US5193216A - Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal - Google Patents
Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal Download PDFInfo
- Publication number
- US5193216A US5193216A US07/531,603 US53160390A US5193216A US 5193216 A US5193216 A US 5193216A US 53160390 A US53160390 A US 53160390A US 5193216 A US5193216 A US 5193216A
- Authority
- US
- United States
- Prior art keywords
- signal
- range
- signal strength
- loss
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/725—Cordless telephones
- H04M1/72502—Cordless telephones with one base station connected to a single line
- H04M1/72516—Cordless telephones with one base station connected to a single line with means for out-of-range alerting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/022—Selective call receivers
Definitions
- This invention relates in general to communications devices for receiving a signal, and in particular to an out of range detector for a communications device.
- Communications systems may utilize one or more than one transmitter to define a system coverage area. Every radio frequency (RF) transmitter has an associated geographical reception area within which communications devices, such as RF receivers, tuned to the appropriate frequency can receive transmissions from the RF transmitter. As the communications device increases its distance from the transmitter, reception on the assigned frequency becomes more difficult until, eventually, the device is out of range of the transmitter. Likewise, devices located outside a system coverage area will be out of range of the communications system.
- RF radio frequency
- the RF receiver will not receive any signals while out of range. Therefore, it is desirable that an RF receiver user be notified when the receiver is out of range. If the RF receiver is, for example, a selective call receiver and the user is expecting an important message, notification of out of range will indicate that the user needs to return to the network coverage area or access alternative methods for receiving messages.
- RF receivers which receive a signal having a predetermined signalling protocol use the lack of detection of the predetermined signalling protocol to determine whether the receiver is out of range. Yet, several communications systems having various signalling protocols may share a single RF channel or frequency. Therefore, the out of range signal may erroneously be generated during the reception of signalling protocols of other communications systems even when the user is within the system coverage area because the predetermined signalling protocol is not received.
- the out of range signal will be generated even if the user is still within the system coverage area because the predetermined signal is not periodically received.
- a method for detecting if a communications device is out of receiving range of its signal If the communications signal is not detected and the signal strength measured prior to the loss of the signal is consistent with signal strength values approaching out of range, the communications device is determined to be out of range.
- FIG. 1 is a block diagram of a communications device according to the present invention.
- FIG. 2 is a more detailed block diagram of portions of the communications device.
- FIG. 3 is a top view of a communications device according to the present invention.
- FIG. 4 is a diagram of the signalling protocol and operation of the preferred embodiment according to the present invention.
- FIG. 5 is a flowchart of the operation of the preferred embodiment of the present invention.
- a communications device such as a selective call receiver, comprises an antenna 10 for receiving signals coupled to a receiver circuit 12 which demodulates the signals received.
- a microprocessor controller 14 is coupled to the receiver circuit 12 for processing the received signal.
- the microprocessor controller 14 also receives a received signal strength indicator (RSSI) signal from the receiver circuit 12.
- RSSI received signal strength indicator
- a battery save signal is provided to the receiver circuit 12 from the microprocessor controller 14 for toggling the receiver circuit 12 off and on as determined by the microprocessor controller 14 in a manner well known in the art.
- a code plug 16 is coupled to the microprocessor 14 for providing a set of predetermined information, such as the assigned frequency of the communications device, to the microprocessor 14 in a manner also well known in the art.
- a display device 18 visually displays information, such as a message received, and is controlled by the microprocessor controller 14.
- An output annunciator 20 is also controlled by the microprocessor controller 14 and may provide audible alerts for indicating various information to the user and/or audible output of the information of the received signal.
- User controls 22 allow the user to command the microprocessor controller 14 to perform operations of the device and typically includes control switches such as an on/off control button.
- the receiver circuit 12 of the communications device depicted in FIG. 1 comprises an RF front end 30 and a receiver back end 32.
- the signal provided to the RF front end 30 from the antenna 10 is provided to the input of an RF amplifier 34.
- the output of the RF amplifier 34 is provided to one of two inputs of a first mixer 36.
- the other input of the first mixer 36 is a signal from a first oscillator 38.
- the frequency of the signal from the first oscillator 38 is determined by the assigned frequency or channel upon which the communications device receives its signal.
- the output signal from the first mixer 36 is provided to conventional circuitry of the receiver back end 32 comprising a second mixer 40, a second oscillator 42, an amplifier 44, a demodulator 46 and an audio limiter 48 for processing the signal received.
- the circuitry of the receiver back end 32 eliminates signals on adjacent channels and demodulates the received signal to provide an output to microprocessor controller 14.
- the amplifier 44 also measures the strength of the received signal and provides a received signal strength indicator (RSSI) signal to the microprocessor controller 14.
- RSSI received signal strength indicator
- a battery save signal is provided from the microprocessor controller 14 to a voltage switch/regulator 50 and a current source 52 of the receiver circuit 12 to control the operation of the receiver circuit as described below.
- the voltage switch/regulator 50 is coupled to the RF front end 30 to activate and deactivate the components of the RF front end in response to the battery save signal.
- the current source 52 is coupled to the receiver back end 32 to control the operation of the components thereof in response to the battery save signal.
- the received signal is provided to the microprocessor controller 14 and, more particularly, to an I/O input of a microcomputer decoder and processor 56 for conventional processing of the received signal's information.
- the microcomputer 56 is coupled via an I/O output port to a display drive circuit 58 for visually presenting an alphanumeric or numeric display of processed information on the display 18.
- the microcomputer 56 is coupled to the output annunciator 20 for audibly presenting processed information.
- the microcomputer receives control signals from the user controls 22.
- the microcomputer 56 also accesses information stored in the nonvolatile code plug memory 16.
- a second memory 60 is utilized by the microcomputer 56 for reading and writing information during operation.
- the microcomputer 56 stores the RSSI signal values in the memory 60 in chronological order. When the microcomputer 56 fails to detect the received signal by failing to detect a predetermined characteristic of the signal, the microcomputer 56 reads a predetermined number of the RSSI values most recently stored in the memory 60.
- the microcomputer 56 is coupled to a battery saver control 62 for generation of a battery save signal in accordance with battery saving techniques well known in the art.
- an out of range battery save routine allows the microcomputer 56 via the battery saver control 62 to operate the receiver circuit in a super battery saver mode, i.e., increases the ratio of the time the receiver circuit 12 is OFF to the time the receiver circuit 12 is ON such that the receiver is activated less frequently, when it is determined that the communications device is out of range of its signal.
- the microcomputer 56 may provide additional information to the user such as alerts to inform the user of specific events by providing a signal to an alert generator 64 which, depending upon the signal received, provides a predetermined signal to the output annunciator 20 for presentation of an audible alert and/or to the display driver circuit 58 for display of an alphanumeric or numeric message.
- the alert generator 64 receives a signal to provide a predetermined alert, for example displaying the words "OUT OF RANGE".
- An on/off user selectable power switch 74 is mounted on the right hand side of the housing 70.
- the display 18 such as a liquid crystal display (LCD) is viewable through another opening 76 in the front plate 72.
- the output annunciator 20 is mounted below another opening 78 such that audible information produced by the annunciator 20 can be easily heard by the user.
- LCD liquid crystal display
- FIG. 4 a diagram of a signalling protocol and the operation of the present invention in response thereto are shown.
- Signal strength can be monitored continuously and the RSSI values supplied to the microcomputer processor 56 (FIG. 2) for the operation of the present invention.
- the microcomputer processor 56 stores the RSSI signal value in the memory 60 (FIG. 2) periodically.
- a table of RSSI sample values is maintained which accurately represents the signal strength variations because the sample values are equally spaced one from another by a predetermined time.
- the periodicity can be defined by the received signal if the signalling protocol comprises a periodically transmitted predetermined portion.
- sync code periodically transmitted synchronization code
- many signalling protocols have a periodically transmitted synchronization code (sync code) which allows the communications device to maintain synchronization with the signal.
- Sampling the received signal strength coincident with the detection of a predetermined characteristic of the signal, such as the sync code, has the added advantage of insuring that the signal for which the received signal strength is measured is indeed the desired signal.
- One such signalling protocol having a characteristic sync code is the POCSAG signalling code depicted on line 80 typically utilized by selective call network systems.
- POCSAG is a binary frequency shift keying (FSK) modulated signalling protocol originally proposed by British Telecom and an anagram for the Post Office Code Standardization Advisory Group.
- the POCSAG protocol receivers perform separate bit and frame synchronization operations.
- Bit synchronization is a process used to determine the presence of bit boundaries of a data transmission having bits transmitted at a predetermined baud rate, and thereafter to provide a clock to synchronously sample the bits.
- Frame synchronization frames the bits transmitted so that the data transmitted is in a form to be decoded thereby indicating various word boundaries such as the first bit of address and data signals.
- the preamble of a POCSAG signal comprises a number of zero-to-one transitions in a manner well known in the art.
- One method for POCSAG bit synchronization is described in U.S. Pat. No. 4,506,262.
- the receiver With POCSAG signalling, once bit synchronization has been obtained, the receiver remains in synchronous communication with the transmitter until the signal is dropped, i.e., the sequence for initially establishing bit synchronization does not need to be repeated.
- the first word following the preamble is a sync code word 82 which contains a predetermined binary sequence used for frame synchronization. Sixteen words of information 84 follow before the sync code is repeated.
- the sync code 82 provides a means for detection of frame synchronization.
- the microprocessor controller 14 activates the receiver circuit 12 (FIG. 1) at a time 88 to detect the sync code 82 as depicted on line 86 by providing an appropriate battery save signal.
- the receiver circuit 12 remains activated until a time 90 which corresponds to the end of the transmission of the sync code 82 at which time the microprocessor controller 14 provides a second battery save signal.
- the receiver circuit 12 is subsequently activated from a time 92 to a time 94 to look for information words 84 transmitted to a group 96 to which the selective call receiver is assigned b y appropriate signalling from the microprocessor controller 14. After transmission of the sixteen words 84, the sync code 82 is again transmitted and the selective call receiver again operates as shown on line 86.
- each RSSI signal value which is to be stored is calculated upon receipt of a sync code 82 by averaging the RSSI signal over the time since the sync code 82 was last received.
- CNT1 is a counter which measures the number of sync code patterns detected, thereby allowing only one RSSI value out of a predetermined number, SAMPINT, representing a sample interval, to be stored in the memory 60 (FIG. 2).
- CNT2 is a counter which measures the number of consecutive sync code patterns missed, thereby allowing out of range to be declared independent of the RSSI values if a predetermined number, MAXNOSYNCDET, of consecutive sync code patterns are missed.
- the processing determines whether the sync code is detected 104. If it is not yet time to detect the sync code 102, processing awaits until it is time. If at the time the sync code is to be detected the signal is present 104, CNT1 is checked to see if it has been incremented to SAMPINT 106, i.e., if it is time to store the RSSI value. If CNT1 does not equal SAMPINT 106, CNT1 is incremented by one 108 and processing returns to await the next time to detect the sync code 102. If CNT1 equals SAMPINT 106, the RSSI value is stored 110 in the memory 60 (FIG. 2) CNT1 and CNT2 are reinitialized to one 112 and processing returns to await the next time to detect the sync code 102.
- a predetermined number N of the most recently stored RSSI values are read 114. If the RSSI values indicate that the communications device was approaching out of range before loss of the signal 116, the words "OUT OF RANGE" are displayed 118 on the display 18 (as shown in FIG. 3) and an out of range battery save routine is preferably initiated 120. Whether the RSSI values indicate approaching out of range can be determined in several ways. First, if all of the N RSSI values are below a predetermined threshold RSSI value, approaching out of range is indicated.
- the predetermined threshold RSSI value is set low enough such that a large number of RSSI values below the predetermined threshold value would indicate the communications device is sufficiently far from the transmitter(s) that reception of the signal is not reliable. Secondly, if the N RSSI values are successively decreasing to below a predetermined threshold, approaching out of range is indicated. Successively decreasing RSSI values would be consistent with the communications device travelling further and further from the transmitter(s), thereby approaching the edge of the system coverage area.
- out of range can nevertheless be declared 118 if CNT2, the number of times the sync code was not detected, reaches the limit value, MAXNOSYNCDET 122.
- the MAXNOSYNCDET value is set sufficiently high such that when the communications device is carried through a shielded area such as the shadow of a building, an elevator or a subway, the out of range signal will not be generated unless the user is in the shielded area in excess of a predetermined time. If CNT2 does not equal MAXNOSYNCDET 122, CNT2 is incremented by 1 and processing returns to await the next time to detect the sync code.
- this latter override feature by which a large number of missed sync code patterns cause an out of range signal to be generated covers situations in which the received signal can go from a very high level to zero and remain at zero, such as when the communications device user boards an airplane quickly leaving the system coverage area.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
An out of range detector determines whether a communications device is out of range of its signal if the signal is not detected and a history of received signal strength values consistent with approaching out of range is measured prior to nondetection of the signal.
Description
This invention relates in general to communications devices for receiving a signal, and in particular to an out of range detector for a communications device.
Communications systems may utilize one or more than one transmitter to define a system coverage area. Every radio frequency (RF) transmitter has an associated geographical reception area within which communications devices, such as RF receivers, tuned to the appropriate frequency can receive transmissions from the RF transmitter. As the communications device increases its distance from the transmitter, reception on the assigned frequency becomes more difficult until, eventually, the device is out of range of the transmitter. Likewise, devices located outside a system coverage area will be out of range of the communications system.
The RF receiver will not receive any signals while out of range. Therefore, it is desirable that an RF receiver user be notified when the receiver is out of range. If the RF receiver is, for example, a selective call receiver and the user is expecting an important message, notification of out of range will indicate that the user needs to return to the network coverage area or access alternative methods for receiving messages.
Presently, RF receivers which receive a signal having a predetermined signalling protocol use the lack of detection of the predetermined signalling protocol to determine whether the receiver is out of range. Yet, several communications systems having various signalling protocols may share a single RF channel or frequency. Therefore, the out of range signal may erroneously be generated during the reception of signalling protocols of other communications systems even when the user is within the system coverage area because the predetermined signalling protocol is not received.
In addition, when the receiver is carried into a shielded area such as an elevator or a subway or even the shadow of a building, the out of range signal will be generated even if the user is still within the system coverage area because the predetermined signal is not periodically received.
Thus, what is needed is a method and apparatus for reliably detecting if a selective call receiver is within or out of the geographical coverage area of its transmitter.
Accordingly, it is an object of the present invention to provide an improved method and apparatus for detecting if a selective call receiver is out of range of its system coverage area.
In carrying out the above and other objects of the invention in one form, there is provided a method for detecting if a communications device is out of receiving range of its signal. If the communications signal is not detected and the signal strength measured prior to the loss of the signal is consistent with signal strength values approaching out of range, the communications device is determined to be out of range.
FIG. 1 is a block diagram of a communications device according to the present invention.
FIG. 2 is a more detailed block diagram of portions of the communications device.
FIG. 3 is a top view of a communications device according to the present invention.
FIG. 4 is a diagram of the signalling protocol and operation of the preferred embodiment according to the present invention.
FIG. 5 is a flowchart of the operation of the preferred embodiment of the present invention.
Referring to FIG. 1, a communications device, such as a selective call receiver, comprises an antenna 10 for receiving signals coupled to a receiver circuit 12 which demodulates the signals received. A microprocessor controller 14 is coupled to the receiver circuit 12 for processing the received signal. The microprocessor controller 14 also receives a received signal strength indicator (RSSI) signal from the receiver circuit 12. A battery save signal is provided to the receiver circuit 12 from the microprocessor controller 14 for toggling the receiver circuit 12 off and on as determined by the microprocessor controller 14 in a manner well known in the art. A code plug 16 is coupled to the microprocessor 14 for providing a set of predetermined information, such as the assigned frequency of the communications device, to the microprocessor 14 in a manner also well known in the art. A display device 18 visually displays information, such as a message received, and is controlled by the microprocessor controller 14. An output annunciator 20 is also controlled by the microprocessor controller 14 and may provide audible alerts for indicating various information to the user and/or audible output of the information of the received signal. User controls 22 allow the user to command the microprocessor controller 14 to perform operations of the device and typically includes control switches such as an on/off control button.
Referring next to FIG. 2, the receiver circuit 12 of the communications device depicted in FIG. 1 comprises an RF front end 30 and a receiver back end 32. In a manner well known in the art, the signal provided to the RF front end 30 from the antenna 10 is provided to the input of an RF amplifier 34. The output of the RF amplifier 34 is provided to one of two inputs of a first mixer 36. The other input of the first mixer 36 is a signal from a first oscillator 38. The frequency of the signal from the first oscillator 38 is determined by the assigned frequency or channel upon which the communications device receives its signal.
The output signal from the first mixer 36 is provided to conventional circuitry of the receiver back end 32 comprising a second mixer 40, a second oscillator 42, an amplifier 44, a demodulator 46 and an audio limiter 48 for processing the signal received. In a manner well known in the art, the circuitry of the receiver back end 32 eliminates signals on adjacent channels and demodulates the received signal to provide an output to microprocessor controller 14. The amplifier 44 also measures the strength of the received signal and provides a received signal strength indicator (RSSI) signal to the microprocessor controller 14.
A battery save signal is provided from the microprocessor controller 14 to a voltage switch/regulator 50 and a current source 52 of the receiver circuit 12 to control the operation of the receiver circuit as described below. The voltage switch/regulator 50 is coupled to the RF front end 30 to activate and deactivate the components of the RF front end in response to the battery save signal. Likewise, the current source 52 is coupled to the receiver back end 32 to control the operation of the components thereof in response to the battery save signal.
The received signal is provided to the microprocessor controller 14 and, more particularly, to an I/O input of a microcomputer decoder and processor 56 for conventional processing of the received signal's information. In a manner well known in the art, the microcomputer 56 is coupled via an I/O output port to a display drive circuit 58 for visually presenting an alphanumeric or numeric display of processed information on the display 18. Via a second I/O output port, the microcomputer 56 is coupled to the output annunciator 20 for audibly presenting processed information.
In processing the information, the microcomputer receives control signals from the user controls 22. The microcomputer 56 also accesses information stored in the nonvolatile code plug memory 16. A second memory 60 is utilized by the microcomputer 56 for reading and writing information during operation. In the operation of the present invention, the microcomputer 56 stores the RSSI signal values in the memory 60 in chronological order. When the microcomputer 56 fails to detect the received signal by failing to detect a predetermined characteristic of the signal, the microcomputer 56 reads a predetermined number of the RSSI values most recently stored in the memory 60.
The microcomputer 56 is coupled to a battery saver control 62 for generation of a battery save signal in accordance with battery saving techniques well known in the art. In operation of the present invention, an out of range battery save routine allows the microcomputer 56 via the battery saver control 62 to operate the receiver circuit in a super battery saver mode, i.e., increases the ratio of the time the receiver circuit 12 is OFF to the time the receiver circuit 12 is ON such that the receiver is activated less frequently, when it is determined that the communications device is out of range of its signal. For a more detailed description of battery saving techniques, reference is made to U.S. Pat. No. 4,518,961, assigned to the assignee of the present invention, and the teachings of which are hereby incorporated by reference.
The microcomputer 56 may provide additional information to the user such as alerts to inform the user of specific events by providing a signal to an alert generator 64 which, depending upon the signal received, provides a predetermined signal to the output annunciator 20 for presentation of an audible alert and/or to the display driver circuit 58 for display of an alphanumeric or numeric message. In operation of the present invention, when the microcomputer 56 determines that the communications device is out of range, the alert generator 64 receives a signal to provide a predetermined alert, for example displaying the words "OUT OF RANGE".
Referring to FIG. 3, a communications device, such as a selective call receiver, according to the present invention comprises a housing 70 including openings 71 in a front plate 72 with user selectable controls 74 accessible therethrough. An on/off user selectable power switch 74 is mounted on the right hand side of the housing 70. The display 18 such as a liquid crystal display (LCD) is viewable through another opening 76 in the front plate 72. The output annunciator 20 is mounted below another opening 78 such that audible information produced by the annunciator 20 can be easily heard by the user.
For a more detailed description of the structure and operation of a selective call radio paging receiver of the communications device type shown in FIGS. 1, 2 and 3, reference is made to U.S. Pat. No. 4,518,961, U.S. Pat. No. 4,649,538, and U.S. Pat. No. 4,755,816, all commonly assigned to the same assignee as the present invention, and the teachings of which are hereby incorporated by reference.
Referring next to FIG. 4, a diagram of a signalling protocol and the operation of the present invention in response thereto are shown. Signal strength can be monitored continuously and the RSSI values supplied to the microcomputer processor 56 (FIG. 2) for the operation of the present invention. In the preferred operation, though, the microcomputer processor 56 stores the RSSI signal value in the memory 60 (FIG. 2) periodically. In this manner, a table of RSSI sample values is maintained which accurately represents the signal strength variations because the sample values are equally spaced one from another by a predetermined time. Utilizing an appropriate signalling protocol, the periodicity can be defined by the received signal if the signalling protocol comprises a periodically transmitted predetermined portion. For example, many signalling protocols have a periodically transmitted synchronization code (sync code) which allows the communications device to maintain synchronization with the signal. Sampling the received signal strength coincident with the detection of a predetermined characteristic of the signal, such as the sync code, has the added advantage of insuring that the signal for which the received signal strength is measured is indeed the desired signal. One such signalling protocol having a characteristic sync code is the POCSAG signalling code depicted on line 80 typically utilized by selective call network systems.
POCSAG is a binary frequency shift keying (FSK) modulated signalling protocol originally proposed by British Telecom and an anagram for the Post Office Code Standardization Advisory Group. The POCSAG protocol receivers perform separate bit and frame synchronization operations. Bit synchronization is a process used to determine the presence of bit boundaries of a data transmission having bits transmitted at a predetermined baud rate, and thereafter to provide a clock to synchronously sample the bits. Frame synchronization frames the bits transmitted so that the data transmitted is in a form to be decoded thereby indicating various word boundaries such as the first bit of address and data signals.
The preamble of a POCSAG signal comprises a number of zero-to-one transitions in a manner well known in the art. One method for POCSAG bit synchronization is described in U.S. Pat. No. 4,506,262. Generally, with POCSAG signalling, once bit synchronization has been obtained, the receiver remains in synchronous communication with the transmitter until the signal is dropped, i.e., the sequence for initially establishing bit synchronization does not need to be repeated. The first word following the preamble is a sync code word 82 which contains a predetermined binary sequence used for frame synchronization. Sixteen words of information 84 follow before the sync code is repeated.
The sync code 82 provides a means for detection of frame synchronization. The microprocessor controller 14 activates the receiver circuit 12 (FIG. 1) at a time 88 to detect the sync code 82 as depicted on line 86 by providing an appropriate battery save signal. The receiver circuit 12 remains activated until a time 90 which corresponds to the end of the transmission of the sync code 82 at which time the microprocessor controller 14 provides a second battery save signal. The receiver circuit 12 is subsequently activated from a time 92 to a time 94 to look for information words 84 transmitted to a group 96 to which the selective call receiver is assigned b y appropriate signalling from the microprocessor controller 14. After transmission of the sixteen words 84, the sync code 82 is again transmitted and the selective call receiver again operates as shown on line 86.
In the operation of the preferred embodiment of the present invention, the timing within the microprocessor 14 and more particularly within the microcomputer processor 56 (FIG. 2) is utilized to process and store RSSI values. To obtain RSSI values which accurately reflect the received signal strength, each RSSI signal value which is to be stored is calculated upon receipt of a sync code 82 by averaging the RSSI signal over the time since the sync code 82 was last received.
Referring to FIG. 5, the operation of the out of range routine of the microcomputer processor 56 (FIG. 2) of the present invention initially sets two counters, CNT1 and CNT2, to one 100. CNT1 is a counter which measures the number of sync code patterns detected, thereby allowing only one RSSI value out of a predetermined number, SAMPINT, representing a sample interval, to be stored in the memory 60 (FIG. 2). CNT2 is a counter which measures the number of consecutive sync code patterns missed, thereby allowing out of range to be declared independent of the RSSI values if a predetermined number, MAXNOSYNCDET, of consecutive sync code patterns are missed.
If it is time to detect the sync code 102, the processing determines whether the sync code is detected 104. If it is not yet time to detect the sync code 102, processing awaits until it is time. If at the time the sync code is to be detected the signal is present 104, CNT1 is checked to see if it has been incremented to SAMPINT 106, i.e., if it is time to store the RSSI value. If CNT1 does not equal SAMPINT 106, CNT1 is incremented by one 108 and processing returns to await the next time to detect the sync code 102. If CNT1 equals SAMPINT 106, the RSSI value is stored 110 in the memory 60 (FIG. 2) CNT1 and CNT2 are reinitialized to one 112 and processing returns to await the next time to detect the sync code 102.
If at the time the sync code is to be detected the signal is not detected 104, a predetermined number N of the most recently stored RSSI values are read 114. If the RSSI values indicate that the communications device was approaching out of range before loss of the signal 116, the words "OUT OF RANGE" are displayed 118 on the display 18 (as shown in FIG. 3) and an out of range battery save routine is preferably initiated 120. Whether the RSSI values indicate approaching out of range can be determined in several ways. First, if all of the N RSSI values are below a predetermined threshold RSSI value, approaching out of range is indicated. The predetermined threshold RSSI value is set low enough such that a large number of RSSI values below the predetermined threshold value would indicate the communications device is sufficiently far from the transmitter(s) that reception of the signal is not reliable. Secondly, if the N RSSI values are successively decreasing to below a predetermined threshold, approaching out of range is indicated. Successively decreasing RSSI values would be consistent with the communications device travelling further and further from the transmitter(s), thereby approaching the edge of the system coverage area.
If the stored RSSI values do not indicate approaching out of range 116, out of range can nevertheless be declared 118 if CNT2, the number of times the sync code was not detected, reaches the limit value, MAXNOSYNCDET 122. The MAXNOSYNCDET value is set sufficiently high such that when the communications device is carried through a shielded area such as the shadow of a building, an elevator or a subway, the out of range signal will not be generated unless the user is in the shielded area in excess of a predetermined time. If CNT2 does not equal MAXNOSYNCDET 122, CNT2 is incremented by 1 and processing returns to await the next time to detect the sync code. It will be appreciated that this latter override feature by which a large number of missed sync code patterns cause an out of range signal to be generated covers situations in which the received signal can go from a very high level to zero and remain at zero, such as when the communications device user boards an airplane quickly leaving the system coverage area.
By now it should be appreciated that there has been provided an improved, more reliable out of range detector which determines whether a communications device is out of range of its signal in response to the loss of the signal and a history of received signal strength values consistent with approaching out of range. If the received signal strength values measured prior to the loss of the signal indicate that it is unlikely the communications device is out of the reception coverage area of the signal but instead in a low signal area, the out of range indicator is not immediately generated. In this manner, a communications device which temporarily enters a low signal area does not announce that it is out of range nor does it enter a super battery save routine which could cause the device to miss messages.
Claims (9)
1. A method in a communications receiver for receiving a signal transmitted by a transmitter, the signal having a signal strength, the method comprising the steps of:
measuring the signal at a plurality of times to acquire a plurality of received signal strength values indicating the signal strength at the plurality of times;
storing the plurality of received signal strength values;
detecting loss of the signal; and
determining the communications receiver is out of range of the transmitter if both the loss of the signal is detected and ones of the plurality of received signal strength values stored within a predetermined time prior to detection of the loss of the signal indicate successively decreasing signal strength for the predetermined time before the loss of the signal was detected.
2. A method in a communications receiver for receiving a signal transmitted by a transmitter, the signal having a signal strength and comprising a periodically transmitted predetermined portion, the method comprising the steps of:
measuring the signal at a plurality of times to acquire a plurality of received signal strength values indicating the signal strength at the plurality of times, the step of measuring the signal comprising the steps of:
detecting the predetermined portion; and
measuring the signal to acquire a signal strength value of the received signal when the predetermined portion is detected;
storing the plurality of received signal strength values;
detecting loss of the signal; and
determining the communications receiver is out of range of the transmitter if both the loss of the signal is detected and the received signal strength values stored within a predetermined time prior to detection of the loss of the signal indicate approaching out of range.
3. The method of claim 2 wherein the step of storing comprises the step of storing one of the plurality of received signal strength values once for a predetermined number of multiple detections of the predetermined portion.
4. The method of claim 2 wherein the step of determining comprises the step of determining the communications receiver is out of range of the transmitter if both the loss of the signal is detected and a predetermined number of most recently stored ones of the plurality of received signal strength values have values less than a predetermined threshold value.
5. The method of claim 2 wherein the step of determining comprises the step of determining the communications receiver is out of range of the transmitter if both the loss of the signal is detected and a predetermined number of most recently stored ones of the plurality of received signal strength values have values decreasing from the less recently stored signal strength values to the more recently stored signal strength values.
6. The method of claim 1 further comprising the step of battery saving in response to determining the communications receiver is out of range of the transmitter.
7. The method of claim 1 further comprising the step of generating an out of range signal in response to determining the communications receiver is out of range of the transmitter.
8. The method of claim 7 wherein the step of generating an out of range signal comprises the step of displaying a predetermined message in response to determining the communications receiver is out of range of the transmitter.
9. A communications device comprising:
receiving means for receiving a signal having a signal strength and transmitted from a transmitter;
signal detecting means for detecting loss of the signal;
measuring means for measuring the signal to acquire a plurality of received signal strength values indicating the signal strength at a plurality of times;
memory means for storing the plurality of received signal strength values;
indication means coupled to said memory means and said signal detecting means for generating an out of range signal in response to said signal detecting means detecting loss of the signal if a predetermined number of ones of the plurality of received signal strength values most recently stored before detection of loss of the signal have successively decreasing values; and
alert generating means coupled to the indication means for providing an out of range alert in response to the out of range signal when both the loss of said signal is detected as detected by the signal detection means and at least a portion of the plurality of received signal strength values stored prior to detection of the loss of the signal indicate the communications device was approaching out of range of the transmitter as indicated by the indication means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/531,603 US5193216A (en) | 1990-06-01 | 1990-06-01 | Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal |
PCT/US1991/002205 WO1991019367A1 (en) | 1990-06-01 | 1991-04-02 | Out of range detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/531,603 US5193216A (en) | 1990-06-01 | 1990-06-01 | Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal |
Publications (1)
Publication Number | Publication Date |
---|---|
US5193216A true US5193216A (en) | 1993-03-09 |
Family
ID=24118317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/531,603 Expired - Lifetime US5193216A (en) | 1990-06-01 | 1990-06-01 | Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal |
Country Status (2)
Country | Link |
---|---|
US (1) | US5193216A (en) |
WO (1) | WO1991019367A1 (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5349701A (en) * | 1992-01-15 | 1994-09-20 | Motorola, Inc. | Method and apparatus for broken link detect using audio energy level |
WO1995004429A1 (en) * | 1993-07-27 | 1995-02-09 | Information Resources, Inc. | Tuned channel detector |
US5396230A (en) * | 1991-08-08 | 1995-03-07 | Matsushita Electric Industrial Co., Ltd. | Pager with out of range detection by timing loss of synchronization |
US5398276A (en) * | 1993-02-09 | 1995-03-14 | Safco Corporation | Cellular-system signal-strength analyzer |
US5444862A (en) * | 1992-09-30 | 1995-08-22 | Fujitsu Limited | Circuit for stopping data transmission responding to low level and rapid fall of received electric field |
US5450613A (en) * | 1992-09-09 | 1995-09-12 | Hitachi, Ltd. | Mobile communications equipment which detects and notifies when it is moved into or out of a service area |
WO1996013950A1 (en) * | 1994-10-31 | 1996-05-09 | Motorola Inc. | A method of making a channel exit decision |
EP0766408A2 (en) * | 1995-09-26 | 1997-04-02 | Nec Corporation | Radio selective calling receiver capable of checking time period of stay outside coverage zone |
US5640146A (en) * | 1995-02-24 | 1997-06-17 | Ntp Incorporated | Radio tracking system and method of operation thereof |
US5650769A (en) * | 1995-02-24 | 1997-07-22 | Ntp, Incorporated | Radio receiver for use in a radio tracking system and a method of operation thereof |
US5684790A (en) * | 1994-07-22 | 1997-11-04 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system |
US5689813A (en) * | 1994-05-24 | 1997-11-18 | Nec Corporation | Radio apparatus capable of detecting field intensity |
WO1997047144A1 (en) * | 1996-06-03 | 1997-12-11 | Motorola Inc. | Method and apparatus for registration status indication in a roaming system |
US5710985A (en) * | 1994-02-17 | 1998-01-20 | Mitsubishi Denki Kabushiki Kaisha | Wireless portable telephone having antenna retraction detection means |
US5722068A (en) * | 1994-01-26 | 1998-02-24 | Oki Telecom, Inc. | Imminent change warning |
US5825817A (en) * | 1994-07-22 | 1998-10-20 | Anritsu Corporation | Radio wave measuring apparatus for digital communication system |
US5867782A (en) * | 1995-07-24 | 1999-02-02 | Samsung Electronics Co., Ltd. | Method of indicating outer communication range in digital cordless telephone system |
US5963600A (en) * | 1997-03-04 | 1999-10-05 | Northrop Grumman Corporation | Micro-controller based frequency calibration |
EP0948179A1 (en) * | 1998-03-31 | 1999-10-06 | Koninklijke Philips Electronics N.V. | Method for controlling the radioelectrical range, wireless telecommunication equipment using this method, base station and mobile handset of such an equipment |
US5966656A (en) * | 1997-03-11 | 1999-10-12 | Motorola, Inc. | Method and apparatus for displaying signal information in a radio communication device |
US5977881A (en) * | 1996-08-01 | 1999-11-02 | Nec Corporation | Radio selective calling receiver having battery saving function |
WO2000002336A1 (en) * | 1998-07-01 | 2000-01-13 | Motorola Inc. | Satellite-based pager receiver signal quality estimates |
US6198934B1 (en) * | 1997-11-04 | 2001-03-06 | Nec Corporation | Method of judging whether radio receiver is inside or outside service area, circuit for judging the same, and radio selective-calling receiver including the circuit |
US6212245B1 (en) * | 1995-07-13 | 2001-04-03 | Canon Kabushiki Kaisha | Communication apparatus |
US6219540B1 (en) * | 1998-11-23 | 2001-04-17 | Motorola, Inc. | Communication device providing out-of-range battery saving and method therefor |
US6243568B1 (en) * | 1997-03-22 | 2001-06-05 | Sharp Laboratories Of America, Inc. | System and method for intuitively indicating signal quality in a wireless digital communications network |
CN1080522C (en) * | 1995-06-30 | 2002-03-06 | 三洋电机株式会社 | Digital cordless telephone device which gives warning to prevent unexpected termination of communication |
US6397061B1 (en) * | 2000-06-24 | 2002-05-28 | Motorola, Inc. | Method and apparatus to reprioritize data transfer in a short range Ad Hoc network |
US20020155841A1 (en) * | 2001-04-20 | 2002-10-24 | Nec Corporation | Method and network for answering calls to mobile terminals according to user-defined response modes |
US6490458B1 (en) * | 1999-06-16 | 2002-12-03 | Verizon Laboratories Inc. | Portable phone bank |
US20030027543A1 (en) * | 2001-08-01 | 2003-02-06 | Nec Corporation | Direct conversion receiver |
US20030163532A1 (en) * | 2002-02-25 | 2003-08-28 | Vinewood Technical Services, Inc. | Wireless community alerting system |
EP1392022A2 (en) * | 2002-08-20 | 2004-02-25 | Lg Electronics Inc. | Power management method and apparatus for a wireless local area network module in a computer system |
US6788199B2 (en) | 2001-03-12 | 2004-09-07 | Eureka Technology Partners, Llc | Article locator system |
US20050192020A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system with mobile cellular device battery saving features based upon quality of service and access denial and related methods |
US20050192023A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features based upon a stepped down attempt rate and related methods |
US20050191987A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features while accommodating user access requests and related methods |
US20060068731A1 (en) * | 2004-09-01 | 2006-03-30 | Seier Albert C | Advisory alert of low signal strength for cell phone user |
EP1659816A1 (en) * | 2004-11-19 | 2006-05-24 | Research In Motion Limited | Method and System for Predicting Service Drop in a Wireless Network |
US20060109825A1 (en) * | 2004-11-19 | 2006-05-25 | Research In Motion Limited | Method and system for predicting service drop in a wireless network |
US7158490B1 (en) * | 1998-09-21 | 2007-01-02 | Nokia Mobile Phones Limited | Apparatus, and associated method, for effectuating power control of a communication device |
US20070191126A1 (en) * | 2006-02-14 | 2007-08-16 | Nick Mandracken | Golf Aid |
US20080299927A1 (en) * | 2007-05-31 | 2008-12-04 | Motorola, Inc. | Signal strength indication methods for use in wireless communication devices |
US20100238033A1 (en) * | 2009-03-20 | 2010-09-23 | Dan Blumel | Tracking and Alert Apparatus, System and Method |
US20110021147A1 (en) * | 2009-07-21 | 2011-01-27 | Tout Walid R | System and method for determining connectivity status of short range wireless devices |
US20120190306A1 (en) * | 2011-01-24 | 2012-07-26 | Honeywell International Inc. | Systems and methods for detecting a loss of communication using statistical analysis |
US20130331031A1 (en) * | 2012-06-07 | 2013-12-12 | Nokia Corporation | Method, apparatus, and computer program product for wireless short-range communication disconnection |
US20160029346A1 (en) * | 2014-07-22 | 2016-01-28 | Honeywell International Inc. | Iot enabled wireless one-go/all-go platform sensor network solutionfor connected home security systems |
US20160088143A1 (en) * | 2014-09-24 | 2016-03-24 | Intel Corporation | Method, system and apparatus for graceful disconnection from a wireless docking station |
US9451436B2 (en) | 2013-05-31 | 2016-09-20 | Nokia Technologies Oy | Method, apparatus, and computer program product for wireless device discovery |
US9635690B2 (en) | 2014-06-24 | 2017-04-25 | Nokia Technologies Oy | Method, apparatus, and computer program product for improving security for wireless communication |
US9686676B2 (en) | 2015-01-16 | 2017-06-20 | Nokia Technologies Oy | Method, apparatus, and computer program product for a server controlled device wakeup |
US9843947B2 (en) | 2015-01-14 | 2017-12-12 | Kcf Technologies, Inc. | Visual signal strength indication for a wireless device |
US9860297B2 (en) | 2014-06-02 | 2018-01-02 | Nokia Technologies Oy | Method, apparatus, and computer program product for media selection for moving user |
US9949204B2 (en) | 2015-08-07 | 2018-04-17 | Provenance Asset Group Llc | Method, apparatus, and computer program product for low power data delivery |
US9967825B2 (en) * | 2016-01-20 | 2018-05-08 | Globalfoundries Inc. | Environmentally aware mobile computing devices |
US10966143B2 (en) | 2017-03-21 | 2021-03-30 | Ademco Inc. | Systems and methods for detecting and avoiding radio interference in a wireless sensor network |
US11265725B2 (en) | 2019-02-15 | 2022-03-01 | Ademco Inc. | Systems and methods for allocating wireless communication channels |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5507039A (en) * | 1991-05-10 | 1996-04-09 | Matsushita Electric Industrial Co., Ltd. | Mobile wireless apparatus with power consumption reduction circuitry |
SE470503B (en) * | 1992-10-27 | 1994-06-06 | Ellemtel Utvecklings Ab | Ways and means of activity monitoring in a mobile telephone network |
JP2000216610A (en) | 1998-11-19 | 2000-08-04 | Nec Corp | Method and device for sensing and informing contact of human body with antenna for portable telephone set |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4331953A (en) * | 1979-12-26 | 1982-05-25 | The Boeing Company | Communication system for use in hazardous confined areas |
US4353065A (en) * | 1980-03-28 | 1982-10-05 | Nippon Electric Co., Ltd. | Digital radio paging communication system |
US4506262A (en) * | 1981-07-27 | 1985-03-19 | International Standard Electric Corporation | Synchronization of digital radio pager |
US4518961A (en) * | 1980-10-01 | 1985-05-21 | Motorola, Inc. | Universal paging device with power conservation |
US4593273A (en) * | 1984-03-16 | 1986-06-03 | Narcisse Bernadine O | Out-of-range personnel monitor and alarm |
US4649538A (en) * | 1984-09-28 | 1987-03-10 | Motorola, Inc. | Radio paging device with improved test modes |
US4755816A (en) * | 1986-10-29 | 1988-07-05 | Motorola Inc. | Battery saving method for a selective call radio paging receiver |
US4785291A (en) * | 1987-03-06 | 1988-11-15 | Hawthorne Candy C | Distance monitor especially for child surveillance |
US4851820A (en) * | 1987-10-30 | 1989-07-25 | Fernandez Emilio A | Paging device having a switch actuated signal strength detector |
US4928086A (en) * | 1989-01-30 | 1990-05-22 | Motorola, Inc. | Pager receiver having a common timer circuit for both sequential lock-out and out-of-range |
US4978946A (en) * | 1987-08-13 | 1990-12-18 | Talkie Tooter (Canada) Ltd. | Personal security communication system |
US5049875A (en) * | 1989-09-13 | 1991-09-17 | Motorola Inc. | Method and apparatus for out of range detection in response to nondetection of predetermined baud rates |
-
1990
- 1990-06-01 US US07/531,603 patent/US5193216A/en not_active Expired - Lifetime
-
1991
- 1991-04-02 WO PCT/US1991/002205 patent/WO1991019367A1/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4331953A (en) * | 1979-12-26 | 1982-05-25 | The Boeing Company | Communication system for use in hazardous confined areas |
US4353065A (en) * | 1980-03-28 | 1982-10-05 | Nippon Electric Co., Ltd. | Digital radio paging communication system |
US4518961A (en) * | 1980-10-01 | 1985-05-21 | Motorola, Inc. | Universal paging device with power conservation |
US4506262A (en) * | 1981-07-27 | 1985-03-19 | International Standard Electric Corporation | Synchronization of digital radio pager |
US4593273A (en) * | 1984-03-16 | 1986-06-03 | Narcisse Bernadine O | Out-of-range personnel monitor and alarm |
US4649538A (en) * | 1984-09-28 | 1987-03-10 | Motorola, Inc. | Radio paging device with improved test modes |
US4755816A (en) * | 1986-10-29 | 1988-07-05 | Motorola Inc. | Battery saving method for a selective call radio paging receiver |
US4785291A (en) * | 1987-03-06 | 1988-11-15 | Hawthorne Candy C | Distance monitor especially for child surveillance |
US4978946A (en) * | 1987-08-13 | 1990-12-18 | Talkie Tooter (Canada) Ltd. | Personal security communication system |
US4851820A (en) * | 1987-10-30 | 1989-07-25 | Fernandez Emilio A | Paging device having a switch actuated signal strength detector |
US4928086A (en) * | 1989-01-30 | 1990-05-22 | Motorola, Inc. | Pager receiver having a common timer circuit for both sequential lock-out and out-of-range |
US5049875A (en) * | 1989-09-13 | 1991-09-17 | Motorola Inc. | Method and apparatus for out of range detection in response to nondetection of predetermined baud rates |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5396230A (en) * | 1991-08-08 | 1995-03-07 | Matsushita Electric Industrial Co., Ltd. | Pager with out of range detection by timing loss of synchronization |
US5349701A (en) * | 1992-01-15 | 1994-09-20 | Motorola, Inc. | Method and apparatus for broken link detect using audio energy level |
US5450613A (en) * | 1992-09-09 | 1995-09-12 | Hitachi, Ltd. | Mobile communications equipment which detects and notifies when it is moved into or out of a service area |
US5444862A (en) * | 1992-09-30 | 1995-08-22 | Fujitsu Limited | Circuit for stopping data transmission responding to low level and rapid fall of received electric field |
US5398276A (en) * | 1993-02-09 | 1995-03-14 | Safco Corporation | Cellular-system signal-strength analyzer |
US5404161A (en) * | 1993-07-27 | 1995-04-04 | Information Resources, Inc. | Tuned signal detector for use with a radio frequency receiver |
WO1995004429A1 (en) * | 1993-07-27 | 1995-02-09 | Information Resources, Inc. | Tuned channel detector |
US6018655A (en) * | 1994-01-26 | 2000-01-25 | Oki Telecom, Inc. | Imminent change warning |
US5732347A (en) * | 1994-01-26 | 1998-03-24 | Oki Telecom, Inc. | Imminent change warning |
US5722068A (en) * | 1994-01-26 | 1998-02-24 | Oki Telecom, Inc. | Imminent change warning |
US5710985A (en) * | 1994-02-17 | 1998-01-20 | Mitsubishi Denki Kabushiki Kaisha | Wireless portable telephone having antenna retraction detection means |
US5689813A (en) * | 1994-05-24 | 1997-11-18 | Nec Corporation | Radio apparatus capable of detecting field intensity |
US5825817A (en) * | 1994-07-22 | 1998-10-20 | Anritsu Corporation | Radio wave measuring apparatus for digital communication system |
US5684790A (en) * | 1994-07-22 | 1997-11-04 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system |
WO1996013950A1 (en) * | 1994-10-31 | 1996-05-09 | Motorola Inc. | A method of making a channel exit decision |
US5794148A (en) * | 1994-10-31 | 1998-08-11 | Motorola, Inc. | Method of making a channel exit decision in a communication system |
US5650769A (en) * | 1995-02-24 | 1997-07-22 | Ntp, Incorporated | Radio receiver for use in a radio tracking system and a method of operation thereof |
US5640146A (en) * | 1995-02-24 | 1997-06-17 | Ntp Incorporated | Radio tracking system and method of operation thereof |
CN1080522C (en) * | 1995-06-30 | 2002-03-06 | 三洋电机株式会社 | Digital cordless telephone device which gives warning to prevent unexpected termination of communication |
US6212245B1 (en) * | 1995-07-13 | 2001-04-03 | Canon Kabushiki Kaisha | Communication apparatus |
US5867782A (en) * | 1995-07-24 | 1999-02-02 | Samsung Electronics Co., Ltd. | Method of indicating outer communication range in digital cordless telephone system |
EP0766408A2 (en) * | 1995-09-26 | 1997-04-02 | Nec Corporation | Radio selective calling receiver capable of checking time period of stay outside coverage zone |
EP0766408A3 (en) * | 1995-09-26 | 2000-05-03 | Nec Corporation | Radio selective calling receiver capable of checking time period of stay outside coverage zone |
WO1997047144A1 (en) * | 1996-06-03 | 1997-12-11 | Motorola Inc. | Method and apparatus for registration status indication in a roaming system |
US5977881A (en) * | 1996-08-01 | 1999-11-02 | Nec Corporation | Radio selective calling receiver having battery saving function |
US5963600A (en) * | 1997-03-04 | 1999-10-05 | Northrop Grumman Corporation | Micro-controller based frequency calibration |
US5966656A (en) * | 1997-03-11 | 1999-10-12 | Motorola, Inc. | Method and apparatus for displaying signal information in a radio communication device |
US6243568B1 (en) * | 1997-03-22 | 2001-06-05 | Sharp Laboratories Of America, Inc. | System and method for intuitively indicating signal quality in a wireless digital communications network |
US6198934B1 (en) * | 1997-11-04 | 2001-03-06 | Nec Corporation | Method of judging whether radio receiver is inside or outside service area, circuit for judging the same, and radio selective-calling receiver including the circuit |
EP0948179A1 (en) * | 1998-03-31 | 1999-10-06 | Koninklijke Philips Electronics N.V. | Method for controlling the radioelectrical range, wireless telecommunication equipment using this method, base station and mobile handset of such an equipment |
US6330437B1 (en) * | 1998-03-31 | 2001-12-11 | U.S. Philips Corporation | Radio range verification method, wireless telecommunications equipment implementing this method, base station and mobile handset of such equipment |
WO2000002336A1 (en) * | 1998-07-01 | 2000-01-13 | Motorola Inc. | Satellite-based pager receiver signal quality estimates |
US6091716A (en) * | 1998-07-01 | 2000-07-18 | Motorola, Inc. | Receive signal quality estimates suitable for pagers used in satellite-based communication systems |
US7158490B1 (en) * | 1998-09-21 | 2007-01-02 | Nokia Mobile Phones Limited | Apparatus, and associated method, for effectuating power control of a communication device |
US6219540B1 (en) * | 1998-11-23 | 2001-04-17 | Motorola, Inc. | Communication device providing out-of-range battery saving and method therefor |
US6490458B1 (en) * | 1999-06-16 | 2002-12-03 | Verizon Laboratories Inc. | Portable phone bank |
US6397061B1 (en) * | 2000-06-24 | 2002-05-28 | Motorola, Inc. | Method and apparatus to reprioritize data transfer in a short range Ad Hoc network |
US7148801B2 (en) | 2001-03-12 | 2006-12-12 | Crabtree Timothy L | Article locator system |
US6788199B2 (en) | 2001-03-12 | 2004-09-07 | Eureka Technology Partners, Llc | Article locator system |
US20050007251A1 (en) * | 2001-03-12 | 2005-01-13 | Crabtree Timothy L. | Article locator system |
US20020155841A1 (en) * | 2001-04-20 | 2002-10-24 | Nec Corporation | Method and network for answering calls to mobile terminals according to user-defined response modes |
US7146173B2 (en) * | 2001-04-20 | 2006-12-05 | Nec Corporation | Method and network for answering calls to mobile terminals according to user-defined response modes |
US20030027543A1 (en) * | 2001-08-01 | 2003-02-06 | Nec Corporation | Direct conversion receiver |
US7053753B2 (en) * | 2002-02-25 | 2006-05-30 | Vinewood Technical Services, Inc. | Wireless community alerting system |
US20030163532A1 (en) * | 2002-02-25 | 2003-08-28 | Vinewood Technical Services, Inc. | Wireless community alerting system |
US7321787B2 (en) | 2002-08-20 | 2008-01-22 | Lg Electronics Inc. | Power management method and apparatus of wireless local area network module in computer system |
US20040038707A1 (en) * | 2002-08-20 | 2004-02-26 | Lg Electronics Inc. | Power management method and apparatus of wireless local area network module in computer system |
EP1392022A2 (en) * | 2002-08-20 | 2004-02-25 | Lg Electronics Inc. | Power management method and apparatus for a wireless local area network module in a computer system |
EP1392022A3 (en) * | 2002-08-20 | 2006-06-07 | Lg Electronics Inc. | Power management method and apparatus for a wireless local area network module in a computer system |
US20050192023A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features based upon a stepped down attempt rate and related methods |
US8010123B2 (en) | 2004-02-26 | 2011-08-30 | Research In Motion Limited | Cellular communications system with mobile cellular device battery saving features based upon quality of service and access denial and related methods |
US8320911B2 (en) | 2004-02-26 | 2012-11-27 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features while accommodating user access requests and related methods |
US8249614B2 (en) | 2004-02-26 | 2012-08-21 | Research In Motion Limited | Cellular communications system with mobile cellular device battery saving features based upon quality of service and access denial and related methods |
WO2005084049A1 (en) * | 2004-02-26 | 2005-09-09 | Research In Motion Limited | Cellular communications system and method for battery saving in a mobile device based on whether decisions are made automatically or manually by a user |
US20050191987A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features while accommodating user access requests and related methods |
GB2427798A (en) * | 2004-02-26 | 2007-01-03 | Research In Motion Ltd | Cellular communications system and method for battery saving in a mobile device based on whether decisions are made automatically or manually by a user |
US8160584B2 (en) | 2004-02-26 | 2012-04-17 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features while accommodating user access requests and related methods |
US20050192020A1 (en) * | 2004-02-26 | 2005-09-01 | Research In Motion Limited | Cellular communications system with mobile cellular device battery saving features based upon quality of service and access denial and related methods |
US8023943B2 (en) | 2004-02-26 | 2011-09-20 | Research In Motion Limited | Cellular communications system providing mobile cellular device battery saving features while accommodating user access requests and related methods |
GB2427798B (en) * | 2004-02-26 | 2008-09-10 | Research In Motion Ltd | Cellular communications system and method for battery saving in a mobile device based on whether decisions are made automatically or manually by a user |
US20060068731A1 (en) * | 2004-09-01 | 2006-03-30 | Seier Albert C | Advisory alert of low signal strength for cell phone user |
US7996047B2 (en) | 2004-09-01 | 2011-08-09 | Agere Systems, Inc. | Advisory alert of low signal strength for cell phone user |
US7412263B2 (en) * | 2004-09-01 | 2008-08-12 | Agere Systems, Inc. | Advisory alert of low signal strength for cell phone user |
US20080268897A1 (en) * | 2004-09-01 | 2008-10-30 | Seier Albert C | Advisory alert of low signal strength for cell phone user |
US8700061B2 (en) | 2004-11-19 | 2014-04-15 | Blackberry Limited | Method and system for predicting service drop in a wireless network |
US20060109825A1 (en) * | 2004-11-19 | 2006-05-25 | Research In Motion Limited | Method and system for predicting service drop in a wireless network |
US8295838B2 (en) | 2004-11-19 | 2012-10-23 | Research In Motion Limited | Method and system for predicting service drop in a wireless network |
EP1659816A1 (en) * | 2004-11-19 | 2006-05-24 | Research In Motion Limited | Method and System for Predicting Service Drop in a Wireless Network |
US20070191126A1 (en) * | 2006-02-14 | 2007-08-16 | Nick Mandracken | Golf Aid |
US20080299927A1 (en) * | 2007-05-31 | 2008-12-04 | Motorola, Inc. | Signal strength indication methods for use in wireless communication devices |
US8744391B2 (en) | 2007-05-31 | 2014-06-03 | Motorola Mobility Llc | Signal strength indication methods for use in wireless communication devices |
US20100238033A1 (en) * | 2009-03-20 | 2010-09-23 | Dan Blumel | Tracking and Alert Apparatus, System and Method |
US20110021147A1 (en) * | 2009-07-21 | 2011-01-27 | Tout Walid R | System and method for determining connectivity status of short range wireless devices |
US20120190306A1 (en) * | 2011-01-24 | 2012-07-26 | Honeywell International Inc. | Systems and methods for detecting a loss of communication using statistical analysis |
US8929830B2 (en) * | 2011-01-24 | 2015-01-06 | Honeywell International Inc. | Systems and methods for detecting a loss of communication using statistical analysis |
US20130331031A1 (en) * | 2012-06-07 | 2013-12-12 | Nokia Corporation | Method, apparatus, and computer program product for wireless short-range communication disconnection |
US9042823B2 (en) * | 2012-06-07 | 2015-05-26 | Nokia Corporation | Method, apparatus, and computer program product for wireless short-range communication disconnection |
US9451436B2 (en) | 2013-05-31 | 2016-09-20 | Nokia Technologies Oy | Method, apparatus, and computer program product for wireless device discovery |
US9860297B2 (en) | 2014-06-02 | 2018-01-02 | Nokia Technologies Oy | Method, apparatus, and computer program product for media selection for moving user |
US9635690B2 (en) | 2014-06-24 | 2017-04-25 | Nokia Technologies Oy | Method, apparatus, and computer program product for improving security for wireless communication |
US9565657B2 (en) * | 2014-07-22 | 2017-02-07 | Honeywell International Inc. | IOT enabled wireless one-go/all-go platform sensor network solution for connected home security systems |
US20160029346A1 (en) * | 2014-07-22 | 2016-01-28 | Honeywell International Inc. | Iot enabled wireless one-go/all-go platform sensor network solutionfor connected home security systems |
US20160088143A1 (en) * | 2014-09-24 | 2016-03-24 | Intel Corporation | Method, system and apparatus for graceful disconnection from a wireless docking station |
US9843947B2 (en) | 2015-01-14 | 2017-12-12 | Kcf Technologies, Inc. | Visual signal strength indication for a wireless device |
US9686676B2 (en) | 2015-01-16 | 2017-06-20 | Nokia Technologies Oy | Method, apparatus, and computer program product for a server controlled device wakeup |
US9949204B2 (en) | 2015-08-07 | 2018-04-17 | Provenance Asset Group Llc | Method, apparatus, and computer program product for low power data delivery |
US9967825B2 (en) * | 2016-01-20 | 2018-05-08 | Globalfoundries Inc. | Environmentally aware mobile computing devices |
US10966143B2 (en) | 2017-03-21 | 2021-03-30 | Ademco Inc. | Systems and methods for detecting and avoiding radio interference in a wireless sensor network |
US11265725B2 (en) | 2019-02-15 | 2022-03-01 | Ademco Inc. | Systems and methods for allocating wireless communication channels |
Also Published As
Publication number | Publication date |
---|---|
WO1991019367A1 (en) | 1991-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5193216A (en) | Detecting out of range in response to a loss of signal and a history of approaching out of range prior to the loss of signal | |
US5049875A (en) | Method and apparatus for out of range detection in response to nondetection of predetermined baud rates | |
EP0738442B1 (en) | Dual mode receiver having battery saving capability | |
CA2083946C (en) | Battery saving method and apparatus for providing selective receiver power switching | |
US5144296A (en) | Adaptive battery saving controller with signal quality detecting means | |
US5206855A (en) | Multiple frequency message system | |
US5559508A (en) | Emergency vehicle detector | |
US5574439A (en) | Paging receiver which displays canned and general messages | |
EP0632599A1 (en) | Purging apparatus having a battery saving function | |
BG61630B1 (en) | Method and device for swtchable distributed radio signalreception | |
JP3056084B2 (en) | Radio selective call receiver | |
KR960012958B1 (en) | Paging receiver and received signal control circuit | |
JPH0851656A (en) | Decoding device and method for analyzing encoded transmission sent to mobile message receiver | |
US4720710A (en) | Paging receiver having a plurality of test modes | |
US5734686A (en) | Selective power supply control for battery saving effectively | |
US4599615A (en) | Pager receiver comprising a memory storing a sequence of information signals to be tested | |
WO1990013983A1 (en) | Automatic time zone adjustment of portable receiver | |
US6052564A (en) | Portable individual calling device | |
US5801640A (en) | Radio pager with a message processing function | |
US5303416A (en) | Method and apparatus for adjusting peak and valley acquisition rates of a signal received by a radio communication device | |
US6112096A (en) | Pager terminal having a missing message indicator | |
US5493602A (en) | Paging receiver capable of avoiding disturbance raised on reception of an unnecessary message | |
US5551061A (en) | Apparatus and method in a radio communication system for distinguishing an identifier of a nearby transmitter from that of a more distant transmitter | |
JP2912016B2 (en) | Selective call receiver with battery saving function in first and second modes and method therefor | |
US5206636A (en) | Signal search method for selective call receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DAVIS, WALTER L.;REEL/FRAME:005343/0219 Effective date: 19900530 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |