[go: up one dir, main page]

JP3969921B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3969921B2
JP3969921B2 JP2000014362A JP2000014362A JP3969921B2 JP 3969921 B2 JP3969921 B2 JP 3969921B2 JP 2000014362 A JP2000014362 A JP 2000014362A JP 2000014362 A JP2000014362 A JP 2000014362A JP 3969921 B2 JP3969921 B2 JP 3969921B2
Authority
JP
Japan
Prior art keywords
group
general formula
polycarbonate resin
repeating structure
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000014362A
Other languages
Japanese (ja)
Other versions
JP2001209194A (en
Inventor
光幸 三森
聡 加藤
護 臨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000014362A priority Critical patent/JP3969921B2/en
Publication of JP2001209194A publication Critical patent/JP2001209194A/en
Application granted granted Critical
Publication of JP3969921B2 publication Critical patent/JP3969921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面の滑り性、摺動性、耐摩耗性、電気特性に優れた電子写真感光体に関する。
【0002】
【従来の技術】
電子写真技術は、即時性、高品質の画像が得られることなどから、近年では複写機の分野にとどまらず、各種プリンタ−の分野でも広く使われ応用されてきている。電子写真技術の中核となる感光体については、その光導電材料として従来からのセレニウム、ヒ素−セレニウム合金、硫化カドミウム、酸化亜鉛といった無機系の光導電体から、最近では、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体が開発されている。
有機系感光体の中でも電荷発生層、及び電荷輸送層を積層した、いわゆる積層型感光体が考案され、研究の主流となっている。
積層型感光体は、それぞれ効率の高い電荷発生物質、及び電荷輸送物質を組合せることにより高感度の感光体が得られること、材料の選択範囲が広く安全性の高い感光体が得られること、また塗布の生産性が高く比較的コスト面でも有利なことから、感光体の主流になっている。
しかし従来の技術では有機系の積層型感光体は、感度、帯電性といった電気的特性に於いては十分な性能を持つが、感光体表面の物理的強度に於いて不十分であるため、実用上限られた耐刷性能に留まっているのが現状である。
【0003】
電子写真感光体は、電子写真プロセスすなわち帯電、露光、現像、転写、クリーニング、除電等のサイクルで繰り返し使用されるため、その間に様々なストレスを受け劣化する。この様な劣化としては例えば帯電器として普通用いられるコロナ帯電器から発生する強酸化性のオゾンやNOx が感光層に化学的なダメ−ジを与えたり、像露光で生成したキャリア−(電流)が感光層内を流れることや除電光、外部からの光によって感光層組成物が分解するなどによる化学的、電気的劣化がある。またこれとは別の劣化として、クリ−ニングブレ−ド、磁気ブラシなどの摺擦や現像剤、紙との接触等による感光層表面の摩耗や傷の発生、膜の剥がれといった機械的劣化がある。特にこの様な感光層表面に生じる損傷はコピ−画像上に現れやすく、直接画像品質を損うため感光体の寿命を制限する大きな要因となっている。すなわち高寿命の感光体を開発するためには電気的、化学的耐久性を高めると同時に機械的強度を高めることも必須条件である。
一般に積層型感光体の場合機械的劣化を生じるのは、最外層とされることの多い電荷輸送層である。電荷輸送層は通常バインダー樹脂と電荷輸送剤からなっており、実質的に強度を決めるのはバインダー樹脂である。これまで電荷輸送層のバインダー樹脂としてはポリメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、およびその共重合体、ポリカーボネート、ポリエステル、ポリスルホン、フェノキシ樹脂、エポキシ樹脂、シリコーン樹脂等の熱可塑性樹脂や熱硬化性樹脂が用いられている。
【0004】
中でもバインダー樹脂として優れた性能を有する種々のポリカーボネート樹脂が開発され実用に供されている。例えば特開昭50−98332号公報にはビスフェノールPタイプのポリカーボネートが、特開昭59−71057号公報にはビスフェノールZタイプのポリカーボネートが、特開昭59−184251号公報にはビスフェノールPおよびビスフェノールAの共重合タイプのポリカーボネートが、また特開平5−21478にはビス(4ーヒドロキシフェニル)ケトンタイプの構造を含むポリカーボネート共重合体がバインダー樹脂としてそれぞれ開示されている。しかし従来の有機感光体はトナーによる現像、紙との摩擦、クリーニング部材(ブレード)による摩擦など実用上の負荷によって表面が摩耗してしまったり表面に傷が生じてしまうなどの欠点を有しているため、実用上は限られた印刷性能にとどまっているのが現状である。
機械的性能に優れたバインダー樹脂として、特公平7−27223号には、ビスフェノールAとその類縁物質や核置換体から選ばれる2種の繰り返し構造を有するポリカーボネートが提案されている。同公報には、特許記載のポリカーボネート樹脂の有機溶剤溶液は市販のポリカーボネート樹脂の有機溶剤溶液に比し保存性が優れていることが記載されているが、本発明者等の検討によれば、保存安定性は必ずしも十分とはいえない。
【0005】
【発明が解決しようとする課題】
本発明は電気特性に悪影響を及ぼすことなく、感光体表面の耐摩耗性、滑り性を改良した電子写真感光体を提供することを目的とするものであり、特に機械的特性、保存安定性が改良されたバインダー樹脂を使用することにより電子写真感光体の性能を改良しようとするものである。
【0006】
【課題を解決するための手段】
本発明者らは電子写真感光体の表面の耐摩耗性、滑り性の改良について鋭意検討を行った結果、上記目的を達成し得る新規樹脂を開発した。
すなわち本発明の要旨は、導電性支持体上に少なくとも感光層を有する電子写真感光体であって、該感光層が、下記一般式(1)及び下記一般式(2)で示される繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする電子写真感光体に存する。
【0007】
【化3】

Figure 0003969921
【0008】
(式(1)中R はアルキル基を示し、A及びBは、それぞれ独立に、置換基を有するベンゼン環を表す。)
【0009】
【化4】
Figure 0003969921
【0010】
(式(2)中、Ar 及びAr は、フェニレン基を示し、Yは二価の炭化水素基を表す。)。上記一般式(1)及び(2)の繰り返し構造を有する本発明のポリカーボネート樹脂の一部は、特公平7−27223号記載の変性ポリカーボネート樹脂の範囲に包含される。しかしながら、同公報に具体的に開示されているポリカーボネート樹脂の繰り返し構造には、2つのベンゼン環を−CR H−基で結合した構造は包含されていない。即ち、特公平7−27223号に具体的に記載されたカーボネート樹脂は、何れも上記一般式(1)の繰り返し構造を有するものではなく、本発明のポリカーボネート樹脂と明瞭に相違する。そして、実施例から明らかなように、本発明のポリカーボネート樹脂は特公平7−27223号記載の樹脂に比し、樹脂塗布液を形成した場合の保存安定性が優れている。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の電子写真感光体に使用されるポリカーボネート樹脂は、前記一般式(1)及び(2)で示される繰り返し構造を有する。一般式(1)において、R1 はアルキル基を表す。具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t―ブチル基、シクロヘキシル基等の直鎖状、分岐鎖状及び環状のアルキル基が挙げられる。好ましくは、炭素数1ないし3のアルキル基であり、特に、メチル基が好ましい。
又、一般式(1)中、A,Bは、置換基を有しても良いベンゼン環を表す。置換基としては、例えば水酸基;フッ素原子、塩素原子,臭素原子,沃素原子などのハロゲン原子;メチル基,エチル基,プロピル基,ブチル基,ヘキシル基、イソプロピル基、シクロヘキシル基等の炭素数1〜8程度の直鎖、分岐鎖もしくは環状のアルキル基; メトキシ基,エトキシ基,プロピルオキシ基等の炭素数1〜8程度のアルコキシ基;アリル基等のアルケニル基;ベンジル基,ナフチルメチル基,フェネチル基等のアラルキル基;フェノキシ基,トリロキシ基等のアリールオキシ基;ベンジルオキシ基,フェネチルオキシ基等のアリールアルコキシ基;フェニル基,ナフチル基等のアリール基;スチリル基,ナフチルビニル基等のアリールアルケニル基;アセチル基、ベンゾイル基等のアシル基;ジメチルアミノ基,ジエチルアミノ基等のジアルキルアミノ基;ジフェニルアミノ基,ジナフチルアミノ基等のジアリールアミノ基;ジベンジルアミノ基,ジフェネチルアミノ基等のジアラルキルアミノ基,ジピリジルアミノ基,ジチエニルアミノ基等のジ複素環アミノ基;ジアリルアミノ基,もしくは上記のアミノ基の置換基を組み合わせたジ置換アミノ基等の置換アミノ基等があげられる。また、これらの置換基はお互いに縮合して,単結合,メチレン基,エチレン基,カルボニル基,ビニリデン基,エチレニレン基等を介した炭素環基;酸素原子,硫黄原子,窒素原子等を含む複素環基を形成してもよい。A及びBの置換基としては、炭素数1乃至3のアルキル基が好ましく、特にメチル基が好ましい。
【0012】
一般式(2)中、Yは直接結合または、二価の結合基を表す。塗布液の安定性を考慮した場合、Yは二価の結合基であることが好ましい。二価の結合基としては、例えばカルボニル基、−NH−、−NR−(但しRは炭化水素基)等の二価の含窒素基、−S−、−SO2 −等の二価の含硫黄基、二価の炭化水素基等が挙げられ、電気特性の面から二価の炭化水素基が好ましい。
二価の炭化水素基の具体的な例としては、メチレン基、エチレン基、プロピレン基等のアルキレン基、エチリデン基、1−プロピリデン基、2−プロピリデン基等のアルキリデン基、シクロペンチリデン基、シクロヘキシリデン基等のシクロアルキリデン基が挙げられる。これらの中、メチレン基、アルキリデン基、またはシクロアルキリデン基であることが、製造上の点から好ましく、特に、メチレン基、エチリデン基、2―プロピリデン基またはシクロヘキシリデン基であることが最も好ましい。
【0013】
なお、本明細書中で、エチリデン基、プロピリデン基等のアルキリデン基を、メチレン基上にアルキル基が置換したものとして呼称することがある。これら二価の結合基はさらに置換基として、メチル基、エチル基、1−プロピル基、2−プロピル基等のアルキル基、フェニル基等のアリール基等を有していても良い。又、一般式(2)中、Ar1,Ar2 は、製造上の点から、p−フェニレン基であることが好ましい。
一般式(1)及び(2)で示される繰り返し構造の具体例を下記表―1及び表―2に挙げるが、これらに限定されるわけではない。
【0014】
【表1】
Figure 0003969921
【0015】
【表2】
Figure 0003969921
【0016】
【表3】
Figure 0003969921
【0017】
【表4】
Figure 0003969921
【0018】
【表5】
Figure 0003969921
【0019】
【表6】
Figure 0003969921
【0020】
【表7】
Figure 0003969921
【0021】
【表8】
Figure 0003969921
【0022】
本発明に使用されるポリカーボネート樹脂を構成する一般式(1)及び(2)の繰り返し構造は、それぞれ、1種類の組合せでも、2種類以上の組み合わせでも良い。樹脂中における一般式(1)の繰り返し構造と一般式(2)の繰り返し構造の割合は任意の範囲から選ばれるが、一般式(1)の繰り返し構造が30モル%以上であることが好ましく、滑り性を考えた場合は一般式(1)の繰り返し構造が50モル%以上であることが好ましい。
なお、一般式(2)において、Yが1―アルキリデン基の場合は、一般式(1)においてA及びBが非置換のベンゼン環である場合にも相当し、この様な場合は1種類の繰り返し構造のみから構成されていてもよい。一般式(1)及び(2)で表される繰り返し構造は主成分とすることが好ましく、通常、樹脂の全繰り返し構造中の30モル%以上であることが好ましく、50モル%以上であることがさらに好ましく、70モル%以上であることが最も好ましい。一般式(1)及び(2)で表される繰り返し構造が1モル%未満であると十分な滑り性、耐摩耗性が得られない。
【0023】
また実質的に本発明ポリカーボネート樹脂の特性を変えない範囲で、ポリエステル、ポリアリレート、ポリアミド、ポリアセタール、ポリウレタン、ポリイミド、ポリエーテル、ポリケトン、ポリビニル重合体、ポリシロキサン等の他の樹脂を混合しても良い。
一般式(1)及び(2)の繰り返し構造を含む樹脂と他の構造の樹脂を混合して用いる場合、一般式(1)及び(2)の繰り返し構造を含む樹脂は好ましくは10wt%以上100%以下、さらに好ましくは30wt%以上90wt%以下である。10wt%未満であると改良効果が十分に得られない。
他の繰り返し構造を含む場合及び他の樹脂を混合する場合は、一般式(1)及び(2)の繰り返し構造が主成分であることが好ましい。
一般式(1)及び(2)で表される繰り返し構造を含む樹脂の粘度平均分子量は10,000以上300,000以下であることが好ましく、さらに好ましくは20,000以上100,000以下である。粘度平均分子量が10,000未満であると樹脂の機械的強度が著しく低下するおそれがある。また300,000以上を超えると、塗布液の粘度が高くなりキャストフィルムを適当な膜厚に塗布して作製することが難しくなることがある。
【0024】
一般式(1)及び(2)で示される繰り返し構造を有するポリカーボネート樹脂は、それぞれ下記一般式(1′)及び(2′)で示される対応するフェノール系化合物を用いて、常法に従い合成することが出来る。
【0025】
【化5】
Figure 0003969921
【0026】
(一般式(1′)及び(2′)において、A、B、R1 、Ar1 、Ar2 及びYは一般式(1)、(2)と同じ意義を有す。)。
具体的には、例えば塩化メチレン、1,2−ジクロロエタン等の不活性溶媒存在下、上記フェノール系化合物に酸受容体としてアルカリ水溶液あるいはピリジン等を加え、ホスゲンを導入しながら反応させる。
酸受容体としてアルカリ水溶液を使用する時は、触媒としてトリメチルアミン、トリエチルアミン等の第3級アミン類、あるいはテトラブチルアンモニウムクロリド、ベンジルトリブチルアンモニウムブロミド等の第4級アンモニウム化合物を用いると反応速度が増大する。また必要に応じて分子量調節剤としてフェノール、p−ターシャリブチルフェノール等の一価のフェノールを共存させても良い。
触媒は最初から加えても良いし、オリゴマーを造った後に加えても良い。また二種以上のフェノール系化合物を用いて共重合する方法としては、任意の方法を採ることが出来るが、例えば次の方法がある。
【0027】
(イ)二種以上のフェノール系化合物を最初に同時にホスゲンと反応させて共重合する。
(ロ)先ず一種のフェノール系化合物をホスゲンと反応させ、ある程度反応が進んでから他方のフェノール系化合物を加えて重合する。
(ハ)フェノール系化合物を別々にホスゲンと反応させてオリゴマーを製造し、それらを反応させて重合する。
一般式(1)及び(2)の繰り返し構造を有するポリカーボネート樹脂は、電子写真感光体の感光層、特に電荷輸送層のバインダー樹脂として使用すると、後記実施例から明らかなように、従来の樹脂と同様の電気特性を保持すると共に、優れた機械特性と良好な保存安定性を示し、表面強度が著しく改善された耐久性に優れた電子写真感光体が得られる。
【0028】
本発明の電子写真感光体の感光層は導電性支持体上に設けられる。導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料;金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料;アルミニウム、ニッケルもしくはITO(酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着もしくは塗布した樹脂、ガラスもしくは紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状等のものが用いられる。金属材料の導電性支持体の上に、導電性・表面性などの制御のためや欠陥被覆のため、適当な抵抗値を持つ導電性材料を塗布したものでも良い。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化処理、化成皮膜処理等を施してから用いても良い。陽極酸化処理を施した場合、公知の方法により封孔処理を施すのが望ましい。
支持体表面は、平滑であっても良いし、特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていても良い。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでも良い。
【0029】
導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けても良い。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したものなどが用いられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。一種類の粒子のみを用いても良いし複数の種類の粒子を混合して用いても良い。これらの金属酸化物粒子の中で、酸化チタンおよび酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコーン等の有機物による処理を施されていても良い。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルックカイト、アモルファスのいずれも用いることができる。複数の結晶状態のものが含まれていても良い。
また、下引き層に用いる金属酸化物粒子の粒径としては、種々のものが利用できるが、中でも特性および液の安定性の面から、平均一次粒径として10nm以上100nm以下が好ましく、特に好ましいのは、10nm以上25nm以下である。
【0030】
下引き層は、金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、特に限定されるものではなく、フェノキシ樹脂、エポキシ樹脂、ポリビニルピロリドン、ポリビニルアルコール、カゼイン、ポリアクリル酸、セルロース類、ゼラチン、デンプン、ポリウレタン、ポリイミド、ポリアミド等が単独あるいは硬化剤とともに硬化した形で使用できるが、中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は良好な分散性、塗布性を示し好ましい。
下引き層におけるバインダー樹脂に対する無機粒子の添加比は任意に選べるが、10wt%から500wt%の範囲で使用することが、分散液の安定性、塗布性の面で好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性および塗布性から0.1μmから20μmが好ましい。また下引き層には、公知の酸化防止剤等を添加しても良い。
【0031】
本発明の電子写真感光体の感光層の基本的な構成としては、例えば以下の構成が挙げられる。
(1)電荷発生物質を主成分とする電荷発生層、電荷輸送物質及びバインダ−樹脂を主成分とした電荷輸送層をこの順に積層した積層型感光体。
(2)電荷輸送物質及びバインダ−樹脂を主成分とした電荷輸送層、電荷発生物質を主成分とする電荷発生層をこの順に積層した逆二層型感光体。
(3)電荷輸送物質及びバインダ−樹脂を含有する層中に電荷発生物質を分散させた分散型感光体。
これらの中、特に積層型感光体が好ましい。
【0032】
積層型感光体の場合、その電荷発生層に使用される電荷発生物質としては例えばセレニウム及びその合金、硫化カドミウム、その他無機系光導電材料、フタロシアニン顔料、アゾ顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントロン顔料、ベンズイミダゾール顔料などの有機顔料等各種光導電材料が使用でき、特に有機顔料、更にはフタロシアニン顔料、アゾ顔料が好ましい。これらの化合物を蒸着させるか又はバインダー樹脂中に分散させる。ここで用いるバインダー樹脂としてはたとえばポリエステル樹脂、ポリビニルアセテート、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリカーボネート、ポリビニルアセトアセタール、ポリビニルプロピオナール、ポリビニルブチラール、フェノキシ樹脂、エポキシ樹脂、ウレタン樹脂、セルロースエステル、セルロースエーテルなどが挙げられる。この場合の使用比率はバインダー樹脂100重量部に対して、電荷発生物質30から500重量部の範囲より使用され、その膜厚は通常0.1μmから1μm、好ましくは0.15μmから0.6μmの範囲である。
【0033】
電荷発生物質としてフタロシアニン化合物を用いる場合、具体的には、無金属フタロシアニン、或いは銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム等の金属、またはその酸化物、ハロゲン化物等の配位したフタロシアニン類が使用される。3価以上の金属原子への配位子の例としては、上に示した酸素原子、塩素原子の他、水酸基、アルコキシ基などがあげられる。特に感度の高いX型、τ型無金属フタロシアニン、A型、B型、D型等のチタニルフタロシアニン、バナジルフタロシアニン、クロロインジウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等が好適である。なお、ここで挙げたチタニルフタロシアニンの結晶型のうち、A型、B型についてはW.HellerらによってそれぞれI相、II相として示されており(Zeit.Kristallogr.159(1982)173)、A型は安定型として知られているものである。D型は、特公平7−91486号公報などに記載されている結晶型で、CuKα線を用いた粉末X線回折において、回折角2θ±0.2゜が27.3゜に明瞭なピークを示すことを特徴とする結晶型である。フタロシアニン化合物は単一の化合物のもののみを用いても良いし、いくつかの混合状態でも良い。ここでのフタロシアニン化合物ないしは結晶状態に置ける混合状態として、それぞれの構成要素を後から混合して用いても良いし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じせしめたものでも良い。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。
【0034】
電荷輸層に含まれる電荷輸送物質としては、2,4,7−トリニトロフルオレノンなどの芳香族ニトロ化合物、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、オキサジアゾール誘導体、ピラゾリン誘導体、チアジアゾール誘導体などの複素環化合物、アニリン誘導体、ヒドラゾン化合物、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン化合物、これらの化合物が複数結合されたもの、あるいはこれらの化合物からなる基を主鎖もしくは側鎖に有する重合体などの電子供与性物質が挙げられる。電荷輸送物質は単独で用いても良いし、いくつかを混合して用いてもよい。これらの電荷輸送物質がバインダー樹脂に結着した形で電荷輸送層が形成される。電荷輸送層は、単一の層から成っていても良いし、構成成分あるいは組成比の異なる複数の層を重ねたものでも良い。
【0035】
バインダー樹脂と電荷輸送物質の割合は、通常、バインダー樹脂100重量部に対して、電荷輸送物質10〜200重量部、好ましくは30〜150重量部の範囲で使用される。また電荷輸送層の膜厚は一般に5〜50μm、好ましくは10〜45μmがよい。なお、電荷輸送層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させるために周知の可塑剤、酸化防止剤、紫外線吸収剤、電子吸引性化合物、レベリング剤などの添加物を含有させても良い。
酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物などが挙げられる。
【0036】
分散型感光体の場合、前記一般式(1)及び(2)で示される繰り返し構造を有するポリカーボネート樹脂を含むバインダー樹脂100重量部に対して電荷発生物質は1〜50重量部、電荷輸送物質は30〜150重量部の範囲より使用されるのが好ましい。また膜厚は通常5〜50μm、好ましくは10〜30μmが好適である。また必要に応じて酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。
分散型感光層の場合には、上記のような配合比の電荷輸送媒体中に、前出の電荷発生物質が分散される。感光層内に分散される電荷発生物質の量は少なすぎると充分な感度が得られず、多すぎると帯電性の低下、感度の低下などの弊害があり、好ましくは0.5〜50重量%の範囲で、より好ましくは1〜20重量%の範囲で使用される。その場合の電荷発生物質の粒子径は充分小さいことが必要であり、好ましくは1μm以下、より好ましくは0.5μm以下で使用される。またこの場合にも成膜性、可とう性、機械的強度等を改良するための公知の可塑剤、残留電位を抑制するための添加剤、分散安定性向上のための分散補助剤、塗布性を改善するためのレベリング剤、界面活性剤、例えばシリコ−ンオイル、フッ素系オイルその他の添加剤が添加されていても良い。
【0037】
感光層の上に、感光層の損耗を防止したり、帯電器等から発生する放電生成物等による感光層の劣化を防止・軽減する目的で保護層を設けても良い。
また、感光体表面の摩擦抵抗や、摩耗を軽減する目的で、表面の層にはフッ素系樹脂、シリコーン樹脂等を含んでいても良い。また、これらの樹脂からなる粒子や無機化合物の粒子を含んでいても良い。 何れの構成の感光層の場合にも、電荷輸送層のバインダー樹脂として、前記一般式(1)及び(2)で示される繰り返し構造を有するポリカーボネート樹脂を用いることにより、表面強度が著しく改善され、耐久性に優れた電子写真感光体を得ることができる。
【0038】
これらの感光体を構成する各層は、支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等により塗布して形成される。例えば含浸塗布の場合、溶媒としてはTHF、1,4−ジオキサン、トルエン、ベンゼン、キシレン、クロロホルム、塩化メチレン、1,2−ジクロロエタン等が単独又は混合して用いられる。塗布溶液の濃度としてはバインダー樹脂の固形分濃度が1〜50重量%で用いられ、5〜30重量%が好ましく用いられる。各層の形成方法としては、層に含有させる物質を溶剤に溶解又は分散させて得られた塗布液を順次塗布するなどの公知の方法が適用できる。
【0039】
本発明の電子写真感光体を使用する複写機・プリンター等の電子写真装置は、少なくとも帯電、露光、現像、転写の各プロセスを含むが、どのプロセスも通常用いられる方法のいずれを用いても良い。帯電方法(帯電器)としては、例えばコロナ放電を利用したコロトロンあるいはスコロトロン帯電、導電性ローラーあるいはブラシ、フィルムなどによる接触帯電などいずれを用いても良い。このうち、コロナ放電を利用した帯電方法では暗部電位を一定に保つためにスコロトロン帯電が用いられることが多い。現像方法としては、磁性あるいは非磁性の一成分現像剤、二成分現像剤などを接触あるいは非接触させて現像する一般的な方法が用いられる。転写方法としては、コロナ放電によるもの、転写ローラーあるいは転写ベルトを用いた方法等いずれでもよい。転写は、紙やOHP用フィルム等に対して直接行っても良いし、一旦中間転写体(ベルト状あるいはドラム状)に転写したのちに、紙やOHP用フィルム上に転写しても良い。
通常、転写の後、現像剤を紙などに定着させる定着プロセスが用いられ、定着手段としては一般的に用いられる熱定着、圧力定着などを用いることができる。これらのプロセスのほかに、通常用いられるクリーニング、除電等のプロセスを有しても良い。
【0040】
【実施例】
以下実施例によって本発明を具体的に説明するが、本発明はその要旨を越えない限り以下の実施例により限定されるものではない。なお、以下の例中、「部」及び「%」は特記しない限り、「重量部」、「重量%」を意味する。
実施例1
<感光体の製造>
オキシチタニウムフタロシアニン10部を、4−メトキシ−4−メチル−2−ペンタノン150部に加え、サンドグラインドミルにて粉砕分散処理を行ない、顔料分散液を調製した。
また、ポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)5%含有1,2−ジメトキシエタン溶液100部及びフェノキシ樹脂(ユニオンカーバイド社製、商品名PKHH)5%含有1,2−ジメトキシエタン溶液100部を混合してバインダー溶液を調製した。
先に調製した顔料分散液160部に、バインダー溶液100部、適量の1,2−ジメトキシエタンを加え最終的に固形分濃度4.0%の分散液を調製した。
この様にして得られた分散液を、表面にアルミ蒸着したポリエチレンテレフタレートフィルム上に膜厚が0.2μmになるように塗布して電荷発生層を設けた。
次にこのフィルム上に、下記構造のヒドラゾン化合物50部と、
【0041】
【化6】
Figure 0003969921
【0042】
下記構造式[A]で示される
【0043】
【化7】
Figure 0003969921
【0044】
粘度平均分子量が31700のポリカーボネート樹脂100部、レベリング剤としてシリコーンオイル0.03部をトルエン、テトラヒドロフランの混合溶媒に溶解させた液を塗布し、125℃で24分間乾燥し、乾燥後の膜厚が20μmとなるように電荷輸送層を設けて感光体を作成した。
なお、粘度平均分子量は以下の方法により測定した。
試料を塩化メチレンに溶解し濃度Cが6.00g/Lの溶液を調製した。溶媒(塩化メチレン)の流下時間t0 が136.21秒のウベローデ型毛管粘度計を用いて、20.0℃に設定した恒温水槽中で試料溶液の流下時間tを測定した。以下の式に従って粘度平均分子量Mvを算出した。
【0045】
【数1】
a=0.438×ηsp+1 ηsp=t/t0 −1
b=100×ηsp/C C =6.00(g/L)
η=b/a
Mv=3207×η1.205
【0046】
<摩耗試験>
上記の如く作成された感光体を、直径10cmの円状に切断しテーバー摩耗試験機(東洋精機社製)により、摩耗評価を行った。試験条件は、23℃、50%RHの雰囲気下、摩耗輪CS−10Fを用いて、荷重なし(摩耗輪の自重)で1000回回転後の摩耗量を試験前後の重量を比較することにより測定した。結果を表−3に示した。
【0047】
<摩擦試験>
トナーを上記で作成した感光体の上に、0.1mg/cm2 となるよう均一に乗せ、接触させる面にクリーニングブレードと同じ材質のウレタンゴムを1cm幅に切断したものを45度の角度で用い、荷重200g、速度5mm/sec、ストローク20mmでウレタンゴムを移動させたときの動摩擦係数を協和界面化学(株)社製全自動摩擦摩耗試験機DFPM−SSで測定した。結果を表−3に示した。
【0048】
<電気特性>
上記で作製した感光体を感光体測定機(川口電気(株)製、モデルEPA−8100)に装着し、帯電時の電位が750±10Vとなるようにアルミニウム面への流れ込み電流を設定し帯電させた後、露光、除電を行い、その時の露光感度を測定した。結果を表−3に示した。
<保存安定性>
電荷輸送層作成に用いた塗布液を、作成後1週間放置した後の液の状態の変化を目視により調べ、下記基準で評価し、表―3に示した。
○ 変化なし
× ゲル化
【0049】
実施例2
実施例1で用いた前記構造式[A]で表される粘度平均分子量31,700の樹脂の代わりに、下記構造式[B]で表される粘度平均分子量49,000の樹脂を用いた以外は実施例1と同様に感光体を製造し、摩耗量、摩擦係数、電気特性及び保存安定性を測定した。結果を表−3に示した。
【0050】
【化8】
Figure 0003969921
【0051】
比較例1
実施例1で用いた前記構造式[A]で表される樹脂の代わりに、下記構造式[C]で表され、粘度平均分子量が32,300である樹脂を用いた以外は実施例1と同様に感光体を製造し、摩耗量、摩擦係数、及び電気特性を測定した。結果を表−3に示した。なお、構造式[C]の樹脂は特公平7−27223号に記載されている。
【0052】
【化9】
Figure 0003969921
【0053】
比較例2
実施例1において用いた前記構造式[A]で表される樹脂の代わりに、下記構造式[D]で表され粘度平均分子量が21,800である樹脂を用いた以外は実施例1と同様に感光体を製造し、摩耗量、摩擦係数及び電気特性を測定した。結果を表−3に示した。
【0054】
【化10】
Figure 0003969921
【0055】
【表9】
Figure 0003969921
【0056】
【発明の効果】
本発明によれば、従来の電子写真感光体に比べ電気特性を良好に保ったまま電子写真感光体表面の滑り性を向上させ、また耐摩耗性を著しく向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor excellent in surface slipperiness, slidability, wear resistance, and electrical characteristics.
[0002]
[Prior art]
In recent years, electrophotographic technology has been widely used and applied not only in the field of copying machines but also in the field of various printers because of its immediacy and high-quality images. Photoconductors that are the core of electrophotographic technology have been used as conventional photoconductive materials for inorganic photoconductors such as selenium, arsenic-selenium alloys, cadmium sulfide, and zinc oxide. A photoreceptor using an organic photoconductive material having advantages such as easy and easy manufacture has been developed.
Among organic photoreceptors, a so-called multilayer photoreceptor in which a charge generation layer and a charge transport layer are laminated has been devised and has become the mainstream of research.
Laminated photoreceptors can be obtained by combining highly efficient charge generating substances and charge transporting substances to obtain highly sensitive photoreceptors, and a wide range of materials to be selected and a highly safe photoreceptor. Also, since the productivity of coating is high and relatively advantageous in terms of cost, it has become the mainstream of photoreceptors.
However, with conventional technologies, organic multilayer photoconductors have sufficient performance in terms of electrical characteristics such as sensitivity and chargeability, but are insufficient in physical strength on the surface of the photoconductor. The current situation is that the printing performance is limited to the upper limit.
[0003]
The electrophotographic photosensitive member is repeatedly used in an electrophotographic process, that is, a cycle of charging, exposure, development, transfer, cleaning, static elimination, and the like, and thus deteriorates due to various stresses. Such deterioration includes, for example, strongly oxidative ozone and NOx generated from a corona charger normally used as a charger, chemically damage the photosensitive layer, and carrier (current) generated by image exposure. Is chemically and electrically deteriorated due to the fact that the composition of the photosensitive layer decomposes due to flowing in the photosensitive layer, static elimination light, or external light. Other degradations include mechanical degradation such as abrasion of the surface of the photosensitive layer due to rubbing of cleaning blades, magnetic brushes, contact with developer, paper, and the like, and film peeling. . In particular, the damage generated on the surface of the photosensitive layer is likely to appear on the copy image, which directly impairs the image quality and is a major factor that limits the life of the photoreceptor. That is, in order to develop a long-life photoconductor, it is essential to increase the mechanical strength as well as the electrical and chemical durability.
In general, in the case of a laminated type photoreceptor, mechanical deterioration occurs in a charge transport layer that is often the outermost layer. The charge transport layer is usually composed of a binder resin and a charge transport agent, and the binder resin substantially determines the strength. Conventional binder resins for charge transport layers include vinyl polymers such as polymethacrylate, polystyrene, and polyvinyl chloride, and copolymers thereof, thermoplastic resins such as polycarbonate, polyester, polysulfone, phenoxy resin, epoxy resin, and silicone resin. A thermosetting resin is used.
[0004]
Among them, various polycarbonate resins having excellent performance as binder resins have been developed and put into practical use. For example, JP-A-50-98332 discloses bisphenol P type polycarbonate, JP-A-59-71057 discloses bisphenol Z-type polycarbonate, JP-A-59-184251 discloses bisphenol P and bisphenol A. No. 5,21478 discloses a polycarbonate copolymer having a bis (4-hydroxyphenyl) ketone type structure as a binder resin. However, conventional organic photoreceptors have drawbacks such as surface wear and scratches caused by practical loads such as development with toner, friction with paper, and friction with a cleaning member (blade). Therefore, the current situation is that the printing performance is limited in practical use.
As a binder resin having excellent mechanical performance, Japanese Patent Publication No. 7-27223 proposes a polycarbonate having two types of repeating structures selected from bisphenol A and its related substances and nuclear substitutes. In the publication, it is described that the organic solvent solution of the polycarbonate resin described in the patent is superior in storage stability compared to the organic solvent solution of the commercially available polycarbonate resin, but according to the study by the present inventors, Storage stability is not always sufficient.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrophotographic photosensitive member with improved abrasion resistance and slipperiness on the surface of the photosensitive member without adversely affecting the electric characteristics, and in particular, mechanical characteristics and storage stability. The present invention intends to improve the performance of an electrophotographic photosensitive member by using an improved binder resin.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the improvement of the wear resistance and slipperiness of the surface of the electrophotographic photosensitive member, the present inventors have developed a new resin that can achieve the above-mentioned object.
That is, the gist of the present invention is an electrophotographic photosensitive member having at least a photosensitive layer on a conductive support, and the photosensitive layer has a repeating structure represented by the following general formula (1) and the following general formula (2). The electrophotographic photosensitive member is characterized by containing a polycarbonate resin.
[0007]
[Chemical 3]
Figure 0003969921
[0008]
(R in formula (1) 1 Represents an alkyl group, and A and B each independently represent a substituent. Have Represents a benzene ring. )
[0009]
[Formula 4]
Figure 0003969921
[0010]
(In formula (2), Ar 1 And Ar 2 Represents a phenylene group and Y represents Divalent hydrocarbon group Represents. ). A part of the polycarbonate resin of the present invention having the repeating structure of the above general formulas (1) and (2) is included in the range of the modified polycarbonate resin described in JP-B-7-27223. However, the repeating structure of the polycarbonate resin specifically disclosed in the publication has two benzene rings as -CR. 1 Structures linked by H-groups are not included. That is, none of the carbonate resins specifically described in Japanese Patent Publication No. 7-27223 does not have the repeating structure of the above general formula (1), and is clearly different from the polycarbonate resin of the present invention. As is clear from the examples, the polycarbonate resin of the present invention is superior in storage stability when a resin coating solution is formed, as compared with the resin described in JP-B-7-27223.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The polycarbonate resin used in the electrophotographic photoreceptor of the present invention has a repeating structure represented by the general formulas (1) and (2). In the general formula (1), R 1 Represents an alkyl group. Specifically, linear, branched and cyclic such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group and cyclohexyl group An alkyl group is mentioned. An alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.
Moreover, in General formula (1), A and B represent the benzene ring which may have a substituent. Examples of the substituent include, for example, a hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; A linear, branched or cyclic alkyl group of about 8; an alkoxy group of about 1 to 8 carbon atoms such as a methoxy group, an ethoxy group or a propyloxy group; an alkenyl group such as an allyl group; a benzyl group, a naphthylmethyl group, or a phenethyl group Aralkyl groups such as phenoxy groups, aryloxy groups such as phenoxy groups and triloxy groups; arylalkoxy groups such as benzyloxy groups and phenethyloxy groups; aryl groups such as phenyl groups and naphthyl groups; arylalkenyl groups such as styryl groups and naphthylvinyl groups Group; acyl group such as acetyl group and benzoyl group; dimethylamino group, diethyla Dialkylamino groups such as mino groups; diarylamino groups such as diphenylamino groups and dinaphthylamino groups; diheteroalkyl groups such as dibenzylamino groups and diphenethylamino groups, diheteroyl groups such as dipyridylamino groups and dithienylamino groups A cyclic amino group; a diallylamino group, or a substituted amino group such as a disubstituted amino group obtained by combining the above-mentioned amino group substituents. In addition, these substituents are condensed with each other to form a carbocyclic group via a single bond, methylene group, ethylene group, carbonyl group, vinylidene group, ethylenylene group, etc .; a heterocycle containing oxygen atom, sulfur atom, nitrogen atom, etc. A cyclic group may be formed. As the substituent for A and B, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.
[0012]
In general formula (2), Y represents a direct bond or a divalent linking group. In consideration of the stability of the coating solution, Y is preferably a divalent linking group. Examples of the divalent linking group include a divalent nitrogen-containing group such as a carbonyl group, -NH-, -NR- (where R is a hydrocarbon group), -S-, -SO. 2 A divalent sulfur-containing group such as-, a divalent hydrocarbon group, and the like, and a divalent hydrocarbon group is preferred from the viewpoint of electrical characteristics.
Specific examples of the divalent hydrocarbon group include alkylene groups such as methylene group, ethylene group, and propylene group, alkylidene groups such as ethylidene group, 1-propylidene group, and 2-propylidene group, cyclopentylidene group, and cyclohexyl group. And cycloalkylidene groups such as a silidene group. Among these, a methylene group, an alkylidene group, or a cycloalkylidene group is preferable from the viewpoint of production, and a methylene group, an ethylidene group, a 2-propylidene group, or a cyclohexylidene group is most preferable.
[0013]
In the present specification, an alkylidene group such as an ethylidene group or a propylidene group may be referred to as an alkyl group substituted on a methylene group. These divalent linking groups may further have, as a substituent, an alkyl group such as a methyl group, an ethyl group, a 1-propyl group or a 2-propyl group, an aryl group such as a phenyl group, or the like. In general formula (2), Ar 1 , Ar 2 Is preferably a p-phenylene group from the viewpoint of production.
Specific examples of the repeating structure represented by the general formulas (1) and (2) are listed in the following Table-1 and Table-2, but are not limited thereto.
[0014]
[Table 1]
Figure 0003969921
[0015]
[Table 2]
Figure 0003969921
[0016]
[Table 3]
Figure 0003969921
[0017]
[Table 4]
Figure 0003969921
[0018]
[Table 5]
Figure 0003969921
[0019]
[Table 6]
Figure 0003969921
[0020]
[Table 7]
Figure 0003969921
[0021]
[Table 8]
Figure 0003969921
[0022]
Each of the repeating structures of the general formulas (1) and (2) constituting the polycarbonate resin used in the present invention may be one type of combination or two or more types of combinations. The ratio of the repeating structure of the general formula (1) and the repeating structure of the general formula (2) in the resin is selected from an arbitrary range, but the repeating structure of the general formula (1) is preferably 30 mol% or more, In consideration of slipperiness, the repeating structure of the general formula (1) is preferably 50 mol% or more.
In the general formula (2), the case where Y is a 1-alkylidene group corresponds to the case where A and B are unsubstituted benzene rings in the general formula (1). You may be comprised only from the repeating structure. The repeating structure represented by the general formulas (1) and (2) is preferably the main component, and is usually preferably 30 mol% or more, and more preferably 50 mol% or more of the entire repeating structure of the resin. Is more preferable, and it is most preferable that it is 70 mol% or more. If the repeating structure represented by the general formulas (1) and (2) is less than 1 mol%, sufficient slipping and wear resistance cannot be obtained.
[0023]
Also, other resins such as polyester, polyarylate, polyamide, polyacetal, polyurethane, polyimide, polyether, polyketone, polyvinyl polymer, and polysiloxane may be mixed within the range that does not substantially change the properties of the polycarbonate resin of the present invention. good.
When the resin containing the repeating structure of the general formulas (1) and (2) is mixed with the resin having another structure, the resin containing the repeating structure of the general formulas (1) and (2) is preferably 10 wt% or more and 100 % Or less, more preferably 30 wt% or more and 90 wt% or less. If it is less than 10 wt%, the improvement effect cannot be sufficiently obtained.
When other repeating structures are included and when other resins are mixed, the repeating structures of the general formulas (1) and (2) are preferably the main components.
The viscosity average molecular weight of the resin including the repeating structure represented by the general formulas (1) and (2) is preferably 10,000 or more and 300,000 or less, and more preferably 20,000 or more and 100,000 or less. . If the viscosity average molecular weight is less than 10,000, the mechanical strength of the resin may be significantly reduced. Moreover, when it exceeds 300,000 or more, the viscosity of a coating liquid will become high and it may become difficult to produce by apply | coating a cast film to a suitable film thickness.
[0024]
The polycarbonate resin having the repeating structure represented by the general formulas (1) and (2) is synthesized according to a conventional method using the corresponding phenol compounds represented by the following general formulas (1 ′) and (2 ′), respectively. I can do it.
[0025]
[Chemical formula 5]
Figure 0003969921
[0026]
(In the general formulas (1 ′) and (2 ′), A, B, R 1 , Ar 1 , Ar 2 And Y have the same significance as in the general formulas (1) and (2). ).
Specifically, for example, in the presence of an inert solvent such as methylene chloride or 1,2-dichloroethane, an alkaline aqueous solution or pyridine is added as an acid acceptor to the phenolic compound, and the reaction is carried out while introducing phosgene.
When an alkaline aqueous solution is used as the acid acceptor, the reaction rate increases if a tertiary amine such as trimethylamine or triethylamine or a quaternary ammonium compound such as tetrabutylammonium chloride or benzyltributylammonium bromide is used as a catalyst. . Moreover, you may coexist monovalent phenols, such as a phenol and p-tertiary butylphenol, as a molecular weight regulator as needed.
The catalyst may be added from the beginning or after the oligomer is formed. Moreover, as a method of copolymerizing using 2 or more types of phenol type compounds, although arbitrary methods can be taken, there exist the following method, for example.
[0027]
(Ii) Two or more phenolic compounds are first copolymerized by simultaneously reacting with phosgene.
(B) First, one kind of phenolic compound is reacted with phosgene, and after the reaction proceeds to some extent, the other phenolic compound is added and polymerized.
(C) An oligomer is produced by separately reacting a phenol compound with phosgene, and reacting them to polymerize.
When the polycarbonate resin having the repeating structure of the general formulas (1) and (2) is used as a binder resin for a photosensitive layer of an electrophotographic photosensitive member, particularly a charge transporting layer, as is clear from the examples described later, It is possible to obtain an electrophotographic photosensitive member that retains the same electrical characteristics, exhibits excellent mechanical characteristics and good storage stability, and has excellent durability with significantly improved surface strength.
[0028]
The photosensitive layer of the electrophotographic photoreceptor of the present invention is provided on a conductive support. Examples of the conductive support include a metal material such as aluminum, aluminum alloy, stainless steel, copper, and nickel; a resin material imparted with conductivity by adding conductive powder such as metal, carbon, and tin oxide; aluminum, A resin, glass, paper, or the like in which a conductive material such as nickel or ITO (indium oxide-tin oxide alloy) is vapor-deposited or coated on its surface is mainly used. As a form, a drum shape, a sheet shape, a belt shape or the like is used. A conductive material having an appropriate resistance value may be coated on a conductive support made of a metal material in order to control conductivity and surface properties or to cover defects.
When a metal material such as an aluminum alloy is used as the conductive support, it may be used after anodizing, chemical conversion coating or the like. When the anodizing treatment is performed, it is desirable to perform a sealing treatment by a known method.
The surface of the support may be smooth, or may be roughened by using a special cutting method or performing a polishing treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support.
[0029]
An undercoat layer may be provided between the conductive support and the photosensitive layer in order to improve adhesion and blocking properties. As the undercoat layer, a resin, a resin in which particles such as a metal oxide are dispersed, or the like is used.
Examples of metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate. Only one type of particle may be used, or a plurality of types of particles may be mixed and used. Among these metal oxide particles, titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable. The surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. As the crystal form of the titanium oxide particles, any of rutile, anatase, brookite, and amorphous can be used. A thing of a several crystalline state may be contained.
Various particle diameters can be used for the metal oxide particles used in the undercoat layer. Among these, the average primary particle diameter is preferably 10 nm or more and 100 nm or less, particularly preferably, from the viewpoint of characteristics and liquid stability. Is from 10 nm to 25 nm.
[0030]
The undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin. The binder resin used in the undercoat layer is not particularly limited, and includes phenoxy resin, epoxy resin, polyvinyl pyrrolidone, polyvinyl alcohol, casein, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, etc. Can be used alone or in a form cured with a curing agent. Among them, alcohol-soluble copolymerized polyamides, modified polyamides and the like are preferable because they exhibit good dispersibility and coating properties.
The addition ratio of the inorganic particles to the binder resin in the undercoat layer can be arbitrarily selected, but it is preferably used in the range of 10 wt% to 500 wt% in terms of stability of the dispersion and coatability.
The thickness of the undercoat layer can be arbitrarily selected, but is preferably 0.1 μm to 20 μm from the viewpoint of photoreceptor characteristics and applicability. Moreover, you may add a well-known antioxidant etc. to an undercoat layer.
[0031]
Examples of the basic configuration of the photosensitive layer of the electrophotographic photosensitive member of the present invention include the following configurations.
(1) A multilayer photoreceptor in which a charge generation layer mainly composed of a charge generation material, a charge transport material, and a charge transport layer mainly composed of a binder resin are laminated in this order.
(2) A reverse two-layer type photoreceptor in which a charge transport layer mainly composed of a charge transport material and a binder resin and a charge generation layer composed mainly of a charge generation material are laminated in this order.
(3) A dispersion type photoreceptor in which a charge generation material is dispersed in a layer containing a charge transport material and a binder resin.
Among these, a laminated type photoreceptor is particularly preferable.
[0032]
In the case of a multilayer photoreceptor, charge generation materials used in the charge generation layer include, for example, selenium and its alloys, cadmium sulfide, other inorganic photoconductive materials, phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments. Various photoconductive materials such as organic pigments such as polycyclic quinone pigments, anthrone pigments, and benzimidazole pigments can be used, and organic pigments, phthalocyanine pigments, and azo pigments are particularly preferable. These compounds are vapor deposited or dispersed in a binder resin. Examples of the binder resin used here include polyester resin, polyvinyl acetate, polyacrylic acid ester, polymethacrylic acid ester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin, epoxy resin, urethane resin, cellulose ester, and cellulose. Examples include ether. In this case, the usage ratio is from the range of 30 to 500 parts by weight of the charge generating material with respect to 100 parts by weight of the binder resin, and the film thickness is usually 0.1 μm to 1 μm, preferably 0.15 μm to 0.6 μm. It is a range.
[0033]
When a phthalocyanine compound is used as the charge generation material, specifically, a metal-free phthalocyanine, or a metal such as copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, or an oxide or halide thereof. Coordinated phthalocyanines are used. Examples of the ligand to a metal atom having 3 or more valences include a hydroxyl group and an alkoxy group in addition to the oxygen atom and chlorine atom shown above. Particularly preferred are X-type, τ-type metal-free phthalocyanine, A-type, B-type, and D-type titanyl phthalocyanine, vanadyl phthalocyanine, chloroindium phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine, and the like. Of the crystal forms of titanyl phthalocyanine mentioned here, A type and B type are described in W.W. It has been shown by Heller et al. As phase I and phase II (Zeit. Kristallogr. 159 (1982) 173), respectively, and type A is known as a stable type. The D type is a crystal type described in Japanese Patent Publication No. 7-91486 and the like, and in powder X-ray diffraction using CuKα rays, a diffraction angle 2θ ± 0.2 ° has a clear peak at 27.3 °. It is a crystalline form characterized by showing. As the phthalocyanine compound, only a single compound may be used, or several mixed states may be used. As the mixed state that can be placed in the phthalocyanine compound or crystal state here, the respective constituent elements may be mixed and used later, or the mixed state in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, crystallization, etc. It may be generated. As such treatment, acid paste treatment, grinding treatment, solvent treatment and the like are known.
[0034]
Examples of the charge transport material contained in the charge transport layer include aromatic nitro compounds such as 2,4,7-trinitrofluorenone, carbazole derivatives, indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, oxadiazole derivatives, pyrazoline derivatives. A heterocyclic compound such as a thiadiazole derivative, an aniline derivative, a hydrazone compound, an aromatic amine derivative, a stilbene derivative, a butadiene derivative, an enamine compound, a compound in which a plurality of these compounds are bonded, or a group comprising these compounds as a main chain or Examples thereof include an electron donating substance such as a polymer having a side chain. The charge transport materials may be used alone or in combination. The charge transport layer is formed in such a form that these charge transport materials are bound to the binder resin. The charge transport layer may be composed of a single layer, or may be a stack of a plurality of layers having different constituent components or composition ratios.
[0035]
The ratio of the binder resin to the charge transport material is usually 10 to 200 parts by weight, preferably 30 to 150 parts by weight, based on 100 parts by weight of the binder resin. The thickness of the charge transport layer is generally 5 to 50 μm, preferably 10 to 45 μm. The charge transport layer has well-known plasticizers, antioxidants, ultraviolet absorbers, and electron withdrawing properties in order to improve film formability, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc. You may contain additives, such as a compound and a leveling agent.
Examples of the antioxidant include hindered phenol compounds and hindered amine compounds.
[0036]
In the case of a dispersion type photoreceptor, the charge generating material is 1 to 50 parts by weight and the charge transporting material is 100 parts by weight of the binder resin containing the polycarbonate resin having the repeating structure represented by the general formulas (1) and (2). It is preferably used in the range of 30 to 150 parts by weight. The film thickness is usually 5 to 50 μm, preferably 10 to 30 μm. Moreover, various additives, such as antioxidant and a sensitizer, may be included as needed.
In the case of a dispersion-type photosensitive layer, the above-described charge generating material is dispersed in the charge transport medium having the above-described blending ratio. If the amount of the charge generating material dispersed in the photosensitive layer is too small, sufficient sensitivity cannot be obtained, and if it is too large, there are adverse effects such as a decrease in chargeability and a decrease in sensitivity, preferably 0.5 to 50% by weight. More preferably, it is used in the range of 1 to 20% by weight. In this case, the particle size of the charge generating material needs to be sufficiently small, and is preferably 1 μm or less, more preferably 0.5 μm or less. Also in this case, known plasticizers for improving film formability, flexibility, mechanical strength, additives for suppressing residual potential, dispersion aids for improving dispersion stability, coatability Leveling agents and surfactants such as silicone oil, fluorine oil and other additives may be added to improve the viscosity.
[0037]
A protective layer may be provided on the photosensitive layer for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to a discharge product generated from a charger or the like.
Further, for the purpose of reducing frictional resistance and wear on the surface of the photoreceptor, the surface layer may contain a fluorine-based resin, a silicone resin, or the like. Moreover, the particle | grains which consist of these resin, and the particle | grains of an inorganic compound may be included. In any case of the photosensitive layer, the surface strength is remarkably improved by using the polycarbonate resin having the repeating structure represented by the general formulas (1) and (2) as the binder resin of the charge transport layer. An electrophotographic photoreceptor excellent in durability can be obtained.
[0038]
Each layer constituting these photoreceptors is formed on the support by dip coating, spray coating, nozzle coating, bar coating, roll coating, blade coating or the like. For example, in the case of impregnation coating, THF, 1,4-dioxane, toluene, benzene, xylene, chloroform, methylene chloride, 1,2-dichloroethane, etc. are used alone or in combination as a solvent. As the concentration of the coating solution, the solid content concentration of the binder resin is 1 to 50% by weight, and preferably 5 to 30% by weight. As a method for forming each layer, a known method such as sequentially applying a coating solution obtained by dissolving or dispersing a substance contained in a layer in a solvent can be applied.
[0039]
An electrophotographic apparatus such as a copying machine or a printer using the electrophotographic photosensitive member of the present invention includes at least each process of charging, exposure, development, and transfer, and any process that is usually used may be used. . As the charging method (charging device), for example, corotron or scorotron charging using corona discharge, contact charging using a conductive roller, brush, film, or the like may be used. Of these, scorotron charging is often used in charging methods using corona discharge in order to keep the dark potential constant. As a developing method, a general method of developing by bringing a magnetic or non-magnetic one-component developer or two-component developer into contact or non-contact is used. As a transfer method, any method using a corona discharge, a method using a transfer roller or a transfer belt may be used. The transfer may be performed directly on paper, an OHP film, or the like, or may be transferred to an intermediate transfer body (belt shape or drum shape) and then transferred onto paper or an OHP film.
Usually, after the transfer, a fixing process for fixing the developer onto paper or the like is used, and as the fixing means, commonly used thermal fixing, pressure fixing, or the like can be used. In addition to these processes, processes such as normally used cleaning and static elimination may be provided.
[0040]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following examples, “parts” and “%” mean “parts by weight” and “% by weight” unless otherwise specified.
Example 1
<Manufacture of photoconductor>
10 parts of oxytitanium phthalocyanine was added to 150 parts of 4-methoxy-4-methyl-2-pentanone and pulverized and dispersed in a sand grind mill to prepare a pigment dispersion.
Further, polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name Denkabutyral # 6000C) containing 5% of 1,2-dimethoxyethane solution 100 parts and phenoxy resin (Union Carbide, trade name PKHH) containing 5% 1, A binder solution was prepared by mixing 100 parts of a 2-dimethoxyethane solution.
To 160 parts of the previously prepared pigment dispersion, 100 parts of a binder solution and an appropriate amount of 1,2-dimethoxyethane were added to finally prepare a dispersion having a solid concentration of 4.0%.
The dispersion thus obtained was applied on a polyethylene terephthalate film having aluminum deposited on the surface so as to have a film thickness of 0.2 μm to provide a charge generation layer.
Next, on this film, 50 parts of a hydrazone compound having the following structure,
[0041]
[Chemical 6]
Figure 0003969921
[0042]
Shown by the following structural formula [A]
[0043]
[Chemical 7]
Figure 0003969921
[0044]
Apply 100 parts of polycarbonate resin with a viscosity average molecular weight of 31700 and 0.03 part of silicone oil as a leveling agent dissolved in a mixed solvent of toluene and tetrahydrofuran, and dry at 125 ° C. for 24 minutes. A photoreceptor was prepared by providing a charge transport layer so as to have a thickness of 20 μm.
The viscosity average molecular weight was measured by the following method.
A sample was dissolved in methylene chloride to prepare a solution having a concentration C of 6.00 g / L. Flow time t of solvent (methylene chloride) 0 Was measured using a Ubbelohde capillary viscometer of 136.21 seconds in a constant temperature water bath set at 20.0 ° C. The viscosity average molecular weight Mv was calculated according to the following formula.
[0045]
[Expression 1]
a = 0.438 × η sp +1 η sp = T / t 0 -1
b = 100 × η sp / C C = 6.00 (g / L)
η = b / a
Mv = 3207 × η1.205
[0046]
<Abrasion test>
The photoconductor prepared as described above was cut into a circle having a diameter of 10 cm, and the wear was evaluated with a Taber abrasion tester (manufactured by Toyo Seiki Co., Ltd.). Test conditions were measured by comparing the weight before and after the test with 1000 wheels without load (the weight of the wear wheel) under the atmosphere of 23 ° C. and 50% RH and without wear (self-weight of the wear wheel). did. The results are shown in Table-3.
[0047]
<Friction test>
Toner is 0.1 mg / cm on the photoconductor prepared above. 2 The urethane rubber made of the same material as the cleaning blade is cut into a 1 cm width on the surface to be contacted at a 45 degree angle, and the urethane rubber is moved at a load of 200 g, a speed of 5 mm / sec, and a stroke of 20 mm. The dynamic friction coefficient was measured with a fully automatic friction and wear tester DFPM-SS manufactured by Kyowa Interface Chemical Co., Ltd. The results are shown in Table-3.
[0048]
<Electrical characteristics>
The photoconductor prepared above is mounted on a photoconductor measuring machine (model EPA-8100, manufactured by Kawaguchi Electric Co., Ltd.), and the electric current flowing into the aluminum surface is set so that the electric potential during charging is 750 ± 10 V. Then, exposure and static elimination were performed, and the exposure sensitivity at that time was measured. The results are shown in Table-3.
<Storage stability>
The coating solution used for forming the charge transport layer was visually observed for changes in the state of the coating solution after being left for 1 week, and evaluated according to the following criteria.
○ No change
× Gelation
[0049]
Example 2
A resin having a viscosity average molecular weight of 49,000 represented by the following structural formula [B] was used in place of the resin having a viscosity average molecular weight of 31,700 represented by the structural formula [A] used in Example 1. Manufactured a photoreceptor in the same manner as in Example 1, and measured the amount of wear, the coefficient of friction, the electrical characteristics, and the storage stability. The results are shown in Table-3.
[0050]
[Chemical 8]
Figure 0003969921
[0051]
Comparative Example 1
Instead of the resin represented by the structural formula [A] used in Example 1, a resin represented by the following structural formula [C] and having a viscosity average molecular weight of 32,300 was used. Similarly, a photoconductor was manufactured, and the amount of wear, the coefficient of friction, and the electrical characteristics were measured. The results are shown in Table-3. The resin represented by the structural formula [C] is described in Japanese Patent Publication No. 7-27223.
[0052]
[Chemical 9]
Figure 0003969921
[0053]
Comparative Example 2
Instead of the resin represented by the structural formula [A] used in Example 1, a resin represented by the following structural formula [D] and having a viscosity average molecular weight of 21,800 was used as in Example 1. Photoconductors were manufactured, and the amount of wear, coefficient of friction and electrical characteristics were measured. The results are shown in Table-3.
[0054]
[Chemical Formula 10]
Figure 0003969921
[0055]
[Table 9]
Figure 0003969921
[0056]
【The invention's effect】
According to the present invention, it is possible to improve the slipperiness of the surface of the electrophotographic photosensitive member while maintaining good electric characteristics as compared with the conventional electrophotographic photosensitive member, and to remarkably improve the wear resistance.

Claims (7)

導電性支持体上に少なくとも感光層を有する電子写真感光体であって、該感光層が、下記一般式(1)及び下記一般式(2)で示される繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする電子写真感光体。
Figure 0003969921
(一般式(1)中、Rはアルキル基を示し、A及びBは、それぞれ独立に、置換基を有するベンゼン環を表す。)
Figure 0003969921
(一般式(2)中、Ar及びArは、フェニレン基を示し、Yは二価の炭化水素基を表す。)
An electrophotographic photoreceptor having at least a photosensitive layer on a conductive support, wherein the photosensitive layer contains a polycarbonate resin having a repeating structure represented by the following general formula (1) and the following general formula (2). An electrophotographic photoreceptor characterized by the above.
Figure 0003969921
(In general formula (1), R 1 represents an alkyl group, and A and B each independently represent a benzene ring having a substituent.)
Figure 0003969921
(In general formula (2), Ar 1 and Ar 2 represent a phenylene group, and Y represents a divalent hydrocarbon group.)
前記一般式(1)において、R1が炭素数1〜3のアルキル基であり、かつ、前記一般式(2)において、Yが置換基を有してもよいアルキレン基又は置換基を有しても良いアルキリデン基である繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする請求項1に記載の電子写真感光体。In the general formula (1), R 1 is an alkyl group having 1 to 3 carbon atoms, and in the general formula (2), Y has an alkylene group or a substituent which may have a substituent. The electrophotographic photosensitive member according to claim 1, comprising a polycarbonate resin having a repeating structure which may be an alkylidene group. 前記一般式(1)において、R1がメチル基であり、かつ、前記一般式(2)において、Ar1及びAr2が、p−フェニレン基であり、かつ、Yが置換基を有していても良いメチレン基又はシクロアルキリデン基である繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする請求項1又は2に記載の電子写真感光体。In the general formula (1), R 1 is a methyl group, and in the general formula (2), Ar 1 and Ar 2 are p-phenylene groups, and Y has a substituent. The electrophotographic photosensitive member according to claim 1, comprising a polycarbonate resin having a repeating structure which may be a methylene group or a cycloalkylidene group. 前記一般式(2)において、Yが2つの水素原子が置換されたメチレン基である繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする請求項1乃至3の何れかに記載の電子写真感光体。  4. The electrophotographic photosensitive member according to claim 1, comprising a polycarbonate resin having a repeating structure in which Y is a methylene group in which two hydrogen atoms are substituted in the general formula (2). 5. body. 前記一般式(1)において、A及びBがアルキル基置換されたベンゼン環である繰り返し構造を有するポリカーボネート樹脂を含有することを特徴とする請求項1乃至4の何れかに記載の電子写真感光体。5. The electrophotographic photosensitive material according to claim 1, comprising a polycarbonate resin having a repeating structure in which A and B are benzene rings substituted with an alkyl group in the general formula (1). body. 前記一般式(1)及び(2)で示される繰り返し構造を主成分として含むポリカーボネート樹脂を含有することを特徴とする請求項1乃至5の何れかに記載の電子写真感光体。  The electrophotographic photosensitive member according to claim 1, comprising a polycarbonate resin containing a repeating structure represented by the general formulas (1) and (2) as a main component. 導電性支持体上に少なくとも電荷発生層及び電荷輸送層を有する電子写真感光体であって、該電荷輸送層が電荷輸送物質及び請求項1乃至6の何れかに記載のポリカーボネート樹脂を含有することを特徴とする電子写真感光体。  An electrophotographic photosensitive member having at least a charge generation layer and a charge transport layer on a conductive support, wherein the charge transport layer contains a charge transport material and the polycarbonate resin according to any one of claims 1 to 6. An electrophotographic photoreceptor characterized by the above.
JP2000014362A 2000-01-24 2000-01-24 Electrophotographic photoreceptor Expired - Lifetime JP3969921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014362A JP3969921B2 (en) 2000-01-24 2000-01-24 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014362A JP3969921B2 (en) 2000-01-24 2000-01-24 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2001209194A JP2001209194A (en) 2001-08-03
JP3969921B2 true JP3969921B2 (en) 2007-09-05

Family

ID=18541831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014362A Expired - Lifetime JP3969921B2 (en) 2000-01-24 2000-01-24 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3969921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056007B1 (en) * 2005-05-24 2011-08-10 미쓰비시 가가꾸 가부시키가이샤 Electrophotographic photosensitive member and image forming method using the electrophotographic photosensitive member
JP2007004139A (en) * 2005-05-24 2007-01-11 Mitsubishi Chemicals Corp Electrophotographic photoreceptor and image forming apparatus using the electrophotographic photoreceptor
JP2008176315A (en) * 2006-12-20 2008-07-31 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, and electrophotographic photoreceptor cartridge and image forming apparatus provided with the photoreceptor

Also Published As

Publication number Publication date
JP2001209194A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
EP1770447B1 (en) Electrophotographic photosensitive body
JP3606074B2 (en) Electrophotographic photoreceptor
JP2008293006A (en) Electrophotographic photoreceptor
JP4246621B2 (en) Electrophotographic photoreceptor
JP6380124B2 (en) Electrophotographic photoreceptor, image forming apparatus, and polyester resin
JP4010725B2 (en) Electrophotographic photoreceptor
JPH0572753A (en) Electrophotographic photoreceptor
JP3969921B2 (en) Electrophotographic photoreceptor
JP3926093B2 (en) Electrophotographic photoreceptor
JP5741180B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP4214866B2 (en) Electrophotographic photoreceptor
JP4084976B2 (en) Electrophotographic photoreceptor
JP3835153B2 (en) Electrophotographic photoreceptor
JP3721416B2 (en) Electrophotographic photoreceptor
JP4449481B2 (en) Electrophotographic photoreceptor
JP4028781B2 (en) Electrophotographic photoreceptor
JP4973196B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP3980236B2 (en) Electrophotographic photoreceptor
JP3829970B2 (en) Electrophotographic photoreceptor
JP4487997B2 (en) Electrophotographic photoreceptor
JP3801438B2 (en) Electrophotographic photoreceptor
JP4835683B2 (en) Electrophotographic photoreceptor
JP3737907B2 (en) Electrophotographic photoreceptor
JP3868329B2 (en) Electrophotographic photoreceptor
JPH0943870A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041215

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term