US5851776A - Conjugates and assays for simultaneous detection of multiple ligands - Google Patents
Conjugates and assays for simultaneous detection of multiple ligands Download PDFInfo
- Publication number
- US5851776A US5851776A US08/101,782 US10178293A US5851776A US 5851776 A US5851776 A US 5851776A US 10178293 A US10178293 A US 10178293A US 5851776 A US5851776 A US 5851776A
- Authority
- US
- United States
- Prior art keywords
- ligand
- assay
- binding partner
- complementary binding
- conjugate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
Definitions
- This invention is in the field of ligand-receptor assays for the simultaneous detection of multiple selected target ligands in a fluid sample.
- the term "ligand-receptor assay” refers to an assay for at least one target ligand which may be detected by the formation of a complex between the ligand and a receptor capable of binding with that target ligand.
- the target ligand may be the analyte itself or a substance which, if detected, can be used to infer the presence of the analyte in a sample.
- the term "ligand” includes haptens, hormones, peptides, proteins, deoxyribonucleic acid (DNA), ribonucleic acids (RNA), metabolites of the aforementioned materials and other substances of either natural or synthetic origin which may be of diagnostic interest and have a specific ligand receptor therefor.
- Ligand-receptor assays are generally useful for the in vitro determination of the presence and concentration of ligands in body fluids, food products, animal fluids, and environmental samples. For example, the determination of specific hormones, peptides, proteins, therapeutic drugs, and toxic drugs in human blood or urine has significantly improved the medical diagnosis of the human condition. There is a continuing need for simple, rapid assays for the qualitative, semi-quantitative, and quantitative determination of such ligands in a sample. Furthermore, in many situations, such assays need to be simple enough to be performed and interpreted by non-technical users.
- Ligand-receptor assays rely on the binding of target ligands by ligand receptors to determine the concentrations of target ligands in a sample.
- Ligand-receptor assays can be described as either competitive or non-competitive.
- Competitive assays generally involve a sample suspected of containing target ligand, a ligand analogue conjugate, and the competition of these species for a limited number of binding sites provided by the ligand receptor.
- ligand-receptor assays can be further described as being either homogeneous or heterogeneous.
- homogeneous assays all of the reactants participating in the competition are mixed together and the quantity of target ligand is determined by its effect on the extent of binding between ligand receptor and ligand analogue conjugate. The signal observed is modulated by the extent of this binding and can be related to the amount of target ligand in the sample.
- U.S. Pat. No. 3,817,837 describes such a homogeneous, competitive ligand-receptor assay.
- Heterogeneous, competitive ligand-receptor assays require a separation of ligand analogue conjugate bound to ligand receptor from the free ligand analogue conjugate and measurements of either the bound or the free fractions. Methods for performing such assays are described in U.S. Pat. Nos. 3,654,090, 4,298,685, 4,425,438, and 4,506,009, European Patent Application 87309724.0, and PCT International Application No. PCT/US86/00668. Separation of the bound from the free may be accomplished by removal of the ligand receptor and anything bound to it from the free ligand analogue conjugate by immobilization of the ligand receptor on a solid phase or precipitation.
- the amount of the ligand analogue conjugate in the bound or the free fraction can then be determined and related to the concentration of the target ligand in the sample.
- the bound fraction is in a convenient form, for example, on a solid phase, so that it can be washed, if necessary, to remove remaining unbound ligand analogue conjugate and the measurement of the bound ligand analogue conjugate or related products is facilitated.
- the free fraction is normally in a liquid form that is generally inconvenient for measurements.
- One method that can be used to detect the free ligand analogue conjugate in a heterogeneous, competitive ligand-receptor assay process is to provide a second, immobilized receptor specific for the target ligand on a solid phase so that the ligand analogue conjugate not bound to the first ligand receptor can be bound to the second ligand receptor immobilized on the solid phase.
- Methods for performing such assays are described in U.S. patent application Ser. No. 295,568, filed on Jan. 10, 1989, and in European Patent Application 90300283.0, both of which are hereby incorporated by reference.
- each target ligand is subsequently determined by contacting the reaction mixture with receptors on a solid phase that are immobilized in discrete zones specific for the individual ligand analogue conjugates in the reaction mixture, developing the signals from the bound ligand analogue conjugates, and relating the detectable signals to those produced by standards.
- Assays utilizing mixtures of ligand analogue conjugates suffer from increased non-specific signal development that is generally proportional to the concentration of the signal development element used in the assay. If ten ligand analogue conjugates are mixed at concentrations that would be needed in separate assays, the resulting mixture would exhibit non-specific signal development that is approximately ten times the amount observed in assays utilizing single ligand analogue conjugates.
- the sensitivity of ligand receptor assays is usually limited in practice by the signal developed due to non-specific binding. Assays utilizing mixtures of ligand analogue conjugates would therefore result in decreased sensitivity for each target ligand. A reduction in the concentration of the signal development element used in each ligand analogue conjugate to reduce the non-specific signal would decrease the maximum assay responses and result in poorer assay sensitivities and smaller ranges of concentrations for the assays.
- the benefits of efficiency gained by using mixtures of the ligand analogue conjugates in order to simultaneously assay multiple target ligands in a sample are offset by the losses in sensitivity and assay range that result.
- the present invention overcomes these deficiencies.
- the method described in U.S. Pat. No. 4,506,009 utilizes a ligand analogue conjugate which has both the ligand analogue and an insolubilizing binding component which is a different ligand coupled to the signal development element.
- An insolubilizing receptor is used to precipitate the free ligand analogue conjugate unless it is sterically hindered by the binding of the antibody specific for target ligand to the ligand analogue.
- This invention makes use of the physical relationship between the two ligands coupled to the same signal development element and it shows that two ligands cannot generally be bound to the same signal development element such that the ligand-receptor binding reactions remain independent.
- conjugates are used in assays for two target ligands, the binding of ligand receptor to the first target ligand will affect the binding of the other ligand receptor to the second target ligand.
- the two target ligands cannot be accurately assayed using such conjugates.
- the prior art offers no solution to enable the simultaneous assay of multiple target ligands in a sample except the use of mixtures of ligand analogue conjugates which suffers from the deficiencies previously described.
- Non-competitive assays generally utilize ligand receptors in substantial excess over the concentration of target ligand to be determined in the assay.
- Sandwich assays in which the target ligand is detected by binding to two ligand receptors, one ligand receptor present in the form of a ligand receptor conjugate and a second ligand receptor, frequently bound to a solid phase, to facilitate separation from unbound reagents, such as unbound first ligand receptor conjugate, are examples of non-competitive assays.
- Assays that utilize ligand receptor conjugates include both competitive and non-competitive assays.
- the present invention facilitates the simultaneous assay of multiple ligands in a sample by utilizing ligand analogues or ligand receptors in binding domains coupled to a single signal development element to form a conjugate.
- Such conjugates can permit the simultaneous assay of multiple ligands in a sample without losses in sensitivity or assay range that are associated with the use of mixtures of individual ligand receptor conjugates.
- This invention overcomes deficiencies of the prior art methods. It describes assay processes utilizing conjugates wherein a signal development element is coupled to at least two binding domains, each binding domain having ligand analogues or ligand receptors, for the assay of at least two target ligands in a sample.
- the present invention teaches and claims binding domains coupled to a signal development element to form a conjugate where each binding domain comprises at least one ligand analogue or ligand receptor depending on assay design.
- the binding domains are constructed such that they function independently from one another in assays for their respective target ligands.
- Each binding domain may bind its respective binding partners in the assay without affecting the binding reactions of other binding domains coupled to the same signal development element.
- the novel conjugates of the present invention are useful in heterogeneous assay processes for the detection of multiple target ligands in a sample where the method of detection utilizes a solid phase that has discrete zones specific for the target ligands.
- a ligand may be a ligand receptor depending on assay design.
- Ligand Analogue--A chemical derivative of the target ligand which may be attached either covalently or noncovalently to other species, for example, to the signal development element.
- Ligand analogue and target ligand may be the same and both are capable of binding to ligand receptor.
- Ligand Receptor--Receptor capable of binding ligand, typically an antibody, but which may be a ligand depending on assay design.
- Ligand Analogue Conjugate--A conjugate of a ligand analogue and a signal development element may be coupled directly to signal development elements or they may be coupled to a protein or polymer and the product may be coupled to a signal development element.
- Ligand analogue conjugates and their intended ligand receptors are complementary.
- Ligand analogue conjugates and ligand receptors other than their intended ligand receptors are uncomplementary.
- Ligand Receptor Conjugate--A conjugate of a ligand receptor and a signal development element may be coupled directly to a signal development element or they may be coupled to a protein or polymer and the product may be coupled to a signal development element.
- Ligand receptor conjugates and their intended ligand or ligand analogues are complementary.
- Ligand receptor conjugates and ligands or ligand analogues other than the intended targets are uncomplementary.
- Conjugate--A signal development element coupled to at least two different binding domains, each binding domain comprising at least one ligand analogue or ligand receptor capable of binding its complementary binding partner.
- Signal Development Element-- The element a conjugate which, in conjunction with the signal development phase, develops the detectable signal, e.g., an enzyme.
- Reaction Mixture--In a competitive immunoassay the mixture of sample suspected of containing the target ligand and the assay reagents that participate in the competitive binding reactions.
- Solid Phase-- The solid phase upon which is immobilized discrete zones for the detection of target ligands where the signal is finally developed during the signal development step for interpretation of the assay results.
- Ligand Analogue Construct--At least one ligand analogue immobilized on a solid phase or coupled to a molecule that is not a signal development element.
- Heterogeneous, competitive ligand-receptor assays for multiple target ligands in a sample utilize a mixture of ligand analogue conjugates, ligand receptors, and a sample suspected of containing the target ligands.
- the sample may be contacted with the ligand receptors and the ligand analogue conjugates may be added separately or the sample and reagents may be contacted simultaneously to form a reaction mixture.
- the ligand receptors may be immobilized in discrete zones on a solid phase in order to facilitate the separation of conjugates bound to ligand receptors from the free conjugates.
- the competitive binding reactions are allowed to proceed to a point where the amounts of the individual ligand analogue conjugates that are bound to their complementary ligand receptors are related to the amounts of the corresponding target ligands in the sample.
- the ligand analogue conjugates of the prior art comprised ligand analogues of the target ligand coupled to a signal development element.
- Ligand analogues for two or more target ligands were not generally coupled to the same signal development element for the assay of multiple target ligands in a sample because the binding of a ligand receptor to a ligand analogue for one target ligand would potentially interfere with the binding of a nearby ligand analogue for another target ligand with its ligand receptor.
- Ligand analogues for different target ligands that are randomly coupled to signal development elements will potentially be subject to such interferences.
- Lowering the density of ligand analogues for different target ligands that are coupled to a signal development element to densities that insure these effects do not affect assay performance can severely limit the ability of the assay designer to vary the ligand analogue density in order to achieve assay design goals.
- prior art assays use a mixture of ligand analogue conjugates where each signal development element is coupled to ligand analogues for one target ligand to simultaneously assay for multiple target ligands in a sample.
- the high concentrations of signal development elements required by such mixtures of ligand analogue conjugates can result in high non-specific binding that reduces assay sensitivity for all target ligands in the assay.
- the conjugates of the present invention have binding domains coupled to a signal development element wherein each binding domain comprises at least one ligand analogue or ligand receptor.
- the binding domains function independently from one another in assays for their respective target ligands even when the density of binding domains on the signal development element is high. The construction and use of such conjugates is dependent on the assay design.
- each binding domain comprises at least one ligand analogue coupled to a signal development element such that the binding domain can bind its complementary ligand receptor.
- the ligand analogue is, for example, a protein antigen that is similar in size or larger than its complementary ligand receptor, then the ligand analogue can be coupled directly by covalent or non-covalent means to the signal development element to generate a binding domain on the signal development element that can bind to its complementary ligand receptor without interference from uncomplementary ligand receptors that can bind to other binding domains on the signal development element.
- the means used to couple the ligand analogue to the signal development element will not always result in a functional binding domain that can bind to its complementary ligand receptor.
- Multiple binding domains containing the same ligand analogue can be coupled to a single signal development element to vary the ability of the conjugate to compete with the target ligand for the complementary ligand receptor. If the ligand analogue is substantially smaller than the complementary ligand receptor, then the ligand analogue is first coupled to a molecular structure such as a protein or a polymer that is similar in size or larger than the complementary ligand receptor, preferably by covalent means, and then the product is coupled to the signal development element to generate a binding domain on the signal development element.
- a functional binding domain must contain at least one ligand analogue capable of binding to its complementary ligand receptor.
- ligand analogues coupled to the molecular structure can be used to vary the ability of the conjugate to compete with the target ligand for the complementary ligand receptor.
- a particularly preferred embodiment of the present invention is the construction of a conjugate for the assay of multiple target ligands that are haptens in a sample by first coupling ligand analogues for the different target ligands separately to bovine serum albumin (BSA) so that a BSA molecule is coupled only to ligand analogues for a single target ligand.
- BSA bovine serum albumin
- the products are mixed and coupled to a signal development element to generate a mixture of binding domains on a single signal development element.
- Each BSA molecule coupled to a signal development element and to a number of ligand analogues such that at least one of the ligand analogues is capable of binding to its complementary ligand receptor is a binding domain on the signal development element.
- Preferred signal development elements include polymers containing dyes, latex particles containing dyes, liposomes containing dyes, and metal sols.
- a particularly preferred signal development element is colloidal gold. The coupling of a mixture of BSA molecules to colloidal gold, some of the BSA molecules being coupled to one type of ligand analogue, can be achieved by adsorption.
- the labeling ratios of ligand analogue to BSA and the relative proportions of BSA molecules coupled to ligand analogues that are mixed with unlabeled BSA or with other proteins for adsorption to colloidal gold are empirically determined by assay performance.
- Assay performance When used in heterogeneous, competitive assays with antibodies specific for the target ligands, such conjugates have been successfully used in an assay for multiple target ligands in a sample.
- the linkage chemistries used to couple different ligand analogues to signal development elements have similarities that result in low affinity binding interactions between ligand analogues in binding domains and uncomplementary ligand receptors that are either in solution or are immobilized on the solid phase. Such undesirable binding interactions are substantially eliminated by the incorporation of crosstalk inhibitors in the reaction mixture such as those described in co-pending application titled Crosstalk Inhibitors and Their Use in Assays, filed on even date herewith which is hereby incorporated by reference.
- each binding domain comprises at least one ligand receptor coupled to a signal development element such that the binding domain is capable of binding to its target ligand in non-competitive assays or to target ligand, ligand analogues, or ligand analogue constructs in competitive assays.
- a ligand receptor that is coupled to a signal development element In order for a ligand receptor that is coupled to a signal development element to function as a binding domain, it must be able to bind to its target ligand, ligand analogue, or ligand analogue construct without being affected by the binding events occurring at nearby uncomplementary binding domains on the same signal development element.
- the ligand receptor should be of similar size or larger than the target ligand, ligand analogue, or ligand analogue construct. If this is not the case, ligand receptors for the same target ligand can be coupled to one another to generate aggregates of ligand receptor that can then be coupled to a signal development element to generate a binding domain.
- preferred ligand receptors are antibodies.
- Preferred signal development elements include polymers containing dyes, latex particles containing dyes, liposomes containing dyes, and metal sols.
- a particularly preferred signal development element is colloidal gold. Particularly preferred are conjugates formed by mixing different monoclonal antibodies together prior to adsorption onto colloidal gold. The optimum mixtures of ligand receptors and other proteins or polymers that are coupled to a signal development element are dependent on the particular objectives of an assay and are empirically determined.
- the reaction mixture is formed by contacting the sample, a conjugate comprising at least two different binding domains coupled to a signal development element, each different binding domain capable of binding ligand receptors for a target ligand, and ligand receptors that are immobilized in discrete zones on a solid phase, each zone being specific for a target ligand.
- the reaction mixture is allowed to incubate until the amounts of conjugate bound to the ligand receptor zones are related to the concentrations of the target ligands in the sample.
- the sample is contacted with the solid phase followed by contact of the conjugate with the solid phase.
- the unbound conjugate may be washed away from the solid phase before contact with a signal development phase or methods such as those described in U.S. Pat. Nos. 4,233,402 and 4,391,904 may be employed to develop the signal without washing.
- the signal developed at each discrete zone of immobilized ligand receptor is related to the concentration of its respective target ligand by calibration methods well-known to those skilled in the art. It is important to note that the discrete zones of immobilized ligand receptors must be separated in space by a sufficient distance so that binding of conjugate to one zone does not deplete the concentration of conjugate available for competitive reactions in a neighboring zone. Solid phases where the ligand receptor zones are immobilized on a surface such as a porous membrane are preferred for this reason.
- the reaction mixture is formed by contacting the sample, soluble ligand receptors for each target ligand, and a conjugate comprising at least two different binding domains coupled to a signal development element, each different binding domain capable of binding ligand receptors for a target ligand.
- the reaction mixture is allowed to incubate until the amounts of binding domains not bound to the ligand receptors are related to the amounts of the target ligands in the sample.
- the reaction mixture is then contacted with a solid phase comprising discrete zones of immobilized ligand receptors, each zone being specific for a target ligand.
- the binding domains on the conjugate that are not bound by ligand receptors are able to bind to their respective zones on the solid phase.
- the unbound conjugate may be washed away from the solid phase before contact with a signal development phase or methods such as those described in U.S. Pat. Nos. 4,233,402 and 4,391,904 may be employed to develop the signal without washing.
- the signal developed at each discrete zone of immobilized ligand receptor is related to the concentration of its respective target ligand by calibration methods well-known to those skilled in the art.
- the conjugates of the present invention when used instead of mixtures of ligand analogue conjugates in assay methods and devices such as those described in U.S. Pat. Nos.
- Preferred assay methods employ a solid phase which contains receptors immobilized in discrete zones on a porous member, each zone being specific for one of the target ligands.
- Particularly preferred assay methods employ solid phases with discrete zones containing immobilized ligand analogue antibodies such as those described in co-pending U.S. patent application Ser. No. 583,046, filed on Sep. 14, 1990.
- the reaction mixture is formed by contacting the sample, a conjugate comprising at least two different binding domains coupled to a signal development element, each different binding domain comprising at least one ligand receptor capable of binding its target ligand, and ligand analogues that are immobilized in discrete zones on a solid phase, each zone being specific for a target ligand.
- the reaction mixture is allowed to incubate until the amounts of conjugate bound to the ligand analogue zones are related to the concentrations of the target ligands in the sample.
- the sample is contacted with the solid phase followed by contact of the conjugate with the solid phase.
- the unbound conjugate may be washed away from the solid phase before contact with a signal development phase or methods such as those described in U.S. Pat. Nos. 4,233,402 and 4,391,904 may be employed to develop the signal without washing.
- the signal developed at each discrete zone of immobilized ligand analogues is related to the concentration of its respective target ligand by calibration methods well-known to those skilled in the art. It is important to note that the discrete zones of immobilized ligand analogues must be separated in space by a sufficient distance so that binding of conjugate to one zone does not deplete the concentration of conjugate available for competitive reactions in a neighboring zone. Solid phases where the ligand analogue zones are immobilized on a surface such as a porous membrane are preferred for this reason.
- the reaction mixture is formed by contacting the sample, ligand analogue constructs for each target ligand, and a conjugate comprising at least two different binding domains coupled to a signal development element, each different binding domain comprising at least one ligand receptor capable of binding its target ligand.
- the reaction mixture is allowed to incubate until the amounts of binding domains not bound to the ligand analogue constructs are related to the amounts of the target ligands in the sample.
- the reaction mixture is then contacted with a solid phase comprising discrete zones of immobilized ligand analogues, each zone being specific for a target ligand.
- the binding domains on the conjugate that are not bound by ligand analogue constructs are able to bind to their respective zones on the solid phase.
- the unbound conjugate may be washed away from the solid phase before contact with a signal development phase or methods such as those described in U.S. Pat. Nos. 4,233,402 and 4,391,904 may be employed to develop the signal without washing.
- the signal developed at each discrete zone of immobilized ligand analogues is related to the concentration of its respective target ligand by calibration methods well-known to those skilled in the art.
- the conjugates of the present invention when used instead of mixtures of ligand receptor conjugates in assay methods and devices such as those described in U.S. Pat. Nos.
- Preferred assay methods employ a solid phase which contains ligand analogues immobilized in discrete zones on a porous member, each zone being specific for one of the target ligands.
- the sample is contacted with a solid phase which contains ligand receptors immobilized in discrete zones specific for each target ligand.
- the solid phase can then be contacted with the conjugate of the present invention.
- the conjugate comprises at least two different binding domains coupled to a signal development element, each different binding domain comprising at least one ligand receptor capable of binding its target ligand.
- the sample can be contacted with the conjugate and then with the solid phase.
- Preferred methods and devices for the practice of heterogeneous, non-competitive assays processes are described in U.S. Pat. No. 4,727,019.
- the conjugates of the present invention when used instead of mixtures of ligand receptor conjugates in such assay processes, substantially improve the ability to simultaneously assay multiple target ligands in a sample.
- Conjugates that are comprised of two different binding domains where one binding domain is used to assay for the target ligand and the other binding domain is used, for example, as a means for internal calibration of the assay are substantial improvements over the prior art because the binding reactions at the two binding domains can be independently optimized without affecting one another.
- Conjugates that have binding domains for the assay of a target ligand and binding domains for internal reference or control functions are considered to be part of the present invention even if the assay is designed for a single target ligand.
- the present invention describes conjugates that are used in the assay of multiple target ligands in a sample. While it is possible to construct single conjugates which contain all the binding domains necessary for the assay of all the target ligands in a sample, practical considerations will generally favor the construction of conjugates that are used in the assay of certain combinations or panels of target ligands. Such conjugates can be further combined in an assay for any combination of such panels of target ligands in a sample.
- Assays for multiple target ligands can also be performed using a conjugate comprising a combination of binding domains on a signal development element, some binding domains comprising ligand analogues and some binding domains comprising ligand receptors.
- one target ligand can be detected by a heterogeneous, competitive assay process and another target ligand can be detected by a heterogeneous, non-competitive assay process.
- Combinations of the different binding domains described herein on a signal development element and heterogeneous assay processes that are combinations of the processes described herein are within the scope of the present invention.
- Morphine sulfate (1.67 g, 5 ⁇ 10 -3 mol) was dissolved with potassium carbonate (2.07 g, 1.5 ⁇ 10 -2 mol) in 80 ml ethanol. The solution was heated to reflux while stirring and a solution containing bromoacetic acid (0.7 g, 5 ⁇ 10 -3 mol) was added in 2 ml ethanol. This was refluxed for 2 hr, then the flask was cooled in an ice-water bath. The pH was adjusted to 3 with 12N hydrochloric acid and precipitates were filtered. Solvents were evaporated in vacuo and 10 ml ethanol was added to the residue. Precipitates were filtered and solvents evaporated in vacuo. The residue was recrystallized from water/acetone (10:90). Approximately 300 mg of product was recovered.
- Homocysteine thiolactone hydrochloride (0.12 g, 7.8 ⁇ 10 -4 mol), (0.62 g, 7.8 ⁇ 10 -4 mol) pyridine and (0.296 g, 7.8 ⁇ 10 -4 mol) 3-O-carboxymethyl morphine hydrochloride were dissolved in 5 ml dimethylformamide. Addition of 1 ml of a dimethylformamide solution containing dicyclohexylcarbodiimide (0.177 g, 8.6 ⁇ 10 -4 mol) followed. The flask was purged with argon and the solution was stirred at 25° C. for 3 hr. The solvent was removed in vacuo and 20 ml water was added to the residue.
- d-Amphetamine sulfate (10 g, 2.7 ⁇ 10 -2 mol) was dissolved in sulfuric acid (5mL) and the solution was cooled in an ice-water bath. Fuming nitric acid (4.6 mL) was added dropwise to the reaction solution. The reaction mixture was stirred on the ice-water bath for 1 h after which it was poured over ice-water. Sodium hydroxide (10N) was added to adjust the solution to pH 12. The mixture was extracted with diethyl ether (2 ⁇ 100 mL), the combined organic layers were washed with water (2 ⁇ 100 mL) and were dried over anhydrous magnesium sulfate.
- p-Nitroamphetamine hydrochloride (3.5 g, 1.6 ⁇ 10 4 mol) was dissolved in 200 ml methanol followed by the addition of 10% palladium-carbon (1.0 g) and ammonium formate (7.0 g). The reaction mixture was stirred at room temperature for 2 h. The catalyst was removed by filtration and the solvent was evaporated in vacuo. The partially crystalline residue was dissolved in 20 ml water and potassium hydroxide pellets were added to adjust the solution to pH 12. The solution was then extracted with methylene chloride (3 ⁇ 60 mL), the combined organic layers were washed with water (1 ⁇ 50 mL) and were dried over anhydrous magnesium sulfate.
- the drying agent was removed by filtration and 1N ethereal hydrochloric acid was added to form the hydrochloride salt.
- the solvent was removed in vacuo to give 2.0 g (56%) of p-aminoamphetamine dihydrochloride as a white crystalline solid with a melting point of 225°-240° C.
- p-Aminoamphetamine dihydrochloride (2.0 g, 9 ⁇ 10 -3 mol) was dissolved in anhydrous dimethylformamide (88 mL). Acetylthiopropionic acid (1.5 g, 1.0 ⁇ 10 -2 mol) was added followed by anhydrous pyridine (2.4 mL, 2.97 ⁇ 10 -2 mol) and 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide hydrochloride (1.9 g, 1.0 ⁇ 10 -2 mol). The reaction mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo.
- the thick oil was redissolved in methylene chloride and acidified with 1N ethereal hydrochloric acid.
- the methylene chloride/diethyl ether solution was decanted off and the residue was dried in vacuo to give 1.2 g of the title compound as an orange crystalline solid.
- the attachment of the above ligand analogues, amphetamine-ATP and morphine-HCTL, to proteins is achieved by reacting the free thiol forms of the ligand analogues, generated by hydrolysis, to proteins which contain a reactive maleimide that is the result of derivatization of the protein with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC, Pierce Chemical Co.).
- SMCC succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate
- the free thiol form of the amphetamine-ATP ligand analogue was generated by dissolving amphetamine-ATP in 0.12M potassium carbonate in 80% methanol/20% water. After 5 min at room temperature the thiol concentration was determined by reaction with DTNB by the method of Elman, (Arch. Biochem. Biophys., 82, 70 (1959)). The free thiol form of morphine-HCTL was generated by dissolving in 5.7 ml of 70% dimethylformamide/30% water and 1.43 ml 1N potassium hydroxide was added. After 5 min the thiol concentration was determined by reaction with DTNB. When the free thiol forms of the ligand analogues were added to maleimide-protein for coupling, the pH was adjusted to 7 if necessary.
- KLH (6 ml of 14 mg/ml) was reacted with sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SULFO-SMCC) by adding 15 mg of SULFO-SMCC and maintaining the pH between 7 and 7.5 with 1N potassium hydroxide over a period of one hour at room temperature while stirring.
- the protein was separated from the unreacted SULFO-SMCC by gel filtration chromatography in 0.1M potassium phosphate, 0.02M potassium borate, and 0.15M sodium chloride, pH 7.0, and 24 ml of KLH-maleimide was collected at a concentration of 3.1 mg/ml.
- BSA (3.5 ml of 20 mg/ml) was reacted with SMCC by adding a solution of 6.7 mg of SMCC in 0.3 ml acetonitrile and stirring the solution for one hour at room temperature while maintaining the pH between 7 and 7.5 with 1N potassium hydroxide.
- the protein was separated from unreacted materials by gel filtration chromatography in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7.0.
- the free thiol forms of the ligand analogues were added in excess to the BSA-maleimide and the solution was stirred for 4 hours at 4° C.
- the solution was used to coat microtiter plates for the detection of antibodies that bind the ligand analogues by standard techniques.
- AP (1.5 ml of 10.9 mg/ml) was reacted with SULFO-SMCC by adding 3.1 mg of SULFO-SMCC to the solution and stirring at room temperature for one hour while maintaining the pH between 7.0 and 7.5 using 1M potassium hydroxide.
- the protein was separated from the unreacted materials by gel filtration chromatography in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7.0.
- the free thiol form of the ligand analogues was added to the AP-maleimide (0.2 ml at 3.56 mg/ml) such that 10 moles of drug were added per mole of AP-maleimide, and the solutions were stirred for 1.5 hours at 4° C.
- the protein was separated from unreacted materials by gel filtration chromatography in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7.0, and the ligand analogue conjugates were diluted for use in assays.
- Affinity-purified goat-anti-mouse Fc (BiosPacific) and polystyrene latex particles (sulfated, 1.07 gm) (Interfacial Dynamics) were incubated separately at 45° C. for one hour, the antibody solution being buffered with 0.1M 2-(N-morpholino) ethane sulfonic acid at pH 5.5. While vortexing the antibody solution, the suspension of latex particles was added to the antibody solution such that the final concentration of antibody was 0.3 mg/ml and the solution contained 1% latex solids. The suspension was incubated for 2 hours at 45° C. prior to centrifugation of the suspension to pellet the latex particles.
- the latex pellet was resuspended in 1% bovine serum albumin in phosphate-buffered-saline (PBS) and incubated for one hour at room temperature. Following centrifugation to pellet the latex, the pellet was washed three times by resuspension in PBS and centrifugation. The final pellet was resuspended in borate-buffered-saline, 0.1% sodium azide, pH 8.0, at a latex concentration of 1% solids. A 1% suspension of this latex preparation was capable of binding 40 ⁇ g/ml of monoclonal antibody.
- PBS phosphate-buffered-saline
- a secondary selection could be performed if antibodies to the SMCC part of the linking arm were to be eliminated from further consideration.
- An ELISA assay using BSA derivatized with SMCC but not coupled to the ligand analogue identified which of the positive clones that bound the ligand analogue coupled to BSA were actually binding the SMCC-BSA.
- the antibodies specific for SMCC-BSA can be eliminated at this step.
- Antibodies that are identified by the ELISA assay are subjected to further screening using the following assay method.
- Reaction mixtures containing 25 ⁇ l of an antibody dilution, 25 ⁇ l of diluent or a target ligand standard or a cross-reacting species, and 25 ⁇ l of ligand analogue conjugated to alkaline phosphatase were incubated for 20 minutes at room temperature in V-bottom microtiter plates.
- a 25 ⁇ l volume of a 1% suspension of goat-antimouse IgG (Fc specific) adsorbed to latex was added to each reaction mixture and incubated another 10 minutes.
- reaction mixtures were then subjected to centrifugation at 3000 rpm (1500 g) in a swinging bucket rotor.
- a 25 ⁇ l volume of the supernatant from each well was assayed for enzyme activity.
- the enzyme activity that was associated with enzyme that did not contain bindable ligand analogue was determined. This non-immunoreactive fraction of the activity of the supernatant was subtracted from the measured activity to determine the activity associated with the immunoreactive fraction.
- SMCC (17.5 mg, 5.2-10 -5 mol) in 0.87 ml acetonitrile was added to 17.5 ml of bovine serum albumin, BSA, (350 mg, 5.2 ⁇ 10 -6 mol) in 0.1M potassium phosphate, 0.1M potassium borate, 0.15M sodium chloride, pH 7.5.
- BSA bovine serum albumin
- the solution was stirred at room temperature for 1 hr and the pH was maintained at 7-7.5 by addition of 1N potassium hydroxide.
- the protein solution was applied to a 2.5 cm ⁇ 25 cm column containing GH25 resin (Amicon Corp.) equilibrated in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7.
- SMCC (49.2 mg, 1.5 ⁇ 10 -4 mol) in 2.46 ml acetonitrile was added in 2 portions at a 10 min interval to 30 ml of bovine serum albumin, BSA, (600 mg, 9 ⁇ 10 6 mol) in 0.1M potassium phosphate, 0.1M potassium borate, 0.15M sodium chloride, pH 7.5.
- BSA bovine serum albumin
- the solution was stirred at room temperature for 1 hr.
- the protein solution was dialyzed with a PYROSART ultrafiltration module with a molecular weight cut-off of 20,000 (Sartorious, Gottingen) against 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7.
- SMCC (7.5 mg, 2.2 ⁇ 10 -5 mol) in 0.37 ml acetonitrile was added to 2 ml of bovine serum albumin, BSA, (30 mg, 4.5 ⁇ 10 -7 mol) in 0.1M potassium phosphate, 0.1M potassium borate, 0.15M sodium chloride, pH 8.0. The solution was stirred at room temperature for 1 hr. The protein solution was applied to a 1 cm ⁇ 25 cm column containing GH25 resin (Amicon Corp.) equilibrated in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7. Collect 5.2 ml of SMCC-BSA at 5.23 mg/ml.
- BSA bovine serum albumin
- the thiol ester of N-acetylhomocysteine thiolactone (Aldrich Chemical Co., St. Louis, Mo.) (10 mg, 6.28 ⁇ 10 -5 mol) was hydrolyzed by dissolving the compound in 1.26 ml of 70% dimethylformamide/30% water and adding 0.032 ml 10N potassium hydroxide.
- the free thiol (7.0 ⁇ mol in 0.14 mL) was added to SMCC-BSA (50:1, 5.2 mg in 1 mL) and reacted for 4 hours at room temperature.
- the protein solution was applied to a 1 cm ⁇ 12 cm column containing CELLUFINE GH25 resin (Amicon Corp.) equilibrated in 0.1M potassium phosphate, 0.02M potassium borate, 0.15M sodium chloride, pH 7, in order to separate the unreacted materials from the protein.
- the HCTLAM-BSA product was stored at 4° C.
- Amphetamine-ATP (0.095 g, 3 ⁇ 10 -4 mol, example 12) was dissolved in 50 ml of 0.12M potassium carbonate in 80% methanol/20% water. After 5 min at room temperature the thiol concentration was determined by reaction with DTNB to be 25 mM. The amphetamine thiol (7.6 ml, 1.9 ⁇ 10 -4 mol) was added with stirring to 20.3 ml (0.4 g, 5.9 ⁇ 10 6 mol) of SMCC-BSA, 10/1. The pH of the solution was adjusted to 7 with 1N hydrochloric acid. The container was purged with argon and the solution was stirred at room temperature for 2 hr.
- the conjugate solution was then dialyzed with a PYROSART module against 10 mM (2-(N-morpholino) ethane sulfonic acid, pH 5.77 and 110 ml of 3.57 mg/ml BSA-amphetamine was collected.
- the protein solution was frozen at -70° C.
- Morphine-HCTL (0.068 g, 1.3 ⁇ 10 -4 mol, example 9) was dissolved in 5.7 ml of 70% dimethylformamide/30% water and 1.43 ml 1N potassium hydroxide was added. After 5 min the thiol concentration was determined by reaction with DTNB to be 16.9 mM. The morphine thiol -- (6.4 ml, 1.1 ⁇ 10 -4 mol) was added with stirring to 26.7 ml SMCC-BSA, 15/1, (0.16 g, 2.4 ⁇ 10 -6 mol). The container was purged with argon and the solution was stirred at room temperature for 2 hr.
- the protein solution was then dialyzed using a PYROSART module against 10 mM (2-(N-morpholino) ethane sulfonic acid, pH 5.77, and 29.5 ml of 5.39 mg/ml BSA-morphine was collected.
- the protein solution was frozen at -70° C.
- Colloidal gold was first prepared by dissolving gold chloride trihydrate in deionized water (1.36 g in 0.7 liters) and filtering the solution through a 0.2 ⁇ filter. The filtered solution was added to round-bottom flask equipped with a heating mantle and the solution was heated to 85° C. A solution of trisodium citrate (2.54 g in 6.35 mL of deionized water) was added while stirring and the solution was held at 85° C., for 12 minutes before diluting it with 0.7 liters of deionized water at room temperature. Just prior to the adsorption of proteins to colloidal gold, one volume of 0.2M (2-(N-morpholino) ethane sulfonic acid (MES), pH 5.77, was added to 19 volumes of colloidal gold and mixed.
- MES 2-(N-morpholino) ethane sulfonic acid
- BSA and ligand analogues coupled to BSA were adsorbed to colloidal gold to form conjugates by the following procedure.
- a mixture of BSA, BSA-amphetamine, and BSA-morphine was prepared in 10 mM MES, pH 5.77, at a protein concentration of 6 mg/mL with the BSA-amphetamine representing 10% and the BSA-morphine representing 20% of the total protein in the mixture.
- One volume of each protein mixture was mixed with 19 volumes of the colloidal gold solution in separate preparations. The preparations were allowed to stand for 30 minutes at room temperature.
- the conjugates were subjected to centrifugation at 40,000 g for 20 minutes at 22° C. to pellet the conjugate.
- the supernatant was removed and the pellet was washed twice with a volume of 50 mM potassium phosphate, 10 mM borate, pH 7.0, equal to the starting volume by resuspending it and subjecting it to centrifugation as described. After the final centrifugation, the soft part of the pellet was resuspended in approximately 0.5 ml of the buffer and stored at 4° C.
- the absorbance at 540 nm was 164 for the 10% amphetamine/20% morphine conjugate. The absorbance at 540 nm was used in characterizing the concentration of conjugate used in an assay.
- An assay for the simultaneous detection of amphetamine and morphine was performed by combining the following reagents: 10 ⁇ l of 0.5M potassium phosphate, 0.1M potassium borate, 0.75M sodium chloride, 50 mg/ml BSA, pH 7 (hereafter referred to as "buffer"), 80 ⁇ l of a urine sample, 3 ⁇ l of the colloidal gold conjugate, 14 ⁇ l of HCTLAM-BSA at 1.85 mg/ml, and 1.6 ⁇ l of a mixture of two monoclonal antibodies, 1.1 ⁇ l of a monoclonal anti-morphine at 14.2 mg/ml and 0.5 ⁇ l of monoclonal anti-amphetamine at 11.7 mg/ml.
- Urine samples containing known concentrations of morphine and amphetamine were prepared by dissolving amphetamine and morphine in drug-free urine.
- the reaction mixtures were vortexed and each was applied to a nylon membrane onto which were bound monoclonal antibodies to amphetamine and morphine (hereafter referred to as amph Ab and morp Ab, respectively).
- the antibodies were bound to discrete zones of the nylon membrane by applying 2 ⁇ l of 2 mg/ml amph Ab and 2 ⁇ l of 20 mg/ml morp Ab, each in a pH 3.0 buffer.
- the affinities of the solid phase antibodies are greater for the ligand analogue of the ligand analogue conjugate than for the ligand as taught in U.S.
- the membrane was placed in contact with a grooved surface to form a capillary network as described in U.S. patent application Ser. No. 500,299, filed on Mar. 12, 1990, incorporated by reference herein.
- the membrane was washed to remove unbound conjugate with a solution containing 50 mM potassium borate, 150 mM sodium chloride and 0.02% (v/v) Triton X-100, pH 8.
- the color density of the colloidal gold conjugate bound to the membrane at each discrete zone was measured with a Minolta CR241 reflectometer and the data is expressed in terms of delta E*, which is a measure of the minimum color difference that can be perceived by the human eye.
- the results show that the assay of amphetamine and morphine can be performed using a conjugate constructed in accordance with the present invention.
- the assay of each of the target ligands is substantially unaffected by the presence of the uncomplementary binding domains, ligand receptor, and target ligand.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
TABLE I ______________________________________ Morphine Amphetamine Morphine! Amphetamine! Response Response ng/ml ng/ml delta E* delta E* ______________________________________ 0 0 2.4 2.6 100 0 0.6 0.5 200 0 1.0 1.6 400 0 3.4 1.3 600 0 8.4 1.5 1000 0 30.1 4.3 1500 0 33.0 4.2 0 100 2.5 1.3 0 200 1.5 1.1 0 400 2.8 2.3 0 600 2.1 8.4 0 1000 1.6 8.8 0 1500 4.2 15.4 ______________________________________
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/101,782 US5851776A (en) | 1991-04-12 | 1993-08-03 | Conjugates and assays for simultaneous detection of multiple ligands |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68508491A | 1991-04-12 | 1991-04-12 | |
US08/101,782 US5851776A (en) | 1991-04-12 | 1993-08-03 | Conjugates and assays for simultaneous detection of multiple ligands |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US68508491A Continuation | 1991-04-10 | 1991-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5851776A true US5851776A (en) | 1998-12-22 |
Family
ID=24750715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/101,782 Expired - Fee Related US5851776A (en) | 1991-04-12 | 1993-08-03 | Conjugates and assays for simultaneous detection of multiple ligands |
Country Status (11)
Country | Link |
---|---|
US (1) | US5851776A (en) |
EP (1) | EP0579767B1 (en) |
JP (1) | JP3290988B2 (en) |
AT (1) | ATE195808T1 (en) |
AU (1) | AU1911592A (en) |
CA (1) | CA2107899A1 (en) |
DE (1) | DE69231382T2 (en) |
ES (1) | ES2150915T3 (en) |
FI (1) | FI934438L (en) |
NO (1) | NO933582L (en) |
WO (1) | WO1992018866A1 (en) |
Cited By (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020110843A1 (en) * | 2000-05-12 | 2002-08-15 | Dumas David P. | Compositions and methods for epitope mapping |
US20030022235A1 (en) * | 2001-04-13 | 2003-01-30 | Dahlen Jeffrey R. | Use of B-type natriuretic peptide as a prognostic indicator in acute coronary syndromes |
US20030109420A1 (en) * | 2001-05-04 | 2003-06-12 | Biosite, Inc. | Diagnostic markers of acute coronary syndrome and methods of use thereof |
US20030119064A1 (en) * | 2001-08-20 | 2003-06-26 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US20030199000A1 (en) * | 2001-08-20 | 2003-10-23 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US20030219734A1 (en) * | 2001-04-13 | 2003-11-27 | Biosite Incorporated | Polypeptides related to natriuretic peptides and methods of their identification and use |
US20040058316A1 (en) * | 2000-03-09 | 2004-03-25 | Jensen Wayne A. | Use of recombinant antigens to determine the immune status of an animal |
US20040096910A1 (en) * | 2001-11-01 | 2004-05-20 | Powers Linda S. | Taxonomic identification of pathogenic microorganisms and their toxic proteins |
US20040121350A1 (en) * | 2002-12-24 | 2004-06-24 | Biosite Incorporated | System and method for identifying a panel of indicators |
US20040121343A1 (en) * | 2002-12-24 | 2004-06-24 | Biosite Incorporated | Markers for differential diagnosis and methods of use thereof |
US20040126767A1 (en) * | 2002-12-27 | 2004-07-01 | Biosite Incorporated | Method and system for disease detection using marker combinations |
US20040203083A1 (en) * | 2001-04-13 | 2004-10-14 | Biosite, Inc. | Use of thrombus precursor protein and monocyte chemoattractant protein as diagnostic and prognostic indicators in vascular diseases |
WO2004094460A2 (en) | 2003-04-17 | 2004-11-04 | Ciphergen Biosystems, Inc. | Polypeptides related to natriuretic peptides and methods of their identification and use |
US20040253637A1 (en) * | 2001-04-13 | 2004-12-16 | Biosite Incorporated | Markers for differential diagnosis and methods of use thereof |
US20050130244A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Assay for entactogens |
US20050130225A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Ecstasy haptens and immunogens |
US20050130243A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Assay for entactogens |
US20050148024A1 (en) * | 2003-04-17 | 2005-07-07 | Biosite, Inc. | Methods and compositions for measuring natriuretic peptides and uses thereof |
US20050164238A1 (en) * | 2003-09-29 | 2005-07-28 | Biosite, Inc. | Methods and compositions for the diagnosis of sepsis |
US20050208604A1 (en) * | 2004-03-22 | 2005-09-22 | Zheng Yi F | Assays for amphetamine and methamphetamine |
US20050208603A1 (en) * | 2004-03-22 | 2005-09-22 | Zheng Yi F | Assays for amphetamine and methamphetamine using stereospecific reagents |
US20060051825A1 (en) * | 2004-09-09 | 2006-03-09 | Buechler Kenneth F | Methods and compositions for measuring canine BNP and uses thereof |
US7094354B2 (en) | 2002-12-19 | 2006-08-22 | Bayer Healthcare Llc | Method and apparatus for separation of particles in a microfluidic device |
US20060223193A1 (en) * | 2005-03-30 | 2006-10-05 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits employing an internal calibration system |
US7125711B2 (en) | 2002-12-19 | 2006-10-24 | Bayer Healthcare Llc | Method and apparatus for splitting of specimens into multiple channels of a microfluidic device |
US20070087453A1 (en) * | 2005-10-19 | 2007-04-19 | Council Of Scientific And Industrial Research | Immuno conjugate and process for preparation thereof |
US20070218498A1 (en) * | 2005-08-30 | 2007-09-20 | Buechler Kenneth F | Use of soluble FLT-1 and its fragments in cardiovascular conditions |
US20070224643A1 (en) * | 2006-03-09 | 2007-09-27 | Mcpherson Paul H | Methods and compositions for the diagnosis of diseases of the aorta |
WO2007142540A1 (en) | 2006-06-07 | 2007-12-13 | Otago Innovation Limited | Diagnostic methods and markers |
WO2007141280A2 (en) | 2006-06-06 | 2007-12-13 | Oxford Genome Sciences (Uk) Ltd | Proteins |
US20080050832A1 (en) * | 2004-12-23 | 2008-02-28 | Buechler Kenneth F | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US7347617B2 (en) | 2003-08-19 | 2008-03-25 | Siemens Healthcare Diagnostics Inc. | Mixing in microfluidic devices |
US20080118924A1 (en) * | 2006-05-26 | 2008-05-22 | Buechler Kenneth F | Use of natriuretic peptides as diagnostic and prognostic indicators in vascular diseases |
US7435381B2 (en) | 2003-05-29 | 2008-10-14 | Siemens Healthcare Diagnostics Inc. | Packaging of microfluidic devices |
US20080254485A1 (en) * | 2006-11-14 | 2008-10-16 | Biosite Incorporated | Methods And Compositions For Monitoring And Risk Prediction In Cardiorenal Syndrome |
US20080293920A1 (en) * | 2005-01-21 | 2008-11-27 | Buechler Kenneth F | Arginine Analogs, and Methods for Their Synthesis and Use |
US7459127B2 (en) | 2002-02-26 | 2008-12-02 | Siemens Healthcare Diagnostics Inc. | Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces |
US20090004755A1 (en) * | 2007-03-23 | 2009-01-01 | Biosite, Incorporated | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US20090053733A1 (en) * | 2007-08-20 | 2009-02-26 | Link William F | Simultaneous assay for determining drugs |
US20090053832A1 (en) * | 2007-08-20 | 2009-02-26 | Link William F | Simultaneous assay for determining drugs |
WO2009113880A1 (en) | 2008-03-12 | 2009-09-17 | Christopher Joseph Pemberton | Biomarkers |
WO2009113879A1 (en) | 2008-03-12 | 2009-09-17 | Christopher Joseph Pemberton | Biomarkers |
WO2010025424A1 (en) | 2008-08-28 | 2010-03-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US20100086944A1 (en) * | 2006-11-14 | 2010-04-08 | Gunars Valkirs | Methods and Compositions for Diagnosis and Prognosis of Renal Artery Stenosis |
WO2010048347A2 (en) | 2008-10-21 | 2010-04-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2010054389A1 (en) | 2008-11-10 | 2010-05-14 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US20100172801A1 (en) * | 2003-06-27 | 2010-07-08 | Pugia Michael J | Method for uniform application of fluid into a reactive reagent area |
WO2010091236A1 (en) | 2009-02-06 | 2010-08-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and failure |
US20100204055A1 (en) * | 2008-12-05 | 2010-08-12 | Bonner-Ferraby Phoebe W | Autoantibody detection systems and methods |
US20100240078A1 (en) * | 2007-03-23 | 2010-09-23 | Seok-Won Lee | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US20100311186A1 (en) * | 2006-07-28 | 2010-12-09 | Biosite Incorporated | Devices and methods for performing receptor binding assays using magnetic particles |
WO2011017654A1 (en) | 2009-08-07 | 2011-02-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011017614A1 (en) | 2009-08-07 | 2011-02-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011025917A1 (en) | 2009-08-28 | 2011-03-03 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011035323A1 (en) | 2009-09-21 | 2011-03-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011057138A1 (en) | 2009-11-07 | 2011-05-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011057147A1 (en) | 2009-11-07 | 2011-05-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011075744A1 (en) | 2009-12-20 | 2011-06-23 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097540A1 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097541A2 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097539A1 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011162821A1 (en) | 2010-06-23 | 2011-12-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011162819A1 (en) | 2010-06-23 | 2011-12-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2012040073A2 (en) | 2010-09-24 | 2012-03-29 | University Of Pittsburgh -Of The Commonwealth System Of Higher Education | Biomarkers of renal injury |
WO2012040592A1 (en) | 2010-09-24 | 2012-03-29 | Astute Medical, Inc. | Methods and compositions for the evaluation of renal injury using hyaluronic acid |
WO2012074888A2 (en) | 2010-11-29 | 2012-06-07 | Alere San Diego, Inc. | Methods and compositions for diagnosis and risk prediction in heart failure |
WO2012102963A1 (en) | 2011-01-26 | 2012-08-02 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Urine biomarkers for prediction of recovery after acute kidney injury : proteomics |
WO2012103450A2 (en) | 2011-01-29 | 2012-08-02 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013043310A1 (en) | 2011-08-26 | 2013-03-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013078253A1 (en) | 2011-11-22 | 2013-05-30 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013086359A1 (en) | 2011-12-08 | 2013-06-13 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013090633A2 (en) | 2011-12-14 | 2013-06-20 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
WO2013090635A2 (en) | 2011-12-14 | 2013-06-20 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
WO2013112922A1 (en) | 2012-01-27 | 2013-08-01 | AbbVie Deutschland GmbH & Co. KG | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
WO2013130594A1 (en) | 2012-02-27 | 2013-09-06 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013135769A1 (en) | 2012-03-13 | 2013-09-19 | Abbvie Inc. | Method for selecting or identifying a subject for v1b antagonist therapy |
WO2013141716A1 (en) | 2012-03-20 | 2013-09-26 | Christopher Joseph Pemberton | Biomarkers |
WO2013152047A1 (en) | 2012-04-02 | 2013-10-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of sepsis |
WO2013163345A1 (en) | 2012-04-24 | 2013-10-31 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of stroke or other cerebral injury |
WO2014018464A1 (en) | 2012-07-23 | 2014-01-30 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of sepsis |
WO2014028339A1 (en) | 2012-08-11 | 2014-02-20 | Astute Medical, Inc. | Evaluating renal injury using hyaluronic acid |
US8680239B2 (en) | 2000-12-22 | 2014-03-25 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Use of RGM and its modulators |
WO2014144355A2 (en) | 2013-03-15 | 2014-09-18 | Abbott Laboratories | Anti-gp73 monoclonal antibodies and methods of obtaining the same |
US8906864B2 (en) | 2005-09-30 | 2014-12-09 | AbbVie Deutschland GmbH & Co. KG | Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use |
EP2811036A2 (en) | 2008-11-22 | 2014-12-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2014197729A1 (en) | 2013-06-05 | 2014-12-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2813848A2 (en) | 2008-08-29 | 2014-12-17 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
WO2015027206A1 (en) | 2013-08-23 | 2015-02-26 | Reata Pharmaceuticals, Inc. | Methods of treating and preventing endothelial dysfunction using bardoxololone methyl or analogs thereof |
WO2015031626A1 (en) | 2013-08-28 | 2015-03-05 | Abbvie Inc. | Soluble cmet assay |
WO2015042465A1 (en) | 2013-09-20 | 2015-03-26 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
WO2015084939A1 (en) | 2013-12-03 | 2015-06-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2015103287A2 (en) | 2013-12-30 | 2015-07-09 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Genomic rearrangements associated with prostate cancer and methods of using the same |
EP2899545A1 (en) | 2010-06-23 | 2015-07-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9103840B2 (en) | 2010-07-19 | 2015-08-11 | Otago Innovation Limited | Signal biomarkers |
US9175075B2 (en) | 2009-12-08 | 2015-11-03 | AbbVie Deutschland GmbH & Co. KG | Methods of treating retinal nerve fiber layer degeneration with monoclonal antibodies against a retinal guidance molecule (RGM) protein |
US9255930B2 (en) | 2006-09-07 | 2016-02-09 | Otago Innovation Limited | BNP-SP antibodies |
WO2016064877A2 (en) | 2014-10-20 | 2016-04-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9360488B2 (en) | 2013-01-17 | 2016-06-07 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016100912A1 (en) | 2014-12-18 | 2016-06-23 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3070474A2 (en) | 2010-02-26 | 2016-09-21 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016164854A1 (en) | 2015-04-09 | 2016-10-13 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016183377A1 (en) | 2015-05-12 | 2016-11-17 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016201349A1 (en) | 2015-06-11 | 2016-12-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016205740A1 (en) | 2015-06-17 | 2016-12-22 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
US9528998B2 (en) | 2010-04-16 | 2016-12-27 | Abbott Laboratories | Methods and reagents for diagnosing rheumatoid arthrtis |
WO2017011329A1 (en) | 2015-07-10 | 2017-01-19 | West Virginia University | Markers of stroke and stroke severity |
WO2017062535A2 (en) | 2015-10-06 | 2017-04-13 | Bio-Rad Laboratories, Inc. | Borrelia immunoassays and materials therefor |
US9752191B2 (en) | 2009-07-09 | 2017-09-05 | The Scripps Research Institute | Gene expression profiles associated with chronic allograft nephropathy |
EP3244213A1 (en) | 2009-02-06 | 2017-11-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3246707A1 (en) | 2008-10-21 | 2017-11-22 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2017201314A1 (en) | 2016-05-18 | 2017-11-23 | Alere San Diego, Inc. | 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine analogs and methods for their synthesis and use |
EP3249402A1 (en) | 2010-10-07 | 2017-11-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2018020476A1 (en) | 2016-07-29 | 2018-02-01 | Aduro Biotech Holdings, Europe B.V. | Anti-pd-1 antibodies |
EP3299821A1 (en) | 2009-09-18 | 2018-03-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2018067730A1 (en) | 2016-10-04 | 2018-04-12 | University Of Maryland, Baltimore | Methods of treating sepsis using anti-sepsis lipid a (asla) based therapeutics |
WO2018067468A1 (en) | 2016-10-03 | 2018-04-12 | Abbott Laboratories | Improved methods of assessing uch-l1 status in patient samples |
WO2018089539A1 (en) | 2016-11-08 | 2018-05-17 | Reata Pharmaceuticals, Inc. | Methods of treating alport syndrome using bardoxolone methyl or analogs thereof |
WO2018164580A1 (en) | 2017-03-09 | 2018-09-13 | Rijksuniversiteit Groningen | Biomarkers for cellular senescence |
WO2018175942A1 (en) | 2017-03-23 | 2018-09-27 | Abbott Laboratories | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase l1 |
WO2018191531A1 (en) | 2017-04-15 | 2018-10-18 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers |
WO2018200823A1 (en) | 2017-04-28 | 2018-11-01 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
WO2018208684A1 (en) | 2017-05-07 | 2018-11-15 | Astute Medical, Inc. | Use of insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2 in the management of renal replacement therapy |
WO2018218169A1 (en) | 2017-05-25 | 2018-11-29 | Abbott Laboratories | Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers |
WO2018222784A1 (en) | 2017-05-30 | 2018-12-06 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin i |
WO2019010131A1 (en) | 2017-07-03 | 2019-01-10 | Abbott Laboratories | Improved methods for measuring ubiquitin carboxy-terminal hydrolase l1 levels in blood |
US10183988B2 (en) | 2013-06-07 | 2019-01-22 | Duke University | Anti-Complement factor H antibodies |
EP3470416A1 (en) | 2013-03-14 | 2019-04-17 | Alere San Diego, Inc. | 6-acetylmorphine analogs, and methods for their synthesis and use |
WO2019112860A1 (en) | 2017-12-09 | 2019-06-13 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of gfap and uch-l1 |
WO2019113525A2 (en) | 2017-12-09 | 2019-06-13 | Abbott Laboratories | Methods for aiding in the diagnosis and evaluation of a subject who has sustained an orthopedic injury and that has or may have sustained an injury to the head, such as mild traumatic brain injury (tbi), using glial fibrillary acidic protein (gfap) and/or ubiquitin carboxy-terminal hydrolase l1 (uch-l1) |
WO2019133717A1 (en) | 2017-12-29 | 2019-07-04 | Abbott Laboratories | Novel biomarkers and methods for diagnosing and evaluating traumatic brain injury |
WO2019169407A1 (en) | 2018-03-02 | 2019-09-06 | Quantumcyte, Inc. | Methods, compositions, and devices for isolation and expression analysis of regions of interest from a tissue |
US10443100B2 (en) | 2014-05-22 | 2019-10-15 | The Scripps Research Institute | Gene expression profiles associated with sub-clinical kidney transplant rejection |
EP3556863A1 (en) | 2013-11-06 | 2019-10-23 | Astute Medical, Inc. | Assays for igfbp7 having improved performance in biological samples |
WO2019213619A1 (en) | 2018-05-04 | 2019-11-07 | Abbott Laboratories | Hbv diagnostic, prognostic, and therapeutic methods and products |
EP3617234A1 (en) | 2013-08-07 | 2020-03-04 | Astute Medical, Inc. | Assays for timp2 having improved performance in biological samples |
WO2020140071A1 (en) | 2018-12-28 | 2020-07-02 | Abbott Laboratories | Direct detection of single molecules on microparticles |
WO2020144535A1 (en) | 2019-01-08 | 2020-07-16 | Aduro Biotech Holdings, Europe B.V. | Methods and compositions for treatment of multiple myeloma |
WO2020180695A1 (en) | 2019-03-01 | 2020-09-10 | Abbott Laboratories | Methods for predicting major adverse cardiovascular events in subjects with coronary artery disease |
US10865238B1 (en) | 2017-05-05 | 2020-12-15 | Duke University | Complement factor H antibodies |
EP3825418A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Molecular signatures for distinguishing liver transplant rejections or injuries |
EP3825417A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Tissue molecular signatures of kidney transplant rejections |
EP3825416A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Gene expression profiles associated with sub-clinical kidney transplant rejection |
EP3828544A1 (en) | 2011-01-08 | 2021-06-02 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11104951B2 (en) | 2014-05-22 | 2021-08-31 | The Scripps Research Institute | Molecular signatures for distinguishing liver transplant rejections or injuries |
WO2021211331A1 (en) | 2020-04-13 | 2021-10-21 | Abbott Point Of Care Inc. | METHODS, COMPLEXES AND KITS FOR DETECTING OR DETERMINING AN AMOUNT OF A ß-CORONAVIRUS ANTIBODY IN A SAMPLE |
WO2021231208A1 (en) | 2020-05-09 | 2021-11-18 | Reata Pharmaceuticals, Inc. | Methods of treating covid-19 using bardoxolone methyl or analogs thereof |
WO2021245025A1 (en) | 2020-06-01 | 2021-12-09 | Loop Diagnostics, S.L. | Method and kit for the early detection of sepsis |
US11243217B2 (en) | 2016-06-06 | 2022-02-08 | Astute Medical, Inc. | Management of acute kidney injury using insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2 |
WO2022029494A1 (en) | 2020-08-04 | 2022-02-10 | Abbott Rapid Diagnostics International Unlimited Company | Assays for detecting sars-cov-2 |
WO2022031804A1 (en) | 2020-08-04 | 2022-02-10 | Abbott Laboratories | Improved methods and kits for detecting sars-cov-2 protein in a sample |
US11353465B2 (en) | 2017-01-12 | 2022-06-07 | Astute Medical, Inc. | Methods and compositions for evaluation and treatment of renal injury and renal failure based on C—C motif chemokine ligand 14 measurement |
WO2022119841A1 (en) | 2020-12-01 | 2022-06-09 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
WO2022126129A1 (en) | 2020-12-11 | 2022-06-16 | Reata Pharmaceuticals, Inc. | Synthetic triterpenoids for use in therapy |
WO2022147147A1 (en) | 2020-12-30 | 2022-07-07 | Abbott Laboratories | Methods for determining sars-cov-2 antigen and anti-sars-cov-2 antibody in a sample |
EP4043015A1 (en) | 2018-09-04 | 2022-08-17 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Delta-tocotrienol for treating cancer |
WO2022245920A1 (en) | 2021-05-18 | 2022-11-24 | Abbott Laboratories | Methods of evaluating brain injury in a pediatric subject |
WO2022266034A1 (en) | 2021-06-14 | 2022-12-22 | Abbott Laboratories | Methods of diagnosing or aiding in diagnosis of brain injury caused by acoustic energy, electromagnetic energy, an over pressurization wave, and/or blast wind |
WO2023028186A1 (en) | 2021-08-27 | 2023-03-02 | Abbott Laboratories | Methods for detecting immunoglobulin g, subclass 4 (igg4) in a biological sample |
WO2023034777A1 (en) | 2021-08-31 | 2023-03-09 | Abbott Laboratories | Methods and systems of diagnosing brain injury |
WO2023056268A1 (en) | 2021-09-30 | 2023-04-06 | Abbott Laboratories | Methods and systems of diagnosing brain injury |
WO2023102384A1 (en) | 2021-11-30 | 2023-06-08 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
WO2023114978A1 (en) | 2021-12-17 | 2023-06-22 | Abbott Laboratories | Systems and methods for determining uch-l1, gfap, and other biomarkers in blood samples |
WO2023129942A1 (en) | 2021-12-28 | 2023-07-06 | Abbott Laboratories | Use of biomarkers to determine sub-acute traumatic brain injury (tbi) in a subject having received a head computerized tomography (ct) scan that is negative for a tbi or no head ct scan |
WO2023144206A1 (en) | 2022-01-27 | 2023-08-03 | Sanofi Pasteur | Modified vero cells and methods of using the same for virus production |
WO2023150652A1 (en) | 2022-02-04 | 2023-08-10 | Abbott Laboratories | Lateral flow methods, assays, and devices for detecting the presence or measuring the amount of ubiquitin carboxy-terminal hydrolase l1 and/or glial fibrillary acidic protein in a sample |
WO2023212298A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Bispecific antibodies and methods of treating ocular disease |
WO2023212294A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Angiopoietin-related protein 7-specific antibodies and uses thereof |
WO2023212293A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Complement factor h related 4-specific antibodies and uses thereof |
US11891439B2 (en) | 2017-12-28 | 2024-02-06 | Astute Medical, Inc. | Antibodies and assays for CCL14 |
WO2024059708A1 (en) | 2022-09-15 | 2024-03-21 | Abbott Laboratories | Biomarkers and methods for differentiating between mild and supermild traumatic brain injury |
WO2024059692A1 (en) | 2022-09-15 | 2024-03-21 | Abbott Laboratories | Hbv diagnostic, prognostic, and therapeutic methods and products |
WO2024163477A1 (en) | 2023-01-31 | 2024-08-08 | University Of Rochester | Immune checkpoint blockade therapy for treating staphylococcus aureus infections |
WO2024211475A1 (en) | 2023-04-04 | 2024-10-10 | Abbott Laboratories | Use of biomarkers to determine whether a subject has sustained, may have sustained or is suspected of sustaining a subacute acquired brain injury (abi) |
US12122842B1 (en) | 2023-09-27 | 2024-10-22 | R&D Systems, Inc. | Human CD30-specific binding proteins and uses thereof |
WO2024226971A1 (en) | 2023-04-28 | 2024-10-31 | Abbott Point Of Care Inc. | Improved assays, cartridges, and kits for detection of biomarkers, including brain injury biomarkers |
WO2024227154A1 (en) | 2023-04-28 | 2024-10-31 | Broadwing Bio Llc | Complement component 3 (c3)-specific antibodies and uses thereof |
WO2024231728A2 (en) | 2023-05-05 | 2024-11-14 | Bio-Rad Abd Serotec Gmbh | Spycatcher analogs and uses thereof |
US12259385B2 (en) * | 2014-07-24 | 2025-03-25 | Intelligent Fingerprinting Limited | Sample analysing device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470997A (en) * | 1992-04-06 | 1995-11-28 | Biosite Diagnostics Incorporated | Amphetamine derivatives and protein and polypeptide amphetamine derivative conjugates and labels |
JPH07505634A (en) * | 1992-04-06 | 1995-06-22 | バイオサイト・ダイアグノスティックス・インコーポレイテッド | Novel opiate derivatives, protein and polypeptide opiate-derived conjugates and labels |
CA2096495C (en) * | 1992-06-16 | 2002-07-09 | Kathy Palmer Ordonez | Dual analyte immunoassay |
US6037455A (en) * | 1992-11-09 | 2000-03-14 | Biosite Diagnostics Incorporated | Propoxyphene derivatives and protein and polypeptide propoxyphene derivative conjugates and labels |
US5804452A (en) * | 1995-04-27 | 1998-09-08 | Quidel Corporation | One step urine creatinine assays |
US5965375A (en) | 1997-04-04 | 1999-10-12 | Biosite Diagnostics | Diagnostic tests and kits for Clostridium difficile |
DE19859912C2 (en) * | 1998-12-23 | 2001-06-21 | Aventis Res & Tech Gmbh & Co | Test system for the detection of different markers, its production and use |
DE10125258A1 (en) | 2001-05-23 | 2003-01-09 | November Ag Molekulare Medizin | Method for determining the binding behavior of ligands that specifically bind to target molecules |
EP1715341B1 (en) * | 2005-04-04 | 2008-02-27 | Micronas Holding GmbH | Method and apparatus for determining the concentrations of at least 2 ligands. |
EP1845377A1 (en) | 2006-04-10 | 2007-10-17 | Micronas GmbH | Method and device for determining ligand concentrations |
EP1914549B1 (en) * | 2006-10-20 | 2010-01-20 | Micronas Holding GmbH | Method and device for determining ligand concentrations |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4444878A (en) * | 1981-12-21 | 1984-04-24 | Boston Biomedical Research Institute, Inc. | Bispecific antibody determinants |
US4868109A (en) * | 1985-04-29 | 1989-09-19 | Lansdorp Peter M | Immunological antibody complex, its preparation and its use |
US5028535A (en) * | 1989-01-10 | 1991-07-02 | Biosite Diagnostics, Inc. | Threshold ligand-receptor assay |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4506009A (en) * | 1982-03-30 | 1985-03-19 | University Of California | Heterogeneous immunoassay method |
US4803170A (en) * | 1985-05-09 | 1989-02-07 | Ultra Diagnostics Corporation | Competitive immunoassay method, device and test kit |
US4853335A (en) * | 1987-09-28 | 1989-08-01 | Olsen Duane A | Colloidal gold particle concentration immunoassay |
-
1992
- 1992-04-07 AU AU19115/92A patent/AU1911592A/en not_active Abandoned
- 1992-04-07 CA CA002107899A patent/CA2107899A1/en not_active Abandoned
- 1992-04-07 JP JP51138692A patent/JP3290988B2/en not_active Expired - Fee Related
- 1992-04-07 DE DE69231382T patent/DE69231382T2/en not_active Expired - Fee Related
- 1992-04-07 WO PCT/US1992/002839 patent/WO1992018866A1/en active IP Right Grant
- 1992-04-07 AT AT92911465T patent/ATE195808T1/en not_active IP Right Cessation
- 1992-04-07 ES ES92911465T patent/ES2150915T3/en not_active Expired - Lifetime
- 1992-04-07 EP EP92911465A patent/EP0579767B1/en not_active Expired - Lifetime
-
1993
- 1993-08-03 US US08/101,782 patent/US5851776A/en not_active Expired - Fee Related
- 1993-10-07 NO NO933582A patent/NO933582L/en unknown
- 1993-10-08 FI FI934438A patent/FI934438L/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4444878A (en) * | 1981-12-21 | 1984-04-24 | Boston Biomedical Research Institute, Inc. | Bispecific antibody determinants |
US4868109A (en) * | 1985-04-29 | 1989-09-19 | Lansdorp Peter M | Immunological antibody complex, its preparation and its use |
US5028535A (en) * | 1989-01-10 | 1991-07-02 | Biosite Diagnostics, Inc. | Threshold ligand-receptor assay |
Non-Patent Citations (2)
Title |
---|
Brennan et al (1985) Science 229, 81 83. * |
Brennan et al (1985) Science 229, 81-83. |
Cited By (294)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040058316A1 (en) * | 2000-03-09 | 2004-03-25 | Jensen Wayne A. | Use of recombinant antigens to determine the immune status of an animal |
US20080286295A1 (en) * | 2000-03-09 | 2008-11-20 | Jensen Wayne A | Use of recombinant antigens to determine the immune status of an animal |
US20020110843A1 (en) * | 2000-05-12 | 2002-08-15 | Dumas David P. | Compositions and methods for epitope mapping |
US8680239B2 (en) | 2000-12-22 | 2014-03-25 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Use of RGM and its modulators |
EP1983058A1 (en) | 2001-04-13 | 2008-10-22 | Biosite Incorporated | Use of B-type natriuretic peptide as a prognostic indicator in acute coronary syndromes |
US20040203083A1 (en) * | 2001-04-13 | 2004-10-14 | Biosite, Inc. | Use of thrombus precursor protein and monocyte chemoattractant protein as diagnostic and prognostic indicators in vascular diseases |
US20030022235A1 (en) * | 2001-04-13 | 2003-01-30 | Dahlen Jeffrey R. | Use of B-type natriuretic peptide as a prognostic indicator in acute coronary syndromes |
US7632647B2 (en) | 2001-04-13 | 2009-12-15 | Biosite Incorporated | Use of B-type natriuretic peptide as a prognostic indicator in acute coronary syndromes |
US20040253637A1 (en) * | 2001-04-13 | 2004-12-16 | Biosite Incorporated | Markers for differential diagnosis and methods of use thereof |
US20030219734A1 (en) * | 2001-04-13 | 2003-11-27 | Biosite Incorporated | Polypeptides related to natriuretic peptides and methods of their identification and use |
US20110065210A1 (en) * | 2001-04-13 | 2011-03-17 | Dahlen Jeffrey R | Use of B-Type Natriuretic Peptide as a Prognostic Indicator in Acute Coronary Syndromes |
US7358055B2 (en) | 2001-05-04 | 2008-04-15 | Biosite, Inc. | Diagnostic markers of acute coronary syndrome and methods of use thereof |
US7361473B2 (en) | 2001-05-04 | 2008-04-22 | Biosite, Incorporated | Diagnostic markers of acute coronary syndrome and methods of use thereof |
US20030109420A1 (en) * | 2001-05-04 | 2003-06-12 | Biosite, Inc. | Diagnostic markers of acute coronary syndrome and methods of use thereof |
US20030119064A1 (en) * | 2001-08-20 | 2003-06-26 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US7427490B2 (en) | 2001-08-20 | 2008-09-23 | Biosite Incorporated | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US20030199000A1 (en) * | 2001-08-20 | 2003-10-23 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US20040096910A1 (en) * | 2001-11-01 | 2004-05-20 | Powers Linda S. | Taxonomic identification of pathogenic microorganisms and their toxic proteins |
US7459127B2 (en) | 2002-02-26 | 2008-12-02 | Siemens Healthcare Diagnostics Inc. | Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces |
US8337775B2 (en) | 2002-02-26 | 2012-12-25 | Siemens Healthcare Diagnostics, Inc. | Apparatus for precise transfer and manipulation of fluids by centrifugal and or capillary forces |
US7125711B2 (en) | 2002-12-19 | 2006-10-24 | Bayer Healthcare Llc | Method and apparatus for splitting of specimens into multiple channels of a microfluidic device |
US7094354B2 (en) | 2002-12-19 | 2006-08-22 | Bayer Healthcare Llc | Method and apparatus for separation of particles in a microfluidic device |
US7713705B2 (en) | 2002-12-24 | 2010-05-11 | Biosite, Inc. | Markers for differential diagnosis and methods of use thereof |
US20040121350A1 (en) * | 2002-12-24 | 2004-06-24 | Biosite Incorporated | System and method for identifying a panel of indicators |
US20040121343A1 (en) * | 2002-12-24 | 2004-06-24 | Biosite Incorporated | Markers for differential diagnosis and methods of use thereof |
US20040126767A1 (en) * | 2002-12-27 | 2004-07-01 | Biosite Incorporated | Method and system for disease detection using marker combinations |
US7524635B2 (en) | 2003-04-17 | 2009-04-28 | Biosite Incorporated | Methods and compositions for measuring natriuretic peptides and uses thereof |
US20050148024A1 (en) * | 2003-04-17 | 2005-07-07 | Biosite, Inc. | Methods and compositions for measuring natriuretic peptides and uses thereof |
WO2004094460A2 (en) | 2003-04-17 | 2004-11-04 | Ciphergen Biosystems, Inc. | Polypeptides related to natriuretic peptides and methods of their identification and use |
US7435381B2 (en) | 2003-05-29 | 2008-10-14 | Siemens Healthcare Diagnostics Inc. | Packaging of microfluidic devices |
US20100172801A1 (en) * | 2003-06-27 | 2010-07-08 | Pugia Michael J | Method for uniform application of fluid into a reactive reagent area |
US7347617B2 (en) | 2003-08-19 | 2008-03-25 | Siemens Healthcare Diagnostics Inc. | Mixing in microfluidic devices |
US20080045444A1 (en) * | 2003-08-20 | 2008-02-21 | Biosite Incorporated | Compositions and methods for treating cardiovascular disease and myocardial infarction with dipeptidyl peptidase inhibitors or b type natriuretic peptide analogues resistant to prolyl-specific dipeptidyl degradation |
US20050164238A1 (en) * | 2003-09-29 | 2005-07-28 | Biosite, Inc. | Methods and compositions for the diagnosis of sepsis |
US20050130225A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Ecstasy haptens and immunogens |
US20050130244A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Assay for entactogens |
US20050130243A1 (en) * | 2003-12-15 | 2005-06-16 | Zheng Yi F. | Assay for entactogens |
US7022492B2 (en) | 2003-12-15 | 2006-04-04 | Dade Behring Inc. | Ecstasy haptens and immunogens |
US6991911B2 (en) | 2003-12-15 | 2006-01-31 | Dade Behring Inc. | Assay for entactogens |
US20050208603A1 (en) * | 2004-03-22 | 2005-09-22 | Zheng Yi F | Assays for amphetamine and methamphetamine using stereospecific reagents |
US7115383B2 (en) | 2004-03-22 | 2006-10-03 | Dade Behring Inc. | Assays for amphetamine and methamphetamine |
US7037669B2 (en) | 2004-03-22 | 2006-05-02 | Dade Behring Inc. | Assays for amphetamine and methamphetamine using stereospecific reagents |
US20050208604A1 (en) * | 2004-03-22 | 2005-09-22 | Zheng Yi F | Assays for amphetamine and methamphetamine |
US20060051825A1 (en) * | 2004-09-09 | 2006-03-09 | Buechler Kenneth F | Methods and compositions for measuring canine BNP and uses thereof |
US20080050832A1 (en) * | 2004-12-23 | 2008-02-28 | Buechler Kenneth F | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US20080293920A1 (en) * | 2005-01-21 | 2008-11-27 | Buechler Kenneth F | Arginine Analogs, and Methods for Their Synthesis and Use |
US7879979B2 (en) | 2005-01-21 | 2011-02-01 | Alere International | Arginine analogs, and methods for their synthesis and use |
US7939342B2 (en) | 2005-03-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits employing an internal calibration system |
US8932878B2 (en) | 2005-03-30 | 2015-01-13 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits employing an internal calibration system |
US20060223193A1 (en) * | 2005-03-30 | 2006-10-05 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits employing an internal calibration system |
US20070218498A1 (en) * | 2005-08-30 | 2007-09-20 | Buechler Kenneth F | Use of soluble FLT-1 and its fragments in cardiovascular conditions |
US8906864B2 (en) | 2005-09-30 | 2014-12-09 | AbbVie Deutschland GmbH & Co. KG | Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use |
US20070087453A1 (en) * | 2005-10-19 | 2007-04-19 | Council Of Scientific And Industrial Research | Immuno conjugate and process for preparation thereof |
US20070224643A1 (en) * | 2006-03-09 | 2007-09-27 | Mcpherson Paul H | Methods and compositions for the diagnosis of diseases of the aorta |
US20080118924A1 (en) * | 2006-05-26 | 2008-05-22 | Buechler Kenneth F | Use of natriuretic peptides as diagnostic and prognostic indicators in vascular diseases |
EP2375255A1 (en) | 2006-06-06 | 2011-10-12 | Oxford Biotherapeutics Ltd. | Proteins |
WO2007141280A2 (en) | 2006-06-06 | 2007-12-13 | Oxford Genome Sciences (Uk) Ltd | Proteins |
WO2007142540A1 (en) | 2006-06-07 | 2007-12-13 | Otago Innovation Limited | Diagnostic methods and markers |
US20100311186A1 (en) * | 2006-07-28 | 2010-12-09 | Biosite Incorporated | Devices and methods for performing receptor binding assays using magnetic particles |
US9255930B2 (en) | 2006-09-07 | 2016-02-09 | Otago Innovation Limited | BNP-SP antibodies |
US7985560B2 (en) | 2006-11-14 | 2011-07-26 | Alere San Diego, Inc. | Methods and compositions for monitoring and risk prediction in cardiorenal syndrome |
US20110104726A1 (en) * | 2006-11-14 | 2011-05-05 | Alere International | Methods and Compositions for Monitoring and Risk Prediction in Cardiorenal Syndrome |
US20100086944A1 (en) * | 2006-11-14 | 2010-04-08 | Gunars Valkirs | Methods and Compositions for Diagnosis and Prognosis of Renal Artery Stenosis |
US7842472B2 (en) | 2006-11-14 | 2010-11-30 | Alere International | Methods and compositions for monitoring and risk prediction in cardiorenal syndrome |
US8524462B2 (en) | 2006-11-14 | 2013-09-03 | Alere San Diego, Inc. | Methods and compositions for diagnosis and prognosis of renal artery stenosis |
US8283128B2 (en) | 2006-11-14 | 2012-10-09 | Alere San Diego, Inc. | Methods and compositions for monitoring and risk prediction in cardiorenal syndrome |
EP2500723A2 (en) | 2006-11-14 | 2012-09-19 | Alere San Diego, Inc. | Methods for monitoring and risk prediction in cardiorenal syndrome |
US20080254485A1 (en) * | 2006-11-14 | 2008-10-16 | Biosite Incorporated | Methods And Compositions For Monitoring And Risk Prediction In Cardiorenal Syndrome |
US8969018B2 (en) | 2006-11-14 | 2015-03-03 | Alere San Diego, Inc. | Methods and compositions for monitoring and risk prediction in cardiorenal syndrome |
US20100240078A1 (en) * | 2007-03-23 | 2010-09-23 | Seok-Won Lee | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US20090004755A1 (en) * | 2007-03-23 | 2009-01-01 | Biosite, Incorporated | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US8221995B2 (en) | 2007-03-23 | 2012-07-17 | Seok-Won Lee | Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes |
US7947465B2 (en) | 2007-08-20 | 2011-05-24 | Bio-Rad Laboratories, Inc. | Simultaneous assay for determining drugs |
US20090053733A1 (en) * | 2007-08-20 | 2009-02-26 | Link William F | Simultaneous assay for determining drugs |
US20090053832A1 (en) * | 2007-08-20 | 2009-02-26 | Link William F | Simultaneous assay for determining drugs |
US9605069B2 (en) | 2008-02-29 | 2017-03-28 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM a protein and uses thereof |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
WO2009113880A1 (en) | 2008-03-12 | 2009-09-17 | Christopher Joseph Pemberton | Biomarkers |
US20110104723A1 (en) * | 2008-03-12 | 2011-05-05 | Christopher Joseph Pemberton | Biomarkers |
US9630985B2 (en) | 2008-03-12 | 2017-04-25 | Otago Innovation Limited | Biomarkers |
US10106575B2 (en) | 2008-03-12 | 2018-10-23 | Upstream Medical Technologies Limited | Biomarkers |
WO2009113879A1 (en) | 2008-03-12 | 2009-09-17 | Christopher Joseph Pemberton | Biomarkers |
EP3273246A1 (en) | 2008-08-28 | 2018-01-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2743702A2 (en) | 2008-08-28 | 2014-06-18 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2010025424A1 (en) | 2008-08-28 | 2010-03-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2813848A2 (en) | 2008-08-29 | 2014-12-17 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3974836A1 (en) | 2008-10-21 | 2022-03-30 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3783363A1 (en) | 2008-10-21 | 2021-02-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2010048347A2 (en) | 2008-10-21 | 2010-04-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2767833A2 (en) | 2008-10-21 | 2014-08-20 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11754566B2 (en) | 2008-10-21 | 2023-09-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3246707A1 (en) | 2008-10-21 | 2017-11-22 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US10823733B2 (en) | 2008-10-21 | 2020-11-03 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2010054389A1 (en) | 2008-11-10 | 2010-05-14 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2913676A1 (en) | 2008-11-10 | 2015-09-02 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2811036A2 (en) | 2008-11-22 | 2014-12-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US20100204055A1 (en) * | 2008-12-05 | 2010-08-12 | Bonner-Ferraby Phoebe W | Autoantibody detection systems and methods |
EP3244213A1 (en) | 2009-02-06 | 2017-11-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2010091236A1 (en) | 2009-02-06 | 2010-08-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and failure |
US12209284B2 (en) | 2009-07-09 | 2025-01-28 | The Scripps Research Institute | Gene expression profiles associated with chronic allograft nephropathy |
US9752191B2 (en) | 2009-07-09 | 2017-09-05 | The Scripps Research Institute | Gene expression profiles associated with chronic allograft nephropathy |
US11821037B2 (en) | 2009-07-09 | 2023-11-21 | The Scripps Research Institute | Gene expression profiles associated with chronic allograft nephropathy |
WO2011017614A1 (en) | 2009-08-07 | 2011-02-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011017654A1 (en) | 2009-08-07 | 2011-02-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011025917A1 (en) | 2009-08-28 | 2011-03-03 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2894473A1 (en) | 2009-08-28 | 2015-07-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3299821A1 (en) | 2009-09-18 | 2018-03-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011035323A1 (en) | 2009-09-21 | 2011-03-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011057138A1 (en) | 2009-11-07 | 2011-05-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3153863A1 (en) | 2009-11-07 | 2017-04-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011057147A1 (en) | 2009-11-07 | 2011-05-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9175075B2 (en) | 2009-12-08 | 2015-11-03 | AbbVie Deutschland GmbH & Co. KG | Methods of treating retinal nerve fiber layer degeneration with monoclonal antibodies against a retinal guidance molecule (RGM) protein |
US11262363B2 (en) | 2009-12-20 | 2022-03-01 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3112871A1 (en) | 2009-12-20 | 2017-01-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US10830773B2 (en) | 2009-12-20 | 2020-11-10 | Astute Medical, Inc. | Methods for prognosis of future acute renal injury and acute renal failure |
WO2011075744A1 (en) | 2009-12-20 | 2011-06-23 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US12123882B2 (en) | 2009-12-20 | 2024-10-22 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097540A1 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2666872A1 (en) | 2010-02-05 | 2013-11-27 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097541A2 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011097539A1 (en) | 2010-02-05 | 2011-08-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3070474A2 (en) | 2010-02-26 | 2016-09-21 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9528998B2 (en) | 2010-04-16 | 2016-12-27 | Abbott Laboratories | Methods and reagents for diagnosing rheumatoid arthrtis |
EP3339860A1 (en) | 2010-06-23 | 2018-06-27 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3489688A1 (en) | 2010-06-23 | 2019-05-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11761967B2 (en) | 2010-06-23 | 2023-09-19 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP2899545A1 (en) | 2010-06-23 | 2015-07-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011162821A1 (en) | 2010-06-23 | 2011-12-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US10823742B2 (en) | 2010-06-23 | 2020-11-03 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3339859A1 (en) | 2010-06-23 | 2018-06-27 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2011162819A1 (en) | 2010-06-23 | 2011-12-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3246335A2 (en) | 2010-07-19 | 2017-11-22 | Otago Innovation Limited | Signal biomarkers |
US9994631B2 (en) | 2010-07-19 | 2018-06-12 | Upstream Medical Technologies Limited | Signal biomarkers |
US9103840B2 (en) | 2010-07-19 | 2015-08-11 | Otago Innovation Limited | Signal biomarkers |
US10557856B2 (en) | 2010-09-24 | 2020-02-11 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Biomarkers of renal injury |
US11693014B2 (en) | 2010-09-24 | 2023-07-04 | University of Pittsburgh—of the Commonwealth System of Higher Education | Biomarkers of renal injury |
WO2012040073A2 (en) | 2010-09-24 | 2012-03-29 | University Of Pittsburgh -Of The Commonwealth System Of Higher Education | Biomarkers of renal injury |
WO2012040592A1 (en) | 2010-09-24 | 2012-03-29 | Astute Medical, Inc. | Methods and compositions for the evaluation of renal injury using hyaluronic acid |
EP3249402A1 (en) | 2010-10-07 | 2017-11-29 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2012074888A2 (en) | 2010-11-29 | 2012-06-07 | Alere San Diego, Inc. | Methods and compositions for diagnosis and risk prediction in heart failure |
EP3828544A1 (en) | 2011-01-08 | 2021-06-02 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3761034A2 (en) | 2011-01-26 | 2021-01-06 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Urine biomarkers for prediction of recovery after acute kidney injury: proteomics |
US9551720B2 (en) | 2011-01-26 | 2017-01-24 | University of Pittsburgh—Of the Commonwaelth System of Higher Education | Urine biomarkers for prediction of recovery after acute kidney injury: proteomics |
WO2012102963A1 (en) | 2011-01-26 | 2012-08-02 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Urine biomarkers for prediction of recovery after acute kidney injury : proteomics |
WO2012103450A2 (en) | 2011-01-29 | 2012-08-02 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013043310A1 (en) | 2011-08-26 | 2013-03-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9459261B2 (en) | 2011-08-26 | 2016-10-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3489690A1 (en) | 2011-08-26 | 2019-05-29 | Astute Medical, Inc. | Methods and compositions for evaluation of the renal status |
EP3282257A1 (en) | 2011-11-22 | 2018-02-14 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013078253A1 (en) | 2011-11-22 | 2013-05-30 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US10935548B2 (en) | 2011-12-08 | 2021-03-02 | Astute Medical, Inc. | Methods for diagnosis and prognosis of renal injury and renal failure using insulin-like growth factor-binding protein 7 and metalloproteinase inhibitor 2 |
WO2013086359A1 (en) | 2011-12-08 | 2013-06-13 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3540440A1 (en) | 2011-12-08 | 2019-09-18 | Astute Medical, Inc. | Methods and uses for diagnosis and prognosis of renal injury and renal failure |
WO2013090635A2 (en) | 2011-12-14 | 2013-06-20 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
EP3800200A1 (en) | 2011-12-14 | 2021-04-07 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US9636398B2 (en) | 2011-12-14 | 2017-05-02 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US10822403B2 (en) | 2011-12-14 | 2020-11-03 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
WO2013090633A2 (en) | 2011-12-14 | 2013-06-20 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US12098189B2 (en) | 2011-12-14 | 2024-09-24 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US10118958B2 (en) | 2011-12-14 | 2018-11-06 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US12098192B2 (en) | 2011-12-14 | 2024-09-24 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
US9102722B2 (en) | 2012-01-27 | 2015-08-11 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of diseases associated with neurite degeneration |
US9365643B2 (en) | 2012-01-27 | 2016-06-14 | AbbVie Deutschland GmbH & Co. KG | Antibodies that bind to repulsive guidance molecule A (RGMA) |
US10106602B2 (en) | 2012-01-27 | 2018-10-23 | AbbVie Deutschland GmbH & Co. KG | Isolated monoclonal anti-repulsive guidance molecule A antibodies and uses thereof |
EP3653647A1 (en) | 2012-01-27 | 2020-05-20 | AbbVie Deutschland GmbH & Co KG | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
WO2013112922A1 (en) | 2012-01-27 | 2013-08-01 | AbbVie Deutschland GmbH & Co. KG | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
EP3369746A1 (en) | 2012-01-27 | 2018-09-05 | AbbVie Deutschland GmbH & Co KG | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
WO2013130594A1 (en) | 2012-02-27 | 2013-09-06 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2013135769A1 (en) | 2012-03-13 | 2013-09-19 | Abbvie Inc. | Method for selecting or identifying a subject for v1b antagonist therapy |
WO2013141716A1 (en) | 2012-03-20 | 2013-09-26 | Christopher Joseph Pemberton | Biomarkers |
US10114028B2 (en) | 2012-03-20 | 2018-10-30 | Upstream Medical Technologies Limited | Biomarkers for pneumonia and acute decompensated heart failure |
WO2013152047A1 (en) | 2012-04-02 | 2013-10-10 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of sepsis |
EP3699591A1 (en) | 2012-04-02 | 2020-08-26 | Astute Medical, Inc. | Methods for diagnosis and prognosis of sepsis |
WO2013163345A1 (en) | 2012-04-24 | 2013-10-31 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of stroke or other cerebral injury |
US9733261B2 (en) | 2012-04-24 | 2017-08-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of stroke or other cerebral injury |
WO2014018464A1 (en) | 2012-07-23 | 2014-01-30 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of sepsis |
EP3572809A1 (en) | 2012-07-23 | 2019-11-27 | Astute Medical, Inc. | Methods for diagnosis of sepsis |
WO2014028339A1 (en) | 2012-08-11 | 2014-02-20 | Astute Medical, Inc. | Evaluating renal injury using hyaluronic acid |
EP3734280A2 (en) | 2013-01-17 | 2020-11-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11099194B2 (en) | 2013-01-17 | 2021-08-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9360488B2 (en) | 2013-01-17 | 2016-06-07 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP4105657A1 (en) | 2013-01-17 | 2022-12-21 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3361255A1 (en) | 2013-01-17 | 2018-08-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US12019080B2 (en) | 2013-01-17 | 2024-06-25 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US9696322B2 (en) | 2013-01-17 | 2017-07-04 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3470416A1 (en) | 2013-03-14 | 2019-04-17 | Alere San Diego, Inc. | 6-acetylmorphine analogs, and methods for their synthesis and use |
EP3124499A1 (en) | 2013-03-15 | 2017-02-01 | Abbott Laboratories | Anti-gp73 monoclonal antibodies and methods of obtaining the same |
US11421023B2 (en) | 2013-03-15 | 2022-08-23 | Abbott Laboratories | Anti-GP73 monoclonal antibodies and methods of obtaining the same |
EP3527586A1 (en) | 2013-03-15 | 2019-08-21 | Abbott Laboratories | Anti-gp73 monoclonal antibodies and methods of obtaining the same |
US9469686B2 (en) | 2013-03-15 | 2016-10-18 | Abbott Laboratories | Anti-GP73 monoclonal antibodies and methods of obtaining the same |
US10308709B2 (en) | 2013-03-15 | 2019-06-04 | Abbott Laboratories | Anti-GP73 monoclonal antibodies and methods of obtaining the same |
WO2014144355A2 (en) | 2013-03-15 | 2014-09-18 | Abbott Laboratories | Anti-gp73 monoclonal antibodies and methods of obtaining the same |
WO2014197729A1 (en) | 2013-06-05 | 2014-12-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US12203941B2 (en) | 2013-06-05 | 2025-01-21 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11897946B2 (en) | 2013-06-07 | 2024-02-13 | Duke University | Methods of inhibiting complement factor H (CFH) comprising administering an antibody that binds CFH |
US10183988B2 (en) | 2013-06-07 | 2019-01-22 | Duke University | Anti-Complement factor H antibodies |
EP3632467A1 (en) | 2013-06-07 | 2020-04-08 | Duke University | Inhibitors of complement factor h |
US11136380B2 (en) | 2013-06-07 | 2021-10-05 | Duke University | Anti-complement factor H antibodies |
EP3617234A1 (en) | 2013-08-07 | 2020-03-04 | Astute Medical, Inc. | Assays for timp2 having improved performance in biological samples |
WO2015027206A1 (en) | 2013-08-23 | 2015-02-26 | Reata Pharmaceuticals, Inc. | Methods of treating and preventing endothelial dysfunction using bardoxololone methyl or analogs thereof |
WO2015031626A1 (en) | 2013-08-28 | 2015-03-05 | Abbvie Inc. | Soluble cmet assay |
US10794917B2 (en) | 2013-09-20 | 2020-10-06 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
EP3693738A1 (en) | 2013-09-20 | 2020-08-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
WO2015042465A1 (en) | 2013-09-20 | 2015-03-26 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
EP3556863A1 (en) | 2013-11-06 | 2019-10-23 | Astute Medical, Inc. | Assays for igfbp7 having improved performance in biological samples |
US10300108B2 (en) | 2013-12-03 | 2019-05-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2015084939A1 (en) | 2013-12-03 | 2015-06-11 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11229676B2 (en) | 2013-12-03 | 2022-01-25 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2015103287A2 (en) | 2013-12-30 | 2015-07-09 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Genomic rearrangements associated with prostate cancer and methods of using the same |
US10443100B2 (en) | 2014-05-22 | 2019-10-15 | The Scripps Research Institute | Gene expression profiles associated with sub-clinical kidney transplant rejection |
US11104951B2 (en) | 2014-05-22 | 2021-08-31 | The Scripps Research Institute | Molecular signatures for distinguishing liver transplant rejections or injuries |
EP3825416A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Gene expression profiles associated with sub-clinical kidney transplant rejection |
EP3825417A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Tissue molecular signatures of kidney transplant rejections |
EP3825418A2 (en) | 2014-05-22 | 2021-05-26 | The Scripps Research Institute | Molecular signatures for distinguishing liver transplant rejections or injuries |
US12259385B2 (en) * | 2014-07-24 | 2025-03-25 | Intelligent Fingerprinting Limited | Sample analysing device |
WO2016064877A2 (en) | 2014-10-20 | 2016-04-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
EP3968022A1 (en) | 2014-10-20 | 2022-03-16 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11333671B2 (en) | 2014-10-20 | 2022-05-17 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US12099067B2 (en) | 2014-10-20 | 2024-09-24 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11209443B2 (en) | 2014-12-18 | 2021-12-28 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US10473671B2 (en) | 2014-12-18 | 2019-11-12 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016100912A1 (en) | 2014-12-18 | 2016-06-23 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
US11243202B2 (en) | 2015-04-09 | 2022-02-08 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016164854A1 (en) | 2015-04-09 | 2016-10-13 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016183377A1 (en) | 2015-05-12 | 2016-11-17 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016201349A1 (en) | 2015-06-11 | 2016-12-15 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of renal injury and renal failure |
WO2016205740A1 (en) | 2015-06-17 | 2016-12-22 | Astute Medical, Inc. | Methods and compositions for diagnosis and prognosis of appendicitis and differentiation of causes of abdominal pain |
WO2017011329A1 (en) | 2015-07-10 | 2017-01-19 | West Virginia University | Markers of stroke and stroke severity |
WO2017062535A2 (en) | 2015-10-06 | 2017-04-13 | Bio-Rad Laboratories, Inc. | Borrelia immunoassays and materials therefor |
WO2017201314A1 (en) | 2016-05-18 | 2017-11-23 | Alere San Diego, Inc. | 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine analogs and methods for their synthesis and use |
US11243217B2 (en) | 2016-06-06 | 2022-02-08 | Astute Medical, Inc. | Management of acute kidney injury using insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2 |
WO2018020476A1 (en) | 2016-07-29 | 2018-02-01 | Aduro Biotech Holdings, Europe B.V. | Anti-pd-1 antibodies |
US10494436B2 (en) | 2016-07-29 | 2019-12-03 | Aduro Biotech Holdings, Europe B.V. | Anti-PD-1 antibodies |
WO2018067474A1 (en) | 2016-10-03 | 2018-04-12 | Abbott Laboratories | Improved methods of assessing gfap status in patient samples |
WO2018067468A1 (en) | 2016-10-03 | 2018-04-12 | Abbott Laboratories | Improved methods of assessing uch-l1 status in patient samples |
EP4521116A2 (en) | 2016-10-03 | 2025-03-12 | Abbott Laboratories | Improved methods of assessing uch-l1 status in patient samples |
WO2018067730A1 (en) | 2016-10-04 | 2018-04-12 | University Of Maryland, Baltimore | Methods of treating sepsis using anti-sepsis lipid a (asla) based therapeutics |
WO2018089539A1 (en) | 2016-11-08 | 2018-05-17 | Reata Pharmaceuticals, Inc. | Methods of treating alport syndrome using bardoxolone methyl or analogs thereof |
US12203944B2 (en) | 2017-01-12 | 2025-01-21 | Astute Medical, Inc. | Methods and compositions for evaluation and treatment of renal injury and renal failure based on C-C motif chemokine ligand 14 measurement |
US11353465B2 (en) | 2017-01-12 | 2022-06-07 | Astute Medical, Inc. | Methods and compositions for evaluation and treatment of renal injury and renal failure based on C—C motif chemokine ligand 14 measurement |
EP4063853A1 (en) | 2017-01-12 | 2022-09-28 | Astute Medical, Inc. | Methods and compositions for evaluation and treatment of renal injury and renal failure based on c-c motif chemokine ligand 14 measurement |
WO2018164580A1 (en) | 2017-03-09 | 2018-09-13 | Rijksuniversiteit Groningen | Biomarkers for cellular senescence |
WO2018175942A1 (en) | 2017-03-23 | 2018-09-27 | Abbott Laboratories | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase l1 |
WO2018191531A1 (en) | 2017-04-15 | 2018-10-18 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers |
WO2018200823A1 (en) | 2017-04-28 | 2018-11-01 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
US10865238B1 (en) | 2017-05-05 | 2020-12-15 | Duke University | Complement factor H antibodies |
WO2018208684A1 (en) | 2017-05-07 | 2018-11-15 | Astute Medical, Inc. | Use of insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase 2 in the management of renal replacement therapy |
WO2018218169A1 (en) | 2017-05-25 | 2018-11-29 | Abbott Laboratories | Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers |
WO2018222783A1 (en) | 2017-05-30 | 2018-12-06 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin i and early biomarkers |
WO2018222784A1 (en) | 2017-05-30 | 2018-12-06 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin i |
WO2019010131A1 (en) | 2017-07-03 | 2019-01-10 | Abbott Laboratories | Improved methods for measuring ubiquitin carboxy-terminal hydrolase l1 levels in blood |
WO2019112860A1 (en) | 2017-12-09 | 2019-06-13 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of gfap and uch-l1 |
WO2019113525A2 (en) | 2017-12-09 | 2019-06-13 | Abbott Laboratories | Methods for aiding in the diagnosis and evaluation of a subject who has sustained an orthopedic injury and that has or may have sustained an injury to the head, such as mild traumatic brain injury (tbi), using glial fibrillary acidic protein (gfap) and/or ubiquitin carboxy-terminal hydrolase l1 (uch-l1) |
US11891439B2 (en) | 2017-12-28 | 2024-02-06 | Astute Medical, Inc. | Antibodies and assays for CCL14 |
WO2019133717A1 (en) | 2017-12-29 | 2019-07-04 | Abbott Laboratories | Novel biomarkers and methods for diagnosing and evaluating traumatic brain injury |
WO2019169407A1 (en) | 2018-03-02 | 2019-09-06 | Quantumcyte, Inc. | Methods, compositions, and devices for isolation and expression analysis of regions of interest from a tissue |
WO2019213619A1 (en) | 2018-05-04 | 2019-11-07 | Abbott Laboratories | Hbv diagnostic, prognostic, and therapeutic methods and products |
EP4043015A1 (en) | 2018-09-04 | 2022-08-17 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Delta-tocotrienol for treating cancer |
US12061200B2 (en) | 2018-12-28 | 2024-08-13 | Abbott Laboratories | Direct detection of single molecules on microparticles |
EP4375669A2 (en) | 2018-12-28 | 2024-05-29 | Abbott Laboratories | Direct detection of single molecules on microparticles |
WO2020140071A1 (en) | 2018-12-28 | 2020-07-02 | Abbott Laboratories | Direct detection of single molecules on microparticles |
WO2020144535A1 (en) | 2019-01-08 | 2020-07-16 | Aduro Biotech Holdings, Europe B.V. | Methods and compositions for treatment of multiple myeloma |
WO2020180695A1 (en) | 2019-03-01 | 2020-09-10 | Abbott Laboratories | Methods for predicting major adverse cardiovascular events in subjects with coronary artery disease |
WO2021211331A1 (en) | 2020-04-13 | 2021-10-21 | Abbott Point Of Care Inc. | METHODS, COMPLEXES AND KITS FOR DETECTING OR DETERMINING AN AMOUNT OF A ß-CORONAVIRUS ANTIBODY IN A SAMPLE |
WO2021231208A1 (en) | 2020-05-09 | 2021-11-18 | Reata Pharmaceuticals, Inc. | Methods of treating covid-19 using bardoxolone methyl or analogs thereof |
WO2021245025A1 (en) | 2020-06-01 | 2021-12-09 | Loop Diagnostics, S.L. | Method and kit for the early detection of sepsis |
US11988671B2 (en) | 2020-08-04 | 2024-05-21 | Abbott Rapid Diagnostics International Unlimited Company | Assays for detecting SARS-CoV-2 |
WO2022029494A1 (en) | 2020-08-04 | 2022-02-10 | Abbott Rapid Diagnostics International Unlimited Company | Assays for detecting sars-cov-2 |
WO2022031804A1 (en) | 2020-08-04 | 2022-02-10 | Abbott Laboratories | Improved methods and kits for detecting sars-cov-2 protein in a sample |
WO2022119841A1 (en) | 2020-12-01 | 2022-06-09 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
WO2022126129A1 (en) | 2020-12-11 | 2022-06-16 | Reata Pharmaceuticals, Inc. | Synthetic triterpenoids for use in therapy |
WO2022147147A1 (en) | 2020-12-30 | 2022-07-07 | Abbott Laboratories | Methods for determining sars-cov-2 antigen and anti-sars-cov-2 antibody in a sample |
WO2022245920A1 (en) | 2021-05-18 | 2022-11-24 | Abbott Laboratories | Methods of evaluating brain injury in a pediatric subject |
WO2022266034A1 (en) | 2021-06-14 | 2022-12-22 | Abbott Laboratories | Methods of diagnosing or aiding in diagnosis of brain injury caused by acoustic energy, electromagnetic energy, an over pressurization wave, and/or blast wind |
WO2023028186A1 (en) | 2021-08-27 | 2023-03-02 | Abbott Laboratories | Methods for detecting immunoglobulin g, subclass 4 (igg4) in a biological sample |
WO2023034777A1 (en) | 2021-08-31 | 2023-03-09 | Abbott Laboratories | Methods and systems of diagnosing brain injury |
WO2023056268A1 (en) | 2021-09-30 | 2023-04-06 | Abbott Laboratories | Methods and systems of diagnosing brain injury |
WO2023102384A1 (en) | 2021-11-30 | 2023-06-08 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
WO2023114978A1 (en) | 2021-12-17 | 2023-06-22 | Abbott Laboratories | Systems and methods for determining uch-l1, gfap, and other biomarkers in blood samples |
WO2023129942A1 (en) | 2021-12-28 | 2023-07-06 | Abbott Laboratories | Use of biomarkers to determine sub-acute traumatic brain injury (tbi) in a subject having received a head computerized tomography (ct) scan that is negative for a tbi or no head ct scan |
WO2023144206A1 (en) | 2022-01-27 | 2023-08-03 | Sanofi Pasteur | Modified vero cells and methods of using the same for virus production |
WO2023150652A1 (en) | 2022-02-04 | 2023-08-10 | Abbott Laboratories | Lateral flow methods, assays, and devices for detecting the presence or measuring the amount of ubiquitin carboxy-terminal hydrolase l1 and/or glial fibrillary acidic protein in a sample |
WO2023212294A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Angiopoietin-related protein 7-specific antibodies and uses thereof |
WO2023212298A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Bispecific antibodies and methods of treating ocular disease |
WO2023212293A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Complement factor h related 4-specific antibodies and uses thereof |
WO2024059692A1 (en) | 2022-09-15 | 2024-03-21 | Abbott Laboratories | Hbv diagnostic, prognostic, and therapeutic methods and products |
WO2024059708A1 (en) | 2022-09-15 | 2024-03-21 | Abbott Laboratories | Biomarkers and methods for differentiating between mild and supermild traumatic brain injury |
WO2024163477A1 (en) | 2023-01-31 | 2024-08-08 | University Of Rochester | Immune checkpoint blockade therapy for treating staphylococcus aureus infections |
WO2024211475A1 (en) | 2023-04-04 | 2024-10-10 | Abbott Laboratories | Use of biomarkers to determine whether a subject has sustained, may have sustained or is suspected of sustaining a subacute acquired brain injury (abi) |
WO2024226969A1 (en) | 2023-04-28 | 2024-10-31 | Abbott Point Of Care Inc. | Improved assays, cartridges, and kits for detection of biomarkers, including brain injury biomarkers |
WO2024227154A1 (en) | 2023-04-28 | 2024-10-31 | Broadwing Bio Llc | Complement component 3 (c3)-specific antibodies and uses thereof |
WO2024226971A1 (en) | 2023-04-28 | 2024-10-31 | Abbott Point Of Care Inc. | Improved assays, cartridges, and kits for detection of biomarkers, including brain injury biomarkers |
WO2024231728A2 (en) | 2023-05-05 | 2024-11-14 | Bio-Rad Abd Serotec Gmbh | Spycatcher analogs and uses thereof |
US12122842B1 (en) | 2023-09-27 | 2024-10-22 | R&D Systems, Inc. | Human CD30-specific binding proteins and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
FI934438L (en) | 1993-11-04 |
NO933582D0 (en) | 1993-10-07 |
ES2150915T3 (en) | 2000-12-16 |
NO933582L (en) | 1993-12-10 |
FI934438A0 (en) | 1993-10-08 |
AU1911592A (en) | 1992-11-17 |
JP3290988B2 (en) | 2002-06-10 |
WO1992018866A1 (en) | 1992-10-29 |
ATE195808T1 (en) | 2000-09-15 |
EP0579767B1 (en) | 2000-08-23 |
DE69231382T2 (en) | 2001-01-25 |
EP0579767A4 (en) | 1995-05-17 |
JPH06507021A (en) | 1994-08-04 |
DE69231382D1 (en) | 2000-09-28 |
EP0579767A1 (en) | 1994-01-26 |
CA2107899A1 (en) | 1992-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5851776A (en) | Conjugates and assays for simultaneous detection of multiple ligands | |
US5525524A (en) | Crosstalk inhibitors and their uses | |
US5089391A (en) | Threshold ligand-receptor assay | |
US5939272A (en) | Non-competitive threshold ligand-receptor assays | |
US5895750A (en) | Immunoassay for the detection of ligands | |
EP0475783B1 (en) | Antibodies to ligand analogues and their use in ligand-receptor assays | |
EP0093613B1 (en) | Simultaneous calibration heterogeneous immunoassay method, apparatus and diagnostic kit | |
US5401636A (en) | Enhanced sensitivity agglutination assays multivalent ligands | |
US6777190B1 (en) | Crosstalk inhibitors and their uses | |
US5527709A (en) | Immunoassays with labeled thyronine hapten analogues | |
EP0576095B1 (en) | Immunoassays with labeled thyronine hapten analogues | |
JPH03503566A (en) | Immunoassay using monoclonal antibodies against natural binding proteins | |
JPH0786507B2 (en) | Method for measuring ligand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BIOSITE, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:BIOSITE DIAGNOSTICS, INC.;REEL/FRAME:013718/0114 Effective date: 20010620 Owner name: BIOSITE, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:BIOSITE DIAGNOSTICS, INC.;REEL/FRAME:013718/0120 Effective date: 20010620 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY AGREEMENT;ASSIGNOR:BIOSITE INCORPORATED;REEL/FRAME:019519/0929 Effective date: 20070629 Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT,MAR Free format text: SECURITY AGREEMENT;ASSIGNOR:BIOSITE INCORPORATED;REEL/FRAME:019519/0929 Effective date: 20070629 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY AGREEMENT;ASSIGNOR:BIOSITE INCORPORATED;REEL/FRAME:019523/0276 Effective date: 20070629 Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT,MAR Free format text: SECURITY AGREEMENT;ASSIGNOR:BIOSITE INCORPORATED;REEL/FRAME:019523/0276 Effective date: 20070629 |
|
AS | Assignment |
Owner name: BIOSITE DIAGNOSTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VALKIRS, GUNARS E;REEL/FRAME:019725/0401 Effective date: 19910517 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20101222 |