US6592623B1 - Engineered muscle - Google Patents
Engineered muscle Download PDFInfo
- Publication number
- US6592623B1 US6592623B1 US09/386,273 US38627399A US6592623B1 US 6592623 B1 US6592623 B1 US 6592623B1 US 38627399 A US38627399 A US 38627399A US 6592623 B1 US6592623 B1 US 6592623B1
- Authority
- US
- United States
- Prior art keywords
- muscle
- collagen
- cells
- extracellular matrix
- implant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000003205 muscle Anatomy 0.000 title claims abstract description 88
- 102000008186 Collagen Human genes 0.000 claims abstract description 112
- 108010035532 Collagen Proteins 0.000 claims abstract description 112
- 229920001436 collagen Polymers 0.000 claims abstract description 112
- 239000000835 fiber Substances 0.000 claims abstract description 73
- 239000007943 implant Substances 0.000 claims abstract description 68
- 210000000663 muscle cell Anatomy 0.000 claims abstract description 57
- 210000002744 extracellular matrix Anatomy 0.000 claims abstract description 46
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims abstract description 45
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims abstract description 45
- 210000002435 tendon Anatomy 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 51
- 239000001963 growth medium Substances 0.000 claims description 5
- 239000002609 medium Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 2
- 239000011159 matrix material Substances 0.000 abstract description 43
- 210000002460 smooth muscle Anatomy 0.000 abstract description 10
- 210000004165 myocardium Anatomy 0.000 abstract description 9
- 229920005594 polymer fiber Polymers 0.000 abstract description 5
- 230000000747 cardiac effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 73
- 239000000243 solution Substances 0.000 description 32
- 238000001523 electrospinning Methods 0.000 description 25
- 210000001519 tissue Anatomy 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 19
- 210000002027 skeletal muscle Anatomy 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- 210000004379 membrane Anatomy 0.000 description 16
- 239000012528 membrane Substances 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 239000000512 collagen gel Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 229920000260 silastic Polymers 0.000 description 14
- 239000000499 gel Substances 0.000 description 10
- 210000002216 heart Anatomy 0.000 description 10
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 210000002808 connective tissue Anatomy 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 230000008520 organization Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 210000005003 heart tissue Anatomy 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 210000003098 myoblast Anatomy 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 102000012422 Collagen Type I Human genes 0.000 description 3
- 108010022452 Collagen Type I Proteins 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 210000004413 cardiac myocyte Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 210000002363 skeletal muscle cell Anatomy 0.000 description 3
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 210000003699 striated muscle Anatomy 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 210000000648 angioblast Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 239000002729 catgut Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- -1 e.g. Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001964 muscle biopsy Methods 0.000 description 2
- 230000001114 myogenic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000002861 ventricular Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 102000008076 Angiogenic Proteins Human genes 0.000 description 1
- 108010074415 Angiogenic Proteins Proteins 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 102000001187 Collagen Type III Human genes 0.000 description 1
- 108010069502 Collagen Type III Proteins 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 230000001656 angiogenetic effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 230000031768 cardiac muscle hypertrophy Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000002820 chemotaxin Substances 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002638 denervation Effects 0.000 description 1
- 210000004268 dentin Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 210000001097 facial muscle Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DCPMPXBYPZGNDC-UHFFFAOYSA-N hydron;methanediimine;chloride Chemical compound Cl.N=C=N DCPMPXBYPZGNDC-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000003130 muscle precursor cell Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 210000000419 skeletal muscle satellite cell Anatomy 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/383—Nerve cells, e.g. dendritic cells, Schwann cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3817—Cartilage-forming cells, e.g. pre-chondrocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3826—Muscle cells, e.g. smooth muscle cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3873—Muscle tissue, e.g. sphincter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/30—Materials or treatment for tissue regeneration for muscle reconstruction
Definitions
- This invention relates to a muscle implant designed for transplantation.
- the implant is both a functional and structural replacement for dysfunctional muscle tissue.
- Muscle abnormalities are a fact of life whether they result from a developmental anomaly or from a traumatic injury or for any other reason.
- Structural defects to striated muscle tissue range from relatively functionally benign to profoundly debilitating disorders. In any circumstance, the condition can affect the patient on a number of different levels. For example, structural defects to the musculature of the face may have a minor impact on the ability of a patient to survive. However, even minor cosmetic defects of the muscle of the face can have substantial psychological implications.
- cardiovascular muscles are also subject to deterioration and disease. Congenital malformations of the heart are also common. Conventional surgical techniques are fundamentally unable to adequately restore the subtle structural and functional relationships that exist in a healthy heart.
- An intact heart has an elaborate three-dimensional structure that insures the orderly propagation of electrical signals and the coordinated contraction of the ventricular wall. If the heart muscle is to be effectively repaired, the three-dimensional organization must be addressed at the cellular level.
- an implant must have enough structural integrity to withstand manual manipulation, the surgical procedures and the mechanical environment of the intact tissue. Intact skeletal muscle is surrounded in vivo by multiple layers of a dense connective tissue that compartmentalizes the muscle and reinforces the structure of the tissue. Mimicking the specific structure of this arrangement in vitro is difficult, because any dense, investing material will tend to limit nutrient diffusion, oxygen transport and the removal of metabolic waste products away from the cells. Components made from artificial materials such as polyester mesh have been used with some success to increase the strength of the cultures while allowing them to retain a substantial portion of their elastic properties. However, the incorporation of synthetic materials into an implant can increase the likelihood that it will initiate an inflammatory response in vivo.
- Cardiac tissue lacks a dense connective tissue.
- the muscle cell of the heart is organized into a complicated lattice.
- the individual muscle cells of the heart have a rod-like cell shape. Like skeletal muscle, they are oriented along a common axis in a complex three-dimensional pattern.
- Each cell of the heart is invested with a basement membrane and interconnected to its neighbors by a complex matrix of collagen fibrils.
- the three dimensional pattern of the cell layers within the heart is critical for the orderly propagation of electrical signals and the coordinate contraction of the ventricular wall.
- Smooth muscle surrounds the supports of many of the hollow organs. For example, in the gut it surrounds the stomach and intestinal track. Contraction of this muscle mixes food and propels it along the digestive track.
- smooth muscle cells surround the walls of the arteries and large veins and functions to control the caliber of the vessels.
- Smooth muscle lacks the nearly uniform cell shape and lattice like distribution of skeletal and cardiac muscle cells.
- smooth muscle cells do exhibit an elongated, bipolar cell shape. As a population they are organized along a similar axis in a series of overlapping cellular layers. This pattern of organization allows smooth muscle to exert contractile forces in a complex pattern.
- the implant can be used in a variety of ways including to augment existing muscle, correct muscle deficiencies or as a functional and structural replacement for dysfunctional muscle tissue. Further, the invention includes a method for manufacturing the muscle implant.
- a muscle implant includes an extracellular matrix made of electrospun fibers and muscle cells disposed on the matrix.
- the muscle implant comprises an extracellular matrix made of electrospun fibers for supporting muscle, a tendon made of extruded fibers, and a muscle cell layer that is disposed on the extracellular matrix.
- the muscle cell layer can be multilayered.
- the electrospun fibers may be cross linked.
- an oriented layer of collagen can be deposited onto the extracellular matrix so that the muscle cells are disposed onto the oriented layer of collagen.
- the invention in another embodiment, includes an extracellular matrix for supporting muscle comprising a matrix of electrospun fibers.
- the fiber is discharged from an electrically charged orifice onto a grounded substrate to form the matrix.
- the matrix can also be treated with cross linking agents so that the fibers are cross linked.
- the invention also includes a method of manufacturing an extracellular matrix comprising extruding electrically charged polymer solution onto a grounded target substrate under conditions effective to deposit polymer fibers on the substrate to form an extracellular matrix.
- the extruded polymer may form a three-dimensional matrix.
- the extracellular matrix may further include a gel of aligned collagen fibers deposited thereon.
- the invention includes a method of forming a muscle fascial sheath by providing an electrically grounded substrate. There is further provided a reservoir of collagen solution wherein the reservoir has an orifice that allows the collagen solution to leave the reservoir. The collagen solution is electrically charged and then streamed onto the substrate to form a muscle fascial sheath.
- the invention includes a method of layering muscle cells on an extracellular matrix.
- the method includes providing an extracellular matrix and then placing the extracellular matrix inside a rotating wall bioreactor.
- a culture medium is loaded into the bioreactor wherein the medium comprises muscle cells.
- the bioreactor is then run until muscle cells attach to the extracellular matrix.
- the muscle cells attached to the extracellular matrix form multiple layers.
- FIG. 1 is a scanning electron micrograph of an electrospun matrix of fibers.
- FIGS. 2A and 2B are schematic drawings of electrospinning devices including the electrospinning equipment and a rotating wall bioreactor.
- FIG. 3 is a scanning electron micrograph of a thin gel of aligned collagen.
- FIGS. 4A and 4B are scanning electron micrographs of muscle cells deposited on aligned collagen gel and a random collagen gel respectively.
- FIGS. 5A and 5B are schematic representations of how a muscle implant may be fabricated.
- FIG. 6 is a schematic representation of one type of hypertrophy mechanism.
- FIG. 7 is a schematic representation of a form into which the polymer stream may be directed.
- An engineered muscle implant can comprise one or more of the following components. They are an engineered extracellular matrix, an engineered tendon, and engineered muscle cells. Each component will be discussed in detail separately and then in combination with respect to their assembly.
- fascial sheath In a normal human anatomy, muscles are bundles of oriented muscle cells that are encased in an outer protective coating which we refer to as an extracellular matrix. In skeletal muscle, this outer coating is referred to as the fascial sheath. The fascial sheath gives shape and support to the skeletal muscle. The fascial sheath is the extracellular matrix or scaffolding that maintains the integrity of the muscle. Smooth muscle and cardiac muscle is also supported by an extracellular matrix. The cells of smooth and cardiac tissue are both interconnected by a network of collagen fibrils. Smooth muscle lacks a defined fascial sheath. The entire surface of the heart is enclosed in a tough outer coating of connective tissue composed of collagen called the pericardium.
- the engineered extracellular matrix of the present invention can be custom constructed to meet the requirements of skeletal, smooth or cardiac muscles.
- the extracellular matrix is fabricated by electrospinning polymer fibers (synthetic or natural) to form a matrix directly onto a substrate; or to form a matrix directed onto a substrate or form (mold), or other surface such as the central cylinder of the RCCS Bioreactor (Synthecon).
- the RCCS bioreactor is a rotating wall bioreactor. It consists of a small inner cylinder, the substrate for the electrospinning process, positioned inside a larger outer cylinder. Although the electrospun matrix can be fabricated on the inner cylinder, other locations within the bioreactor also may be used for placement of the matrix for seeding.
- the gap between the inner and outer cylinders serves as the culture vessel space for cells.
- Culture medium is oxygenated via an external hydrophobic membrane.
- the low shear environment of the Synthecon RCCS bioreactor promotes cell-cell and cell-extracellular matrix (ECM) interactions without the damage or “washing away” of nutrients that occurs with active stirring or sparging.
- ECM cell-cell and cell-extracellular matrix
- the RCCS device is operated at rotation rates of 8 up to 60 RPM, as required to maintain cells in suspension, and at less than 8 RPM (preferably 2-3 RPM) for cultures immobilized along the center shaft of the vessel.
- the Synthecon bioreactor can be used in a standard tissue culture incubator.
- the electrospinning process can be used to produce a dense, mat-like matrix of unoriented polymer fibers (FIG. 1 ).
- “Electrospinning” means a process in which fibers are formed from a solution or melt by streaming an electrically charged polymer solution or melt through an orifice. Electrospinning has been used in the textile industry to produce ultra thin layers of fiber fabrics (continuous multi filaments) and dense mats of material. The polymer fibers formed by this technique are in the 40-500 nanometer diameter range. The mechanical properties (i.e., strength), porosity, and weight of the fabrics produced by electrospinning can be controlled by regulating the processing conditions, the materials used in the fabrication process and the thickness of the deposited material. Gibson, P. W., et al., Electrospun Fiber Mats: Transport Properties, 1998 AIchE J.; Deshi, J., et al., Electrospinning Process and Applications of Electrospun Fibers, 1996 J. Electrostatics 35:151.
- An extracellular matrix of electrospun fibers in accordance with the present invention can be produced analogously. While any polymer can be used, it is preferable to electrospin natural polymer fibers such as collagen fibers. Various effective conditions can be used to electrospin a collagen matrix. While the following is a description of a preferred method, other protocols can be followed to achieve the same result.
- micropipettes 10 are filled with a solution of collagen and suspended above a grounded target 11 , for instance, a metal ground screen placed inside the central cylinder of the RCCS bioreactor. A fine wire 12 is placed in the solution to charge the collagen solution in each pipette tip 13 to a high voltage.
- the collagen solution suspended in the pipette tip is directed towards the grounded target.
- This stream 14 of collagen forms a continuous filament that, upon reaching the grounded target, collects and dries to form a three-dimensional, ultra thin, interconnected matrix of collagen (fabric).
- Minimal electrical current is involved in this process, and, therefore, the streaming process does not denature the collagen, because there is no expected temperature increase in the collagen solution during the procedure.
- collagen is used to form the extracellular matrix.
- Any suitable collagen can be used, including, types I through X.
- types I and III are used.
- Collagens are available from commercial sources, or they can be prepared according to methods known in the art.
- DNA coding for desired products can be mixed into the electrospinning polymeric solution for incorporation into the tissue-engineered scaffold.
- vectors i.e. genetic engineering
- the DNA can be in any form which is effective to enhance its uptake into cells.
- it can be naked (e.g., U.S. Pat. Nos. 5,580,859; 5,910,488) or complexed or encapsulated (e.g., U.S. Pat. Nos. 5,908,777; 5,787,567).
- growth factors or other chemotaxins such as angiogenic factors into the electrospun matrix to aid in tissue regeneration.
- the electrospinning process can be manipulated to meet the specific requirements for any given application.
- the micropipettes can be mounted on a frame that moves in the x, y and z planes with respect to the grounded substrate. In this way, the collagen or other polymer streamed from the micropipette can be specifically aimed or patterned.
- the micropipettes can be moved about manually, preferably, the frame onto which the micropipettes are mounted is controlled by a microprocessor and a motor that allows the pattern of streaming collagen to be predetermined by a person making a specific matrix. For instance, collagen fibers can be oriented in a specific direction, they can be layered, or they can be programmed to be completely random and unoriented.
- the polymer stream can branch out to form fibrils of the polymer.
- the degree of branching can be varied by many factors including, but not limited to, voltage, ground geometry, distance from micropipette tip to the substrate, diameter of micropipette tip, polymer concentration, etc. These variables are well-known to those of skill in the art of electrospinning microfiber textile fabrics.
- the geometry of the grounded target can be modified to produce a desired matrix.
- a rotating wall bioreactor is used.
- the grounded target is a cylinder that fits inside the inner cylinder in the electrospinning process.
- the direction of the streaming collagen can be varied and customized to a particular application.
- a grounded target comprising a series of parallel lines can be used to orient electrospun collagen in a specific direction.
- the grounded target may be a cylindrical mandrel whereby a tubular matrix is formed.
- the ground is a variable surface that can be controlled by a microprocessor that dictates a specific ground geometry that is programmed into it.
- the ground may be mounted on a frame that moves in the x, y, and z planes with respect to a stationary micropipette tip streaming collagen.
- the grounded target 11 in FIG. 2B is shown as being able to oscillate along its longitudinal axis.
- the substrate onto which the collagen is streamed can be the grounded target itself or it can be placed between the micropipette tip and the grounded target.
- the substrate can be specifically shaped, for instance in the shape of a heart or a part thereof or a vascular graft, to substitute or replace a specifically shaped muscle.
- a very complex muscle pattern can be replicated to enable a specific muscle form for a specific application to be created.
- collagen may be streamed into a preselected form.
- the thickness and attributes of the matrix may be preselected to form cartilage, dentin packing, or other similar prosthesis.
- FIG. 7 A schematic example of this type of application is shown in FIG. 7 .
- Nonbiological but biologically compatible material can be mixed with a biological molecule such as collagen, e.g., PVA, PLA, PGA, PEO, etc.
- the stability, rigidity, and other attributes of the electrospun matrix can be regulated by the degree to which it is chemically modified.
- the electrospun matrix may be used in its unmodified state, or it may be modified in accordance with the requirements of a specific application. Modifications to the matrix can be made during the electrospinning process or after it is deposited.
- Cross-linking agents such as carbodiimide EDC (1-ethyl-3(3 dimethyl aminopropyl)), carbodiimide hydrochloride, NHS (n-hydroxysuccinimide), or UV light can be used e.g., to stabilize the fascial sheath against proteolytic attack, and/or to increase the stability of collagen gels. See, e.g., Van Wachem, et al., 1996 Myoblast seeding in a collagen matrix evaluated in vitro, J. Biomedical Materials Res. 30:353-60.
- the engineered tendon, or the connective tissue struts that anchor the engineered muscle to bone can be assembled from extruded collagen fibers or other suitable materials.
- Collagen fibers are preferred, because collagen is less likely to be rejected by a recipient's immune system. These fibers function in combination with the extracelluar matrix to stabilize the overall structural integrity of the muscle implants.
- Collagen fibers for the fabrication of the engineered tendon can be extruded after known methods.
- a preferred collagen extrusion apparatus comprises a syringe pump, microbore tubing, a dehydration trough, recirculation pump, rinsing trough, drying chamber, heating air dryer, and a collagen fiber winder.
- the syringe is filled with degassed collagen and mounted onto a syringe pump.
- the collagen solution is then extruded from the syringe, through the microbore tubing, and into a dehydration bath (Polyethylene glycol in PBS).
- the formed collagen fiber is subsequently guided through a rinsing bath (phosphate buffered saline, PBS) and attached to a winding system within a dryer.
- PBS phosphate buffered saline
- the process becomes automated and continuous.
- the extrusion apparatus can produce fiber 1-10 meters in length and 50-250 ⁇ m in diameter. After production, the fiber diameter can be verified through scanning electron and light microscopic evaluation. Varying the reaction conditions controls the diameter of the collagen fiber that is polymerized.
- the physical properties of the engineered collagen fiber can be further modified and controlled by regulating the composition of the extrusion material.
- the elastic properties of the engineered tendon can be modulated by incorporated elastin, fibrin or man made material into the collagen solution as it is extruded. Prior to use in the engineered implant the collagen fibers are sterilized by peracetic acid sterilization.
- muscle cells can be used in the present invention, including cell culture strains, transformed cells, primary muscle cells, embryonic muscle cells, neonatal muscle cells, embryonic stem cells, etc.
- Preferred cells are stem cells or muscle cells (or muscle precursor cells) which are obtained from a host into which the muscle will be transplanted.
- the term “primary myocytes” means muscle cells which are obtained directly from a host animal muscle which retain the ability to differentiate and which have been passed a minimum number of times in culture. Such cells generally are not transformed.
- the cell type to be used in the implant depends upon use and the site of implantation that is to be reconstructed repaired or otherwise augmented by the engineered muscle.
- a variety of cell types can be used and include but are not limited to; embryonic stem cells, bone marrow stem cells, satellite muscle cells from the striated muscle beds, cardiac muscle cells, smooth muscle cells, muscle cell lines, transformed cell lines and genetically engineered cell lines.
- Cells isolated from fetal, neonatal and adult tissue may be used.
- Fetal cardiac myocytes can be used in the construction of the cardiac prosthesis.
- Cells of the c2c12 muscle cell line can be used for the fabrication of skeletal muscle implants. In the long run a stem cell population (adult or embryonic) will be the ideal cell source for the fabrication of the muscle.
- Stem cells are attractive for this use because they can be engineered to become nearly any type of cell (e.g., smooth muscle, cardiac muscle, skeletal muscle, cartilage, bone, etc). They can but do not have to come from the patient to be treated with the muscle implant, because even if they come from some other source they will not invoke an immune response.
- satellite muscle cells are derived from a suitable, and unobtrusive, donor site on the subject who is to receive the muscle implant. Muscle biopsies are isolated, and the connective tissue removed by dissection.
- Various protocols can be utilized to isolate satellite or other cell types from the muscle for engineering the implant. For instance, a protocol can be as follows: Isolated muscle tissue is minced and dissociated into a single cell suspension, by trypsin-EDTA digestion (or other suitable enzymes) under constant stirring. At the conclusion of the enzymatic dissociation procedure, the digestion media is quenched with the addition of 10% serum. Cell suspensions are washed by centrifugation, and a sample is stored in liquid nitrogen for future use.
- the balance of the isolated cells are enriched in satellite cells by flow cytometery or through the use of differential adhesion or through immunoseparation methods.
- Flow cytometery can be used to separate cells by size, by cell cycle stage, or, if labeled, by cell surface markers.
- differential adhesion cells are placed into a culture vessel for a short incubation period to allow contaminating fibroblasts to seed out of the solution, thus enriching the remaining cell population in satellite cells.
- a longer interval of differential adhesion can be used to seed out satellite cells so they can be purified away from contaminating debris and muscle cells.
- Enriched cell fractions that contain myogenic satellite cells can be stored at ⁇ 70° C. in liquid nitrogen.
- the samples are thawed and plated into culture vessels and assayed for myogenic potential.
- Cell lots that are competent to undergo differentiation are used in the fabrication of the muscle implant.
- clones are assayed for myogenic potential, e.g., by plating cells onto collagen—coated dishes and observing whether adherent cells display the characteristics of muscle cells.
- Candidate clones from the primary cell isolate are grown under sparse culture condition (i.e. low cell density) in an appropriate media, e.g., containing 10-15% serum, to accumulate an adequate number of cells from which the implant can be fashioned. Once a sufficient number of cells have been obtained (dependent upon the size of the implant to be fabricated), they are prepared for insertion into the bioreactor for the assembly of the prosthetic muscle. Muscle cell differentiation in the bioreactor can be induced by replacing the high serum content media (10-15% serum) with low serum media.
- Cells utilized in the fabricated muscle are readily amenable to genetic manipulation.
- genes encoding angiogentic factors, growth factors or structural proteins can be incorporated into the isolated cells. This can be accomplished before, during or after the fabrication of the muscle construct.
- Useful genes include, e.g., VEGF, FGF, and related genes.
- any effective method can be used, including viral vectors, such as adenovirus, also DNA, plasmids, etc. can be used.
- the muscle implant can comprise three distinct components, the extracellular matrix, the engineered tendon and the population of muscle cells.
- an extracellular matrix composed of a matrix of collagen fibers or other biologically compatible material is prepared on the outer surface of the inner cylinder of an RCCS bioreactor (or suitable substitute).
- the structural properties of this mat of fibers are regulated by the diameter of fibers produced, the relative concentration of materials used in the reaction (e.g. concentration of type I to type III collagen, or other incorporated materials), and other reaction conditions.
- a thin gel matrix of collagen or other suitable matrix material can be applied over the surface of the extracellular matrix to enhance muscle cell adhesion, differentiation, and/or alignment.
- the gel matrix can be applied in any suitable manner including electrospinning, spraying, dipping, spreading, dropping, etc. Simpson, et al., Modulation of Cardiac Phenotype in vitro by the Composition and Organization of the Extracellular matrix, 1994 J. Cell Physiol. 161:89-105.
- the collagen fibers in the thin gel are aligned along a common axis.
- the aligned matrix can be produced by dipping the central cylinder core of the RCCS bioreactor, with its electrospun coating of collagen, end-on into a ice cold neutral stock solution of collagen (1 mg/ml) (Type I or type III or a mixture thereof). After a very brief interval (1-3 secs), the cylinder is removed from the solution and the excess collagen is allowed to drain by gravity off of the distal end of the cylinder. The orientation of the cylinder is maintained constant throughout this process, i.e. perpendicular to the collagen solution in which it was dipped. This allows the excess collagen to drain off the long axis of the cylinder.
- the cylinder is then placed into an incubator, e.g., set for 37° C, to allow the collagen to polymerize, e.g., sixty minutes or more.
- the aligned collagen fibers are allowed to dry down on to the underlying facial sheath. These procedures result in a thin layer of aligned collagen fibrils arrayed along the axis the cylinder was drained. See FIG. 3 .
- Other methods for aligning the collagen may be employed, for instance, using the described electrospinning system or using a centrifuge after dipping the core in the collagen solution. Regardless of how the collagen is aligned, at the conclusion of this step, the central RCCS cylinder has a mat-like coating of electrospun collagen fibers (the extracellular matrix) covered or coated with a thin layer of aligned collagen.
- the extracellular matrix can incorporate other materials as well, such as polyester mesh and other synthetic materials.
- the need for the thin gel of collagen fibers may be obviated if the electrospun matrix is sufficiently oriented during the electrospinning process.
- the additional thin gel layer of oriented collagen is only necessary if the extracellular matrix (fascial sheath in the example of skeletal muscle) of collagen or other polymer is unoriented.
- extruded collagen fibers are then applied over the aligned collagen gel.
- the mechanical properties of the implant are controlled in this step at two separate sites. First, by the thickness of the individual extruded fibers and the number of these filaments added to the implant. Second, by the orientation of these fibers with respect to the long axis of prosthesis.
- the implant can be made more or less stiff by applying these fibers in an undulating pattern.
- the large fibers can also be attached to the matrix by only overlapping the matrix at the distal ends, i.e., not necessarily running the entire length of the engineered muscle. Regardless of the orientation used, the ends of extruded fibers are allowed to project from the distal ends of the implant.
- the large diameter collagen fibers are allowed to dry down onto the fibers of the aligned collagen gel.
- Alternative fabrication processes can be used to further customize the mechanical properties of the implant. For example, large diameter collagen fibers may be laid down first followed by collagen fibers deposited by electrospinning, followed by another layer of large diameter collagen fibers, the aligned collagen gel and the satellite cells. Other permutations on this assembly process are also possible.
- a tendon can also be created in situ by combining tendon fibroblasts with the synthetic muscle bed.
- tendon fibroblasts may also be harvested from a recipient's own tendon. These cells are placed on the end of the muscle bed synthesized as described herein. The tendon is allowed to grow with the muscle bed in the bioreactor. The tendon fibroblasts are encouraged to grow in an oriented fashion by use of the aligned substrate herein or by other orientation methods. If this method is chosen, the extruded collagen tendons described herein become unnecessary, although a combination of extruded and cultured tendons may be desired for certain applications.
- the inner cylinder with its engineered fascial sheath and overlaying layers of aligned collagen and large diameter collagen fibers is loaded into a RCCS bioreactor.
- Muscle cells such as satellite myoblasts isolated from the subject or compatible donor, are loaded into the chamber and allowed to interact with the collagen-based substrate.
- the RCCS bioreactor is preferably used in this step because it provides high nutrient profusion in a very low shear environment. However, other culture vessels can be used. Under these conditions, it is possible to assemble a muscle cell culture comprising multiple layers (8-12layers in 48 hours) of aligned cells.
- cells are gradually depleted from suspension culture and plated onto the collagen matrix, either directly on the electrospun matrix or on the collagen gel coating, to form the three dimensional arrangement of the engineered tissue.
- Additional satellite cells are added as need to the bioreactor to assemble additional cell layers. Once the desired mass of cells has been plated onto the fascial sheath, they are allowed to differentiate into myotubes, e.g., by transfer to a serum media.
- Any suitable culture media can be used to grow the cells, including medias comprising serum and other undefined constituents, defined medias, or combinations thereof, RPMI, etc.
- the skeletal muscle implant is ready for transplantation into the site of reconstruction in the subject.
- the implant is removed from the central cylinder of the bioreactor.
- the size and thickness of the implant is controlled at this stage of the process at two different levels—first, by the number of cell layers assembled onto the central cylinder and, second, by the size of the sheet of tissue used to construct the muscle implant.
- This latter procedure involves trimming (for instance, into a rectangular sheet—FIG. 5 A), stacking, and rolling (FIG. 5B) the engineered muscle into the desired configuration.
- the engineered muscle can be directly implanted or layered for the reconstruction of, for instance, facial muscles as a flat sheet.
- the engineered muscle is to be used to reconstruct a muscle bed of the axial skeleton, it may be attached to the implantation site through the large diameter collagen fibers 20 that protrude from the ends of engineered muscle 21, through the distal ends of the fascial sheath itself or through a combination of these methods.
- the tissue is to be used to reconstruct a congenital heart defect or repair an otherwise dysfunctional region of myocardium or reconstruct a muscle of facial expression it can be sutured or affixed in place with fibrin glue.
- implants for the reconstruction of cardiac muscle or smooth muscle can be assembled.
- the major modification may be in the relative pattern of the engineered extracellular matrix and connective struts or tendons described in this application.
- Cardiac tissue and smooth muscle lack tendons.
- the use of large diameter collagen fiber may still be desirable to lend mechanical strength to the implant.
- the large fibers may be used as a delivery system to assemble the implants.
- the key common feature to assembly of these implants is the ability to fabricate a multi-layer implant composed of cells in an in vivo pattern of organization.
- Vascularization of the implanted muscle tissue will occur in situ several days after surgery. It can be stimulated further, as mentioned above, by angiogenetic and growth-promoting factors, either administered as peptides or as gene therapy.
- the connective backbone support of the implant comprises natural materials. This material has low antigenic potential and its structural properties can be regulated at many different sites, including, but not limited to; the relative concentration of different collagen isoforms used to produce the sheath, the thickness of the fibers used and, the degree of chemical cross-linking present in the matrix.
- the implant uses large diameter collagen fibers to further modify the structural properties of the implant and provide a means to anchor the engineered muscle to the site of transplantation.
- the stem cells or muscle cells used to construct the implant can be isolated from the subject, or other compatible donor, that requires muscle reconstruction. This has the obvious advantage of using cells that will not induce an immune response, because they originated with the subject (autologous tissue) requiring the reconstruction. Relatively small muscle biopsies can be used to obtain a sufficient number of cells to construct the implant. This minimizes functional deficits and damage to endogenous muscle tissues that serves as the donor site for satellite muscle cells.
- Another factor unique to this muscle prosthesis is the shape of the individual muscle cells and their three-dimensional arrangement.
- the cultures are composed of linear, three-dimensional arrays of muscle cells distributed along a common axis in an in vivo-like pattern of organization. This makes it possible to install an implant that can produce contractile force along a defined direction, allowing for the structural and functional repair of a dysfunctional muscle bed.
- Cultures prepared on, or, in a random gel of collagen lack this uniform alignment. Compare FIG. 4A (aligned) with FIG. 4B (random). Random cultures are unsuitable for the use in reconstruction because they lack the clearly defined orientation that is characteristic of intact skeletal muscle and the individual cellular layers of the heart.
- the highly polarized nature of intact muscle allows it to effectively and efficiently apply mechanical force along a defined axis during contraction. This property also facilitates the conduction of electrical impulses through the tissue.
- the implants can be seeded with angioblasts and/or endothelial cells to accelerate the formation of vascular elements once the engineered tissue is placed in situ.
- angiogenic peptides can be introducted into the engineered tissue via an osmotic pump. The use of an osmotic pump makes it possible to deliver active peptides directly to the site of interest in a biologically efficient and cost-effective manner.
- 26:49-644 suggests that it may be desirable to implant engineered muscle tissue at a time just prior to muscle differentiation.
- An alternative approach is to “seed” fully differentiated muscle constructs with additional satellite cells and/or endothelial cells and or angioblasts shortly before they are implanted in situ.
- a mechanical stretcher can be used in the bioreactor by attachment of the “tendons” on either end of the implant to ring clamps to tighten or loosen the implant.
- FIG. 6 illustrates how the fibers will be held in place (at desired orientations longitudinally) on the inner cylinder surface of the bioreactor by two end supports 30.
- FIG. 6 also illustrates the use of motor driven screw 31 drives to be added to the bioreactor to allow mechanical stretching (well defined percentage of stretch) for preconditioning particular tissue (muscle, blood vessels, and intestines) during the initial cell seeding/development stage.
- the stretching makes bigger, thicker and stronger cells/tissue that are less likely to tear after implantation.
- the stretching can also be used to further align the muscle cells.
- Electrical pacing or pharmacological stimulation can also be used. Electrical pacing, in particular, is very effective and easy to control.
- the second level of control that is imparted by the central nervous system on skeletal muscle is more fundamental. Neural inputs directly control the action of the tissue. In order to achieve a fully functional muscle prosthesis it is necessary to bring it under the control of the central nervous system.
- the engineered implant can be transplanted into a muscle bed adjacent to the area of interest and allowed to adapt to the in vivo environment. After a period of adaptation the autologous implant would be mobilized, perhaps with a portion of the motor units arising from the original transplant site, and repositioned within the site requiring reconstruction. It may also be possible to induce the ingrowth of motor neurons through the use of growth peptides delivered by osmotic pumps, or other means, to the implant tissue.
- Cardiac tissue mass is not subject to much regulation by the central nervous system. However, it is sensitive to changes in mechanical activity. By pre-stressing by stretching, electrical stimulation or using pharmacological agents to promote cardiac muscle hypertrophy an implant of cardiac muscle during or following the fabrication process, it can be better prepared for the region of the in vivo environment.
- PDA/PGA poly-lactic/poly-glycolyic acid
- RESOMER® RG 503 poly(ethylene-co-vinyl) acetate
- concentration of the two polymers dissolved in dichloromethane were 0.19 g/ml RESOMER® RG 503 and 0.077 g/ml poly(ethylene-co-vinyl) acetate.
- the electrospinning set-up consists of a glass pipet (overall length approximately 21 cm with a tapered tip with an opening estimated at 0.3 mm, no exact measurement obtained, 0.32 mm diameter silver-coated copper wire, 20 ⁇ 20 mesh 316 stainless steel screen, two large clamp holders (polymeric coated), base support, and a Spellman CZE1000R power supply (0-30,000 volts, Spellman High Voltage Electronic Corp., Hauppauge, N.Y.).
- the physical set-up had the top clamp holder containing the glass pipet at approximately 12 inches from the base with the pipet tip pointing (pipet at approximately at 45 angle to base) toward the base.
- the wire was then placed in the top of the glass pipet and inserted until reaching the pipet tip where it remained during the procedure.
- the second clamp holder was placed at approximately 6 inches above the base for holding the screen (grounded target) approximately perpendicular to the axis of the glass pipet.
- the distance between the pipet tip and the grounded screen was approximately 10 cm.
- the positive lead from the high voltage power supply was attached to the wire hanging out the top end of the glass pipet while the negative lead (ground) was attached directly to the stainless steel screen.
- the glass pipet was then filled with the appropriate solution and the power supply turn on and adjusted until electrospinning was initiated (i.e. fibers shooting from the tip of the glass pipet).
- the thickness of the matrix that can be produced is dependent on the amount of polymer solution (spinning time) utilized and allowed to accumulate in a particular region. Thus, allowing the ability to produce a matrix with varying thickness across the sample.
- a scanning electron micrograph of the fiber forming the matrix is shown in FIG. 1 .
- An aligned collagen gel was prepared after the methods of Simpson et al., 1994 (Journal of Cell Physiology) on a silastic membrane (Specility Manufacturing). Silastic membranes were sterilizied in an autoclave and exposed to 2 minutes of electrical discharge to make the rubber more hydrophlic. Aligned collagen was then applied over the surface of the treated silastic rubber. In brief, 500 ⁇ l of 0 . 2 N HEPES was mixed with 500 ⁇ l of 10 ⁇ MEM in a 50 ml centrifuge tube and placed on ice.
- Type I collagen 3 mg/ml in 0.012 HCL, Collagen Corporation
- HEPES/10 ⁇ MEM solution 3.5 mls of Type I collagen (3 mg/ml in 0.012 HCL, Collagen Corporation) was layered over the top of the HEPES/10 ⁇ MEM solution, mixed by inversion and diluted to a final volume of 10 mls with ice cold Phosphate Buffered Saline.
- a sterile and treated silastic membrane 70 mm ⁇ 30 mm was placed in a 100 mm culture dish.
- One milliliter of ice cold collagen solution final concenration 1.05 mg collagen/ml solution
- the collagen was pulled in a single continuous stroke across the long axis of the silastic membrane with a sterile cell scraper.
- the dish containing the silastic membrane was then tipped and the collagen was allowed to drain across the membrane along the axis that it was applied.
- the dish was covered and placed into a 37 degree Celsius incubator for 1 hour to allow the collagen to undergo polymerization. These procedures resulted in a thin layer of aligned collgen fibrils on the silastic membrane.
- the membranes were then allowed to dry in a moist atmosphere for 12-24 hours. This allows the collagen to partially dry down without pooling the collagen and disturbing the aligned collagen fibrils.
- the silastic membranes were then allowed to completely dry for an additional 30-60 minutes under a sterile laminar flow hood. Complete drying of the collagen anchors the fibrils to the rubber for further manipulation.
- Silastic membranes were used in these experiments solely to provide a support surface that could be easily manipulated for the fabrication of the engineered muscle.
- a segment of silastic membrane (22 mm ⁇ 22 mm) containing uniformly arrayed collagen fibrils was cut and transferred to a sterile 35 mm culture dish.
- Cells of the mouse c2c12 skeletal muscle cell line were placed onto the silastic membranes and cultured for 3-5 days in DMEM-F12 (50:50 DMEM:F12 mix, supplemented with 10% Horse serum, 5% FBS plus penstrep and gentimysin) and allowed to form a confluent culture of uniformly arrayed cells. These cultures served as a template layer for the further assembly of the cultures.
- a thin layer of silicon grease was placed on the underside of a piece of silastic rubber containing a culture of aligned c2c12 cells.
- the silicon grease serves as a non-toxic adhesive to anchor the culture to different locations within the culture chamber of a RCCS Bioreactor (Synthecon, Inc). In preliminary experiments several different locations in the bioreactor culture vessel were used in attempts to fabricate a three dimensional array of aligned muscle.
- the rate of rotation By setting the rate of rotation at a slow rate the cells added in suspension were gradually seeded out onto the template culture. After 48 hours of mixing in the vessel, the template cultures were isolated and prepared for electron microscopic examination.
- the cultures prepared in the RCCS reactor were composed of multiple layers of c2c12 cells arrayed along a common axis. Several different locations and conditions within the bioreactor were assayed for the ability to fabricate the multi-layered cultures. In this experimental run, it was found that cells arrayed on the back wall of the reactor in an orientation that was perpendicular to the direction of rotation was most effective. Other sites within the vessel also promoted the assembly of multilayered cultures, including the outer wall, central core and outer cylindrical wall. Aligned cultures that were oriented with the direction flow were also capable of promoting multlayer assembly, although not as effectively as the cultures oriented perpendicular to the direction of rotation.
- an aligned collagen gel was prepared on a silastic membrane as described and placed directly into the RCCS bioreactor chamber (i.e. the experiments were designed to determine if the aligned collagen fibrils could promote multilayered assembly without first growing a confluent template layer of cells).
- Templates consisting of aligned collagen alone were about as equally effective as the templates containing confluent cell layers at promoting the assembly of the multilayered cultures.
- these collagen templates were placed onto the bioreactor in different locations. They behaved identically as the confluent cell layers, i.e. collagen coated membranes of the back wall oriented perpendicular to the axis of rotation were most effective at promoting multilayer assembly.
- FIG. 4 A A scanning electron micrograph of the muscle cells deposited on the aligned collagen is shown in FIG. 4 A.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Botany (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rehabilitation Therapy (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (12)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/386,273 US6592623B1 (en) | 1999-08-31 | 1999-08-31 | Engineered muscle |
CA002383145A CA2383145A1 (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
BR0013639-5A BR0013639A (en) | 1999-08-31 | 2000-08-02 | Extracellular Matrix, Process for Manufacturing an Extracellular Matrix, Process for Forming a Vascular Prosthesis, Muscle Implant, Extracellular Matrix for Muscle Support, Process for Forming a Muscular Facial Coating, and Process for Overlapping Muscle Cell Layers in a Matrix extracellular |
MXPA02002268A MXPA02002268A (en) | 1999-08-31 | 2000-08-02 | Engineered muscle. |
PCT/US2000/020974 WO2001015754A1 (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
KR1020027002632A KR20020059382A (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
DE60020721T DE60020721T2 (en) | 1999-08-31 | 2000-08-02 | RECONSTRUCTED MUSCLE |
AU66173/00A AU6617300A (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
EP00953780A EP1212107B1 (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
JP2001520165A JP2003508130A (en) | 1999-08-31 | 2000-08-02 | Processed muscle |
AT00953780T ATE297229T1 (en) | 1999-08-31 | 2000-08-02 | RECONSTRUCTED MUSCLE |
PL00353742A PL353742A1 (en) | 1999-08-31 | 2000-08-02 | Engineered muscle |
US10/409,682 US20040018226A1 (en) | 1999-02-25 | 2003-04-07 | Electroprocessing of materials useful in drug delivery and cell encapsulation |
US10/420,561 US20040009600A1 (en) | 1999-02-25 | 2003-04-22 | Engineered muscle |
US10/447,670 US7615373B2 (en) | 1999-02-25 | 2003-05-28 | Electroprocessed collagen and tissue engineering |
US10/630,624 US20040116032A1 (en) | 1999-02-25 | 2003-07-29 | Electroprocessed collagen |
US10/668,085 US7374774B2 (en) | 1999-08-31 | 2003-09-22 | Electroprocessed material made by simultaneously electroprocessing a natural protein polymer and two synthetic polymers |
US10/764,691 US7759082B2 (en) | 1999-02-25 | 2004-01-26 | Electroprocessed fibrin-based matrices and tissues |
US11/842,748 US20080038352A1 (en) | 1999-02-25 | 2007-08-21 | Electroprocessed Collagen and Tissue Engineering |
US11/963,109 US20080159985A1 (en) | 1999-08-31 | 2007-12-21 | Electroprocessing in drug delivery and cell encapsulation |
US12/796,207 US20100310658A1 (en) | 1999-02-25 | 2010-06-08 | Electroprocessed Fibrin-Based Matrices and Tissues |
US13/008,329 US20110280841A1 (en) | 1999-08-31 | 2011-01-18 | Electroprocessing in Drug Delivery and Cell Encapsulation |
US13/052,778 US8586345B2 (en) | 1999-02-25 | 2011-03-21 | Electroprocessed collagen and tissue engineering |
JP2011069980A JP2011131076A (en) | 1999-08-31 | 2011-03-28 | Engineered muscle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/386,273 US6592623B1 (en) | 1999-08-31 | 1999-08-31 | Engineered muscle |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US51208100A Continuation-In-Part | 1999-02-25 | 2000-02-24 | |
US09/818,300 Continuation-In-Part US6527785B2 (en) | 1999-08-03 | 2001-03-27 | Surgical suturing instrument and method of use |
US09/982,515 Continuation-In-Part US20020081732A1 (en) | 1999-02-25 | 2001-10-18 | Electroprocessing in drug delivery and cell encapsulation |
US10/420,561 Continuation US20040009600A1 (en) | 1999-02-25 | 2003-04-22 | Engineered muscle |
Publications (1)
Publication Number | Publication Date |
---|---|
US6592623B1 true US6592623B1 (en) | 2003-07-15 |
Family
ID=23524908
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/386,273 Expired - Lifetime US6592623B1 (en) | 1999-02-25 | 1999-08-31 | Engineered muscle |
US10/420,561 Abandoned US20040009600A1 (en) | 1999-02-25 | 2003-04-22 | Engineered muscle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/420,561 Abandoned US20040009600A1 (en) | 1999-02-25 | 2003-04-22 | Engineered muscle |
Country Status (1)
Country | Link |
---|---|
US (2) | US6592623B1 (en) |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020192468A1 (en) * | 2001-06-19 | 2002-12-19 | Kyung-Ju Choi | Method, apparatus and product for manufacturing nanofiber media |
US20030023316A1 (en) * | 2000-08-04 | 2003-01-30 | Brown Laura Jean | Hybrid biologic-synthetic bioabsorable scaffolds |
US20030033021A1 (en) * | 2001-07-16 | 2003-02-13 | Plouhar Pamela Lynn | Cartilage repair and regeneration scaffold and method |
US20030211130A1 (en) * | 2002-02-22 | 2003-11-13 | Sanders Joan E. | Bioengineered tissue substitutes |
US20040059431A1 (en) * | 2000-08-04 | 2004-03-25 | Plouhar Pamela L. | Reinforced small intestinal submucosa |
US20040081745A1 (en) * | 2001-09-18 | 2004-04-29 | Henrik Hansen | Method for spray-coating medical devices |
US20040110439A1 (en) * | 2001-04-20 | 2004-06-10 | Chaikof Elliot L | Native protein mimetic fibers, fiber networks and fabrics for medical use |
US20040220574A1 (en) * | 2001-07-16 | 2004-11-04 | Pelo Mark Joseph | Device from naturally occuring biologically derived materials |
US6835390B1 (en) * | 2000-11-17 | 2004-12-28 | Jon Vein | Method for producing tissue engineered meat for consumption |
US20050009178A1 (en) * | 2003-06-04 | 2005-01-13 | University Of South Carolina | Tissue scaffold having aligned fibrils, apparatus and method for producing the same, and artificial tissue and methods of use thereof |
US20050019865A1 (en) * | 2003-06-27 | 2005-01-27 | Kihm Anthony J. | Cartilage and bone repair and regeneration using postpartum-derived cells |
US20050192637A1 (en) * | 2004-02-27 | 2005-09-01 | Girouard Steven D. | Method and apparatus for device controlled gene expression |
US20050260706A1 (en) * | 2002-06-24 | 2005-11-24 | Tufts University | Silk biomaterials and methods of use thereof |
WO2006041429A2 (en) * | 2004-09-17 | 2006-04-20 | Jon Vein | Tissue engineered meat for consumption and a method for producing tissue engineered meat for consumption |
US20060088578A1 (en) * | 2004-10-22 | 2006-04-27 | Shu-Tung Li | Biopolymeric membranes |
WO2006047620A2 (en) * | 2004-10-25 | 2006-05-04 | Arthur Palmer | Method for making a blood pump and pumping blood |
US20060105452A1 (en) * | 2004-11-16 | 2006-05-18 | The La Jolla Bioengineering Institute | Convective flow tissue assembly |
US20060166361A1 (en) * | 2004-12-21 | 2006-07-27 | Agnieszka Seyda | Postpartum cells derived from placental tissue, and methods of making, culturing, and using the same |
US20060171930A1 (en) * | 2004-12-21 | 2006-08-03 | Agnieszka Seyda | Postpartum cells derived from umbilical cord tissue, and methods of making, culturing, and using the same |
US20060198827A1 (en) * | 2005-02-04 | 2006-09-07 | Shulamit Levenberg | Engineering vascularized muscle tissue |
US20060204445A1 (en) * | 2005-03-11 | 2006-09-14 | Anthony Atala | Cell scaffold matrices with image contrast agents |
US20060204539A1 (en) * | 2005-03-11 | 2006-09-14 | Anthony Atala | Electrospun cell matrices |
US20060223177A1 (en) * | 2003-06-27 | 2006-10-05 | Ethicon Inc. | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20060240061A1 (en) * | 2005-03-11 | 2006-10-26 | Wake Forest University Health Services | Tissue engineered blood vessels |
US20060239981A1 (en) * | 2005-04-15 | 2006-10-26 | James Yoo | Bioreactor System and Method of Enhancing Functionality of Muscle Cultured In Vitro |
US20060253192A1 (en) * | 2005-03-11 | 2006-11-09 | Wake Forest University Health Sciences | Production of tissue engineered heart valves |
US20060257377A1 (en) * | 2005-03-11 | 2006-11-16 | Wake Forest University Health Services | Production of tissue engineered digits and limbs |
WO2007029913A1 (en) * | 2005-09-05 | 2007-03-15 | Biorane Co., Ltd | Multi-layered antiadhesion barrier |
US20070093874A1 (en) * | 2005-10-25 | 2007-04-26 | Raul Chirife | System and method of AV interval selection in an implantable medical device |
US20070224677A1 (en) * | 2006-03-24 | 2007-09-27 | Thomas Neumann | Method for creating perfusable microvessel systems |
US20070269476A1 (en) * | 2006-05-16 | 2007-11-22 | Voytik-Harbin Sherry L | Engineered extracellular matrices control stem cell behavior |
US20080051888A1 (en) * | 2005-02-18 | 2008-02-28 | Anthony Ratcliffe | Synthetic structure for soft tissue repair |
US7354627B2 (en) * | 2004-12-22 | 2008-04-08 | Depuy Products, Inc. | Method for organizing the assembly of collagen fibers and compositions formed therefrom |
US20080161917A1 (en) * | 2006-12-27 | 2008-07-03 | Shriners Hospitals For Children | Methods of making high-strength ndga polymerized collagen fibers and related collagen-prep methods, medical devices and constructs |
US20080200992A1 (en) * | 2007-02-20 | 2008-08-21 | Shriners Hospitals For Children | In vivo hydraulic fixation including bio-rivets using biocompatible expandable fibers |
US20080261306A1 (en) * | 2006-03-24 | 2008-10-23 | Thomas Neumann | Method for Creating Perfusable Microvessel Systems |
US20080268052A1 (en) * | 2006-09-21 | 2008-10-30 | Voytik-Harbin Sherry L | Collagen preparation and method of isolation |
US20090011021A1 (en) * | 2005-05-16 | 2009-01-08 | Purdue Research Foundation | Engineered Extracellular Matrices |
US20090069893A1 (en) * | 2007-04-19 | 2009-03-12 | Mikhail Vitoldovich Paukshto | Oriented Collagen-Based Materials, Films and Methods of Making Same |
USRE40669E1 (en) | 2001-08-13 | 2009-03-17 | Arthur Palmer | Blood pump |
WO2009071909A1 (en) * | 2007-12-06 | 2009-06-11 | Munro Technology Ltd | Nanometre fibres |
US20090175922A1 (en) * | 2006-05-16 | 2009-07-09 | Voytik-Harbin Sherry L | Three dimensional purified collagen matrices |
WO2009086313A2 (en) * | 2007-12-20 | 2009-07-09 | Zimmer Orthobiologics, Inc. | Compositions and methods for repair of connective tissue |
US20090216233A1 (en) * | 2008-02-22 | 2009-08-27 | Mimedx, Inc. | Biostaples suitable for wrist, hand and other ligament replacements or repairs |
US20090234026A1 (en) * | 2003-04-10 | 2009-09-17 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US20090280180A1 (en) * | 2007-12-10 | 2009-11-12 | Voytik-Harbin Sherry L | Collagen-based matrices with stem cells |
US20090287308A1 (en) * | 2008-05-16 | 2009-11-19 | Tian Davis | Medical constructs of twisted lengths of collagen fibers and methods of making same |
US20100036098A1 (en) * | 2008-08-11 | 2010-02-11 | Mikhail Vitoldovich Paukshto | Biocomposites and methods of making the same |
US20100094404A1 (en) * | 2008-10-09 | 2010-04-15 | Kerriann Greenhalgh | Methods of Making Biocomposite Medical Constructs and Related Constructs Including Artificial Tissues, Vessels and Patches |
US20100161054A1 (en) * | 2008-11-21 | 2010-06-24 | Jason Park | Reinforced Biologic Material |
US7764995B2 (en) | 2004-06-07 | 2010-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
US20100191328A1 (en) * | 2007-02-27 | 2010-07-29 | Trustees Of Tufts College | Tissue-engineered silk organs |
EP2216033A2 (en) | 2003-03-06 | 2010-08-11 | Yeda Research and Development Co. Ltd. | Methods of treating disease by transplantation of allogeneic or xenogeneic organs or tissues |
US20100203226A1 (en) * | 2003-06-06 | 2010-08-12 | Trustees Of Tufts College | Method for forming inorganic coatings |
US7819918B2 (en) * | 2001-07-16 | 2010-10-26 | Depuy Products, Inc. | Implantable tissue repair device |
US20100279268A1 (en) * | 2006-03-24 | 2010-11-04 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US20100331980A1 (en) * | 2008-02-01 | 2010-12-30 | Sang Jin Lee | Aligned scaffolding system for skeletal muscle regeneration |
US7871440B2 (en) | 2006-12-11 | 2011-01-18 | Depuy Products, Inc. | Unitary surgical device and method |
US7875273B2 (en) | 2004-12-23 | 2011-01-25 | Ethicon, Incorporated | Treatment of Parkinson's disease and related disorders using postpartum derived cells |
US20110029078A1 (en) * | 2009-07-31 | 2011-02-03 | Anthony Ratcliffe | Synthetic structure for soft tissue repair |
US20110046686A1 (en) * | 2008-02-07 | 2011-02-24 | Trustees Of Tufts College | 3-dimensional silk hydroxyapatite compositions |
US7914808B2 (en) | 2001-07-16 | 2011-03-29 | Depuy Products, Inc. | Hybrid biologic/synthetic porous extracellular matrix scaffolds |
US20110152214A1 (en) * | 2008-05-15 | 2011-06-23 | Trustees Of Tufts College | Silk polymer-based adenosine release: therapeutic potential for epilepsy |
US20110171239A1 (en) * | 2008-09-26 | 2011-07-14 | Trustees Of Tufts College | pH INDUCED SILK GELS AND USES THEREOF |
US7981065B2 (en) | 2004-12-20 | 2011-07-19 | Cardiac Pacemakers, Inc. | Lead electrode incorporating extracellular matrix |
US20110223153A1 (en) * | 2008-10-09 | 2011-09-15 | Trustees Of Tufts College | Modified silk films containing glycerol |
US8025896B2 (en) | 2001-07-16 | 2011-09-27 | Depuy Products, Inc. | Porous extracellular matrix scaffold and method |
US20110274666A1 (en) * | 2010-05-07 | 2011-11-10 | University Of North Carolina At Chapel Hill | Method of engrafting cells from solid tissues |
US8060219B2 (en) | 2004-12-20 | 2011-11-15 | Cardiac Pacemakers, Inc. | Epicardial patch including isolated extracellular matrix with pacing electrodes |
US8092529B2 (en) | 2001-07-16 | 2012-01-10 | Depuy Products, Inc. | Meniscus regeneration device |
CN102657898A (en) * | 2012-04-18 | 2012-09-12 | 暨南大学 | Degradable nanofiber anti-adhesive membrane with double-release performance and preparation method of same |
WO2013067294A1 (en) * | 2011-11-02 | 2013-05-10 | Mimedx Group, Inc. | Implantable collagen devices and related methods and systems of making same |
US20130274879A1 (en) * | 2012-01-23 | 2013-10-17 | Lloyd P. Champagne | Devices and methods for tendon repair |
US20140018918A1 (en) * | 2011-01-17 | 2014-01-16 | Jiangning Wang | Muscle Prosthesis with Suspension Fixing Apparatus for Implantation in Human Body and Production Method Thereof |
US8715740B2 (en) | 2009-09-29 | 2014-05-06 | Trustees Of Tufts College | Silk nanospheres and microspheres and methods of making same |
US8722067B2 (en) | 2007-05-29 | 2014-05-13 | Trustees Of Tufts College | Method for silk fibroin gelation using sonication |
US8728498B2 (en) | 2009-07-14 | 2014-05-20 | Trustees Of Tufts College | Electrospun silk material systems for wound healing |
AU2011289214B2 (en) * | 2010-08-13 | 2015-05-28 | Wake Forest University Health Sciences | Methods for making a tissue engineered muscle repair (TEMR) construct in vitro for implantation in vivo |
US9074302B2 (en) | 2009-09-28 | 2015-07-07 | Trustees Of Tufts College | Methods of making drawn silk fibers |
US9132197B2 (en) | 2003-01-07 | 2015-09-15 | Massachusetts Institute Of Technology | Silk fibroin materials and use thereof |
US9480515B2 (en) | 2012-07-12 | 2016-11-01 | Exsomed International IP, LLC | Metacarpal bone stabilization device |
US9566365B2 (en) | 2010-09-01 | 2017-02-14 | Trustees Of Tufts College | Silk fibroin and polyethylene glycol-based biomaterials |
US9606035B2 (en) | 2011-12-21 | 2017-03-28 | Ta Instruments-Waters Llc | System for mechanical stimulation and characterization of biologic samples |
US9603971B2 (en) | 2010-03-05 | 2017-03-28 | Trustees Of Tufts College | Silk-based ionomeric compositions |
US9636209B2 (en) | 2011-03-08 | 2017-05-02 | Mimedx Group, Inc. | Collagen fiber ribbons with integrated fixation sutures and methods of making the same |
US9694106B2 (en) | 2011-07-11 | 2017-07-04 | Mimedx Group, Inc. | Synthetic collagen threads for cosmetic uses including skin wrinkle treatments and associated methods |
US9724308B2 (en) | 2010-09-10 | 2017-08-08 | Fibralign Corporation | Biodegradable multilayer constructs |
US9869038B2 (en) | 2010-06-21 | 2018-01-16 | University Of South Florida | Polypeptide electrospun nanofibrils of defined composition |
US9878071B2 (en) | 2013-10-16 | 2018-01-30 | Purdue Research Foundation | Collagen compositions and methods of use |
US9968705B2 (en) | 2011-09-30 | 2018-05-15 | Wake Forest University Health Sciences | Bioscaffolds for formation of motor endplates and other specialized tissue structures |
US10065046B2 (en) | 2010-07-15 | 2018-09-04 | Fibralign Corporation | Conductive biopolymer implant for enhancing tissue repair and regeneration using electromagnetic fields |
US10086079B2 (en) | 2008-08-11 | 2018-10-02 | Fibralign Corporation | Biocomposites and methods of making the same |
US10092679B2 (en) | 2013-10-18 | 2018-10-09 | Wake Forest University Health Sciences | Laminous vascular constructs combining cell sheet engineering and electrospinning technologies |
US10188161B2 (en) | 2014-01-06 | 2019-01-29 | Exsomed International IP, LLC | Gloves with sensory windows |
US10194923B2 (en) | 2016-05-10 | 2019-02-05 | Exsomed International IP, LLC | Tool for percutaneous joint cartilage destruction and preparation for joint fusion |
US10238769B2 (en) | 2011-10-11 | 2019-03-26 | Fibralign Corporation | Graft for directed vascular and lymphatic regeneration and methods to guide endothelial cell assembly |
US10245091B2 (en) | 2015-12-30 | 2019-04-02 | Exsomed Holding Company, Llc | Dip fusion spike screw |
US10335519B2 (en) | 2011-04-20 | 2019-07-02 | Trustees Of Tufts College | Dynamic silk coatings for implantable devices |
AU2017203235B2 (en) * | 2010-05-07 | 2019-09-19 | University Of North Carolina At Chapel Hill | Method of engrafting cells from solid tissues |
US10441330B2 (en) | 2015-05-19 | 2019-10-15 | Exsomed Holding Company, Llc | Distal radius plate |
US20200009296A1 (en) * | 2013-05-16 | 2020-01-09 | The George Washington University a Congressionally Chartered Not-for-Profit Corporation | Myocyte-derived flow assist device: extravasal sheaths of rhythmically contracting myocytes aiding flow of biological fluids |
WO2020160533A1 (en) * | 2019-02-01 | 2020-08-06 | Nanofiber Solutions, Llc | Electrospun polymer fibers for cultured meat production |
US10898608B2 (en) | 2017-02-02 | 2021-01-26 | Nanofiber Solutions, Llc | Methods of improving bone-soft tissue healing using electrospun fibers |
US10912862B2 (en) | 2012-02-06 | 2021-02-09 | Children's Medical Center Corporation | Multi-layer biomaterial for tissue regeneration and wound healing |
US10933173B2 (en) | 2010-10-19 | 2021-03-02 | Trustees Of Tufts College | Silk fibroin-based microneedles and methods of making the same |
US10941375B2 (en) | 2012-08-21 | 2021-03-09 | Nanofiber Solutions, Llc | Fiber scaffolds for enhancing cell proliferation in cell culture |
US11147604B2 (en) | 2016-01-12 | 2021-10-19 | ExsoMed Corporation | Bone stabilization device |
US11147681B2 (en) | 2017-09-05 | 2021-10-19 | ExsoMed Corporation | Small bone angled compression screw |
US11191576B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US11191645B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Small bone tapered compression screw |
US11246959B2 (en) | 2013-03-15 | 2022-02-15 | Nanofiber Solutions, Llc | Biocompatible fiber textiles for implantation |
US11259849B2 (en) | 2013-10-02 | 2022-03-01 | ExsoMed Corporation | Full wrist fusion device |
US11273235B2 (en) | 2013-10-10 | 2022-03-15 | Fibralign Corporation | Method and device for lymphedema treatment |
US11576927B2 (en) | 2018-12-11 | 2023-02-14 | Nanofiber Solutions, Llc | Methods of treating chronic wounds using electrospun fibers |
US11739291B2 (en) | 2017-04-25 | 2023-08-29 | Purdue Research Foundation | 3-dimensional (3D) tissue-engineered muscle for tissue restoration |
US11737990B2 (en) | 2012-01-12 | 2023-08-29 | Nfs Ip Holdings, Llc | Nanofiber scaffolds for biological structures |
US11826489B2 (en) | 2013-02-01 | 2023-11-28 | The Children's Medical Center Corporation | Collagen scaffolds |
US11919941B2 (en) | 2015-04-21 | 2024-03-05 | Purdue Research Foundation | Cell-collagen-silica composites and methods of making and using the same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070031607A1 (en) * | 2000-12-19 | 2007-02-08 | Alexander Dubson | Method and apparatus for coating medical implants |
US20040030377A1 (en) * | 2001-10-19 | 2004-02-12 | Alexander Dubson | Medicated polymer-coated stent assembly |
US20080200975A1 (en) * | 2004-01-06 | 2008-08-21 | Nicast Ltd. | Vascular Prosthesis with Anastomotic Member |
WO2005079879A1 (en) * | 2004-02-25 | 2005-09-01 | Ihara & Company Ltd. | Collagen gel and process for producing the same |
US7270655B2 (en) * | 2005-01-14 | 2007-09-18 | Haidukewych George J | Autologous material delivery apparatus and method |
WO2006087721A2 (en) * | 2005-02-17 | 2006-08-24 | Nicast Ltd. | Inflatable medical device |
US20100303881A1 (en) * | 2006-02-02 | 2010-12-02 | The John Hopkins University | Therapeutic Electrospun Fiber Compositions |
US8361503B2 (en) * | 2007-03-02 | 2013-01-29 | University of Pittsburgh—of the Commonwealth System of Higher Education | Extracellular matrix-derived gels and related methods |
US20090004271A1 (en) * | 2007-06-29 | 2009-01-01 | Brown Laura J | Morselized foam for wound treatment |
US20090238853A1 (en) * | 2008-03-21 | 2009-09-24 | 3D Biotek, Llc | Hybrid Biomedical Device Fabricated From Biomaterials and Coated With a Natural Extra Cellular Matrix (ECM) Coating |
WO2010039823A2 (en) | 2008-09-30 | 2010-04-08 | The Regents Of The University Of California | Compositions and methods for tissue repair with extracellular matrices |
US9421307B2 (en) | 2010-08-17 | 2016-08-23 | University of Pittsburgh—of the Commonwealth System of Higher Education | Biohybrid composite scaffold |
CA2808225C (en) | 2010-08-24 | 2019-02-12 | The Regents Of The University Of California | Compositions and methods for cardiac therapy |
US8992817B2 (en) * | 2012-12-10 | 2015-03-31 | Abbott Cardiovascular Systems, Inc. | Process of making a medical balloon |
EP3698815B1 (en) | 2014-03-21 | 2024-02-21 | University of Pittsburgh- Of the Commonwealth System of Higher Education | Terminally sterilized hydrogel derived from extracellular matrix |
WO2020123876A1 (en) * | 2018-12-12 | 2020-06-18 | Wild Type, Inc. | Synthetic food compositions |
EP4196187A4 (en) * | 2020-08-12 | 2024-11-27 | Trustees of Tufts College | CULTIVATED TISSUE AND BIOREACTOR SYSTEMS AND METHODS FOR THE PRODUCTION THEREOF |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1680605A (en) | 1927-06-29 | 1928-08-14 | Franzen Adolph | Automatic railway-crossing signal |
GB1377022A (en) | 1971-03-01 | 1974-12-11 | Avicon Inc | Structure having a microcrystalline collagen layer and method of preparing the same |
US3892648A (en) | 1974-04-16 | 1975-07-01 | Us Navy | Electrochemical deposition of bone |
US4043331A (en) | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
EP0005035A1 (en) | 1978-04-19 | 1979-10-31 | Imperial Chemical Industries Plc | A method of preparing a tubular product by electrostatic spinning |
US4204282A (en) * | 1978-05-08 | 1980-05-27 | Bolt Richard A | Implantable artificial sphincter |
GB2142870A (en) | 1983-07-06 | 1985-01-30 | Ethicon Inc | Manufacturing vascular prosthesis by electrostatic spinning |
US4634443A (en) * | 1985-07-05 | 1987-01-06 | Habley Medical Technology Corporation | Single circuit elastofluidic sphincter |
US4657793A (en) | 1984-07-16 | 1987-04-14 | Ethicon, Inc. | Fibrous structures |
US4705518A (en) * | 1982-04-12 | 1987-11-10 | University Of Utah Research Institute | Artificial sphincter apparatus and method |
US4738740A (en) | 1985-11-21 | 1988-04-19 | Corvita Corporation | Method of forming implantable vascular grafts |
EP0266035A1 (en) | 1986-09-02 | 1988-05-04 | Ethicon, Inc. | Improvements in synthetic vascular grafts |
WO1991001695A1 (en) | 1989-08-04 | 1991-02-21 | Ethicon, Inc. | Improvements in synthetic vascular grafts and their methods of manufacture |
US5256418A (en) | 1990-04-06 | 1993-10-26 | Organogenesis, Inc. | Collagen constructs |
US5378469A (en) | 1990-04-06 | 1995-01-03 | Organogenesis, Inc. | Collagen threads |
RU2031661C1 (en) | 1993-07-16 | 1995-03-27 | Научно-производственное предприятие "Экомедсервис" | Agent for treatment of wounds and for rendering first medical aid |
US5460962A (en) | 1994-01-04 | 1995-10-24 | Organogenesis Inc. | Peracetic acid sterilization of collagen or collagenous tissue |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1997013849A1 (en) | 1995-10-12 | 1997-04-17 | The University Of Akron | Apparatus and method for electrostatic endothelial cell seeding and dna transfection |
US5655517A (en) | 1994-03-29 | 1997-08-12 | Electrosols, Ltd. | Dispensing device |
US5693085A (en) | 1994-04-29 | 1997-12-02 | Scimed Life Systems, Inc. | Stent with collagen |
WO1998003267A1 (en) | 1996-07-23 | 1998-01-29 | Electrosols Ltd. | A dispensing device and method for forming material |
US5787567A (en) | 1995-02-17 | 1998-08-04 | Toyota Jidosha Kabushiki Kaisha | Coil-forming wire material and method of manufacturing such material |
US5813614A (en) | 1994-03-29 | 1998-09-29 | Electrosols, Ltd. | Dispensing device |
US5834029A (en) | 1994-07-20 | 1998-11-10 | Cytotherapeutics, Inc. | Nerve guidance channel containing bioartificial three-dimensional hydrogel extracellular matrix derivatized with cell adhesive peptide fragment |
WO1998056894A1 (en) | 1997-06-12 | 1998-12-17 | Regents Of The University Of Minnesota | Electrospraying apparatus and method for introducing material into cells |
US5902741A (en) | 1986-04-18 | 1999-05-11 | Advanced Tissue Sciences, Inc. | Three-dimensional cartilage cultures |
US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
US5908777A (en) | 1995-06-23 | 1999-06-01 | University Of Pittsburgh | Lipidic vector for nucleic acid delivery |
US5910488A (en) | 1993-06-07 | 1999-06-08 | Vical Incorporated | Plasmids suitable for gene therapy |
US5915377A (en) | 1994-05-27 | 1999-06-29 | Electrosols, Ltd. | Dispensing device producing multiple comminutions of opposing polarities |
US5948654A (en) | 1996-08-28 | 1999-09-07 | Univ Minnesota | Magnetically oriented tissue-equivalent and biopolymer tubes comprising collagen |
US6057137A (en) | 1994-10-06 | 2000-05-02 | Regents Of The University Of Minnesota | Tissue-equivalent rods containing aligned collagen fibrils and schwann cells |
US6096347A (en) * | 1996-11-05 | 2000-08-01 | Purdue Research Foundation | Myocardial graft constructs |
US6100026A (en) | 1995-04-25 | 2000-08-08 | Irori | Matrices with memories and uses thereof |
US6103255A (en) | 1999-04-16 | 2000-08-15 | Rutgers, The State University | Porous polymer scaffolds for tissue engineering |
US6105571A (en) | 1992-12-22 | 2000-08-22 | Electrosols, Ltd. | Dispensing device |
US6106913A (en) | 1997-10-10 | 2000-08-22 | Quantum Group, Inc | Fibrous structures containing nanofibrils and other textile fibers |
US6105877A (en) | 1992-12-01 | 2000-08-22 | Electrosols Ltd. | Dispensing device |
US6110484A (en) | 1998-11-24 | 2000-08-29 | Cohesion Technologies, Inc. | Collagen-polymer matrices with differential biodegradability |
US6110590A (en) | 1998-04-15 | 2000-08-29 | The University Of Akron | Synthetically spun silk nanofibers and a process for making the same |
US6117296A (en) * | 1998-07-21 | 2000-09-12 | Thomson; Timothy | Electrically controlled contractile polymer composite |
US6121042A (en) | 1995-04-27 | 2000-09-19 | Advanced Tissue Sciences, Inc. | Apparatus and method for simulating in vivo conditions while seeding and culturing three-dimensional tissue constructs |
US6146892A (en) | 1998-09-28 | 2000-11-14 | The Regents Of The University Of Michigan | Fibrillar matrices |
US6179872B1 (en) | 1998-03-17 | 2001-01-30 | Tissue Engineering | Biopolymer matt for use in tissue repair and reconstruction |
US6197575B1 (en) | 1998-03-18 | 2001-03-06 | Massachusetts Institute Of Technology | Vascularized perfused microtissue/micro-organ arrays |
US6245345B1 (en) | 1998-07-07 | 2001-06-12 | Atrix Laboratories, Inc. | Filamentous porous films and methods for producing the same |
US6252129B1 (en) | 1996-07-23 | 2001-06-26 | Electrosols, Ltd. | Dispensing device and method for forming material |
US6254627B1 (en) | 1997-09-23 | 2001-07-03 | Diseno Y Desarrollo Medico S.A. De C.V. | Non-thrombogenic stent jacket |
US6265333B1 (en) | 1998-06-02 | 2001-07-24 | Board Of Regents, University Of Nebraska-Lincoln | Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4837285A (en) * | 1984-03-27 | 1989-06-06 | Medimatrix | Collagen matrix beads for soft tissue repair |
US20020022588A1 (en) * | 1998-06-23 | 2002-02-21 | James Wilkie | Methods and compositions for sealing tissue leaks |
-
1999
- 1999-08-31 US US09/386,273 patent/US6592623B1/en not_active Expired - Lifetime
-
2003
- 2003-04-22 US US10/420,561 patent/US20040009600A1/en not_active Abandoned
Patent Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1680605A (en) | 1927-06-29 | 1928-08-14 | Franzen Adolph | Automatic railway-crossing signal |
GB1377022A (en) | 1971-03-01 | 1974-12-11 | Avicon Inc | Structure having a microcrystalline collagen layer and method of preparing the same |
US3892648A (en) | 1974-04-16 | 1975-07-01 | Us Navy | Electrochemical deposition of bone |
US4043331A (en) | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
US4044404A (en) | 1974-08-05 | 1977-08-30 | Imperial Chemical Industries Limited | Fibrillar lining for prosthetic device |
EP0005035A1 (en) | 1978-04-19 | 1979-10-31 | Imperial Chemical Industries Plc | A method of preparing a tubular product by electrostatic spinning |
US4204282A (en) * | 1978-05-08 | 1980-05-27 | Bolt Richard A | Implantable artificial sphincter |
US4705518A (en) * | 1982-04-12 | 1987-11-10 | University Of Utah Research Institute | Artificial sphincter apparatus and method |
GB2142870A (en) | 1983-07-06 | 1985-01-30 | Ethicon Inc | Manufacturing vascular prosthesis by electrostatic spinning |
US4657793A (en) | 1984-07-16 | 1987-04-14 | Ethicon, Inc. | Fibrous structures |
US4634443A (en) * | 1985-07-05 | 1987-01-06 | Habley Medical Technology Corporation | Single circuit elastofluidic sphincter |
US4738740A (en) | 1985-11-21 | 1988-04-19 | Corvita Corporation | Method of forming implantable vascular grafts |
US5902741A (en) | 1986-04-18 | 1999-05-11 | Advanced Tissue Sciences, Inc. | Three-dimensional cartilage cultures |
EP0266035A1 (en) | 1986-09-02 | 1988-05-04 | Ethicon, Inc. | Improvements in synthetic vascular grafts |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1991001695A1 (en) | 1989-08-04 | 1991-02-21 | Ethicon, Inc. | Improvements in synthetic vascular grafts and their methods of manufacture |
US5256418A (en) | 1990-04-06 | 1993-10-26 | Organogenesis, Inc. | Collagen constructs |
US5378469A (en) | 1990-04-06 | 1995-01-03 | Organogenesis, Inc. | Collagen threads |
US6318640B1 (en) | 1992-12-01 | 2001-11-20 | Electrosols, Ltd. | Dispensing device |
US6105877A (en) | 1992-12-01 | 2000-08-22 | Electrosols Ltd. | Dispensing device |
US6105571A (en) | 1992-12-22 | 2000-08-22 | Electrosols, Ltd. | Dispensing device |
US5910488A (en) | 1993-06-07 | 1999-06-08 | Vical Incorporated | Plasmids suitable for gene therapy |
RU2031661C1 (en) | 1993-07-16 | 1995-03-27 | Научно-производственное предприятие "Экомедсервис" | Agent for treatment of wounds and for rendering first medical aid |
US5460962A (en) | 1994-01-04 | 1995-10-24 | Organogenesis Inc. | Peracetic acid sterilization of collagen or collagenous tissue |
US5655517A (en) | 1994-03-29 | 1997-08-12 | Electrosols, Ltd. | Dispensing device |
US6068199A (en) | 1994-03-29 | 2000-05-30 | Electrosols, Ltd. | Dispensing device |
US5813614A (en) | 1994-03-29 | 1998-09-29 | Electrosols, Ltd. | Dispensing device |
US5693085A (en) | 1994-04-29 | 1997-12-02 | Scimed Life Systems, Inc. | Stent with collagen |
US5915377A (en) | 1994-05-27 | 1999-06-29 | Electrosols, Ltd. | Dispensing device producing multiple comminutions of opposing polarities |
US5834029A (en) | 1994-07-20 | 1998-11-10 | Cytotherapeutics, Inc. | Nerve guidance channel containing bioartificial three-dimensional hydrogel extracellular matrix derivatized with cell adhesive peptide fragment |
US6057137A (en) | 1994-10-06 | 2000-05-02 | Regents Of The University Of Minnesota | Tissue-equivalent rods containing aligned collagen fibrils and schwann cells |
US5787567A (en) | 1995-02-17 | 1998-08-04 | Toyota Jidosha Kabushiki Kaisha | Coil-forming wire material and method of manufacturing such material |
US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
US6100026A (en) | 1995-04-25 | 2000-08-08 | Irori | Matrices with memories and uses thereof |
US6121042A (en) | 1995-04-27 | 2000-09-19 | Advanced Tissue Sciences, Inc. | Apparatus and method for simulating in vivo conditions while seeding and culturing three-dimensional tissue constructs |
US5908777A (en) | 1995-06-23 | 1999-06-01 | University Of Pittsburgh | Lipidic vector for nucleic acid delivery |
WO1997013849A1 (en) | 1995-10-12 | 1997-04-17 | The University Of Akron | Apparatus and method for electrostatic endothelial cell seeding and dna transfection |
US5723324A (en) | 1995-10-12 | 1998-03-03 | The University Of Akron | Apparatus and method for electrostatic endothelial cell seeding and DNA transfection in a vascular prosthesis |
WO1998003267A1 (en) | 1996-07-23 | 1998-01-29 | Electrosols Ltd. | A dispensing device and method for forming material |
US6252129B1 (en) | 1996-07-23 | 2001-06-26 | Electrosols, Ltd. | Dispensing device and method for forming material |
US5948654A (en) | 1996-08-28 | 1999-09-07 | Univ Minnesota | Magnetically oriented tissue-equivalent and biopolymer tubes comprising collagen |
US6096347A (en) * | 1996-11-05 | 2000-08-01 | Purdue Research Foundation | Myocardial graft constructs |
WO1998056894A1 (en) | 1997-06-12 | 1998-12-17 | Regents Of The University Of Minnesota | Electrospraying apparatus and method for introducing material into cells |
US6254627B1 (en) | 1997-09-23 | 2001-07-03 | Diseno Y Desarrollo Medico S.A. De C.V. | Non-thrombogenic stent jacket |
US6106913A (en) | 1997-10-10 | 2000-08-22 | Quantum Group, Inc | Fibrous structures containing nanofibrils and other textile fibers |
US6179872B1 (en) | 1998-03-17 | 2001-01-30 | Tissue Engineering | Biopolymer matt for use in tissue repair and reconstruction |
US6197575B1 (en) | 1998-03-18 | 2001-03-06 | Massachusetts Institute Of Technology | Vascularized perfused microtissue/micro-organ arrays |
US6110590A (en) | 1998-04-15 | 2000-08-29 | The University Of Akron | Synthetically spun silk nanofibers and a process for making the same |
US6265333B1 (en) | 1998-06-02 | 2001-07-24 | Board Of Regents, University Of Nebraska-Lincoln | Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces |
US6245345B1 (en) | 1998-07-07 | 2001-06-12 | Atrix Laboratories, Inc. | Filamentous porous films and methods for producing the same |
US6117296A (en) * | 1998-07-21 | 2000-09-12 | Thomson; Timothy | Electrically controlled contractile polymer composite |
US6146892A (en) | 1998-09-28 | 2000-11-14 | The Regents Of The University Of Michigan | Fibrillar matrices |
US6110484A (en) | 1998-11-24 | 2000-08-29 | Cohesion Technologies, Inc. | Collagen-polymer matrices with differential biodegradability |
US6103255A (en) | 1999-04-16 | 2000-08-15 | Rutgers, The State University | Porous polymer scaffolds for tissue engineering |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
Non-Patent Citations (83)
Title |
---|
Atomic Force Microscopy Of Structures Produced By Electrospraying Polymer Solutions, Morozov et al., International Journal of Mass Spectrometry 178, pp. 143-159, 1998. |
Attenuation Of Skeletal Muscle Wasting With Recombinant Human Growth Hormone Secreted From A Tissue-Engineered Bioartificial Muscle, Vandenburgh et al., Human Gene Therapy 9:2555-2564, Nov. 1998. |
Cardiomyocyte Transplantation In A Porcine Myocardial Infarction Model, Watanabe et al., Cell Transplantation, vol. 7, No. 3, pp. 239-246, 1998. |
Cell Shape and Growth Regulation In Skeletal Muscle: Exogenous Versus Endogenous Factors, Vandenburgh, Journal Of Cellular Physiology 116:363-371, 1983. |
Collagen Fabrics As Biomaterials, Cavallaro et al, Biotechnology and Bioengineering, vol. 43, pp. 781-791. 1994. |
Controlled Delivery Of Vascular Endothelial Growth Factor Promotes Neovascularization And Maintains Limb Function In A Rabbit Model Of Ischemia, Hopkins et al., Journal of Vascular Surgery, vol. 27, No. 5, pp. 886-895, 1997. |
Dynamic Mechanical Orientation Of Skeletal Myofibers In Vitro, Vandenburgh, Developmental Biology 93, pp 438-443, 1982. |
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers, Pins et al., University of Medicine and Denistry of New Jersey, Robert Wood Johnson Medical School, pp. 1429-1440, Dec. 22, 1997. |
EKOMEDSERVIS: WPI World Patent Information Derwent, Derwent, GB', WPI World Patent Information Derwent, Derwnet, GB, vol. 44, Nr. 95, London, GB, (XP002046663), Mar. 27, 1995 (Abstract only). |
Electrospinning Polymer Fibers, Schreuder-Gibson, SSCNC-YM, U.S. Army Natick Research, Development and Engineering Center, 1997. |
Electrospinning Process and Applications of Electrospun Fibers, Doshi et al., Journal of Electrostatics, 35 (1995) 151-160. |
Electrospinning Process and Applications of Electrospun Fibers, Doshi et al., Journal of Electrostatics, 35, pp. 151-160, 1995. |
Electrospraying of Conducting Liquids for Monodisperse Aerosol Generation In the 4 nm to 1.8mum Diameter Range, Chen et al., Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, pp. 963-977,1995. |
Electrospraying of Conducting Liquids for Monodisperse Aerosol Generation In the 4 nm to 1.8μm Diameter Range, Chen et al., Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, pp. 963-977,1995. |
Electrospun Fiber Mats: Transport Properties, Gibson et al., Accepted AICHE, Oct. 98. |
Engineering Smooth Muscle Tissue With A Predefined Structure, Kim et al., Department of Chemical Engineering, University Of Michigan, 1997. |
Esquivel, C., et al., "Why Small Caliber Vascular Grafts Fail: A Review of Clinical and Experimental Experience and the Significance of the Interaction of Blood at the Interface," Journal of Surgical Research, 1986, pp. 1-15, vol. 41. |
Establishment Of A Three-Dimensional Human Prostate Organoid Coculture Under Microgravity-Simulated Conditions: Evaluation Of Androgen-Induced Growth And PSA Expression, Zhau et al., In Vitro Cell. Dev. Biol.-Animal 33:375-380, May 1997. |
Establishment Of A Three-Dimensional Human Prostate Organoid Coculture Under Microgravity-Simulated Conditions: Evaluation Of Androgen-Induced Growth And PSA Expression, Zhau et al., In Vitro Cell. Dev. Biol.—Animal 33:375-380, May 1997. |
European Search Report, PCT/US 00/20974. |
Experimental Investigation of Scaling Laws for Electrospraying: Dielectric Constant Effect, Chen et al., Aerosol Science and Technology, 27:3, pp. 367-380, Sep. 1997. |
Ferber, D., "Lab-Grown Organs Begin to Take Shape", Science, 1999, pp. 422-424, vol. 284. |
Formation Of Continuous Collagen Fibres: Evaluation Of Biocompatibility And Mechanical Properties, Kato et al., Biomaterials, vol. 11, Apr. 1990. |
Formation of Nascent Intercalated Disks Between Grafted Fetal Cardiomyocytes and Host Myocardium, Soonpaa et al., Science, vol. 264, pp. 98-101, 1994. |
Freed, L. E., et al., "Biodegradable Polymer Scaffolds for Tissue Engineering," Bio/Technology, Jul. 1994, pp. 689-693, vol. 12. |
Gershon, B. et al., "Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses", Biomaterials, Casali Institute of Applied Chemistry, Graduate School of Applied Science and Technology, The Hebrew University of Jerusalem, Oct. 1990, pp. 548-552, vol. 11, No. 8. |
Highly Oriented, Tubular Hybrid Vascular Tissue For A Low Pressure Circulatory System, Hirai, et al., ASAIO Journal, pp. M383-388, 1994. |
Hybrid Muscular Tissues: Preparation Of Skeletal Muscle Cell-Incorporated Collagen Gels, Okano et al., Cell Transplantation, vol. 6, No. 2, pp. 109-118, 1997. |
Identification Of Self-Renewing Myoblasts In the Progeny Of Single Human Muscle Satellite Cells, Baroffio et al., Differentiation, vol. 60, pp 47-57, 1996. |
In Vitro Model for Stretch-Induced Hypertrophy of Skeletal Muscle, Vandenburgh, Science, vol. 203, pp. 265-268, Jan. 19, 1979. |
In Vivo Survival and Function of Transplanted Rat Cardiomyocytes, Li et al., American Heart Association, Inc., Circulation Research, vol. 78, No. 2, pp. 283-288, Feb. 1996. |
Isolation And Characterization of Human Muscle Cells, Blau et al., Proc. Natl. Acad. Sci. USA, vol. 78, No. 9, pp. 5623-5627, Sep. 1981. |
Kanda, K., et al., "Mechanical Stress-Induced Orientation and Ultrastructural ChanGe of Smooth Muscle Cells Cultured in Three-Dimensional Collagen Lattices," Cell Transplantation, 1994, pp. 481-492, vol. 3. |
Kanda, K., eta al., "In Vitro Reconstruction of Hybrid Vascular Tissue Hierarchic and Oriented Cell Layers," ASAIO Journal, 1993, pp. M561-M565, vol. 39. |
Letter to Editor, A Simplified Method For Tissue Engineering Skeletal Muscle Organoids In Vitro, In Vitro Cell. Dev. Biol.-Animal 33:659-661, 1991. |
Letter to Editor, A Simplified Method For Tissue Engineering Skeletal Muscle Organoids In Vitro, In Vitro Cell. Dev. Biol.—Animal 33:659-661, 1991. |
Letter to the Editor, A Simplified Method For Tissue Engineering Skeletal Muscle Organoids in vitro, Shansky et al, In Vitro Cell. Dev. Biol.-Animal 33:659-661, Oct. 1997. |
L'Heureux, N., et al., "A Completely Biological Tissue-Engineered Human Blood Vessel," The FASEB Journal, Jan. 1998, pp. 47-56, vol. 12. |
Long-Term Survival of AT-1 Cardiomyocyte Grafts In Syngeneic Myocardium, Koh et al., The American Physiological Society, pp. H1727-1733, 1993. |
Mechanical Forces And Their Second Messengers In Stimulating Cell Growth in vitro, Vandenburgh, American Physiological Society, pp. R350-355, 1992. |
Mechanical Properties of Collagen Fibres: A Comparison Of Reconstituted And Rat Tail Tendon Fibres, Kato et al., Biomaterials, vol. 10, Jan. 1989. |
Mechanical Stimulation Of Organogenic Cardiomyocyte Growth in vitro, Vandenburgh et al., The American Physilogical Society, pp. c1284-1292, 1996. |
Mechanically Induced Alterations In Cultured Skeletal Muscle Growth, Vandenburgh et al., J. Biomechanics, vol. 24, Suppl. I, pp. 91-99, 1991. |
Mechanically Induced Orientation Of Adult Rat Cardiac Myocytes In Vitro, Samuel et al., In Vitro Cell. Dev. Biol. 26:905-914, Sep. 1990. |
Mechanism Of Compensatory Hypertrophy In Skeletal Muscle Of The Rat, Gutmann et al., Experimental Neurology, vol. 31, pp. 451-464, 1971. |
Microgravity Tissue Engineering, Freed et al., In Vitro Cell. Dev. Biol.-Animal 33:381-385, May 1997. |
Microgravity Tissue Engineering, Freed et al., In Vitro Cell. Dev. Biol.—Animal 33:381-385, May 1997. |
Mikos, A. G., et al., "Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture," Biomaterials, 1994, pp. 55-58, vol. 15, No. 1. |
Modulation of Cardiac Myocyte Phenotype In Vitro by the Composition and Orientation of the Extracellular Matrix, Simpson et al., Journal of Cellular Physiology 161:89-105 (1994). |
Mooney, D. J. et al., "Design and Fabrication of Biodegradable Polymer Devices to Engineer Tubular Tissues," Cell Transplantation, 1994, pp.203-210, vol. 3, No. 2. |
Myoblast Seeding In A Collagen Matrix Evaluated in vitro, van Wachem et al., Journal of Biomedical Materials Research, vol. 30, 353-360 (1996). |
Myoblast Seeding In A Collagen Matrix Evaluated in vitro, Wachem et al., Journal of Biomedical Materials Research, vol. 30, pp. 353-360, 1996. |
Nanometre Diameter Fibres Of Polymer, Produced By Electrospinning, Reneker et al., Nanotechnology 7, pp. 216-223, 1996. |
Natural History of Fetal Rat Cardiomyocytes Transplanted Into Adult Rat Myocardial Scar Tissue, Li et al., American Heart Association, Inc., Supplement II Circulation, vol. 96, No. 9, pp. II-179 to II-187Nov. 1997. |
Neonatal Rat Heart Cells Cultured In Simulated Microgravity, Akins et al., In Virto Cell. Dev. Biol.-Animal 33:337-334, May 1997. |
Neonatal Rat Heart Cells Cultured In Simulated Microgravity, Akins et al., In Virto Cell. Dev. Biol.—Animal 33:337-334, May 1997. |
Niklason, L. E. et al., "Functional Arteries Grown in Vitro", Science 1999, pp. 489-493, vol. 284. |
Optimizing Seeding And Culture Methods To Engineer Smooth Muscle Tissue On Biodegradable Polymer Matrices, Kim et al., Biotechnology And Bioengineering, vol. 57, No. 1, pp. 46-54, 1998. |
Patterned Growth Of Neonatal Rat Heart Cells In Culture, Rohr et al., Circulation Research, vol. 68, No. 1, pp. 114-130, 1991. |
Regeneration of the Completely Excised Gastroanemius Muscle in the Frog and Rat From Minces Muscle Fragments, Carlson, J. Embryol. Exp. Morph., vol. 125, pp 447-472. |
Regenertion In Grafts Of Normal And Denervated Rat Muscles, Carlson et al., Phlugers Arch, 353, pp. 215-225, 1975. |
Regulation of New Blood Vessel Growth Into Ischemic Skeletal Muscle, Bush et al., Journal of Vascular Surgery, vol. 28, No. 5, pp. 919-928, 1998. |
Revascularization Of Skeletal Muscle Transplanted Into The Hamster Cheek Pouch: Electron Microscopy, Weiss et al., Microvascular Research, vol. 26, pp. 65-73, 1983. |
Rodeo, S. A., "New and Emerging Treatments for Cartilage and Meniscus Injuries," MD Vista J. Medicine, 2000, pp.1-4. |
Sabelman, E. E., et al., "Composite Cell/Tissue Replacement for Nerve and Pressure Sore Repair," http://guide.Stanford.edu/Publications/clinB.html, Republished from the 1994 Veteran's Administration Rehabilitation Research and Development Center Progress Report, pp. 1-2. |
Self-Assembly of Collagen Fibers, Influence of Fibrillar Alignment and Decorin on Mechanical Properties, Pins et al., Biophysical Journal, vol. 73, pp. 2164-2172, Oct. 1997. |
Skeletal Muscle Growth Is Stimulated By Intermittent Stretch-Relaxation In Tissue Culture, Vandenburgh et al., American Physiological Society, pp. C674-C682, 1989. |
Skeletal Muscle Satellite Cells Cultured In Simulated Microgravity, Molnar et al., In Vitro Cell. Dev. Biol.-Animal 33:386-391, May 1997. |
Skeletal Muscle Satellite Cells Cultured In Simulated Microgravity, Molnar et al., In Vitro Cell. Dev. Biol.—Animal 33:386-391, May 1997. |
Skeletal Myoblast Transplantation For Repair of Myocardial Necrosis, Murry et al., The American Society for Clinical Investigation, Inc., vol. 98, No. 11, pp. 2512-2523, Dec. 1996. |
Survival of Embryonic Cardiac Myocytes Transplanted Into Host Rat Soleus Muscle, Connold et al., Journal of Muscle Research and Cell Motility 16, 481-489, 1995. |
The Biomedical Engineering Handbook, Joseph D. Bronzino, 1995, pp. 637-644. |
Three-Dimensional Culture Of Bovine Chondrocytes In Rotating-Wall Vessels, Baker et al., In Vitro Cell. Dev. Biol.-Animal 33:358-365, May 1997. |
Three-Dimensional Culture Of Bovine Chondrocytes In Rotating-Wall Vessels, Baker et al., In Vitro Cell. Dev. Biol.—Animal 33:358-365, May 1997. |
Tiollier, J. et al., "Fibroblast Behavior on Gels of Type I, III, and IV Human Placental Collagens", Exp. Cell Res., 1990, pp. 95-104, vol. 191. |
Tissue Engineered Skeletal Muscle: Preparation Of Highly Dense, Highly Oriented Hybrid Muscular Tissue, Okano, Cell Transplantation, vol. 7, No. 1, pp. 71-82, 1998. |
Tissue Engineering of Skeletal Muscle, Highly Dense, Highly Oriented Hybrid Muscular Tissues Biomimicking Native Tissues, ASAIO Journal 1997; 43:M749-M753. |
Tissue Engineering Skeletal Muscle: Preparation Of Highly Dense, Highly Oriented Hybrid Muscular Tissues, Okano et al., Cell Transplantation, vol. 7, No. 1, pp. 71-82, 1998. |
Transplantation Of Genetically Marked Cardiac Muscle Cells, Gojo et al., The Journal Of Thoracic and Cardiovascular Surgery, vol. 113, No. 1, pp. 10-18, 1997. |
Type I Collagen in Solution, Silver et al., The Journal of Biological Chemistry, vol. 255, No. 19, pp. 9427-9433, 1980. |
Weinberg, C. B., et al., "A Blood Vessel Model Constructed from Collagen and Cultured Vascular Cells," Science, Jan. 24 1986, p. 397, vol. 231. |
Wong, W. H. et al., "Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering", Synthetic Biodegradable Polymer Scaffolds, 1997, pp. 51-82, Chp. 4. |
Zund, G., et al., "Tissue Engineering: A new approach in cardiovascular surgery; Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh," European Journal of Cardio-thoracic Surgery, 1998, pp. 160-164, vol. 13. |
Cited By (273)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8366787B2 (en) | 2000-08-04 | 2013-02-05 | Depuy Products, Inc. | Hybrid biologic-synthetic bioabsorbable scaffolds |
US20030023316A1 (en) * | 2000-08-04 | 2003-01-30 | Brown Laura Jean | Hybrid biologic-synthetic bioabsorable scaffolds |
US20040059431A1 (en) * | 2000-08-04 | 2004-03-25 | Plouhar Pamela L. | Reinforced small intestinal submucosa |
US7160333B2 (en) * | 2000-08-04 | 2007-01-09 | Depuy Orthopaedics, Inc. | Reinforced small intestinal submucosa |
US7799089B2 (en) | 2000-08-04 | 2010-09-21 | Depuy Orthopaedics, Inc. | Reinforced small intestinal submucosa |
US6835390B1 (en) * | 2000-11-17 | 2004-12-28 | Jon Vein | Method for producing tissue engineered meat for consumption |
US20050010965A1 (en) * | 2000-11-17 | 2005-01-13 | Jon Vein | Method for producing tissue engineered meat for consumption |
US20050084958A1 (en) * | 2000-11-17 | 2005-04-21 | Jon Vein | Tissue engineered meat for consumption and a method for producing tissue engineered meat for consumption |
US20040110439A1 (en) * | 2001-04-20 | 2004-06-10 | Chaikof Elliot L | Native protein mimetic fibers, fiber networks and fabrics for medical use |
US20020192468A1 (en) * | 2001-06-19 | 2002-12-19 | Kyung-Ju Choi | Method, apparatus and product for manufacturing nanofiber media |
US7105124B2 (en) * | 2001-06-19 | 2006-09-12 | Aaf-Mcquay, Inc. | Method, apparatus and product for manufacturing nanofiber media |
US8025896B2 (en) | 2001-07-16 | 2011-09-27 | Depuy Products, Inc. | Porous extracellular matrix scaffold and method |
US7914808B2 (en) | 2001-07-16 | 2011-03-29 | Depuy Products, Inc. | Hybrid biologic/synthetic porous extracellular matrix scaffolds |
US8092529B2 (en) | 2001-07-16 | 2012-01-10 | Depuy Products, Inc. | Meniscus regeneration device |
US20040220574A1 (en) * | 2001-07-16 | 2004-11-04 | Pelo Mark Joseph | Device from naturally occuring biologically derived materials |
US8337537B2 (en) | 2001-07-16 | 2012-12-25 | Depuy Products, Inc. | Device from naturally occurring biologically derived materials |
US7819918B2 (en) * | 2001-07-16 | 2010-10-26 | Depuy Products, Inc. | Implantable tissue repair device |
US8012205B2 (en) * | 2001-07-16 | 2011-09-06 | Depuy Products, Inc. | Cartilage repair and regeneration device |
US20030033021A1 (en) * | 2001-07-16 | 2003-02-13 | Plouhar Pamela Lynn | Cartilage repair and regeneration scaffold and method |
USRE40669E1 (en) | 2001-08-13 | 2009-03-17 | Arthur Palmer | Blood pump |
US20040081745A1 (en) * | 2001-09-18 | 2004-04-29 | Henrik Hansen | Method for spray-coating medical devices |
US7622299B2 (en) * | 2002-02-22 | 2009-11-24 | University Of Washington | Bioengineered tissue substitutes |
US20030211130A1 (en) * | 2002-02-22 | 2003-11-13 | Sanders Joan E. | Bioengineered tissue substitutes |
US20100196447A1 (en) * | 2002-06-24 | 2010-08-05 | Trustees Of Tufts College | Silk biomaterials and methods of use thereof |
US7674882B2 (en) * | 2002-06-24 | 2010-03-09 | Trustees Of Tufts College | Silk biomaterials and methods of use thereof |
US20050260706A1 (en) * | 2002-06-24 | 2005-11-24 | Tufts University | Silk biomaterials and methods of use thereof |
US8071722B2 (en) | 2002-06-24 | 2011-12-06 | Trustees Of Tufts College | Silk biomaterials and methods of use thereof |
US9132197B2 (en) | 2003-01-07 | 2015-09-15 | Massachusetts Institute Of Technology | Silk fibroin materials and use thereof |
US11110148B2 (en) | 2003-01-07 | 2021-09-07 | Trustees Of Tufts College | Silk fibroin materials and use thereof |
US9993527B2 (en) | 2003-01-07 | 2018-06-12 | Trustees Of Tufts College | Silk fibroin materials and use thereof |
EP2216033A2 (en) | 2003-03-06 | 2010-08-11 | Yeda Research and Development Co. Ltd. | Methods of treating disease by transplantation of allogeneic or xenogeneic organs or tissues |
US20100055438A1 (en) * | 2003-04-10 | 2010-03-04 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US20090234026A1 (en) * | 2003-04-10 | 2009-09-17 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US10314938B2 (en) | 2003-04-10 | 2019-06-11 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US8614293B2 (en) | 2003-04-10 | 2013-12-24 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US9084840B2 (en) | 2003-04-10 | 2015-07-21 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US11129921B2 (en) | 2003-04-10 | 2021-09-28 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US9623147B2 (en) | 2003-04-10 | 2017-04-18 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US8742069B2 (en) | 2003-04-10 | 2014-06-03 | Trustees Of Tufts College | Concentrated aqueous silk fibroin solution and use thereof |
US7727441B2 (en) | 2003-06-04 | 2010-06-01 | University Of South Carolina | Method for producing tissue scaffold having aligned fibrils |
US7338517B2 (en) * | 2003-06-04 | 2008-03-04 | University Of South Carolina | Tissue scaffold having aligned fibrils and artificial tissue comprising the same |
US20080217820A1 (en) * | 2003-06-04 | 2008-09-11 | University Of South Carolina | Tissue scaffold having aligned fibrils, apparatus and method for producing the same, and artificial tissue and methods of use thereof |
US7878786B2 (en) | 2003-06-04 | 2011-02-01 | University Of South Carolina | Apparatus for producing tissue scaffold having aligned fibrils |
US20050009178A1 (en) * | 2003-06-04 | 2005-01-13 | University Of South Carolina | Tissue scaffold having aligned fibrils, apparatus and method for producing the same, and artificial tissue and methods of use thereof |
US9539362B2 (en) | 2003-06-06 | 2017-01-10 | Trustees Of Tufts College | Method for forming inorganic coatings |
US20100203226A1 (en) * | 2003-06-06 | 2010-08-12 | Trustees Of Tufts College | Method for forming inorganic coatings |
US20070036767A1 (en) * | 2003-06-27 | 2007-02-15 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20060223177A1 (en) * | 2003-06-27 | 2006-10-05 | Ethicon Inc. | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US10383898B2 (en) | 2003-06-27 | 2019-08-20 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US20050019865A1 (en) * | 2003-06-27 | 2005-01-27 | Kihm Anthony J. | Cartilage and bone repair and regeneration using postpartum-derived cells |
US10220059B2 (en) | 2003-06-27 | 2019-03-05 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US11191789B2 (en) | 2003-06-27 | 2021-12-07 | DePuy Synthes Products, Inc. | Cartilage and bone repair and regeneration using postpartum-derived cells |
US20070014771A1 (en) * | 2003-06-27 | 2007-01-18 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20070009494A1 (en) * | 2003-06-27 | 2007-01-11 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US10500234B2 (en) | 2003-06-27 | 2019-12-10 | DePuy Synthes Products, Inc. | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US11179422B2 (en) | 2003-06-27 | 2021-11-23 | DePuy Synthes Products, Inc. | Method of differentiating umbilical cord tissue into a chondrogenic phenotype |
US10195233B2 (en) | 2003-06-27 | 2019-02-05 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US8815587B2 (en) | 2003-06-27 | 2014-08-26 | DePuy Synthes Products, LLC | Postpartum cells derived from umbilical tissue and methods of making and using the same |
US11000554B2 (en) | 2003-06-27 | 2021-05-11 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US8318483B2 (en) | 2003-06-27 | 2012-11-27 | Advanced Technologies And Regenerative Medicine, Llc | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20050032209A1 (en) * | 2003-06-27 | 2005-02-10 | Messina Darin J. | Regeneration and repair of neural tissue using postpartum-derived cells |
US9498501B2 (en) | 2003-06-27 | 2016-11-22 | DePuy Synthes Products, Inc. | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20050054098A1 (en) * | 2003-06-27 | 2005-03-10 | Sanjay Mistry | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US9717763B2 (en) | 2003-06-27 | 2017-08-01 | DePuy Synthes Products, Inc. | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US7510873B2 (en) | 2003-06-27 | 2009-03-31 | Ethicon, Incorporated | Postpartum cells isolated from umbilical cord tissue, and methods of making and using the same |
US7524489B2 (en) | 2003-06-27 | 2009-04-28 | Ethicon Incorporated | Regeneration and repair of neural tissue using postpartum-derived cells |
US20050058631A1 (en) * | 2003-06-27 | 2005-03-17 | Kihm Anthony J. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US9579351B2 (en) | 2003-06-27 | 2017-02-28 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US20060154367A1 (en) * | 2003-06-27 | 2006-07-13 | Ethicon, Incorporated | Cartilage and bone repair and regeneration using postpartum-derived cells |
US7840263B2 (en) | 2004-02-27 | 2010-11-23 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression |
US20050192637A1 (en) * | 2004-02-27 | 2005-09-01 | Girouard Steven D. | Method and apparatus for device controlled gene expression |
US7764995B2 (en) | 2004-06-07 | 2010-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
WO2006041429A2 (en) * | 2004-09-17 | 2006-04-20 | Jon Vein | Tissue engineered meat for consumption and a method for producing tissue engineered meat for consumption |
EA018218B1 (en) * | 2004-09-17 | 2013-06-28 | Джон Вейн | Method for producing non-human tissue engineered meat products in vitro and products produced by said method |
WO2006041429A3 (en) * | 2004-09-17 | 2007-06-28 | Jon Vein | Tissue engineered meat for consumption and a method for producing tissue engineered meat for consumption |
US20060088578A1 (en) * | 2004-10-22 | 2006-04-27 | Shu-Tung Li | Biopolymeric membranes |
US7807192B2 (en) * | 2004-10-22 | 2010-10-05 | Collagen Matrix, Inc. | Biopolymeric membranes |
US8821917B2 (en) | 2004-10-22 | 2014-09-02 | Collagen Matrix, Inc. | Biopolymeric membranes |
US20110021754A1 (en) * | 2004-10-22 | 2011-01-27 | Collagen Matrix, Inc. | Biopolymeric membranes |
AU2005299493B2 (en) * | 2004-10-22 | 2011-04-07 | Collagen Matrix, Inc. | Biopolymeric membranes |
US20070197857A1 (en) * | 2004-10-25 | 2007-08-23 | Arthur Palmer | Method for making a blood pump and pumping blood |
WO2006047620A2 (en) * | 2004-10-25 | 2006-05-04 | Arthur Palmer | Method for making a blood pump and pumping blood |
US20110009688A1 (en) * | 2004-10-25 | 2011-01-13 | Arthur Palmer | Method for making a blood pump |
WO2006047620A3 (en) * | 2004-10-25 | 2006-10-12 | Arthur Palmer | Method for making a blood pump and pumping blood |
US8500621B2 (en) | 2004-10-25 | 2013-08-06 | Arthur Palmer | Method for making a blood pump |
US7803105B2 (en) | 2004-10-25 | 2010-09-28 | Arthur Palmer | Method for making a blood pump and pumping blood |
US7439057B2 (en) * | 2004-11-16 | 2008-10-21 | La Jolla Bioengineering Institute | Convective flow tissue assembly |
US20060105452A1 (en) * | 2004-11-16 | 2006-05-18 | The La Jolla Bioengineering Institute | Convective flow tissue assembly |
US8060219B2 (en) | 2004-12-20 | 2011-11-15 | Cardiac Pacemakers, Inc. | Epicardial patch including isolated extracellular matrix with pacing electrodes |
US7981065B2 (en) | 2004-12-20 | 2011-07-19 | Cardiac Pacemakers, Inc. | Lead electrode incorporating extracellular matrix |
US20060166361A1 (en) * | 2004-12-21 | 2006-07-27 | Agnieszka Seyda | Postpartum cells derived from placental tissue, and methods of making, culturing, and using the same |
US20060171930A1 (en) * | 2004-12-21 | 2006-08-03 | Agnieszka Seyda | Postpartum cells derived from umbilical cord tissue, and methods of making, culturing, and using the same |
US7354627B2 (en) * | 2004-12-22 | 2008-04-08 | Depuy Products, Inc. | Method for organizing the assembly of collagen fibers and compositions formed therefrom |
US7875273B2 (en) | 2004-12-23 | 2011-01-25 | Ethicon, Incorporated | Treatment of Parkinson's disease and related disorders using postpartum derived cells |
US20060198827A1 (en) * | 2005-02-04 | 2006-09-07 | Shulamit Levenberg | Engineering vascularized muscle tissue |
US20080051888A1 (en) * | 2005-02-18 | 2008-02-28 | Anthony Ratcliffe | Synthetic structure for soft tissue repair |
US9820847B2 (en) * | 2005-02-18 | 2017-11-21 | Synthasome Inc. | Synthetic structure for soft tissue repair |
US20060204445A1 (en) * | 2005-03-11 | 2006-09-14 | Anthony Atala | Cell scaffold matrices with image contrast agents |
US20060253192A1 (en) * | 2005-03-11 | 2006-11-09 | Wake Forest University Health Sciences | Production of tissue engineered heart valves |
US9801713B2 (en) | 2005-03-11 | 2017-10-31 | Wake Forest University Health | Production of tissue engineered heart valves |
WO2006099315A2 (en) * | 2005-03-11 | 2006-09-21 | Wake Forest University Health Sciences | Electrospun cell matrices |
US9039782B2 (en) | 2005-03-11 | 2015-05-26 | Wake Forest University Health Sciences | Production of tissue engineered digits and limbs |
US9248015B2 (en) | 2005-03-11 | 2016-02-02 | Wake Forest University Health Services | Production of tissue engineered heart valves |
US20060240061A1 (en) * | 2005-03-11 | 2006-10-26 | Wake Forest University Health Services | Tissue engineered blood vessels |
US20060204539A1 (en) * | 2005-03-11 | 2006-09-14 | Anthony Atala | Electrospun cell matrices |
US8728463B2 (en) | 2005-03-11 | 2014-05-20 | Wake Forest University Health Science | Production of tissue engineered digits and limbs |
US8491457B2 (en) | 2005-03-11 | 2013-07-23 | Wake Forest University Health Services | Tissue engineered blood vessels |
US9163331B2 (en) | 2005-03-11 | 2015-10-20 | Wake Forest University Health Sciences | Electrospun cell matrices |
WO2006099315A3 (en) * | 2005-03-11 | 2006-12-28 | Univ Wake Forest Health Sciences | Electrospun cell matrices |
US20060257377A1 (en) * | 2005-03-11 | 2006-11-16 | Wake Forest University Health Services | Production of tissue engineered digits and limbs |
US20090265005A1 (en) * | 2005-04-15 | 2009-10-22 | Wake Forest University Health Sciences | Bioreactor system and method of enhancing functionality of muscle cultured in vitro |
US20060239981A1 (en) * | 2005-04-15 | 2006-10-26 | James Yoo | Bioreactor System and Method of Enhancing Functionality of Muscle Cultured In Vitro |
WO2006113382A3 (en) * | 2005-04-15 | 2007-03-08 | Univ Wake Forest Health Sciences | Bioreactor system and method of enhancing functionality of muscle cultured in vitro |
US9493735B2 (en) | 2005-04-15 | 2016-11-15 | Wake Forest University Health Sciences | Bioreactor system and method of enhancing functionality of muscle cultured in vitro |
US9757225B2 (en) | 2005-04-15 | 2017-09-12 | Wake Forest University Health Sciences | Bioreactor system and method of enhancing functionality of muscle cultured in vitro |
US9506025B2 (en) | 2005-04-15 | 2016-11-29 | Wake Forest University Health Sciences | Cultured muscle produced by mechanical conditioning |
US8518436B2 (en) | 2005-05-16 | 2013-08-27 | Purdue Research Foundation | Engineered extracellular matrices |
US20090011021A1 (en) * | 2005-05-16 | 2009-01-08 | Purdue Research Foundation | Engineered Extracellular Matrices |
US20080254091A1 (en) * | 2005-09-05 | 2008-10-16 | Young-Woo Lee | Multi-Layered Antiadhesion Barrier |
WO2007029913A1 (en) * | 2005-09-05 | 2007-03-15 | Biorane Co., Ltd | Multi-layered antiadhesion barrier |
KR100785378B1 (en) * | 2005-09-05 | 2007-12-14 | 주식회사 바이오레인 | Multi-layered adhesion inhibitor |
US20070093874A1 (en) * | 2005-10-25 | 2007-04-26 | Raul Chirife | System and method of AV interval selection in an implantable medical device |
US7622298B2 (en) | 2006-03-24 | 2009-11-24 | Norits, Inc. | Method for creating perfusable microvessel systems |
US8846307B2 (en) | 2006-03-24 | 2014-09-30 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US20100279268A1 (en) * | 2006-03-24 | 2010-11-04 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US20070224677A1 (en) * | 2006-03-24 | 2007-09-27 | Thomas Neumann | Method for creating perfusable microvessel systems |
US8003388B2 (en) | 2006-03-24 | 2011-08-23 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US9446169B2 (en) | 2006-03-24 | 2016-09-20 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US20090317787A1 (en) * | 2006-03-24 | 2009-12-24 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US20080261306A1 (en) * | 2006-03-24 | 2008-10-23 | Thomas Neumann | Method for Creating Perfusable Microvessel Systems |
US8445280B2 (en) | 2006-03-24 | 2013-05-21 | Nortis, Inc. | Method for creating perfusable microvessel systems |
US9315778B2 (en) | 2006-05-16 | 2016-04-19 | Purdue Research Foundation | Engineered extracellular matrices control stem cell behavior |
US20070269476A1 (en) * | 2006-05-16 | 2007-11-22 | Voytik-Harbin Sherry L | Engineered extracellular matrices control stem cell behavior |
US20090175922A1 (en) * | 2006-05-16 | 2009-07-09 | Voytik-Harbin Sherry L | Three dimensional purified collagen matrices |
US20080268052A1 (en) * | 2006-09-21 | 2008-10-30 | Voytik-Harbin Sherry L | Collagen preparation and method of isolation |
US8084055B2 (en) | 2006-09-21 | 2011-12-27 | Purdue Research Foundation | Collagen preparation and method of isolation |
US8512756B2 (en) | 2006-09-21 | 2013-08-20 | Purdue Research Foundation | Collagen preparation and method of isolation |
US7871440B2 (en) | 2006-12-11 | 2011-01-18 | Depuy Products, Inc. | Unitary surgical device and method |
US9603968B2 (en) | 2006-12-27 | 2017-03-28 | Shriners Hospitals For Children | Methods of making high-strength NDGA polymerized collagen fibers and related collagen-prep methods, medical devices and constructs |
US8177839B2 (en) | 2006-12-27 | 2012-05-15 | Shriners Hospitals For Children | Woven and/or braided fiber implants and methods of making same |
US20080215150A1 (en) * | 2006-12-27 | 2008-09-04 | Shriners Hospitals For Children | Tendon or ligament bioprostheses and methods of making same |
US7901455B2 (en) | 2006-12-27 | 2011-03-08 | Shriners Hospitals For Children | Tendon or ligament bioprostheses and methods of making same |
US20080161917A1 (en) * | 2006-12-27 | 2008-07-03 | Shriners Hospitals For Children | Methods of making high-strength ndga polymerized collagen fibers and related collagen-prep methods, medical devices and constructs |
US10472409B2 (en) | 2006-12-27 | 2019-11-12 | Shriners Hospitals For Children | Methods of making high-strength NDGA polymerized collagen fibers and related collagen-prep methods, medical devices and constructs |
US20080188933A1 (en) * | 2006-12-27 | 2008-08-07 | Shriners Hospitals For Children | Woven and/or braided fiber implants and methods of making same |
US8858633B2 (en) | 2007-02-20 | 2014-10-14 | Shriners Hospital For Children | In vivo hydraulic fixation including bio-rivets using biocompatible expandable fibers |
US9888996B2 (en) | 2007-02-20 | 2018-02-13 | Shriners Hospitals For Children | In vivo hydraulic fixation including bio-rivets using biocompatible expandable fibers |
US9393105B2 (en) | 2007-02-20 | 2016-07-19 | Shriners Hospitals For Children | In vivo hydraulic fixation including bio-rivets using biocompatible expandable fibers |
US20080200992A1 (en) * | 2007-02-20 | 2008-08-21 | Shriners Hospitals For Children | In vivo hydraulic fixation including bio-rivets using biocompatible expandable fibers |
US9655993B2 (en) | 2007-02-27 | 2017-05-23 | Trustees Of Tufts College | Tissue-engineered silk organs |
US9102916B2 (en) | 2007-02-27 | 2015-08-11 | Trustees Of Tufts College | Tissue-engineered silk organs |
US10478524B2 (en) | 2007-02-27 | 2019-11-19 | Trustees Of Tufts College | Tissue-engineered silk organs |
US20100191328A1 (en) * | 2007-02-27 | 2010-07-29 | Trustees Of Tufts College | Tissue-engineered silk organs |
US8492332B2 (en) | 2007-04-19 | 2013-07-23 | Fibralign Corporation | Oriented collagen-based materials, films and methods of making same |
US20090069893A1 (en) * | 2007-04-19 | 2009-03-12 | Mikhail Vitoldovich Paukshto | Oriented Collagen-Based Materials, Films and Methods of Making Same |
US9254333B2 (en) | 2007-05-29 | 2016-02-09 | Trustees Of Tufts College | Method for silk fibroin gelation using sonication |
US8722067B2 (en) | 2007-05-29 | 2014-05-13 | Trustees Of Tufts College | Method for silk fibroin gelation using sonication |
WO2009071909A1 (en) * | 2007-12-06 | 2009-06-11 | Munro Technology Ltd | Nanometre fibres |
US20090280180A1 (en) * | 2007-12-10 | 2009-11-12 | Voytik-Harbin Sherry L | Collagen-based matrices with stem cells |
US9867905B2 (en) | 2007-12-10 | 2018-01-16 | Purdue Research Foundation | Collagen-based matrices with stem cells |
WO2009085769A2 (en) * | 2007-12-20 | 2009-07-09 | Zimmer Orthobiologics, Inc. | Compositions and methods for repair of connective tissue |
WO2009086313A3 (en) * | 2007-12-20 | 2010-03-25 | Zimmer Orthobiologics, Inc. | Compositions and methods for repair of connective tissue |
WO2009085769A3 (en) * | 2007-12-20 | 2010-03-25 | Zimmer Orthobiologics, Inc. | Compositions and methods for repair of connective tissue |
WO2009086313A2 (en) * | 2007-12-20 | 2009-07-09 | Zimmer Orthobiologics, Inc. | Compositions and methods for repair of connective tissue |
US20110111028A1 (en) * | 2007-12-20 | 2011-05-12 | Hali Wang | Composition and Methods For Repair of Connective Tissue |
US9339587B2 (en) | 2007-12-20 | 2016-05-17 | Zimmer Orthobiologics, Inc. | Composition and methods for repair of connective tissue |
US9421305B2 (en) * | 2008-02-01 | 2016-08-23 | Wake Forest University Health Sciences | Aligned scaffolding system for skeletal muscle regeneration |
US20100331980A1 (en) * | 2008-02-01 | 2010-12-30 | Sang Jin Lee | Aligned scaffolding system for skeletal muscle regeneration |
US9504575B2 (en) | 2008-02-07 | 2016-11-29 | Trustees Of Tufts College | 3-dimensional silk hydroxyapatite compositions |
US20110046686A1 (en) * | 2008-02-07 | 2011-02-24 | Trustees Of Tufts College | 3-dimensional silk hydroxyapatite compositions |
US20090216233A1 (en) * | 2008-02-22 | 2009-08-27 | Mimedx, Inc. | Biostaples suitable for wrist, hand and other ligament replacements or repairs |
US10258327B2 (en) | 2008-02-22 | 2019-04-16 | Mimedx Group, Inc. | Biostaples suitable for wrist, hand and other ligament replacements or repairs |
US9681869B2 (en) | 2008-02-22 | 2017-06-20 | Mimedx Group, Inc. | Biostaples suitable for wrist, hand and other ligament replacements or repairs |
US9040073B2 (en) | 2008-05-15 | 2015-05-26 | Trustees Of Tufts College | Silk polymer-based adenosine release: therapeutic potential for epilepsy |
US20110152214A1 (en) * | 2008-05-15 | 2011-06-23 | Trustees Of Tufts College | Silk polymer-based adenosine release: therapeutic potential for epilepsy |
US20090287308A1 (en) * | 2008-05-16 | 2009-11-19 | Tian Davis | Medical constructs of twisted lengths of collagen fibers and methods of making same |
US9216077B2 (en) | 2008-05-16 | 2015-12-22 | Mimedx Group, Inc. | Medical constructs of twisted lengths of collagen fibers and methods of making same |
US10149918B2 (en) | 2008-05-16 | 2018-12-11 | Mimedx Group, Inc. | Medical constructs of twisted lengths of collagen fibers and methods of making same |
US8513382B2 (en) | 2008-08-11 | 2013-08-20 | Fibralign Corporation | Biocomposites and methods of making the same |
US20100036098A1 (en) * | 2008-08-11 | 2010-02-11 | Mikhail Vitoldovich Paukshto | Biocomposites and methods of making the same |
US10086079B2 (en) | 2008-08-11 | 2018-10-02 | Fibralign Corporation | Biocomposites and methods of making the same |
US20110171239A1 (en) * | 2008-09-26 | 2011-07-14 | Trustees Of Tufts College | pH INDUCED SILK GELS AND USES THEREOF |
US9694082B2 (en) | 2008-09-26 | 2017-07-04 | Trustees Of Tufts College | pH induced silk gels and uses thereof |
US8501172B2 (en) | 2008-09-26 | 2013-08-06 | Trustees Of Tufts College | pH-induced silk gels and uses thereof |
US8367148B2 (en) | 2008-10-09 | 2013-02-05 | Mimedx Group, Inc. | Methods of making biocomposite medical constructs and related constructs including artificial tissues, vessels and patches |
US9125759B2 (en) | 2008-10-09 | 2015-09-08 | Mimedx Group, Inc. | Biocomposite medical constructs including artificial tissues, vessels and patches |
US10493179B2 (en) | 2008-10-09 | 2019-12-03 | Trustees Of Tufts College | Modified silk films containing glycerol |
US9801978B2 (en) | 2008-10-09 | 2017-10-31 | Mimedx Group, Inc. | Medical constructs including tubes and collagen fibers |
US9179976B2 (en) | 2008-10-09 | 2015-11-10 | Mimedx Group, Inc. | Methods of making collagen fiber medical constructs and related medical constructs, including tubes |
US20110223153A1 (en) * | 2008-10-09 | 2011-09-15 | Trustees Of Tufts College | Modified silk films containing glycerol |
US20100094404A1 (en) * | 2008-10-09 | 2010-04-15 | Kerriann Greenhalgh | Methods of Making Biocomposite Medical Constructs and Related Constructs Including Artificial Tissues, Vessels and Patches |
US10238773B2 (en) | 2008-10-09 | 2019-03-26 | Mimedx Group, Inc. | Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches |
US20100094318A1 (en) * | 2008-10-09 | 2010-04-15 | Mengyan Li | Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches |
US9078775B2 (en) | 2008-10-09 | 2015-07-14 | Mimedx Group, Inc. | Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches |
US20160317711A1 (en) * | 2008-11-21 | 2016-11-03 | Lifecell Corporation | Reinforced biologic material |
US20100161054A1 (en) * | 2008-11-21 | 2010-06-24 | Jason Park | Reinforced Biologic Material |
US9421306B2 (en) | 2008-11-21 | 2016-08-23 | Lifecell Corporation | Reinforced biologic material |
US8333803B2 (en) * | 2008-11-21 | 2012-12-18 | Lifecell Corporation | Reinforced biologic material |
US8728498B2 (en) | 2009-07-14 | 2014-05-20 | Trustees Of Tufts College | Electrospun silk material systems for wound healing |
US9597430B2 (en) | 2009-07-31 | 2017-03-21 | Synthasome, Inc. | Synthetic structure for soft tissue repair |
US20110029078A1 (en) * | 2009-07-31 | 2011-02-03 | Anthony Ratcliffe | Synthetic structure for soft tissue repair |
US9074302B2 (en) | 2009-09-28 | 2015-07-07 | Trustees Of Tufts College | Methods of making drawn silk fibers |
US9381164B2 (en) | 2009-09-29 | 2016-07-05 | Trustees Of Tufts College | Silk nanospheres and microspheres and methods of making same |
US8715740B2 (en) | 2009-09-29 | 2014-05-06 | Trustees Of Tufts College | Silk nanospheres and microspheres and methods of making same |
US9603971B2 (en) | 2010-03-05 | 2017-03-28 | Trustees Of Tufts College | Silk-based ionomeric compositions |
AU2017203235B2 (en) * | 2010-05-07 | 2019-09-19 | University Of North Carolina At Chapel Hill | Method of engrafting cells from solid tissues |
US20110274666A1 (en) * | 2010-05-07 | 2011-11-10 | University Of North Carolina At Chapel Hill | Method of engrafting cells from solid tissues |
US9869038B2 (en) | 2010-06-21 | 2018-01-16 | University Of South Florida | Polypeptide electrospun nanofibrils of defined composition |
US9963805B2 (en) | 2010-06-21 | 2018-05-08 | University Of South Florida | Polypeptide electrospun nanofibrils of defined composition |
US10065046B2 (en) | 2010-07-15 | 2018-09-04 | Fibralign Corporation | Conductive biopolymer implant for enhancing tissue repair and regeneration using electromagnetic fields |
US11324857B2 (en) * | 2010-08-13 | 2022-05-10 | Wake Forest University Health Sciences | Methods for making a tissue engineered muscle repair (TEMR) construct in vitro for implantation in vivo |
US9556418B2 (en) | 2010-08-13 | 2017-01-31 | Wake Forest University Health Sciences | Methods for making a tissue engineered muscle repair (TEMR) construct in vitro for implantation in vivo |
AU2011289214B2 (en) * | 2010-08-13 | 2015-05-28 | Wake Forest University Health Sciences | Methods for making a tissue engineered muscle repair (TEMR) construct in vitro for implantation in vivo |
US9566365B2 (en) | 2010-09-01 | 2017-02-14 | Trustees Of Tufts College | Silk fibroin and polyethylene glycol-based biomaterials |
US9724308B2 (en) | 2010-09-10 | 2017-08-08 | Fibralign Corporation | Biodegradable multilayer constructs |
US10933173B2 (en) | 2010-10-19 | 2021-03-02 | Trustees Of Tufts College | Silk fibroin-based microneedles and methods of making the same |
US12194200B2 (en) | 2010-10-19 | 2025-01-14 | Trustees Of Tufts College | Silk fibroin-based microneedles and methods of making the same |
US20140018918A1 (en) * | 2011-01-17 | 2014-01-16 | Jiangning Wang | Muscle Prosthesis with Suspension Fixing Apparatus for Implantation in Human Body and Production Method Thereof |
US9414905B2 (en) * | 2011-01-17 | 2016-08-16 | Jiangning Wang | Muscle prosthesis with suspension fixing apparatus for implantation in human body and production method thereof |
US10653514B2 (en) | 2011-03-08 | 2020-05-19 | Mimedx Group, Inc. | Collagen fiber ribbons with integrated fixation sutures and methods of making the same |
US9636209B2 (en) | 2011-03-08 | 2017-05-02 | Mimedx Group, Inc. | Collagen fiber ribbons with integrated fixation sutures and methods of making the same |
US11266339B2 (en) | 2011-04-20 | 2022-03-08 | Trustees Of Tufts College | Dynamic silk coatings for implantable devices |
US10335519B2 (en) | 2011-04-20 | 2019-07-02 | Trustees Of Tufts College | Dynamic silk coatings for implantable devices |
US10933161B2 (en) | 2011-07-11 | 2021-03-02 | Mimedx Group, Inc. | Synthetic collagen threads for cosmetic uses including skin wrinkle treatments and associated methods |
US9694106B2 (en) | 2011-07-11 | 2017-07-04 | Mimedx Group, Inc. | Synthetic collagen threads for cosmetic uses including skin wrinkle treatments and associated methods |
US11090410B2 (en) | 2011-09-30 | 2021-08-17 | Wake Forest University Health Sciences | Bioscaffolds for formation of motor endplates and other specialized tissue structures |
US9968705B2 (en) | 2011-09-30 | 2018-05-15 | Wake Forest University Health Sciences | Bioscaffolds for formation of motor endplates and other specialized tissue structures |
US10238769B2 (en) | 2011-10-11 | 2019-03-26 | Fibralign Corporation | Graft for directed vascular and lymphatic regeneration and methods to guide endothelial cell assembly |
US8986378B2 (en) | 2011-11-02 | 2015-03-24 | Mimedx Group, Inc. | Implantable collagen devices and related methods and systems of making same |
US10689621B2 (en) | 2011-11-02 | 2020-06-23 | Mimedx Group, Inc. | Kits and materials for implantable collagen devices |
US9873861B2 (en) | 2011-11-02 | 2018-01-23 | Mimedx Group, Inc. | Methods of making implantable collagen fiber |
WO2013067294A1 (en) * | 2011-11-02 | 2013-05-10 | Mimedx Group, Inc. | Implantable collagen devices and related methods and systems of making same |
US9606035B2 (en) | 2011-12-21 | 2017-03-28 | Ta Instruments-Waters Llc | System for mechanical stimulation and characterization of biologic samples |
US11737990B2 (en) | 2012-01-12 | 2023-08-29 | Nfs Ip Holdings, Llc | Nanofiber scaffolds for biological structures |
US20150182325A1 (en) * | 2012-01-23 | 2015-07-02 | Exsomed International IP, LLC | Devices and methods for tendon repair |
US9539084B2 (en) * | 2012-01-23 | 2017-01-10 | Exsomed International IP. LLC | Devices and methods for tendon repair |
US20130274879A1 (en) * | 2012-01-23 | 2013-10-17 | Lloyd P. Champagne | Devices and methods for tendon repair |
US9017404B2 (en) * | 2012-01-23 | 2015-04-28 | Lloyd P. Champagne | Devices and methods for tendon repair |
US10912862B2 (en) | 2012-02-06 | 2021-02-09 | Children's Medical Center Corporation | Multi-layer biomaterial for tissue regeneration and wound healing |
CN102657898A (en) * | 2012-04-18 | 2012-09-12 | 暨南大学 | Degradable nanofiber anti-adhesive membrane with double-release performance and preparation method of same |
US9480515B2 (en) | 2012-07-12 | 2016-11-01 | Exsomed International IP, LLC | Metacarpal bone stabilization device |
US10098680B2 (en) | 2012-07-12 | 2018-10-16 | Exsomed Holding Company Llc | Metacarpal bone stabilization device |
US10941375B2 (en) | 2012-08-21 | 2021-03-09 | Nanofiber Solutions, Llc | Fiber scaffolds for enhancing cell proliferation in cell culture |
US11826489B2 (en) | 2013-02-01 | 2023-11-28 | The Children's Medical Center Corporation | Collagen scaffolds |
US11246959B2 (en) | 2013-03-15 | 2022-02-15 | Nanofiber Solutions, Llc | Biocompatible fiber textiles for implantation |
US11596715B2 (en) * | 2013-05-16 | 2023-03-07 | The George Washington University a Congressionally Chartered Not-for-Profit Corporation | Myocyte-derived flow assist device: extravasal sheaths of rhythmically contracting myocytes aiding flow of biological fluids |
US20200009296A1 (en) * | 2013-05-16 | 2020-01-09 | The George Washington University a Congressionally Chartered Not-for-Profit Corporation | Myocyte-derived flow assist device: extravasal sheaths of rhythmically contracting myocytes aiding flow of biological fluids |
US11259849B2 (en) | 2013-10-02 | 2022-03-01 | ExsoMed Corporation | Full wrist fusion device |
US11272965B2 (en) | 2013-10-02 | 2022-03-15 | ExsoMed Corporation | Full wrist fusion device |
US11273235B2 (en) | 2013-10-10 | 2022-03-15 | Fibralign Corporation | Method and device for lymphedema treatment |
US9878071B2 (en) | 2013-10-16 | 2018-01-30 | Purdue Research Foundation | Collagen compositions and methods of use |
US11478574B2 (en) | 2013-10-16 | 2022-10-25 | Purdue Research Foundation | Collagen compositions and methods of use |
US10751447B2 (en) | 2013-10-18 | 2020-08-25 | Wake Forest University Health Sciences | Laminous vascular constructs combining cell sheet engineering and electrospinning technologies |
US10092679B2 (en) | 2013-10-18 | 2018-10-09 | Wake Forest University Health Sciences | Laminous vascular constructs combining cell sheet engineering and electrospinning technologies |
US10188161B2 (en) | 2014-01-06 | 2019-01-29 | Exsomed International IP, LLC | Gloves with sensory windows |
US10925336B2 (en) | 2014-01-06 | 2021-02-23 | ExsoMed Corporation | Gloves with sensory windows |
US11919941B2 (en) | 2015-04-21 | 2024-03-05 | Purdue Research Foundation | Cell-collagen-silica composites and methods of making and using the same |
US11185357B2 (en) | 2015-05-19 | 2021-11-30 | ExsoMed Corporation | Distal radius plate |
US10441330B2 (en) | 2015-05-19 | 2019-10-15 | Exsomed Holding Company, Llc | Distal radius plate |
US10245091B2 (en) | 2015-12-30 | 2019-04-02 | Exsomed Holding Company, Llc | Dip fusion spike screw |
US11147604B2 (en) | 2016-01-12 | 2021-10-19 | ExsoMed Corporation | Bone stabilization device |
US10194923B2 (en) | 2016-05-10 | 2019-02-05 | Exsomed International IP, LLC | Tool for percutaneous joint cartilage destruction and preparation for joint fusion |
US10898608B2 (en) | 2017-02-02 | 2021-01-26 | Nanofiber Solutions, Llc | Methods of improving bone-soft tissue healing using electrospun fibers |
US11806440B2 (en) | 2017-02-02 | 2023-11-07 | Nfs Ip Holdings, Llc | Methods of improving bone-soft tissue healing using electrospun fibers |
US11739291B2 (en) | 2017-04-25 | 2023-08-29 | Purdue Research Foundation | 3-dimensional (3D) tissue-engineered muscle for tissue restoration |
US11147681B2 (en) | 2017-09-05 | 2021-10-19 | ExsoMed Corporation | Small bone angled compression screw |
US11191645B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Small bone tapered compression screw |
US12042191B2 (en) | 2017-09-05 | 2024-07-23 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US12048464B2 (en) | 2017-09-05 | 2024-07-30 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US11191576B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US11576927B2 (en) | 2018-12-11 | 2023-02-14 | Nanofiber Solutions, Llc | Methods of treating chronic wounds using electrospun fibers |
US12201648B2 (en) | 2018-12-11 | 2025-01-21 | Nfs Ip Holdings, Llc | Methods of treating chronic wounds using electrospun fibers |
WO2020160533A1 (en) * | 2019-02-01 | 2020-08-06 | Nanofiber Solutions, Llc | Electrospun polymer fibers for cultured meat production |
Also Published As
Publication number | Publication date |
---|---|
US20040009600A1 (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6592623B1 (en) | Engineered muscle | |
EP1212107B1 (en) | Engineered muscle | |
Allmeling et al. | Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit | |
US7759082B2 (en) | Electroprocessed fibrin-based matrices and tissues | |
Boland et al. | Electrospinning collagen and elastin: preliminary vascular tissue engineering | |
JP4624800B2 (en) | Engineering-designed framework for promoting cell growth | |
Bell | Strategy for the selection of scaffolds for tissue engineering | |
US9107739B2 (en) | Small diameter vascular graft produced by a hybrid method | |
US6179872B1 (en) | Biopolymer matt for use in tissue repair and reconstruction | |
CN111714706B (en) | Vascular stent capable of promoting vascular cell proliferation and secreting extracellular matrix, preparation method of vascular stent and active artificial blood vessel | |
JP4485124B2 (en) | Electroprocessed collagen | |
EP2203129A1 (en) | Methods and compositions for printing biologically compatible nanotube composites of autologous tissue | |
JPH07509638A (en) | Production of graft tissue from extracellular matrix | |
AU747442B2 (en) | Biopolymer matt for use in tissue repair and reconstruction | |
AU1210900A (en) | Cardiovascular components for transplantation and methods of making thereof | |
Kenar et al. | Design of a 3D aligned myocardial tissue construct from biodegradable polyesters | |
Sumanasinghe et al. | New trends in biotextiles—the challenge of tissue engineering | |
JP2010163435A (en) | Electroprocessed collagen | |
Sumanasingh et al. | The applications of biotextiles in tissue engineering | |
CN109414527A (en) | Bracket based on microcapillary network | |
JPH01170466A (en) | Intracorporeal implant material | |
AU2011203262A1 (en) | Electroprocessed fibrin-based matrices and tissues | |
AU2007219278A1 (en) | Electroprocessed fibrin-based matrices and tissues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VIRGINIA COMMONWEALTH UNIVERSITY INTELLECTUAL PROP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOWLIN, GARY L.;WNEK, GARY;SIMPSON, DAVID G.;AND OTHERS;REEL/FRAME:010218/0534;SIGNING DATES FROM 19990819 TO 19990823 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF SOUTH CAROLINA;REEL/FRAME:024686/0983 Effective date: 20100715 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |