUTJPP-UHFFFAOYSA-N 0.000 description 1
- PCILLCXFKWDRMK-UHFFFAOYSA-N naphthalene-1,4-diol Chemical compound C1=CC=C2C(O)=CC=C(O)C2=C1 PCILLCXFKWDRMK-UHFFFAOYSA-N 0.000 description 1
- JRNGUTKWMSBIBF-UHFFFAOYSA-N naphthalene-2,3-diol Chemical compound C1=CC=C2C=C(O)C(O)=CC2=C1 JRNGUTKWMSBIBF-UHFFFAOYSA-N 0.000 description 1
- MNZMMCVIXORAQL-UHFFFAOYSA-N naphthalene-2,6-diol Chemical compound C1=C(O)C=CC2=CC(O)=CC=C21 MNZMMCVIXORAQL-UHFFFAOYSA-N 0.000 description 1
- DFQICHCWIIJABH-UHFFFAOYSA-N naphthalene-2,7-diol Chemical compound C1=CC(O)=CC2=CC(O)=CC=C21 DFQICHCWIIJABH-UHFFFAOYSA-N 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- YRZZLAGRKZIJJI-UHFFFAOYSA-N oxyvanadium phthalocyanine Chemical compound [V+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 YRZZLAGRKZIJJI-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000005551 pyridylene group Chemical group 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 125000005556 thienylene group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- OLKUPBYQDDHEET-UHFFFAOYSA-M triethyl(octadecyl)phosphanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[P+](CC)(CC)CC OLKUPBYQDDHEET-UHFFFAOYSA-M 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
- G03G5/0528—Macromolecular bonding materials
- G03G5/0557—Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
- G03G5/056—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/19—Hydroxy compounds containing aromatic rings
- C08G63/193—Hydroxy compounds containing aromatic rings containing two or more aromatic rings
Definitions
- the present invention relates to electrophotographic photoreceptors having a photosensitive layer formed on an electroconductive substrate. More particularly, the present invention relates to electrophotographic photoreceptors which contain a resin for an electrophotographic photoreceptor in which the resins is excellent in solubility in preparation of a coating liquid to form a photosensitive layer and storage stability of the coating solution, and has good electric response characteristics.
- Electrophotographic technology in recent years, has found widespread application not only in the field of copying machines, but also in the field of various printers, because it can quickly provide images of high quality.
- photoreceptor which is the core of the electrophotographic technology
- photoreceptors using, as the photoconductive materials, conventional inorganic photoconductors such as selenium, arsenic-selenium alloy, cadmium sulfide, and zinc oxide, and in recent years, organic photoconductive materials which have the advantages of entailing no pollution, ensuring easy film-forming, being easy to manufacture, and the like.
- the organic photoreceptors there are known the so-called dispersion type photoreceptors obtained by dispersing a photoconductive fine powder in a binder resin, and the lamination type photoreceptors obtained by laminating a charge generation layer and a charge transport layer. Further, as the lamination type photoreceptor, an ordered lamination type photoreceptor wherein the charge generation layer and the charge transport layer are laminated in this order on an electroconductive substrate, and a reversed lamination type photoreceptor wherein the charge transport layer and the charge generation layer are laminated in this order, are known.
- the lamination type photoreceptor has a high possibility of ranking as a dominant photoreceptor because: (1) a high sensitivity photoreceptor can be provided by using a charge generation material and a charge transport material each having a high efficiency in combination; (2) a high safety photoreceptor can be obtained because of its wide material selection range; (3) and it is relatively advantageous in terms of cost due to its high productivity of coating. Therefore, it has been vigorously developed and has gone into actual use.
- the electrophotographic photoreceptor is repeatedly used in an electrophotographic process, i.e., in cycles of charging, exposure, development, transfer, cleaning, charge removal, and the like, during which it is subjected to various stresses to be deteriorated.
- Such deterioration includes chemical or electrical deterioration due to the following facts. That is, strongly oxidizing ozone or NO x arising from, for example, a corona charger commonly used as a charger can cause chemical damage to a photosensitive layer.
- carriers (current) generated upon image exposure passes through the inside of the photosensitive layer and can damage the photosensitive layer.
- the photosensitive composition may also be decomposed by charge-removed light or light from the outside.
- the charge transport layer is a charge transport layer which is the outermost layer that receives such a load in the case of the ordered lamination type photoreceptor.
- the charge transport layer generally comprises a binder resin and a charge transport material. It is the binder resin that substantially determines the strength. However, since the amount of the charge transport material to be doped is considerably large, a sufficient mechanical strength has not yet been achieved.
- the photoreceptor is required not only to have a high sensitivity and a long life, but also to have good response characteristics so as to reduce the length of time between exposure and development thereof. It is known that, although the response characteristics are controlled by the charge transport layer, especially the charge transport material, it is also largely affected by the binder resin.
- Each of the layers constituting the electrophotographic photoreceptor is formed by coating on a substrate by dip coating, spray coating, nozzle coating, bar coating, roll coating, blade coating, or the like.
- the method of forming the charge transport layer a known method of coating a coating solution obtained by dissolving materials to be contained in the layer in a solvent, for example, has been applied.
- a coating solution is preliminarily prepared and preserved. Accordingly, the binder resin is required to be excellent also in regard to solubility in a solvent used for coating process, and stability of the coating solution after dissolution.
- thermoplastic resins and various thermosetting resins including vinyl polymers such as polymethyl methacrylate, polystyrene, and polyvinyl chloride, and copolymers thereof, polycarbonate, polyester, polysulfone, phenoxy, epoxy, and silicone resins.
- the polycarbonate resin has a relatively excellent performance out of a large number of the binder resins, and hence various polycarbonate resins have been developed and have gone into actual use so far.
- JP-A-56-135844 there is disclosed the technology of an electrophotographic photoreceptor using a polyarylate resin and a binder, commercially available under the tradename “U-polymer”.
- U-polymer commercially available under the tradename “U-polymer”.
- JP-A-3-6567 there is disclosed an electrophotographic photoreceptor containing a polyarylate copolymer having a structure using tetramethylbisphenol F and bisphenol A as bisphenol components.
- JP-A-10-288845 it is disclosed that use of a polyarylate resin using a bisphenol component of a specific structure as the binder resin improves the solution stability in manufacturing the photoreceptor.
- JP-A-10-288846 it is disclosed that an electrophotographic photoreceptor using a polyarylate resin having a specific kinematic viscosity range is excellent in the mechanical strength, especially the abrasion resistance.
- JP-A-57-73021 U.S. Pat. No. 4,426,511, European Patent No. 0,050,821
- JP-A-57-73021 U.S. Pat. No. 4,426,511, European Patent No. 0,050,821
- a polyarylate of a specific structure excellent in heat resistance is disclosed.
- application of such a polyarylate of the specific structure to electrophotographic photoreceptors, and required mechanical characteristics, electric characteristics, and the like, are not disclosed.
- the present invention provides an electrophotographic photoreceptor having at least a photosensitive layer formed on an electroconductive substrate, wherein the photosensitive layer contains a resin having repeating units of the following formula (1): where, in the formula (1), A represents a plurality of bivalent groups including at least two members selected from the group consisting of bivalent groups of the following formulae (2), (3) and (4): where, in the formulae (2), (3) and (4), each of R 1 to R 24 which are independent of one another, represents a hydrogen atom, a substituted or unsubstituted C 1-10 alkyl group, a substituted or unsubstituted C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group, and each of X 1 , X 2 and X 3 which may be the same or different, represents a single bond, a bivalent organic group of the formula (5), —O—, —S—,
- one key feature of the present invention is that a resin which containing a group of the formula (3) and/or a group of the formula (4) as the component A in the formula (1) is employed.
- the electrophotographic photoreceptor of the present invention is characterized in that the photosensitive layer contains a resin (referred to sometimes as a polyarylate resin) having repeating units of the formula (1).
- a resin referred to sometimes as a polyarylate resin having repeating units of the formula (1).
- the resin comprising the structure of the formula (1) of the present invention has a viscosity-average molecular weight of from 8,000 to 300,000, preferably from 15,000 to 100,000, more preferably from 20,000 to 50,000. If the viscosity-average molecular weight is less than 10,000, mechanical strength of the resin tends to decrease, such being unpractical, and if it is at least 300,000, when the photosensitive layer is formed on an electroconductive substrate, it tends to be difficult to coat the photosensitive layer in an appropriate thickness.
- Each of the units of formulae (2), (3), and (4) may be present in an amount of 1 to 99 mol % based on the total number of monomeric units of formula (1) in the resin.
- the preferred amount for the units of formula (2) is at most 45 mol % based on the number of monomeric units of formula (1).
- the preferred amount for the units of formula (3) is at most 30 mol % based on the number of monomeric units of formula (1).
- the preferred amount for the units of formula (4) is at most 15 mol % based on the monomeric units of formula (1). It is preferred that the amounts of the units of formulae (2), (3), and (4) are not increased much over these specified amounts.
- the polyarylate resin of the present invention may be mixed with another resin to be used for the electrophotographic photoreceptor.
- Said another resin to be mixed may, for example, be a vinyl polymer such as polymethyl methacrylate, polystyrene or polyvinyl chloride, a copolymer thereof, a thermoplastic resin such as polycarbonate, polyester, polysulfone, phenoxy, epoxy or a silicone resin or a thermosetting resin.
- a polycarbonate resin may be mentioned as a preferred resin.
- the amount of another resin is usually at most 50 wt %, preferably at most 30 wt %, most preferably at most 10 wt %, based on the entire binder resin.
- the amount of the other resin may be 1 to 50 wt %, more typically 1 to 30 wt %, even more typically 1 to 10 wt %, based on the entire binder resin.
- a polyester resin of the present invention when used as a surface slip property improving agent or a fire retardancy imparting agent, at most 50 wt %, preferably at most 20 wt %, most preferably at most 5 wt %, based on the entire resin, of a polyester or another resin containing no polysiloxane structure may be used.
- the polyarylate resin of the present invention may be a copolymer with another resin.
- the copolymer may be any of block, graft and multi-block copolymers.
- Said another resin to be copolymerized may, for example, be polycarbonate, polysulfone, polyether, polyketone, polyamide, polysiloxane, polyimide, polystyrene, or polyolefin. Among them, most preferred is polycarbonate in view of electric characteristics and mechanical characteristics.
- the amount of the copolymerizable component other than the polyarylate is usually at most 70 mol %, preferably at most 50 mol %, most preferably at most 30 mol %, based on the number of moles of monomeric units in the entire copolymer in view of mechanical characteristics.
- the copolymerizable component other than the polyarylate may be present in an amount of 1 to 70 mol %, more typically 1 to 50 mol %, even more typically 1 to 30 mol %, based on the number of moles of monomeric units in the entire copolymer.
- the constituting unit in the formula (1) represents a plurality of bivalent groups, including at least two members selected from the group consisting of bivalent groups of the following formulae (2), (3) and (4).
- Such structures are residues derived from a p,p′-form, an o,p′-form and an o,o′-form, respectively, of a biphenol component or a bisphenol component, used in production of the polyarylate resin used in the present invention. They may be selected from positional isomers of the same rational formula or from positional isomers of different rational formulae.
- the polyarylate resin is preferably a copolymer with repeating units of the formula (6): where, in the formula (6), B represents a bifunctional phenol component, a biphenol component, a bisphenol component or a bivalent group of the following formula (7): wherein each of R 30 to R 37 which are independent of one another, represents a hydrogen atom, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group, Y represents a single bond or —CR 38 R 39 —, and each of R 38 and R 39 represents a hydrogen atom, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group, provided that R 38 and R 39 may be bonded to each other to form a
- R 1 to R 24 in the formulae (2), (3) and (4) which are independent of one another, represents a hydrogen atom, a substituted or unsubstituted C 1-10 alkyl group, a substituted or unsubstituted C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group.
- the alkyl group may, for example, be a methyl group, an ethyl group, a n-propyl group, an i-propyl group, a n-butyl group, an i-butyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, a sec-pentyl group or a n-hexyl group, and the alkoxyl group may, for example, be a methoxy group, an ethoxy group, a n-propoxy group or a n-butoxy group.
- the halogen atom may, for example, be a chlorine atom, a bromine atom or a fluorine atom
- the halogenated alkyl group may, for example, be a chloromethyl group, a dichloromethyl group, a trichloromethyl group or a trifluoromethyl group.
- the substituted or unsubstituted aromatic group may, for example, be a phenyl group, a 4-methylphenyl group or a naphthyl group.
- Each of X 1 to X 3 which may be the same or different, represents a single bond, a bivalent organic group of the formula (5), —O—, —S—, —CO—, —SO 2 — or —(CH 2 ) S — (wherein S is an integer of from 2 to 5).
- S is an integer of from 2 to 5.
- preferred is —(CH 2 ) S —, a bivalent organic group of the formula (5) or a single bond, particularly preferred is —CH 2 —.
- the proportion of the bivalent group of the formula (2) is preferably at most 45 mol % based on the total number of moles of bivalent groups represented by A and B in said resin, in view of solubility in an organic solvent containing no halogen atom, such as tetrahydrofuran or toluene.
- each of R 25 to R 29 which are independent of one another, represents a hydrogen atom, a substituted or unsubstituted C 1-10 alkyl group, a substituted or unsubstituted C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group. Specific examples thereof are as defined above. Further, R 25 and R 26 , and R 27 and R 28 , may be bonded to each other to form a cycle.
- a hydrogen atom preferred is a C 1-10 alkyl group or a C 1-10 alkoxyl group, and R 25 and R 26 , and R 27 and R 28 , may be bonded to each other to form a cycle. Further, particularly preferred is a hydrogen atom.
- u is an integer of from 0 to 4.
- the units of formulae (2), (3), and (4) correspond to those structures derived from a biphenol or bisphenol component.
- p,p′-biphenylene (a unit according to formula (2)) corresponds to the unit derived by removing the two hydroxyl groups from 4,4′-biphenol.
- biphenylene unit of the formula (2) include those which correspond to the structures likewise derived from the following biphenol components such as 4,4′-biphenol, 3,3′-dimethyl-4,4′-dihydroxy-1,1′-biphenyl[3,3′-dimethyl- ⁇ (1,1′-bi-phenyl)-4,4′-diol ⁇ ], 3,3′-di-(t-butyl)-4,4′-dihydroxy-1,1′-biphenyl[3,3′-di-(t-butyl)- ⁇ (1,1′-bi-phenyl)-4,4′-diol ⁇ ], 3,3′,5,5′-tetramethyl-4,4′-dihydroxy-1,1′-biphenyl[3,3′,5,5′-tetramethyl- ⁇ (1,1′-bi-phenyl)-4,4′-diol ⁇ ], 3,3′,5,5′-tetra-(t-but
- the unit of formula (2) has the structure likewise derived from the bisphenol components such as bis-(4-hydroxyphenyl)methane (BPF), bis-(4-hydroxy-3-methylphenyl)methane, 1,1-bis-(4-hydroxyphenyl)ethane (BPE) and 2,2-bis-(4-hydroxyphenyl)propane (BPA) may be mentioned.
- BPF bis-(4-hydroxyphenyl)methane
- BPE 1,1-bis-(4-hydroxyphenyl)ethane
- BPA 2,2-bis-(4-hydroxyphenyl)propane
- the unit derived from bis-(4-hydroxyphenyl)methane is particularly preferred.
- biphenol component and the bisphenol component having the structure of the formula (3) include biphenol components such as 2,4′-biphenol, 3,3′-dimethyl-2,4′-dihydroxy-1,1′-biphenyl[3,3′-dimethyl- ⁇ (1,1′-bi-phenyl)-2,4′-diol ⁇ ] and 3,3′-di-(t-butyl)-2,4′-dihydroxy-1,1′-biphenyl[3,3′-di-(t-butyl)- ⁇ (1,1′-bi-phenyl)-2,4′-diol ⁇ ], and bisphenol components such as (2-hydroxyphenyl)(4-hydroxyphenyl)methane, (2-hydroxy-5-methylphenyl)(4-hydroxy-3-methylphenyl)methane, 1,1-(2-hydroxyphenyl)(4-hydroxyphenyl)ethane, 2,2-(2-hydroxyphenyl)(4-hydroxyphenyl)propan
- (2-hydroxyphenyl)(4-hydroxyphenyl)methane preferred are (2-hydroxyphenyl)(4-hydroxyphenyl)methane, 2,2-(2-hydroxyphenyl)(4-hydroxyphenyl)propane, (2-hydroxy-3-methoxyphenyl)(3-methoxy-4-hydroxyphenyl)methane, and particularly preferred is (2-hydroxyphenyl)(4-hydroxyphenyl)methane.
- biphenol component and the bisphenol component having the structure of the formula (4) include biphenol components such as 2,2′-biphenol, 3,3′-dimethyl-2,2′-dihydroxy-1,1′-biphenyl[3,3′-dimethyl- ⁇ (1,1′-bi-phenyl)-2,2′-diol ⁇ ] and 3,3′-di-(t-butyl)-2,2′-dihydroxy-1,1′-biphenyl[3,3′-di-(t-butyl)- ⁇ (1,1′-bi-phenyl)-2,2′-diol ⁇ ], and bisphenol components such as bis-(2-hydroxyphenyl)methane, 1,1-bis-(2-hydroxyphenyl)ethane, 2,2-bis(2-hydroxyphenyl)propane, 1,1-bis-(2-hydroxyphenyl)propane, bis-(2-hydroxy-5-methylphenyl)methane, bis-(2-hydroxy-3-methylphen
- bis-(2-hydroxyphenyl)methane and 2,2-bis-(2-hydroxyphenyl)propane, and particularly preferred is bis-(2-hydroxyphenyl)methane.
- the polyarylate resin to be used for the electrophotographic photoreceptor of the present invention is preferably a copolymer with repeating units which are different from the repeating units of the formula (1), and the repeating units are preferably represented by the formula (6).
- B in the formula (6) may be a bifunctional phenol component, a biphenol component, a bisphenol component or one represented by the formula (7).
- the content of the repeating units of the formula (1) in the polyarylate resin as a copolymer is usually from 10 to 90 mol %, preferably from 20 to 80 mol %, particularly preferably from 30 to 70 mol %, based on the total moles of monomeric units in the copolymer.
- bifunctional phenol component includes bifunctional phenol components such as hydroquinone, resorcinol, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene and 1,5-dihydroxynaphthalene, and the biphenol components and bisphenol components as mentioned as specific examples of the formula (2), which are not the same as the bivalent group of the formula (7).
- bifunctional phenol components such as hydroquinone, resorcinol, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene and 1,5-dihydroxynaphthalene
- the bivalent group of the formula (7) is more preferred.
- the bivalent group of the formula (7) is not the same as the bivalent group of the formula (2).
- Each of R 30 to R 37 in the formula (7) which are independent of one another, represents a hydrogen atom, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a C 6-20 aromatic group which may be substituted, preferably a hydrogen atom or a C 1-10 alkyl group, and particularly preferably, any four of them, are hydrogen atoms or any four of them are methyl groups.
- Y represents a single bond or —CR 38 R 39 —, and each of R 38 and R 39 represents a hydrogen atom, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C 6-20 aromatic group. Further, R 38 and R 39 may be bonded to each other to form a cycle. Among them, Y is preferably —CR 38 R 39 —, particularly preferably —CH 2 —.
- bisphenol components such as 1,1-bis-(4-hydroxyphenyl)ethane (BPE), 2,2-bis-(4-hydroxyphenyl)propane (BPA), 1,1-bis-(4-hydroxyphenyl)cyclohexane (BPZ), 2,2-bis-(3-phenyl-4-hydroxyphenyl)propane (BPQ), 1,1-bis-(4-hydroxy-3-methyphenyl)ethane (Ce), 2,2-bis-(4-hydroxy-3-methylphenyl)propane (BPC), 1,1-bis-(4-hydroxy-3,5-dimethylphenyl)ethane (Xe), 2,2-bis-(4-hydroxy-3,5-dimethylphenyl)propane (Tma), bis-(4-hydroxy-3,5-dimethylphenyl)methane and 1,1-bis-(4-hydroxyphenyl)-1-phenylethane (BPP) may be mentioned.
- the unit having a structure of the formula (8) is a residue derived from an aromatic dicarboxylic acid component used for production of the polyarylate resin used in the present invention.
- aromatic dicarboxylic acid component a structure of the formula (9) is used.
- the polyarylate resin contain the groups of the formulae (3) and (4) in A in the formula (1) in an amount of from 30 to 100 mol %, based on the total moles of monomeric units of formula (1) in the polyarylate resin.
- a known polymerization method may be employed as a method for producing the resin for the electrophotographic photoreceptor of the present invention. It may, for example, be an interfacial polymerization method, a molten polymerization method or a solution polymerization method.
- a solution having a bisphenol component dissolved in an aqueous alkaline solution and a solution of a halogenated hydrocarbon having an aromatic dicarboxylic chloride component dissolved therein are mixed.
- a catalyst as a catalyst, a quaternary ammonium salt or a quaternary phosphonium salt may be present.
- the polymerization temperature is preferably within a range of from 0 to 40° C., and the polymerization time is preferably within a range of from 2 to 12 hours, in view of productivity.
- the alkali component used may, for example, be a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide.
- the amount of the alkali component is preferably within a range of from 1.01 to 3 equivalent amount of the phenolic hydroxyl groups contained in the reaction system.
- the halogenated hydrocarbon used may, for example, be dichloromethane, chloroform, 1,2-dichloroethane, trichloroethane, tetrachloroethane or dichlorobenzene.
- the quaternary ammonium salt or the quaternary phosphonium salt used as the catalyst may, for example, be a salt such as hydrochloride, bromate or iodate of a tertiary alkyl amine such as tributylamine or trioctylamine, or benzyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltributylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide, trioctylmethylammonium chloride, tetrabutyl phosphonium bromide, triethyloctadecyl phosphonium bromide, N-laurylpyridinium chloride or laurylpicolinium chloride.
- a salt such as hydrochloride, bromate or iodate of a tertiary al
- an alkyl phenol such as phenol, o,m,p-cresol, o,m,p-ethylphenol, o,m,p-propylphenol, o,m,p-tert-butylphenol, pentylphenol, hexylphenol, octylphenol, nonylphenol or a 2,6-dimethylphenol derivative, a monofunctional phenol such as o,m,p-phenylphenol, or a monofunctional acid halide such as acetic chloride, butyric chloride, octyric chloride, benzoyl chloride, benzene sulfinyl chloride, benzene sulfinyl chloride, sulfonyl chloride or benzene phosphonyl chloride, or a substituted product thereof, may be present.
- a 2,6-dimethylphenol such as phenol, o,m,p-cresol, o,m,p-eth
- 2,6-dimethylphenol derivative examples include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2,4,6-trimethylphenol, 2,3,4,6-tetramethylphenol, 2,6-dimethyl-4-t-butylphenol, 2,6-dimethyl-4-nonylphenol, 2,6-dimethyl-4-acetylphenol and ⁇ -tocopherol.
- 2,3,6-trimethylphenol in view of solution stability of the formed polymer.
- polyarylate resin comprising repeating units having a structure of the formula (1)
- groups present at the terminal of the molecular chain such as groups derived from the above-described molecular weight modifier, are not included in the repeating units.
- the above-described resin of the present invention is used for an electrophotographic photoreceptor, and is used as a binder resin in a photosensitive layer provided on an electroconductive substrate of the photoreceptor.
- the electroconductive substrate there are mainly used, for example, metallic materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, resin materials in which a conductive powder such as a metal, carbon, or tin oxide has been added for ensuring an electroconductivity, a resin, glass, or paper with a conductive material such as aluminum, nickel, or ITO (indium oxide-tin alloy) deposited or coated on its surface, or the like. They are used in drum form, sheet form, belt form, or the like. Alternatively, there may also be used the one obtained by coating a conductive material having an appropriate resistance value on an electroconductive substrate made of a metallic material for controlling the conductivity and the surface properties, or covering the defects.
- metallic materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel
- a resin, glass, or paper with a conductive material such as aluminum, nickel, or ITO (indium
- the metallic material such as an aluminum alloy
- it may also be used after having undergone an anodic oxidation treatment, or a film formation treatment.
- anodic oxidation treatment it is desirably subjected to a sealing treatment by a known method.
- the substrate surface may be either smooth, or roughened by using a particular cutting method or carrying out a polishing treatment. Further, it may also be the one roughened by mixing particles with an appropriate particle size in the material constituting the substrate.
- An undercoat layer may be provided between the electroconductive substrate and the photosensitive layer for improving the adhesion, the blocking tendency, and the like.
- the undercoat layer usable may be a resin, the one obtained by dispersing particles of a metal oxide or the like in a resin, and the like.
- the metal oxide particles for use in the undercoat layer include particles of a metal oxide including one metallic element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, or iron oxide; and particles of a metal oxide including a plurality of metallic elements such as calcium titanate, strontium titanate, and barium titanate. These particles may be used singly, or in mixture of a plurality thereof. Out of these metallic oxide particles, the titanium oxide and the aluminum oxide are preferred, and the titanium oxide is particularly preferred.
- the titanium oxide particles may be surface-treated by an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, polyol or silicone. Any crystalline form of the titanium oxide particles such as rutile-, anatase-, brookite-, or amorphous-form may be used. A plurality of crystalline forms may also be included therein.
- the particle size of the metal oxide particles usable may be various ones, among them, it is preferably from 10 to 100 nm, and in particular, it is preferably from 10 to 25 nm as the average primary particle size in view of the characteristics and the solution stability.
- the undercoat layer is desirably formed into the structure in which the metal oxide particles are dispersed in the binder resin.
- the binder resin for use in the undercoat layer include phenoxy, epoxy, polyvinylpyrrolidone, polyvinyl alcohol, casein, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, and polyamide, and they can be used respectively alone, or in a cured form with a curing agent.
- alcohol-soluble copolymerized polyamide, modified polyamide, or the like is preferred in that it exhibits good dispersibility and coating property.
- the amount of the inorganic particles to be added to the binder resin can be optionally selected, but it is preferably in the range of from 10 to 500 wt % in view of the stability and the coating property of the dispersion.
- the film thickness of the undercoat layer can be optionally selected, but it is preferably from 0.1 to 20 ⁇ m in view of the photoreceptor characteristics and the coating property. Further, a known antioxidant or the like may also be added to the undercoat layer.
- a lamination-type photoreceptor so configured that, on an electroconductive substrate, a charge generation layer containing a charge generation material as the main component, and a charge transport layer containing a charge transport material and a binder resin as the main components are laminated in this order;
- a reversed two layer type photoreceptor so configured that, on an electroconductive substrate, a charge transport layer containing a charge transport material and a binder resin as the main components and a charge generation layer containing a charge generation material as the main component are laminated in this order;
- a dispersion type photoreceptor so configured that, on an electroconductive substrate, a layer containing a charge transport material and a binder resin is laminated, and a charge generation material is dispersed in the layer.
- the charge generation material examples include selenium and alloys thereof, cadmium sulfide, and other inorganic photoconductive materials, and various photoconductive materials including organic pigments such as phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments.
- organic pigments such as phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments.
- the organic pigments are particularly preferred, and phthalocyanine pigments and azo pigments are more preferred.
- the fine particles of these charge generation materials are bound by various binder resins such as polyester resin, polyvinyl acetate, polyacrylic acid ester, polymethacrylic acid ester, polyester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin, epoxy resin, urethane resin, cellulose ester, and cellulose ether to be used.
- binder resins such as polyester resin, polyvinyl acetate, polyacrylic acid ester, polymethacrylic acid ester, polyester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin, epoxy resin, urethane resin, cellulose ester, and cellulose ether to be used.
- the amount of the charge generation material to be used in this case is in the range of preferably from 30 to 500 parts by weight per 100 parts by weight of the binder resin, and the film thickness of the charge generation layer is generally from 0.1 to 1
- a phthalocyanine compound When a phthalocyanine compound is used as the charge generation material, specifically, metal-free phthalocyanine and phthalocyanines in which metals such as copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, and germanium, or oxides thereof, halides thereof, hydroxides thereof, alkoxides thereof, or the like are coordinated are used.
- high-sensitivity X-form, and ⁇ -form metal-free phthalocyanines, A-form, B-form, D-form, or the like of titanyl phthalocyanine, vanadyl phthalocyanine, chloroindium phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine, and the like are preferred.
- the A-, and B-forms are referred to as I-, and II-phases, respectively by W. Hellers, et al., (Zeit. Kristallogr. 159 (1982) 173), and the A-form is known as the stable form.
- the D-form is the crystal form characterized in that a distinct peak is shown at a diffraction angle 2 ⁇ 0.2° of 27.3° in a powder X-ray diffraction using a CuK ⁇ ray.
- the phthalocyanine compounds may be used singly, or in mixture of some thereof.
- the phthalocyanine compounds herein used or the ones in crystal form in a mixed state may be obtained by mixing respective constituents afterwards, or by causing the mixed state in the manufacturing and treatment process of the phthalocyanine compound, such as synthesis, formation into pigment, crystallization, or the like.
- an acid paste treatment, a grinding treatment, a solvent treatment, or the like is known.
- Examples of the charge transport material include electron-withdrawing substances including aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, and quinones such as diphenoquinone, and electron donating substances including heterocyclic compounds such as carbazole derivatives, indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, oxadiazole derivatives, pyrazoline derivatives, and thiadiazole derivatives, aniline derivatives, hydrazone compounds, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, and enamine compounds, and the ones obtained by combining a plurality of the compounds, and polymers having a group comprising these compounds at its main chain or side chain.
- electron-withdrawing substances including aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, and quinones such as di
- carbazole derivatives, hydrazone derivatives, aromatic amine derivatives, stilbene derivatives, and butadiene derivatives, and the ones obtained by combining a plurality of the derivatives are preferred, and the ones obtained by combining a plurality of aromatic amine derivatives, stilbene derivatives, and butadiene derivatives, are particularly preferred.
- Suitable charge transport materials are disclosed in U.S. Pat. Nos. 5,804,344 and 5,932,384, both of which are incorporated herein by reference in their entireties.
- each of Ar 1 to Ar 4 which are independent of one another represents an arylene group which may have a substituent or a bivalent heterocycle group which may have a substituent
- Q represents a direct bond or a bivalent residue
- each of R 40 to R 47 which are independent of one another represents an alkyl group which may have a substituent, an aryl group which may have a substituent, an aralkyl group which may have a substituent, a heterocycle group which may have a substituent or a hydrogen atom
- the alkyl group may, for example, be a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, a cyclopentyl group or a cyclohexyl group, and among them, preferred is a C 1-6 alkyl group, particularly preferred is a methyl group.
- the aryl group may, for example, be a phenyl group, a tolyl group, a xylyl group, a naphthyl group or a pyrenyl group, and preferred is a C 6-12 aryl group.
- the aralkyl group may, for example, a benzyl group or a phenethyl group, and preferred is a C 7-12 aralkyl group.
- heterocycle group a heterocycle having aromaticity is preferred, and a furyl group, a thienyl group or a pyridyl group may, for example, be mentioned, and a monocyclic aromatic heterocycle is particularly preferred.
- each of Ar 1 to Ar 4 which are independent of one another represents an arylene group which may have a substituent or a bivalent heterocycle group which may have a substituent.
- Each of m 1 and m 2 which are independent of each other is 0 or 1, and when m 1 and m 2 are 0, each of Ar 5 and Ar 6 which are independent of each other, represents an alkyl group which may have a substituent, an aryl group which may have a substituent or a monovalent heterocycle group which may have a substituent, and when m 1 and m 2 are 1, each of them represents an alkylene group which may have a substituent, an arylene group which may have a substituent or a bivalent heterocycle group which may have a substituent.
- aryl group a phenyl group, a tolyl group, a xylyl group, a naphthyl group or a pyrenyl group may, for example, be mentioned, and a C 6-14 aryl group is preferred;
- arylene group a phenylene group or a naphthylene group may, for example, be mentioned, and a phenylene group is preferred;
- monovalent heterocycle group a heterocycle group having aromaticity is preferred, a furyl group, a thienyl group or a pyridyl group may, for example, be mentioned, and a monocyclic aromatic heterocycle is particularly preferred; and as the bivalent heterocycle group, a heterocycle having aromaticity is preferred, and a pyridylene group or a thienylene group may, for example, be mentioned, and a monocyclic aromatic heterocycle is particularly preferred.
- each of Ar 1 and Ar 2 is a phenylene group
- each of Ar 5 and Ar 6 is a phenyl group.
- the alkyl group, the aryl group, the aralkyl group and the heterocycle group may further have a substituent, and the substituent may, for example, be a cyano group; a nitro group; a hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclopentyl group or a cyclohexyl group; an alkoxyl group such as a methoxy group, an ethoxy group or a propyl
- substituents may be bonded to each other to form a cyclic hydrocarbon group or a heterocycle group by means of a single bond, a methylene group, an ethylene group, a carbonyl group, a vinylidene group, an ethylenylene group, or the like.
- a halogen atom, a cyano group, a hydroxyl group, a C 1-6 alkyl group, a C 1-6 alkoxyl group, a C 1-6 alkyl alkylthio group, a C 6-12 aryloxy group, a C 6-12 arylthio group and a C 2-8 dialkylamino group may be mentioned, and a halogen atom, a C 1-6 alkyl group and a phenyl group are more preferred, and a methyl group and a phenyl group are particularly preferred.
- each of n 1 to n 4 which are independent of one another, represents an integer of from 0 to 4, and preferably from 0 to 2, most preferably 1.
- Each of m 1 and m 2 represents 0 or 1, preferably 0.
- Q represents a direct bond or a bivalent residue, and preferred as the bivalent residue, a Group VI atom, an alkylene group which may have a substituent, an arylene group which may have a substituent, a cycloalkylidene group which may have a substituent or one having these groups bonded to each other, such as [—O-A-O—], [-A-O-A-], [—S-A-S—] or [-A-A-] (wherein A represents an arylene group which may have a substituent or an alkylene group which may have a substituent).
- the alkylene group constituting Q is preferably one having a carbon number of from 1 to 6, and a methylene group and an ethylene group are particularly preferred. Further, as the cycloalkylidene group, one having a carbon number of from 5 to 8 is preferred, and a cyclopentylidene group and a cyclohexylidene group are more preferred. As the arylene group, one having a carbon number of from 6 to 14 is preferred, and a phenylene group and a naphthylene group are particularly preferred.
- alkylene group, arylene group and cycloalkylidene groups may have a substituent, and as preferred substituents, a hydroxyl group, a nitro group, a cyano group, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkenyl group and a C 6-14 aryl group may be mentioned.
- charge transport materials may be used alone or in combination as a mixture. Such a charge transport material is bonded to the binder resin to form the charge transport layer.
- the charge transport layer may be composed of a single layer or may be a laminate of a plurality of layers having different constituents or different compositions.
- the charge transport material is used in an amount of, generally from 30 to 200 parts by weight, preferably from 40 to 150 parts by weight, per 100 parts by weight of the binder resin.
- the film thickness is generally from 5 to 50 ⁇ m, preferably from 10 to 45 ⁇ m.
- the charge transport layer may contain additives is such as known plasticizers, antioxidants, ultraviolet absorbers, electron-withdrawing compounds and leveling agents for improving the film-forming properties, flexibility, coating property, stain resistance, gas resistance, light fastness, and the like.
- antioxidant examples include a hindered phenol compound and a hindered amine compound.
- the above-described charge generation material is dispersed in the charge transport medium having the above compounding ratio.
- the particle size of the charge generation material to be used in such a case is required to be sufficiently small, and it is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less. If the amount of the charge generation material to be dispersed in the photosensitive layer is too small, sufficient sensitivity cannot be obtained. Whereas, if it is too much, there occur detrimental effects such as a reduction in the triboelectricity, a reduction in the sensitivity, and the like. Accordingly, the charge generation material is used, for example, preferably in the range of from 0.5 to 50 wt %, and more preferably in the range of from 1 to 20 wt %.
- the film thickness of the photosensitive layer to be used is generally from 5 to 50 ⁇ m, and preferably from 10 to 45 ⁇ m. It is also acceptable in this case that there are added therein known plasticizers for improving the film-forming properties, flexibility, mechanical strength, and the like, additives for controlling the residual potential, dispersant aids for improving the dispersion stability, leveling agents for improving the coating properties, surfactants, for example, a silicone oil, a fluorine-based oil, and other additives.
- a protective layer may also be provided on the photosensitive layer for a purpose of preventing the wear of the photosensitive layer, or preventing or reducing the deterioration of the photosensitive layer due to the discharge product or the like arising from a charger or the like.
- the surface layer thereof may also contain fluorine-based resins, silicone resins, and the like for a purpose of reducing the frictional resistance or the abrasion on the surface of the photoreceptor. Further, it may also contain particles comprised of these resins, or particles of inorganic compounds.
- Each of the layers constituting the photoreceptor is formed by coating the substrate by means of e.g. dip coating, spray coating, nozzle coating, bar coating, roll coating or blade coating.
- each layer As the method of forming each layer, a known method wherein materials to be contained in the layer are dissolved or dispersed in a solvent to obtain coating liquids, which are sequentially coated, may be employed.
- a solvent or dispersion medium used for preparation of the coating liquid may, for example, be an alcohol such as methanol, ethanol, propanol or 2-methoxyethanol, an ether such as tetrahydrofuran, 1,4-dioxane or dimethoxyethane, an ester such as ethyl formate or ethyl acetate, a ketone such as acetone, methyl ethyl ketone or cyclohexanone, an aromatic hydrocarbon such as benzene, toluene or xylene, a chlorinated hydrocarbon such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane or trichloroethylene, a nitrogen-containing compound such as n-butylamine, isopropanolamine, dieth
- the solid content concentration is preferably at most 40 wt %, more preferably from 10 to 35 wt %, and the viscosity is preferably from 50 to 300 cps, and in the case of the charge generation layer of the lamination type photosensitive layer, the solid content concentration is preferably at most 15 wt %, more preferably from 1 to 10 wt %, and the viscosity is preferably from 0.1 to 10 cps.
- electrophotographic apparatus such as copying machines, printers, and the like which use the electrophotographic photoreceptor of the present invention involve at least the respective steps of charging, exposure, development, and transfer
- each step may be accomplished by using any of the conventionally used methods and apparatus.
- the charging step there may be used, for example, any of corotron or scorotron electrical charging in which a corona discharge is utilized, and contact electrical charging using a conductive roller or brush, a film, or the like.
- the scorotron electrical charging is often used to hold the electrical potential in the dark place constant.
- the development step a commonly used method in which a magnetic or non-magnetic one-component developing agent, two-component developing agent, or the like is contacted or non-contacted to carry out the development may be used.
- the transfer step any of transfer method, any of transfer by a transfer belt, and the like may be adopted.
- the image transfer may be carried out directly onto a sheet of paper, an OHP film, or the like.
- an image may be transferred once onto an intermediate transfer member (in belt form or drum form), and then transferred onto a sheet of paper or an OHP film.
- the fixing means may be commonly used thermal fixing or pressure fixing.
- a polyarylate resin was dissolved in dichloromethane to prepare a solution with a concentration C of 6.00 g/l.
- terephthalic acid chloride (18.34 g) was dissolved in dichloromethane (337 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer and the insoluble matters after washing into methanol (2,250 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin A having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the obtained polyarylate resin A was insoluble in dichloromethane, and the viscosity-average molecular weight could not be measured.
- terephthalic acid chloride 11.82 g
- isophthalic acid chloride 5.07 g
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin B having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the obtained polyarylate resin B was insoluble in dichloromethane, and the viscosity-average molecular weight could not be measured.
- terephthalic acid chloride (9.17 g) and isophthalic acid chloride (9.17 g) were dissolved in dichloromethane (337 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,250 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin C having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the obtained polyarylate resin C was insoluble in dichloromethane, and the viscosity-average molecular weight could not be measured.
- An aimed polyarylate resin D having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1 was obtained in the same manner as in Preparation Example 3 except that (2-hydroxyphenyl)(4-hydroxyphenyl)methane (17.89 g) was used instead of bis-(4-hydroxyphenyl)methane (17.89 g).
- the viscosity-average molecular weight of the obtained polyarylate resin D was 16,400.
- terephthalic acid chloride (10.99 g) was dissolved in dichloromethane (202 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin E having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the obtained polyarylate resin E was insoluble in dichloromethane, and the viscosity-average molecular weight could not be measured.
- terephthalic acid chloride (30.48 g) was dissolved in dichloromethane (561 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,250 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin F having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the viscosity-average molecular weight of the obtained polyarylate resin F was 19,100.
- terephthalic acid chloride (10.68 g) and isophthalic acid chloride (4.58 g) were dissolved in dichloromethane (281 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,700 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin G having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the viscosity-average molecular weight of the obtained polyarylate resin G was 16,700.
- An aimed polyarylate resin H having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1 was obtained in the same manner as in Preparation Example 7 except that the amounts of terephthalic acid chloride (7.63 g) and isophthalic acid chloride (7.63 g) were changed.
- the viscosity-average molecular weight of the obtained polyarylate resin H was 14,900.
- An aimed polyarylate resin I having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1 was obtained in the same manner as in Preparation Example 7 except that no terephthalic acid chloride was added, and the amount of isophthalic acid chloride (15.26 g) was changed.
- the viscosity-average molecular weight of the obtained polyarylate resin I was 12,500.
- terephthalic acid chloride (9.17 g) and isophthalic acid chloride (9.17 g) were dissolved in dichloromethane (337 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,250 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin J having constituents (2), (3), (4) and (8) in the above formula (1) as shown in the following Table 1.
- the viscosity-average molecular weight of the obtained polyarylate resin J was 8,600.
- terephthalic acid chloride 14.45 g was dissolved in dichloromethane (300 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin K having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin K was 32,220.
- terephthalic acid chloride (10.15 g) was dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin L having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin L was 33,700.
- terephthalic acid chloride 14.45 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin M having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin M was 19,100.
- terephthalic acid chloride 14.52 g was dissolved in dichloromethane (280 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin N having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin N was 33,500.
- terephthalic acid chloride 26.58 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin 0 having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin O was 40,700.
- terephthalic acid chloride 13.43 g was dissolved in dichloromethane (280 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin P having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin P was 33,800.
- terephthalic acid chloride 27.35 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin Q having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin Q was 36,700.
- terephthalic acid chloride 28.22 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin R having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin R was 29,800.
- terephthalic acid chloride 29.11 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin S having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin S was 27,200.
- terephthalic acid chloride 14.04 g was dissolved in dichloromethane (280 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin T having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin T was 33,300.
- terephthalic acid chloride 28.22 g was dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin U having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin U was 44,700.
- terephthalic acid chloride 14.09 g was dissolved in dichloromethane (280 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin V having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 2.
- the viscosity-average molecular weight of the obtained polyarylate resin V was 46,400.
- terephthalic acid chloride (5.07 g) and isophthalic acid chloride (5.07 g) were dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the organic layer was poured into a 0.1 N sodium hydroxide aqueous solution (450 ml) and stirred, followed by separation for washing, and then washed with a 0.1 N hydrochloric acid (450 ml) two times, and further washed with water (450 ml) two times.
- the precipitate obtained by diluting the organic layer after washing with 200 ml of methylene chloride and then pouring the diluted organic layer into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin W.
- the viscosity-average molecular weight of the obtained polyarylate resin W was 33,600.
- terephthalic acid chloride (5.52 g) and isophthalic acid chloride (5.52 g) were dissolved in dichloromethane (210 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin a having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin a was 40,700.
- terephthalic acid chloride (8.80 g) and isophthalic acid chloride (8.80 g) were dissolved in dichloromethane (340 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (2,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin b having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin b was 39,100.
- terephthalic acid chloride (8.80 g) was dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,500 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin c having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin c was 23,200.
- terephthalic acid chloride (9.78 g) was dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin d having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin d was 19,400.
- terephthalic acid chloride (4.71 g) and isophthalic acid chloride (4.71 g) were dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin e having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin e was 40,000.
- terephthalic acid chloride (8.46 g) and isophthalic acid chloride (8.46 g) were dissolved in dichloromethane (340 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,750 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin f having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin f was 16,300.
- terephthalic acid chloride (4.57 g) and isophthalic acid chloride (4.57 g) were dissolved in dichloromethane (200 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin h having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin h was 66,600.
- terephthalic acid chloride (13.88 g) and isophthalic acid chloride (13.88 g) were dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin i having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin i was 22,400.
- terephthalic acid chloride (13.48 g) and isophthalic acid chloride (13.48 g) were dissolved in dichloromethane (560 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (3,000 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin j having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin j was 24,500.
- terephthalic acid chloride (16.17 g) was dissolved in dichloromethane (340 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,750 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin k having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin k was 34,800.
- terephthalic acid chloride (7.23 g) and isophthalic acid chloride (7.23 g) were dissolved in dichloromethane (340 ml), and the resulting solution was transferred into a dropping funnel.
- the precipitate obtained by pouring the organic layer after washing into methanol (1,750 ml) was taken out by filtration, and dried to obtain an aimed polyarylate resin l having constituents (2), (3), (4), (6) and (8) in the above formula (1) as shown in the following Table 3.
- the viscosity-average molecular weight of the obtained polyarylate resin l was 28,400.
- a 5% 1,2-dimethoxyethane solution of polyvinyl butyral manufactured by Denki Kagaku Kogyo K.K., tradename “Denka Butyral”, #6000C
- a 5% 1,2-dimethoxyethane solution of a phenoxy resin manufactured by Union Carbide, tradename PKHH
- the dispersion thus obtained was coated on a polyethylene terephthalate film having aluminum vapor deposited on its surface so that the film thickness would be 0.4 ⁇ m to provide a charge generation layer. Then, on the film, a liquid obtained by dissolving 50 parts by weight of a hole transport compound [1] as shown below, 100 parts by weight of the polyarylate resin F prepared in Preparation Example 6, 8 parts by weight of an antioxidant (IRGANOX 1076) and 0.03 part by weight of silicone oil as a leveling agent in 640 parts by weight of a mixed solvent of tetrahydrofuran and toluene (tetrahydrofuran: 80 wt %, toluene: 20 wt %) was coated, followed by drying at 125° C.
- a liquid obtained by dissolving 50 parts by weight of a hole transport compound [1] as shown below 100 parts by weight of the polyarylate resin F prepared in Preparation Example 6, 8 parts by weight of an antioxidant (IRGANOX 1076) and
- Example 1 The same operation as in Example 1 was carried out except that each of the polyarylate resins prepared in Preparation Examples was used instead of the polyarylate resin used in Example 1.
- the results of the solubility and solution stability are shown in Table 4. With respect to the obtained photoreceptor, the following evaluations were carried out.
- Toner was uniformly provided on the photoreceptor manufactured as described above so as to achieve 0.1 mg/cm 2 , and an urethane rubber cut into a 1-cm-wide piece, made of the same material as that for a cleaning blade was used at 45 degrees as the surface to be contacted.
- the coefficient of kinetic friction for the one hundredth cycle when the urethane rubber had been traveled with a load of 200 g, a velocity of 5 mm/sec, and a stroke of 20 mm 100 times was determined by means of a Fully Automatic Friction Abrasion Testing Machine DFPM-SS manufactured by Kyowa Interface Science Co., Ltd. The results are shown in Table 4.
- a photoreceptor film was cut in circle with a diameter of 10 cm to carry out the abrasion evaluation by means of a Taber abrader (manufactured by Toyo Seiki Seisakusyo K.K.). Under the test conditions of 23° C., and 50% RH atmosphere, using a truck wheel CS-10F, and no load (the truck wheel's own weight), the abrasion amount is after 1,000 revolutions was determined by comparing the weights before and after the test. The results are shown in Table 4.
- the initial surface potential was set at ⁇ 700 V
- exposure was carried out by using a 780-nm monochromatic light
- the charge removal was carried out by using a 660-nm monochromatic light
- the surface potential (VL) at the time of irradiation with 2.4 ⁇ J/cm 2 of the 780-nm light.
- the time required for exposure-potential measurement was set at 139 ms.
- the measurements were carried out under the environment of the temperature of 25° C. and a relative humidity of 50% (VL:NN), and a temperature of 5° C. and a relative humidity of 10% (VL:LL). The smaller the absolute value of the surface potential (VL), the better the response characteristics.
- the results are shown in Table 4.
- the polyarylate resin of a specific structure is excellent in electric characteristics particularly response characteristics, and exhibits a high solubility in a non-halogen type solvent and a high solution stability.
- an electrophotographic photoreceptor excellent in response characteristics, and having good mechanical properties, abrasion resistance and sliding properties can be obtained stably.
- the electrophotographic photoreceptor of the present invention using a polyarylate resin of a specific structure is excellent in electric characteristics particularly response characteristics, and exhibits a high solubility even in a non-halogen type solvent, and has adequate mechanical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
where, in the formula (1), A represents a plurality of bivalent groups including at least two members selected from the group consisting of bivalent groups of the following formulae (2), (3) and (4):
where, in the formulae (2), (3) and (4), each of R1 to R24 which are independent of one another, represents a hydrogen atom, a substituted or unsubstituted C1-10 alkyl group, a substituted or unsubstituted C1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C6-20 aromatic group, and each of X1, X2 and X3 which may be the same or different, represents a single bond, a bivalent organic group of the formula (5), —O—, —S—, —CO—, —SO2— or —(CH2)S— (wherein S is an integer of from 2 to 5):
where, in the formula (5), each of R25 to R29 which are independent of one another, represents a hydrogen atom, a substituted or unsubstituted C1-10 alkyl group, a substituted or unsubstituted C1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C6-20 aromatic group, provided that R25 and R26, and R27 and R28, may be bonded to each other to form a cycle, t is an integer of from 0 to 5, R29 represents a C1-10 alkyl group, a C1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C6-20 aromatic group, and u is an integer of from 0 to 4.
where, in the formula (6), B represents a bifunctional phenol component, a biphenol component, a bisphenol component or a bivalent group of the following formula (7):
wherein each of R30 to R37 which are independent of one another, represents a hydrogen atom, a C1-10 alkyl group, a C1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C6-20 aromatic group, Y represents a single bond or —CR38R39—, and each of R38 and R39 represents a hydrogen atom, a C1-10 alkyl group, a C1-10 alkoxyl group, a halogen atom, a halogenated alkyl group or a substituted or unsubstituted C6-20 aromatic group, provided that R38 and R39 may be bonded to each other to form a cycle, provided that the group of the formula (7) is not the same as the group of the formula (2).
where, in the formula (9), a and b are values which satisfy 1≧a/(a+b)≧0, preferably values which satisfy 1≧a/(a+b)≧0.01, more preferably 1≧a/(a+b)≧0.5, particularly preferably 1≧a/(a+b)≧0.7, most preferably a/(a+b)=1. If the value of a/(a+b) becomes small, electric characteristics of the photoreceptor may decrease or mechanical characteristics may decrease, such being unfavorable.
where, in the formula (10), each of Ar1 to Ar4 which are independent of one another, represents an arylene group which may have a substituent or a bivalent heterocycle group which may have a substituent, each of Ar5 and Ar6 represents, when m1=0 and m2=0, an alkyl group which may have a substituent, an aryl group which may have a substituent or a monovalent heterocycle group which may have a substituent, and when m1=1 and m2=1, an alkylene group which may have a substituent, an arylene group which may have a substituent or a bivalent heterocycle group which may have a substituent, Q represents a direct bond or a bivalent residue, each of R40 to R47 which are independent of one another, represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an aralkyl group which may have a substituent or a heterocycle group which may have a substituent, each of n1 to n4 which are independent of one another, represents an integer of from 0 to 4, and each of m1 and m2 which are independent of each other, represents 0 or 1, provided that Ar1 to Ar6 may be bonded to each other to form a cyclic structure.
a=0.438×ηsp+1
b=100×ηsp/C
η=b/a
Mv=3207×η1.205
ηsp=t/t0-1
C=6.00 (g/l)
TABLE 1 | ||||
Dicarboxylic | Viscosity | |||
acid component | average | |||
Bisphenol component | (8) | molecular |
(2) | (3) | (4) | a | b | weight | ||
p, p′-BPF | o, p′-BPF | o, o′-BPF | TPA | IPA | Mv | ||
Resin A | 100 | 0 | 0 | 100 | 0 | — |
Resin B | 100 | 0 | 0 | 70 | 30 | — |
Resin C | 100 | 0 | 0 | 50 | 50 | — |
Resin D | 0 | 100 | 0 | 100 | 0 | 16,400 |
Resin E | 0 | 0 | 100 | 100 | 0 | — |
Resin F | 35 | 48 | 17 | 100 | 0 | 19,100 |
Resin G | 35 | 48 | 17 | 70 | 30 | 16,700 |
Resin H | 35 | 48 | 17 | 50 | 50 | 14,900 |
Resin I | 35 | 48 | 17 | 0 | 100 | 12,500 |
Resin J | 0 | 50 | 50 | 50 | 50 | 8,600 |
TABLE 2 | ||||
Dicarboxylic | Viscosity | |||
acid component | average | |||
Bisphenol component | (8) | molecular |
(2) | (3) | (4) | (6) | a | b | weight | ||
p, p′-BPF | o, p′-BPF | o, o′-BPF | Tm-BPF | TPA | IPA | Mv | ||
Resin K | 0 | 0 | 0 | 100 | 100 | 0 | 32,200 |
Resin L | 50 | 0 | 0 | 50 | 100 | 0 | 33,700 |
Resin M | 35 | 48 | 17 | 0 | 100 | 0 | 19,100 |
Resin N | 49 | 21 | 0 | 30 | 100 | 0 | 33,500 |
Resin O | 3.5 | 4.8 | 1.7 | 90 | 100 | 0 | 40,700 |
Resin P | 7 | 9.6 | 3.4 | 80 | 100 | 0 | 33,800 |
Resin Q | 10.5 | 14.4 | 5.1 | 70 | 100 | 0 | 36,700 |
Resin R | 17.5 | 24 | 8.5 | 50 | 100 | 0 | 29,800 |
Resin S | 24.5 | 33.6 | 11.9 | 30 | 100 | 0 | 27,200 |
Resin T | 35 | 15 | 0 | 50 | 100 | 0 | 33,300 |
Resin U | 33.75 | 12 | 4.25 | 50 | 100 | 0 | 44,700 |
Resin V | 25 | 0 | 25 | 50 | 100 | 0 | 46,400 |
Resin W | 0 | 0 | 50 | 50 | 100 | 0 | 23,600 |
Resin X | 0 | 50 | 0 | 50 | 100 | 0 | 38,200 |
TABLE 3 | ||||
Dicarboxylic | Viscosity | |||
acid component | average | |||
Bisphenol component | (8) | molecular |
(2) | (3) | (4) | (6) | a | b | weight | ||
p, p′-BPF | o, p′-BPF | o, o′-BPF | BPA | TPA | IPA | Mv | ||
Resin a | 0 | 0 | 0 | 100 | 50 | 100 | 40,700 |
Resin b | 17.5 | 24 | 8.5 | 50 | 50 | 100 | 39,100 |
p, p′-BPF | o, p′-BPF | o, o′-BPF | Tm-BPA | ||||
Resin c | 0 | 0 | 0 | 100 | 100 | 0 | 23,200 |
Resin d | 17.5 | 24 | 8.5 | 50 | 100 | 0 | 19,600 |
p, p′-BPF | o, p′-BPF | o, o′-BPF | BPC | ||||
Resin e | 0 | 0 | 0 | 100 | 50 | 50 | 40,000 |
Resin f | 17.5 | 24 | 8.5 | 50 | 50 | 50 | 16,300 |
Resin g | 17.5 | 24 | 8.5 | 50 | 100 | 0 | 23,500 |
p, p′-BPF | o, p′-BPF | o, o′-BPF | BPZ | ||||
Resin h | 0 | 0 | 0 | 100 | 50 | 50 | 66,600 |
Resin i | 17.5 | 24 | 8.5 | 50 | 50 | 50 | 22,400 |
p, p′-BPF | o, p′-BPF | o, o′-BPF | BPP | ||||
Resin j | 0 | 24 | 0 | 50 | 50 | 50 | 24,500 |
Resin k | 17.5 | 24 | 8.5 | 50 | 100 | 0 | 34,800 |
p, p′-BPF | o, p′-BPF | o, o′-BPF | BPQ | ||||
Resin l | 17.5 | 24 | 8.5 | 50 | 50 | 50 | 28,400 |
TABLE 4 | |||||
Abrasion | Friction | ||||
Solubility | test | test | Electric |
Storage | Abrasion | Coefficient | characteristics |
THF/Toluene | stability | amount (mg) | of friction | VL:NN | VL:LL | ||
Comp. Ex. 1 | Resin A | Insoluble | X | X | X | X | X |
Comp. Ex. 2 | Resin B | Insoluble | X | X | X | X | X |
Comp. Ex. 3 | Resin C | Insoluble | X | X | X | X | X |
Comp. Ex. 4 | Resin D | Soluble | Good | X | X | X | X |
Comp. Ex. 5 | Resin E | Insoluble | X | X | X | X | X |
Ex. 1 | Resin F | Soluble | Good | — | — | 17 | — |
Ex. 2 | Resin G | Soluble | Good | — | — | 20 | — |
Ex. 3 | Resin H | Soluble | Good | — | — | 29 | — |
Ex. 4 | Resin I | Soluble | Unstable | — | — | 53 | — |
Ex. 5 | Resin J | Soluble | Good | — | — | 42 | — |
Comp. Ex. 6 | Resin K | Soluble | Unstable | 5 | 0.437 | 42 | 81 |
Comp. Ex. 7 | Resin L | Insoluble | X | X | X | X | X |
Comp. Ex. 8 | Resin M | Insoluble | X | X | X | X | X |
Comp. Ex. 9 | Resin N | Insoluble | X | X | X | X | X |
Ex. 6 | Resin O | Soluble | Good | 4.6 | 0.400 | 41 | 75 |
Ex. 7 | Resin P | Soluble | Good | 3.6 | 0.465 | 35 | 69 |
Ex. 8 | Resin Q | Soluble | Good | 3.7 | 0.485 | 16 | 37 |
Ex. 9 | Resin R | Soluble | Good | 4.3 | 0.478 | 23 | 55 |
Ex. 10 | Resin S | Soluble | Good | 4.4 | 0.475 | 30 | 68 |
Ex. 11 | Resin T | Soluble | Good | 2.6 | 0.485 | 19 | 56 |
Ex. 12 | Resin U | Soluble | Good | 3.4 | 0.488 | 24 | 58 |
Ex. 13 | Resin V | Soluble | Good | 4.9 | 0.490 | 26 | 52 |
Ex. 14 | Resin W | Soluble | Good | 6.0 | 0.470 | 39 | 72 |
Ex. 15 | Resin X | Soluble | Good | 4.0 | 0.469 | 40 | 68 |
Comp. Ex. 10 | Resin a | Soluble | Good | 5.3 | 0.577 | — | 160 |
Ex. 16 | Resin b | Soluble | Good | 3.1 | 0.534 | 35 | 93 |
Comp. Ex. 11 | Resin c | Soluble | Unstable | 7.2 | 0.558 | 44 | 73 |
Ex. 17 | Resin d | Soluble | Good | 7.0 | 0.522 | 33 | 65 |
Comp. Ex. 12 | Resin e | Soluble | Good | 5.3 | 0.570 | 161 | 271 |
Ex. 18 | Resin f | Soluble | Good | 5.1 | 0.500 | 25 | 62 |
Ex. 19 | Resin g | Soluble | Good | 4.1 | 0.510 | 17 | 52 |
Comp. Ex. 13 | Resin h | Insoluble | X | X | X | X | X |
Ex. 20 | Resin i | Soluble | Good | — | — | 60 | 117 |
Comp. Ex. 14 | Resin j | Soluble | Good | 4.0 | 0.575 | 51 | 99 |
Ex. 21 | Resin k | Soluble | Good | 3.2 | 0.526 | 43 | 75 |
Ex. 22 | Resin l | Soluble | Good | 7.0 | 0.556 | 30 | 73 |
X: measurement infeasible | |||||||
—: No data |
Claims (28)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-250234 | 2001-08-21 | ||
JP2001250234A JP4015830B2 (en) | 2001-08-21 | 2001-08-21 | Electrophotographic photoreceptor |
JP2001-250662 | 2001-08-21 | ||
JP2001250662 | 2001-08-21 | ||
JP2001255214 | 2001-08-24 | ||
JP2001-255214 | 2001-08-24 | ||
JP2001262361A JP4298190B2 (en) | 2001-08-30 | 2001-08-30 | Electrophotographic photoreceptor |
JP2001-262361 | 2001-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030087173A1 US20030087173A1 (en) | 2003-05-08 |
US6884556B2 true US6884556B2 (en) | 2005-04-26 |
Family
ID=27482506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/224,352 Expired - Lifetime US6884556B2 (en) | 2001-08-21 | 2002-08-21 | Electrophotographic photoreceptor |
Country Status (2)
Country | Link |
---|---|
US (1) | US6884556B2 (en) |
EP (1) | EP1286224A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050002692A1 (en) * | 2003-06-30 | 2005-01-06 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, electrophotographic process cartridge and image forming apparatus |
US20060068310A1 (en) * | 2002-12-13 | 2006-03-30 | Mitsubishi Chemical Corporation, Tokyo, Japan | Electrophotographic photoreceptor, drum cartridge employing the electrophotographic photoreceptor, and image-forming apparatus |
US20060073400A1 (en) * | 2003-09-02 | 2006-04-06 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US20060078810A1 (en) * | 2003-08-28 | 2006-04-13 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US20060134541A1 (en) * | 2002-12-06 | 2006-06-22 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7897312B2 (en) * | 2003-09-18 | 2011-03-01 | Konica Minolta Business Technologies, Inc. | Image forming method |
JP4336559B2 (en) * | 2003-10-08 | 2009-09-30 | 富士電機デバイステクノロジー株式会社 | Electrophotographic photoreceptor and method for producing the same |
US7704656B2 (en) * | 2005-03-23 | 2010-04-27 | Xerox Corporation | Photoconductive imaging member |
US7740997B2 (en) * | 2006-08-08 | 2010-06-22 | Xerox Corporation | Photoreceptor including multi-block polymeric charge transport material at least partially embedded within a carbon nanotube material |
JP5077765B2 (en) * | 2008-04-30 | 2012-11-21 | 富士電機株式会社 | Electrophotographic photoreceptor and method for producing the same |
US10202487B2 (en) * | 2013-01-24 | 2019-02-12 | Mitsubishi Gas Chemical Company, Inc. | Polyarylate and molded article using same |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006120A (en) | 1969-05-27 | 1977-02-01 | Dynamit Nobel Aktiengesellschaft | Thermostable polyester |
JPS56135844A (en) | 1980-03-26 | 1981-10-23 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS5773021A (en) | 1980-10-24 | 1982-05-07 | Kanegafuchi Chem Ind Co Ltd | Heat-resistant aromatic polyester coplymer and its preparation |
EP0073575A2 (en) | 1981-08-04 | 1983-03-09 | Mita Industrial Co. Ltd. | Electrophotographic photosensitive material |
JPH036567A (en) | 1989-06-02 | 1991-01-14 | Kanegafuchi Chem Ind Co Ltd | Electrophotographic sensitive body |
US5356743A (en) | 1991-11-25 | 1994-10-18 | Xerox Corporation | Electrophotographic imaging members containing polyarylamine polyesters |
EP0736561A2 (en) | 1995-04-06 | 1996-10-09 | General Electric Company | Dihydroxy compound mixtures and polymers thereof |
US5804344A (en) | 1996-03-11 | 1998-09-08 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor containing an arylamine type compound |
JPH10288845A (en) | 1997-04-16 | 1998-10-27 | Mitsubishi Chem Corp | Resin for forming electrophotographic photoreceptor |
JPH10288846A (en) | 1997-04-16 | 1998-10-27 | Mitsubishi Chem Corp | Electrophotographic photoreceptor |
US5932384A (en) | 1997-05-14 | 1999-08-03 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US6185398B1 (en) * | 1998-07-21 | 2001-02-06 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US20020025483A1 (en) * | 2000-03-24 | 2002-02-28 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming method and apparatus, and process cartridge using the photoconductor, and long-chain alkyl group containing bisphenol compound and polymer made therefrom |
US6482560B2 (en) | 1999-12-20 | 2002-11-19 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
-
2002
- 2002-08-20 EP EP02018659A patent/EP1286224A1/en not_active Withdrawn
- 2002-08-21 US US10/224,352 patent/US6884556B2/en not_active Expired - Lifetime
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006120A (en) | 1969-05-27 | 1977-02-01 | Dynamit Nobel Aktiengesellschaft | Thermostable polyester |
JPS56135844A (en) | 1980-03-26 | 1981-10-23 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS5773021A (en) | 1980-10-24 | 1982-05-07 | Kanegafuchi Chem Ind Co Ltd | Heat-resistant aromatic polyester coplymer and its preparation |
EP0073575A2 (en) | 1981-08-04 | 1983-03-09 | Mita Industrial Co. Ltd. | Electrophotographic photosensitive material |
JPH036567A (en) | 1989-06-02 | 1991-01-14 | Kanegafuchi Chem Ind Co Ltd | Electrophotographic sensitive body |
US5356743A (en) | 1991-11-25 | 1994-10-18 | Xerox Corporation | Electrophotographic imaging members containing polyarylamine polyesters |
EP0736561A2 (en) | 1995-04-06 | 1996-10-09 | General Electric Company | Dihydroxy compound mixtures and polymers thereof |
US5804344A (en) | 1996-03-11 | 1998-09-08 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor containing an arylamine type compound |
JPH10288845A (en) | 1997-04-16 | 1998-10-27 | Mitsubishi Chem Corp | Resin for forming electrophotographic photoreceptor |
JPH10288846A (en) | 1997-04-16 | 1998-10-27 | Mitsubishi Chem Corp | Electrophotographic photoreceptor |
US5932384A (en) | 1997-05-14 | 1999-08-03 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US6185398B1 (en) * | 1998-07-21 | 2001-02-06 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US6482560B2 (en) | 1999-12-20 | 2002-11-19 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US20020025483A1 (en) * | 2000-03-24 | 2002-02-28 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming method and apparatus, and process cartridge using the photoconductor, and long-chain alkyl group containing bisphenol compound and polymer made therefrom |
Non-Patent Citations (3)
Title |
---|
Dewrent Publications, AN 1999-019403, XP-002224283, JP 10-288846, Oct. 27, 1998. |
U.S. Appl. No. 09/739,336, filed Dec. 19, 2000. |
U.S. Appl. No. 10/246,628, filed Sep. 19, 2002, Mitsumori et al. |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060134541A1 (en) * | 2002-12-06 | 2006-06-22 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US20060068310A1 (en) * | 2002-12-13 | 2006-03-30 | Mitsubishi Chemical Corporation, Tokyo, Japan | Electrophotographic photoreceptor, drum cartridge employing the electrophotographic photoreceptor, and image-forming apparatus |
US7217483B2 (en) | 2002-12-13 | 2007-05-15 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor, drum cartridge employing the electrophotographic photoreceptor, and image-forming apparatus |
US20050002692A1 (en) * | 2003-06-30 | 2005-01-06 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, electrophotographic process cartridge and image forming apparatus |
US7175955B2 (en) * | 2003-06-30 | 2007-02-13 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, electrophotographic process cartridge and image forming apparatus |
US20060078810A1 (en) * | 2003-08-28 | 2006-04-13 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US7244535B2 (en) | 2003-08-28 | 2007-07-17 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US20060073400A1 (en) * | 2003-09-02 | 2006-04-06 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
US7473507B2 (en) | 2003-09-02 | 2009-01-06 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor with polyester resin in photosensitive layer |
US7718337B2 (en) | 2003-09-02 | 2010-05-18 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor |
Also Published As
Publication number | Publication date |
---|---|
EP1286224A1 (en) | 2003-02-26 |
US20030087173A1 (en) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6803163B2 (en) | Electrophotographic photoreceptor | |
EP1770447B1 (en) | Electrophotographic photosensitive body | |
US7718337B2 (en) | Electrophotographic photoreceptor | |
US6884556B2 (en) | Electrophotographic photoreceptor | |
US20050079431A1 (en) | Electrophotographic photoconductor and methods therefor | |
JP4371568B2 (en) | Electrophotographic photoreceptor | |
JP4132640B2 (en) | Electrophotographic photoreceptor | |
EP0566423B1 (en) | Electrophotographic photoconductor | |
JP3926093B2 (en) | Electrophotographic photoreceptor | |
US7244535B2 (en) | Electrophotographic photoreceptor | |
JP4010725B2 (en) | Electrophotographic photoreceptor | |
JP4054541B2 (en) | Polyester resin for electrophotographic photosensitive member and electrophotographic photosensitive member using the same | |
JP4084976B2 (en) | Electrophotographic photoreceptor | |
JP4835668B2 (en) | Electrophotographic photoreceptor | |
JP3868329B2 (en) | Electrophotographic photoreceptor | |
JP4298190B2 (en) | Electrophotographic photoreceptor | |
JP4527265B2 (en) | Electrophotographic photoreceptor | |
JP4015830B2 (en) | Electrophotographic photoreceptor | |
JP3835153B2 (en) | Electrophotographic photoreceptor | |
JP3969921B2 (en) | Electrophotographic photoreceptor | |
JP4487997B2 (en) | Electrophotographic photoreceptor | |
JP4028781B2 (en) | Electrophotographic photoreceptor | |
JP2006113612A (en) | Electrophotographic photoreceptor | |
JP2002014479A (en) | Electrophotographic photoreceptor | |
JP3801438B2 (en) | Electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMANO, YUUTA;KATO, SATOSHI;SATO, CHIYOKO;AND OTHERS;REEL/FRAME:013449/0304;SIGNING DATES FROM 20021002 TO 20021007 |
|
AS | Assignment |
Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN Free format text: RECORD TO CORRECT ASSIGNOR #4'S DOCUMENT DATE ON AN ASSIGNMENT PREVIOUSLY RECORDED ON REEL/FRAME 013449/0304.;ASSIGNORS:KUMANO, YUUTA;KATO, SATOSHI;SATO, CHIYOKO;AND OTHERS;REEL/FRAME:013874/0157;SIGNING DATES FROM 20021002 TO 20021007 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MITSUBISHI RAYON CO., LTD., JAPAN Free format text: MERGER;ASSIGNOR:MITSUBISHI CHEMICAL CORPORATION;REEL/FRAME:043750/0207 Effective date: 20170401 |
|
AS | Assignment |
Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MITSUBISHI RAYON CO., LTD.;REEL/FRAME:043750/0834 Effective date: 20170401 |