US5168331A - Power metal-oxide-semiconductor field effect transistor - Google Patents
Power metal-oxide-semiconductor field effect transistor Download PDFInfo
- Publication number
- US5168331A US5168331A US07/648,711 US64871191A US5168331A US 5168331 A US5168331 A US 5168331A US 64871191 A US64871191 A US 64871191A US 5168331 A US5168331 A US 5168331A
- Authority
- US
- United States
- Prior art keywords
- region
- conductivity type
- trench
- oxide
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 230000005669 field effect Effects 0.000 title claims abstract description 22
- 230000015556 catabolic process Effects 0.000 claims abstract description 22
- 210000000746 body region Anatomy 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 16
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 6
- 239000005360 phosphosilicate glass Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 76
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 34
- 230000005684 electric field Effects 0.000 description 20
- 239000000377 silicon dioxide Substances 0.000 description 17
- 235000012239 silicon dioxide Nutrition 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 12
- 229920005591 polysilicon Polymers 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- -1 Boron ions Chemical class 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
- H10D12/032—Manufacture or treatment of IGBTs of vertical IGBTs
- H10D12/038—Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/461—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
- H10D12/481—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
- H10D30/0297—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/665—Vertical DMOS [VDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
- H10D62/107—Buried supplementary regions, e.g. buried guard rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/156—Drain regions of DMOS transistors
- H10D62/157—Impurity concentrations or distributions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
- H10D64/519—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their top-view geometrical layouts
Definitions
- This invention relates to power metal-oxide-semiconductor transistors and, more particularly, such transistors which include a gate region that is constructed in a groove or trench configuration.
- MOSFETs Power metal-oxide-semiconductor field effect transistors
- FIG. 1 shows in cross section a portion of a MOSFET which includes a drain region 10, a source region 11 and a gate 12.
- Drain region 10 and source region 11 are arranged in a vertical configuration and gate 12 is in a groove or trench configuration. Drain region 10 and source region 11 are both formed of heavily doped N material and gate 12 consists of polysilicon. Layered between drain region 10 and source region 11 are a drift region 13, which is made of a lightly doped N material, and a body region 14, which is made of P material.
- An insulating layer 15 is interposed between gate 12 and the semiconductor materials, and a dielectric region 19 is partially enclosed by gate 12.
- Insulating layer 15 and dielectric region 19 are typically formed of silicon dioxide. Drain region 10 is connected to a drain contact 16. Source region 11 is connected to a source contact 17 which provides electrical contact between source region 11 and body region 14. Gate 12 is connected to a gate connection pad on the chip in a manner to be described below.
- the device shown in FIG. 1 is in an "off" condition when gate 12 is grounded.
- a positive voltage is applied to drain terminal 16 so as to reverse-bias the P-N junction between drift region 13 and body region 14, an electric field is set up within drift region 13.
- the electric field reaches its maximum strength on the boundary of insulating layer 15 and drift region 13 at or near a corner in the profile of the gate, such as the point designated as 18 in FIG. 1.
- the concentration of the electric field at point 18 has frequently led to a voltage breakdown there, which can create oxide traps or pin holes in insulating layer 15, and can result in a short-circuit between drift region 13 and gate 12. Whatever the consequence, a voltage breakdown of this kind can permanently damage the device and render it unfit for further use.
- the corner of insulating layer 15 at point 18 can be rounded, as shown in FIG. 2. While this tends to reduce the strength of the electric field in this area and renders the device somewhat more resistant to voltage breakdown, the improvement in this regard is not significant.
- FIG. 2 Another solution proposed in the prior art is to form a well 20 of heavily doped P material, as shown in FIG. 2.
- the creation of a P-N junction between well 20 and drift region 13, however, has the undesirable effect of creating a junction field effect transistor in the area designated as 21 in FIG. 2. This tends to choke off the current between drain terminal 16 and source terminal 17.
- the creation of a well reduces the cell density possible in the device.
- a layer of the drift region immediately below the gate in a grooved power MOSFET is doped with ions of a conductivity type opposite to that of the drift region.
- the shield region can be doped to an extent that it takes a conductivity type opposite to that of the drift region, or to a lesser degree such that its conductivity type remains the same as, but weaker than, the drift region.
- a shield region in accordance with the invention reduces the field strength at the point where it reaches its maximum strength by a factor of 4 or 5. Moreover, if breakdown does occur in a device constructed in accordance with the invention, it will take place at a point on a P-N junction at some distance from the gate electrode. Thus, the reliability of the MOSFET is improved, because the magnitude of the breakdown voltage becomes a determinable quantity. If breakdown does occur, damage to the device is not irreversible. The device may be used again.
- the principles of this invention can also be applied to a transistor in which the drift region is omitted and to insulated gate bipolar transistors as well as MOSFETs.
- FIG. 1 shows a cross-sectional view of a typical grooved MOSFET in accordance with the prior art.
- FIG. 2 shows a cross-sectional view of the MOSFET of FIG. 1 which has been modified in accordance with the prior art to alleviate the problem of voltage breakdown.
- FIG. 3 shows a cross-sectional view of a high-voltage MOSFET constructed in accordance with the invention.
- FIGS. 4A, 4B and 4C are illustrative plan views of an array of MOSFETs of the kind shown in FIG. 3 on a semiconductor chip.
- FIG. 5 is a top view of a semiconductor chip showing an array of MOSFETs and respective gate and source connection pads.
- FIGS. 6A, 6B and 6C show details of the connections with the gate pad and certain other elements of FIG. 5.
- FIGS. 7A through 7Z and 7AA are simplified cross-sectional views of an embodiment of the invention during various stages of fabrication.
- FIG. 8 is a graph illustrating the electric field strength at cross section A--A of the device shown in FIG. 1.
- FIG. 9 is a graph illustrating the electric field strength at cross-section B--B of the device shown in FIG. 3.
- FIG. 10 shows a cross-sectional view of an insulated gate bipolar transistor (IGBT) constructed in accordance with the invention.
- IGBT insulated gate bipolar transistor
- FIG. 3 shows in cross section a power MOSFET constructed in accordance with the invention.
- the MOSFET of FIG. 3 is generally similar to the MOSFET shown in FIG. 1.
- the intensity of the electric field at point 18 has been found to be reduced substantially by the addition of shield region 30, which is formed by implanting P-type ions (such as boron) in the region adjoining insulating layer 15 directly below gate 12.
- P-type ions such as boron
- concentrations of P-type ions may be implanted in shield region 30. If relatively low concentrations of these ions are implanted, shield region 30 will remain a very lightly doped N-type material. Alternatively, a higher concentration of the P-type ions may be implanted to convert shield region 30 to a lightly doped P-type material.
- shield region 30 to limit the electric field strength at point 18 can be described as follows. As an increasing voltage is applied at drain terminal 16, the depletion region along the reverse-biased junction between drift region 13 and body region 14 expands a greater distance into drift region 13. At the punch-through voltage, this depletion region makes contact with shield region 30. When this occurs, the voltage in shield region 30 becomes approximately equal to the sum of (a) the voltage in body region 14 and (b) the punch-through voltage, and it does not significantly increase as the voltage at drain terminal 16 is further increased. In this manner, an upper limit is placed on the strength of the electric field at point 18.
- corner refers to any point on the boundary of the gate insulating layer at which the shape of the boundary causes the strength of the electric field to reach a maximum. Moreover, where the strength of the electric field has more than one local maximum on the boundary of the gate insulating layer, each such maximum will be considered a corner.
- FIGS. 1-3 is a cross-sectional view of only a portion of a MOSFET, in which the left edge of the drawing coincides with the centerline of gate 12 and the right edge of the drawing coincides with the centerline of body region 14.
- the MOSFET is normally constructed in the form of an array on a semiconductor chip.
- FIG. 4A illustrates an example of such an array, with P+ body regions 14 being surrounded by N+source regions 11 and transected by an orthogonal lattice of trenches comprising a gate 12.
- the cross sectional views shown in FIGS. 1-3 show, for example, the portion of cross section C--C between axes 40 and 41 in FIG. 4A.
- the process begins with a substrate 700 consisting of heavily doped N-type silicon (FIG. 7A).
- the thickness of substrate 700 is typically in the range of 20-28 mils.
- An epitaxial layer 701 consisting of lightly doped N-type silicon (thickness 6-20 ⁇ m) is then grown on the substrate 700 (FIG. 7B).
- Layer 701 has an ion concentration in the range of 1 ⁇ 10 15 -2 ⁇ 10 16 cm -3 .
- a silicon dioxide layer 702 is then deposited on epitaxial layer 701, a photoresist layer 703 is deposited by a masking process on silicon dioxide layer 702, and the exposed portion of silicon dioxide layer 702 is dry etched using the reactive ion etching process (FIG. 7C).
- Silicon dioxide layer 705 is then removed by selective etching (FIG. 7S). Boron ions are implanted at a concentration of 5 ⁇ 10 13 -2 ⁇ 10 14 cm -2 at the top surface of epitaxial layer 701, and are driven in, to form a P-type body region 715 (FIG. 7T). This implantation process does not adversely affect gate insulation layer 712, polysilicon layer 713 or low temperature oxide layer 714. As a result of the implantation process, a screen silicon dioxide layer 716 is formed. Photoresist layer 717 is then formed by a masking process (FIG.
- a thicker polysilicon gate layer 713 can be deposited prior to planarization (FIGS. 7O-7P). This alternative process is particularly suitable for embodiments having narrow gate trenches. Immediately following the deposition of the thick polysilicon gate layer 713 the device would appear as shown in FIG. 7AA. Gate layer 713 is then etched back to the level of photoresist layer 706, and the process described in conjunction with FIGS. 7R-7Z is carried out.
- Trenches 707 also end in fingers 61 along gate runners 53. This is shown in FIG. 6B, which is a detailed view of area 55 in FIG. 5.
- a polysilicon layer 62 overlaps and electrically contacts the top surface of fingers 61.
- a polysilicon layer 64 overlaps trench fingers 63 around the perimeter of chip 50, as shown in the detailed view of FIG. 6C (area 56).
- a metal contact layer is then deposited on the polysilicon layer in the area of gate pad 51 and on polysilicon layers 62 and 64, resulting in the formation of gate runners 53 and 65, respectively (FIG. 6B and 6C).
- Metal gate runners 53 and 65 and the metal layer on gate pad 51 are all in electrical contact with one another.
- the function of gate runners 53 and 65 is to minimize the delay in the transmission of a signal from gate pad 51 to gate trenches 707 over the entire surface of chip 51.
- connection terminals are attached to gate pad 51, source pad 52 and drain contact layer 724 (FIG. 7Z).
- An insulated gate bipolar transistor can also be constructed using the principles of this invention, as shown in FIG. 10.
- the embodiment of FIG. 10 can be viewed as a PNP bipolar junction transistor (BJT) with a emitter 89 and an collector/body region 88 separated by lightly doped N or P drain region 80 and a lightly doped N base/drift region 83.
- BJT PNP bipolar junction transistor
- This BJT is driven by an NPN MOSFET of the kind described above having a gate 82, a source region 84, a collector/body region 88, a base/drift region 83 and a drain region 80.
- a shield region 85 is located under gate 82 adjacent to insulating layer 86.
- emitter 89 is connected to a positive voltage and base/drift region 83 is connected to ground or to a negative voltage, so as to forward bias the PN junction between emitter 89 and drain region 80.
- Base/drift region 83 is grounded by applying a positive voltage to gate 82, thereby creating an inversion channel between source region 84 and base/drift region 83 and turning the MOSFET "on".
- the inversion channel is in collector/body region 88 adjacent to insulating layer 86, and it essentially ties base/drift region 83 to ground.
- electrons flow from source region 84 and combine with holes flowing from emitter 89. Some of the holes injected by emitter 89 reach collector/body region 88 and form the collector current of the device.
- the IGBT of FIG. 10 has a lower voltage drop and is therefore useful at somewhat higher voltages (greater than about 200 V), although its somewhat slower speed limits its usefulness to frequencies less than about 50 Khz. Further details and an equivalent circuit for the IGBT are given in an article entitled "Insulated Gate Transistor Physics: Modeling and Optimization of the On-State Characteristics", by H. Yilmaz et al., IEEE Transactions on Electron Devices, Vol. ED-32, No. 12, December 1985 which article is incorporated herein in its entirety.
- FIG. 3 includes a U-shaped groove
- the invention is equally applicable to transistors in which the cross-sectional shape of the groove or trench is a "V" or other configuration.
- the conductivities of the semiconductor materials may be opposite to those described, and that the drift region can be omitted entirely and the shield region can be formed in the drain region. If the conductivities of the semiconductor materials are reversed, the doping of shield region 710 (FIG.
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Element Separation (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A metal-oxide-semiconductor field effect transistor constructed in a trench or groove configuration is provided with protection against voltage breakdown by the formation of a shield region adjacent to the insulating layer which borders the gate of the transistor. The shield region is either more lightly doped than, or has a conductivity opposite to, that of the region in which it is formed, normally the drift or drain region, and it is formed adjacent to a corner on the boundary between the insulating layer and the drift or drain region, where voltage breakdown is most likely to occur.
Description
This invention relates to power metal-oxide-semiconductor transistors and, more particularly, such transistors which include a gate region that is constructed in a groove or trench configuration.
Power metal-oxide-semiconductor field effect transistors (MOSFETs) have frequently been constructed in the configuration shown in FIG. 1, which shows in cross section a portion of a MOSFET which includes a drain region 10, a source region 11 and a gate 12. Drain region 10 and source region 11 are arranged in a vertical configuration and gate 12 is in a groove or trench configuration. Drain region 10 and source region 11 are both formed of heavily doped N material and gate 12 consists of polysilicon. Layered between drain region 10 and source region 11 are a drift region 13, which is made of a lightly doped N material, and a body region 14, which is made of P material. An insulating layer 15 is interposed between gate 12 and the semiconductor materials, and a dielectric region 19 is partially enclosed by gate 12. Insulating layer 15 and dielectric region 19 are typically formed of silicon dioxide. Drain region 10 is connected to a drain contact 16. Source region 11 is connected to a source contact 17 which provides electrical contact between source region 11 and body region 14. Gate 12 is connected to a gate connection pad on the chip in a manner to be described below.
The device shown in FIG. 1 is in an "off" condition when gate 12 is grounded. When a positive voltage is applied to drain terminal 16 so as to reverse-bias the P-N junction between drift region 13 and body region 14, an electric field is set up within drift region 13. It is known in the art that the electric field reaches its maximum strength on the boundary of insulating layer 15 and drift region 13 at or near a corner in the profile of the gate, such as the point designated as 18 in FIG. 1. The concentration of the electric field at point 18 has frequently led to a voltage breakdown there, which can create oxide traps or pin holes in insulating layer 15, and can result in a short-circuit between drift region 13 and gate 12. Whatever the consequence, a voltage breakdown of this kind can permanently damage the device and render it unfit for further use.
Several ways of solving this problem had been proposed in the prior art. For example, the corner of insulating layer 15 at point 18 can be rounded, as shown in FIG. 2. While this tends to reduce the strength of the electric field in this area and renders the device somewhat more resistant to voltage breakdown, the improvement in this regard is not significant.
Another solution proposed in the prior art is to form a well 20 of heavily doped P material, as shown in FIG. 2. The creation of a P-N junction between well 20 and drift region 13, however, has the undesirable effect of creating a junction field effect transistor in the area designated as 21 in FIG. 2. This tends to choke off the current between drain terminal 16 and source terminal 17. In addition, the creation of a well reduces the cell density possible in the device.
In accordance with this invention, a layer of the drift region immediately below the gate in a grooved power MOSFET is doped with ions of a conductivity type opposite to that of the drift region. This creates a "free floating" shield region within the drift region which serves as a buffer to reduce the strength of the electric field in the drift region at the point where it reaches a maximum level, which is adjacent to a corner in the profile of the gate. The shield region can be doped to an extent that it takes a conductivity type opposite to that of the drift region, or to a lesser degree such that its conductivity type remains the same as, but weaker than, the drift region.
The introduction of a shield region in accordance with the invention reduces the field strength at the point where it reaches its maximum strength by a factor of 4 or 5. Moreover, if breakdown does occur in a device constructed in accordance with the invention, it will take place at a point on a P-N junction at some distance from the gate electrode. Thus, the reliability of the MOSFET is improved, because the magnitude of the breakdown voltage becomes a determinable quantity. If breakdown does occur, damage to the device is not irreversible. The device may be used again.
The principles of this invention can also be applied to a transistor in which the drift region is omitted and to insulated gate bipolar transistors as well as MOSFETs.
FIG. 1 shows a cross-sectional view of a typical grooved MOSFET in accordance with the prior art.
FIG. 2 shows a cross-sectional view of the MOSFET of FIG. 1 which has been modified in accordance with the prior art to alleviate the problem of voltage breakdown.
FIG. 3 shows a cross-sectional view of a high-voltage MOSFET constructed in accordance with the invention.
FIGS. 4A, 4B and 4C are illustrative plan views of an array of MOSFETs of the kind shown in FIG. 3 on a semiconductor chip.
FIG. 5 is a top view of a semiconductor chip showing an array of MOSFETs and respective gate and source connection pads.
FIGS. 6A, 6B and 6C show details of the connections with the gate pad and certain other elements of FIG. 5.
FIGS. 7A through 7Z and 7AA are simplified cross-sectional views of an embodiment of the invention during various stages of fabrication.
FIG. 8 is a graph illustrating the electric field strength at cross section A--A of the device shown in FIG. 1.
FIG. 9 is a graph illustrating the electric field strength at cross-section B--B of the device shown in FIG. 3.
FIG. 10 shows a cross-sectional view of an insulated gate bipolar transistor (IGBT) constructed in accordance with the invention.
FIG. 3 shows in cross section a power MOSFET constructed in accordance with the invention. The MOSFET of FIG. 3 is generally similar to the MOSFET shown in FIG. 1. In accordance with the invention, however, the intensity of the electric field at point 18 has been found to be reduced substantially by the addition of shield region 30, which is formed by implanting P-type ions (such as boron) in the region adjoining insulating layer 15 directly below gate 12. Various concentrations of P-type ions may be implanted in shield region 30. If relatively low concentrations of these ions are implanted, shield region 30 will remain a very lightly doped N-type material. Alternatively, a higher concentration of the P-type ions may be implanted to convert shield region 30 to a lightly doped P-type material.
The operation of shield region 30 to limit the electric field strength at point 18 can be described as follows. As an increasing voltage is applied at drain terminal 16, the depletion region along the reverse-biased junction between drift region 13 and body region 14 expands a greater distance into drift region 13. At the punch-through voltage, this depletion region makes contact with shield region 30. When this occurs, the voltage in shield region 30 becomes approximately equal to the sum of (a) the voltage in body region 14 and (b) the punch-through voltage, and it does not significantly increase as the voltage at drain terminal 16 is further increased. In this manner, an upper limit is placed on the strength of the electric field at point 18.
This effect is illustrated by reference to FIGS. 8 and 9, which were prepared by computer simulation. FIG. 8 shows the strength of the electric field at various points along cross-section A--A in FIG. 1. The horizontal axis begins at the left edge of the device shown in FIG. 1, and the location of point 18 is indicated. It will be noted that the electric field reaches a peak value of approximately 35×104 volts cm-1 at point 18. The graph of FIG. 9 shows the strength of the electric fields at points along cross section B--B in FIG. 3. Similarly, zero on the horizontal axis coincides with the left edge of the device, and point 18 is indicated. As shown in FIG. 9, the electric field reaches a peak value of approximately 8×104 volts cm-1 at point 18. Accordingly, by using a shield region in accordance with this invention, the strength of the electric field at the critical point 18 has been reduced by a factor of about 4.4.
Moreover, in the embodiment of FIG. 3 voltage breakdown will occur along the junction between drift region 13 and body region 14 instead of at point 18. This means that the voltage at which breakdown will occur can be predicted with considerable precision. In the embodiment of FIG. 1, the level at which breakdown will occur at point 18 is virtually impossible to predict. This feature of the invention will improve the reliability of high-voltage MOSFETs, since a particular breakdown voltage can be specified. Furthermore, since the breakdown occurs at a P-N junction, the device is not irreparably damaged as is normally the case when the breakdown occurs at the boundary between a semiconductor material and the gate insulating layer.
The point on the boundary of the gate insulating layer where the strength of the electric field reaches a maximum need not be a sharp corner. Accordingly, as used herein, the term corner refers to any point on the boundary of the gate insulating layer at which the shape of the boundary causes the strength of the electric field to reach a maximum. Moreover, where the strength of the electric field has more than one local maximum on the boundary of the gate insulating layer, each such maximum will be considered a corner.
It will be understood by those familiar with the art that the structure shown in FIGS. 1-3 is a cross-sectional view of only a portion of a MOSFET, in which the left edge of the drawing coincides with the centerline of gate 12 and the right edge of the drawing coincides with the centerline of body region 14. The MOSFET is normally constructed in the form of an array on a semiconductor chip. FIG. 4A illustrates an example of such an array, with P+ body regions 14 being surrounded by N+source regions 11 and transected by an orthogonal lattice of trenches comprising a gate 12. The cross sectional views shown in FIGS. 1-3 show, for example, the portion of cross section C--C between axes 40 and 41 in FIG. 4A.
FIGS. 4B and 4C illustrate other types of arrays in which a MOSFET may be constructed, FIG. 4B showing a hexagonal lattice and FIG. 4C showing a linear pattern.
A method of fabricating a preferred embodiment of a MOSFET in accordance with the invention will now be described, with reference to FIGS. 7A through 7Z:
The process begins with a substrate 700 consisting of heavily doped N-type silicon (FIG. 7A). The thickness of substrate 700 is typically in the range of 20-28 mils. An epitaxial layer 701 consisting of lightly doped N-type silicon (thickness 6-20 μm) is then grown on the substrate 700 (FIG. 7B). Layer 701 has an ion concentration in the range of 1×1015 -2×1016 cm-3. A silicon dioxide layer 702 is then deposited on epitaxial layer 701, a photoresist layer 703 is deposited by a masking process on silicon dioxide layer 702, and the exposed portion of silicon dioxide layer 702 is dry etched using the reactive ion etching process (FIG. 7C). A heavily doped P well 704 is then formed by diffusion or ion implantation (FIG. 7D). Silicon dioxide layer 702 and photoresist layer 703 are then removed and are replaced by a silicon dioxide layer 705 and a photoresist layer 706 which is applied by a masking process. Silicon dioxide layer 705 is then dry etched (FIG. 7E). A trench 707 is then formed by reactive ion etching to a depth of approximately 1-4 μm and a width of approximately 1-3 μm. A silicon dioxide layer 708 is thermally grown along the bottom and sides of trench 707 (FIG. 7G), and is then removed in order to clean the bottom and sides of trench 707 (FIG. 7H). Another silicon dioxide layer 709 is thermally grown over the bottom and sides of trench 707 (FIG. 7I), and is then dry etched using the reactive ion etching process so that the portion of silicon dioxide layer 709 covering the bottom of trench 707 is removed. (FIG. 7J).
Boron ions are then implanted into the bottom of trench 707 at a concentration of 1×1012 -1×1014 cm-2 to form shield region 710, a region of P-type conductivity, at the bottom of trench 707 (FIG. 7K). Preferably, the doping concentration is in the range of 1×1012 -1×1013 ions cm-2. As a result, region 710 has a P-ion concentration in the range of 1×1016 -1×1020 cm-3. As described above, shield region 710 provides the buffering function which reduces the strength of the field at point 18, a corner on the surface of trench 707. As shown in FIG. 7K, shield region 710 overlaps point 18, and a small region 711 of lightly doped P-type conductivity may be formed parasitically at the lip of trench 707. Alternatively, shield region 710 could be formed as a region of very lightly doped N-type conductivity by implanting the boron ions at a concentration of 1×1011 -1×1012 cm-2, yielding a shield region 710 with an N-ion concentration in the range of 5×1013 -5×1015 cm-3. If this is done, the strength of the electric field at point 18 will be reduced as a result of reduced N type doping in the vicinity of point 18. While boron ions are preferred for doping shield region 710, ions of other Group IIIa elements such as indium, gallium or aluminum may also be used.
After shield region 710 has been formed, the remainder of silicon dioxide layer 709 is removed from the side of trench 707 (FIG. 7L), and a gate insulation layer 712 is thermally grown along the sides and bottom of trench 707 (FIG. 7M). A polysilicon gate layer 713 is then deposited (FIG. 7N), followed by a low temperature oxide layer 714 (FIG. 70). Low temperature oxide layer 714 may also be a layer of borophosphosilicate glass (BPSG) or phosphosilicate glass (PSG).
To planarize the trench, low temperature oxide layer 714 is first etched (FIG. 7P), and then, using a polysilicon mask, polysilicon layer 713 is etched back to the level of photoresist layer 706 (FIG. 7Q). Photoresist layer 706 is then removed and polysilicon layer 713 is selectively dry etched to further planarize the trench (FIG. 7R).
A photoresist layer 720 is formed on interlayer dielectric 719 (FIG. 7X), and interlayer dielectric 719 and screen silicon dioxide layer 716 are etched to form source contact window 721 (FIG. 7Y). Photoresist layer 720 is removed. A metal source contact layer 722 (typically 3 μm thick) and a passivation layer 723 (typically Si2 N4 or SiO2 about 1 μm thick) are deposited. The bottom surface of the wafer is cleaned and a drain contact layer 724, consisting of an alloyable metal, is deposited (FIG. 7Z).
Alternatively, instead of depositing low temperature oxide (or BPSG or PSG) layer 714, a thicker polysilicon gate layer 713 can be deposited prior to planarization (FIGS. 7O-7P). This alternative process is particularly suitable for embodiments having narrow gate trenches. Immediately following the deposition of the thick polysilicon gate layer 713 the device would appear as shown in FIG. 7AA. Gate layer 713 is then etched back to the level of photoresist layer 706, and the process described in conjunction with FIGS. 7R-7Z is carried out.
The depth of P body well 704 (FIG. 7D) can be varied so as to achieve desired voltage breakdown characteristics. For low voltage devices, the diffusion or ion implantation process may be carried out to yield a bottom of well 704 which is at a level either above the bottom of trench 707 or less than about 0.5 μm below the bottom of trench 707. For high voltage devices, the diffusion or implantation process is carried out so that the bottom of well 704 is at a level more than 0.5 μm below the bottom of trench 707.
FIG. 5 shows a top view of a chip 50 which contains a gate contact pad 51, a source contact pad 52 and conductive gate runners 53. To form gate pad 51, photoresist layer 706 (FIG. 7E) is formed so as to cover an area slightly smaller than the area of chip 50 to be occupied by gate pad 51. In the area overlain by photoresist layer 706, trenches 707 are not formed by the reactive ion etching process described in conjunction with FIG. 7F, and instead trenches 707 end in "fingers" 60 as shown in FIG. 6A, which is a detailed view of area 54 in FIG. 5.
The perimeter of chip 50 contains structures that are known in the art and are consistent with the character and function of the chip. For example, a P region 66 as shown in FIG. 6C may be used as a shield for chip 50. If chip 50 is to be a high voltage device, additional shield regions may be formed around its perimeter.
Finally, appropriate connection terminals are attached to gate pad 51, source pad 52 and drain contact layer 724 (FIG. 7Z).
An insulated gate bipolar transistor (IGBT) can also be constructed using the principles of this invention, as shown in FIG. 10. The embodiment of FIG. 10 can be viewed as a PNP bipolar junction transistor (BJT) with a emitter 89 and an collector/body region 88 separated by lightly doped N or P drain region 80 and a lightly doped N base/drift region 83. This BJT is driven by an NPN MOSFET of the kind described above having a gate 82, a source region 84, a collector/body region 88, a base/drift region 83 and a drain region 80. A shield region 85 is located under gate 82 adjacent to insulating layer 86.
In operation, emitter 89 is connected to a positive voltage and base/drift region 83 is connected to ground or to a negative voltage, so as to forward bias the PN junction between emitter 89 and drain region 80. Base/drift region 83 is grounded by applying a positive voltage to gate 82, thereby creating an inversion channel between source region 84 and base/drift region 83 and turning the MOSFET "on". The inversion channel is in collector/body region 88 adjacent to insulating layer 86, and it essentially ties base/drift region 83 to ground. As a result, electrons flow from source region 84 and combine with holes flowing from emitter 89. Some of the holes injected by emitter 89 reach collector/body region 88 and form the collector current of the device. As compared with the MOSFET of FIG. 3, the IGBT of FIG. 10 has a lower voltage drop and is therefore useful at somewhat higher voltages (greater than about 200 V), although its somewhat slower speed limits its usefulness to frequencies less than about 50 Khz. Further details and an equivalent circuit for the IGBT are given in an article entitled "Insulated Gate Transistor Physics: Modeling and Optimization of the On-State Characteristics", by H. Yilmaz et al., IEEE Transactions on Electron Devices, Vol. ED-32, No. 12, December 1985 which article is incorporated herein in its entirety.
During the operation of the IGBT, and in the absence of shield region 85, the electric field in base/drift region 83 would reach a maximum at point 87 along the junction with insulating layer 86. In the manner described above, shield region 85 limits the voltage at point 87 to a value which is approximately equal to the sum of the voltage in collector/body region 88 and the punchthrough voltage. The device will break down along the junction between base/drift region 83 and collector/body region 88 rather than at point 87.
The fabrication of an IGBT is very similar to the process described above for a MOSFET, the sole difference being in the initial steps. Referring to FIG. 10, an epitaxial layer 80 of lightly doped N or P material is grown on a heavily doped P substrate 89. The remaining steps are exactly as described above and as illustrated in FIGS. 7B-7Z, beginning with the growing of lightly doped N epitaxial layer 701 shown in FIG. 7B, which is equivalent to base/drift region 83 in FIG. 11.
While the invention has been shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and detail may be made therein without departing from the scope and spirit of the invention. For example, while the embodiment of FIG. 3 includes a U-shaped groove, the invention is equally applicable to transistors in which the cross-sectional shape of the groove or trench is a "V" or other configuration. Moreover, it will be understood that the conductivities of the semiconductor materials may be opposite to those described, and that the drift region can be omitted entirely and the shield region can be formed in the drain region. If the conductivities of the semiconductor materials are reversed, the doping of shield region 710 (FIG. 7K) would be accomplished by implanting phosphorus, arsenic or antimony ions into an epitaxial layer of lightly doped P-type silicon. The ion concentration levels for the ion implantation process and the resulting shield region would the same as disclosed above and would produce a shield region consisting of N-type material or very lightly doped P-type material.
Claims (39)
1. A metal-oxide-semiconductor field effect transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a body region of a second conductivity type; and
a drain region of said first conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said body region into said drain region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said drain region and said insulating layer and adjacent to said corner, said shield region being of said first conductivity type and being doped to a lesser degree than said drain region, said shield region operating to inhibit voltage breakdown at or near said corner.
2. The metal-oxide-semiconductor field effect transistor of claim 1 in which said shield region has an ion concentration in the range of about 5×1013 to about 5×1015 cm-3.
3. A metal-oxide-semiconductor field effect transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a body region of a second conductivity type; and
a drain region of said first conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said body region into said drain region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said drain region and said insulating layer and adjacent to said corner, said shield region being of said second conductivity type, said shield region operating to inhibit voltage breakdown at or near said corner.
4. The metal-oxide-semiconductor field effect transistor of claim 3 in which said shield region has an ion concentration in the range of about 1×1016 to about 1×1020 cm-3.
5. The metal-oxide-semiconductor field effect transistor of claim 2 or 4 wherein said body region includes a well of relatively heavily doped material.
6. The metal-oxide-semiconductor field effect transistor of claim 5 wherein the bottom of said well is located at a level 0.5 μm or more below the bottom of said trench.
7. The metal-oxide-semiconductor field effect transistor of claim 5 wherein the bottom of said well is located at a level higher than 0.5 μm below the bottom of said trench.
8. The metal-oxide-semiconductor field effect transistor of claim 2 or 4 wherein said gate partially surrounds a dielectric region.
9. The metal-oxide-semiconductor field effect transistor of claim 8 wherein said dielectric region is selected from the group consisting of borophosphosilicate glass, phosphosilicate glass or a low temperature oxide.
10. A semiconductor chip including a plurality of the transistors claimed in claims 2 or 4 wherein said trenches form a lattice configuration.
11. The semiconductor chip of claim 10 wherein said trenches form an orthogonal lattice.
12. The semiconductor chip of claim 10 wherein said trenches form a hexagonal lattice.
13. A semiconductor chip including a plurality of the transistors claimed in claims 2 or 4 wherein said trenches form a series of substantially parallel lines.
14. A metal-oxide-semiconductor field effect transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a body region of a second conductivity type;
a drift region of said first conductivity type; and
a drain region of said first conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said body region into said drift region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said drift region and said insulating layer and adjacent to said corner, said shield region being of said first conductivity type and being doped to a lesser degree than said drift region, said shield region operating to inhibit voltage breakdown at or near said corner.
15. A metal-oxide-semiconductor field effect transistor of claim 14 in which said shield region has an ion concentration in the range of about 5×1013 to about 5×1015 cm-3.
16. A metal-oxide-semiconductor field effect transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a body region of a second conductivity type;
a drift region of said first conductivity type; and
a drain region of said first conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said body region into said drift region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said drift region and said insulating layer and adjacent to said corner, said shield region being of said second conductivity type, said shield region operating to inhibit voltage breakdown at or near said corner.
17. The metal-oxide-semiconductor field effect transistor of claim 16 in which said shield region has an ion concentration in the range of about 1×1016 to about 1×1020 cm-3.
18. The metal-oxide-semiconductor field effect transistor of claims 15 or 17 wherein said body region includes a well of relatively heavily doped material.
19. The metal-oxide-semiconductor field effect transistor of claim 18 wherein the bottom of said well is located at a level 0.5 μm or more below the bottom of said trench.
20. The metal-oxide-semiconductor field effect transistor of claim 18 wherein the bottom of said sell is located at a level higher than 0.5 μm below the bottom of said trench.
21. The metal-oxide-semiconductor field effect transistor of claims 15 or 17 wherein said gate partially surrounds a dielectric region.
22. The metal-oxide-semiconductor field effect transistor of claim 21 wherein said dielectric region is selected from the group consisting of borophosphosilicate glass, phosphosilicate glass or a low temperature oxide.
23. A semiconductor chip including a plurality of the transistors claimed in claims 15 or 17 wherein said trenches form a lattice configuration.
24. The semiconductor chip of claim 23 wherein said trenches form an orthogonal lattice.
25. The semiconductor chip of claim 23 wherein said trenches form a hexagonal lattice.
26. A semiconductor chip including a plurality of the transistors claimed in claims 15 or 17 wherein said trenches form a series of substantially parallel lines.
27. An insulated gate bipolar transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a collector/body region of a second conductivity type;
a base/drift region of said first conductivity type;
a drain region; and
an emitter of said second conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said collector/body region into said base/drift region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said base/drift region and said insulating layer and adjacent to said corner, said shield region being of said first conductivity type and being doped to a lesser degree than said base/drift region, said shield region operating to inhibit voltage breakdown at or near said corner.
28. The insulating gate bipolar transistor of claim 27 in which said shield region has an ion concentration in the range of about 5×10-- to about 5×1015 cm-3.
29. An insulated gate bipolar transistor in a grooved or trench configuration and comprising the following regions in succession:
a source region of a first conductivity type;
a collector/body region of a second conductivity type;
a base/drift region of said first conductivity type;
a drain region; and
an emitter of said second conductivity type; and additionally comprising
a gate formed in a trench or groove, said trench or groove extending through said collector/body region into said base/drift region, said gate bordered by an insulating layer, said insulating layer having a boundary, and said boundary including a corner; and
a shield region bounded by said base/drift region and said insulating layer and adjacent to said corner, said shield region being of said second conductivity type, said shield region operating to inhibit voltage breakdown at or near said corner.
30. The insulated gate bipolar transistor of claim 29 in which said shield region has an ion concentration in the range of about 1×1016 to about 1×1020 cm-3.
31. The insulated gate bipolar transistor of claims 28 or 30 wherein said collector/body region includes a well of relatively heavily doped material.
32. The insulated gate bipolar transistor of claim 31 wherein the bottom of said well is located at a level 0.5 μm or more below the bottom of said trench.
33. The insulated gate bipolar transistor of claim 31 wherein the bottom of said well is located at a level higher than 0.5 μm below the bottom of said trench.
34. The insulated gate bipolar transistor of claims 28 or 30 wherein said gate partially surrounds a dielectric region.
35. The insulated gate bipolar transistor of claim 34 wherein said dielectric region is selected from the group consisting of borophosphosilicate glass, phosphosilicate glass or a low temperature oxide.
36. A semiconductor chip including a plurality of the transistors claimed in claims 28 or 30 wherein said trenches form a lattice configuration.
37. The semiconductor chip of claim 36 wherein said trenches form an orthogonal lattice.
38. The semiconductor chip of claim 36 wherein said trenches form a hexagonal lattice.
39. A semiconductor chip including a plurality of the transistors claimed in claims 28 or 30 wherein said trenches form a series of substantially parallel lines.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/648,711 US5168331A (en) | 1991-01-31 | 1991-01-31 | Power metal-oxide-semiconductor field effect transistor |
EP19920905726 EP0523223A4 (en) | 1991-01-31 | 1992-01-30 | Power metal-oxide-semiconductor field effect transistor |
PCT/US1992/000843 WO1992014269A1 (en) | 1991-01-31 | 1992-01-30 | Power metal-oxide-semiconductor field effect transistor |
JP92505750A JPH05506335A (en) | 1991-01-31 | 1992-01-30 | Power MOS field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/648,711 US5168331A (en) | 1991-01-31 | 1991-01-31 | Power metal-oxide-semiconductor field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
US5168331A true US5168331A (en) | 1992-12-01 |
Family
ID=24601915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/648,711 Expired - Fee Related US5168331A (en) | 1991-01-31 | 1991-01-31 | Power metal-oxide-semiconductor field effect transistor |
Country Status (4)
Country | Link |
---|---|
US (1) | US5168331A (en) |
EP (1) | EP0523223A4 (en) |
JP (1) | JPH05506335A (en) |
WO (1) | WO1992014269A1 (en) |
Cited By (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5341011A (en) * | 1993-03-15 | 1994-08-23 | Siliconix Incorporated | Short channel trenched DMOS transistor |
US5349224A (en) * | 1993-06-30 | 1994-09-20 | Purdue Research Foundation | Integrable MOS and IGBT devices having trench gate structure |
US5350934A (en) * | 1992-03-05 | 1994-09-27 | Kabushiki Kaisha Toshiba | Conductivity modulation type insulated gate field effect transistor |
DE19501556A1 (en) * | 1994-01-20 | 1995-07-27 | Mitsubishi Electric Corp | Semiconductor component with trench structure |
US5471075A (en) * | 1994-05-26 | 1995-11-28 | North Carolina State University | Dual-channel emitter switched thyristor with trench gate |
US5488236A (en) * | 1994-05-26 | 1996-01-30 | North Carolina State University | Latch-up resistant bipolar transistor with trench IGFET and buried collector |
US5506421A (en) * | 1992-11-24 | 1996-04-09 | Cree Research, Inc. | Power MOSFET in silicon carbide |
US5532179A (en) * | 1992-07-24 | 1996-07-02 | Siliconix Incorporated | Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof |
WO1996024953A1 (en) * | 1995-02-10 | 1996-08-15 | Siliconix Incorporated | TRENCH FIELD EFFECT TRANSISTOR WITH REDUCED PUNCH-THROUGH SUSCEPTIBILITY AND LOW R¿DSon? |
US5578851A (en) * | 1994-08-15 | 1996-11-26 | Siliconix Incorporated | Trenched DMOS transistor having thick field oxide in termination region |
US5578508A (en) * | 1993-10-28 | 1996-11-26 | Kabushiki Kaisha Toshiba | Vertical power MOSFET and process of fabricating the same |
US5597765A (en) * | 1995-01-10 | 1997-01-28 | Siliconix Incorporated | Method for making termination structure for power MOSFET |
US5661312A (en) * | 1995-03-30 | 1997-08-26 | Motorola | Silicon carbide MOSFET |
WO1997033320A1 (en) * | 1996-03-06 | 1997-09-12 | Siliconix Incorporated | Trenched dmos transistor with lightly doped tub |
US5674766A (en) * | 1994-12-30 | 1997-10-07 | Siliconix Incorporated | Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer |
US5719409A (en) * | 1996-06-06 | 1998-02-17 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
WO1998035390A1 (en) * | 1997-02-07 | 1998-08-13 | Cooper James Albert Jr | Structure for increasing the maximum voltage of silicon carbide power transistors |
US5866931A (en) * | 1993-04-14 | 1999-02-02 | Siliconix Incorporated | DMOS power transistor with reduced number of contacts using integrated body-source connections |
US5912497A (en) * | 1997-08-06 | 1999-06-15 | North Carolina State University | Semiconductor switching devices having buried gate electrodes and methods of forming same |
US5917216A (en) * | 1995-02-10 | 1999-06-29 | Siliconix Incorporated | Trenched field effect transistor with PN depletion barrier |
US5923979A (en) * | 1997-09-03 | 1999-07-13 | Siliconix Incorporated | Planar DMOS transistor fabricated by a three mask process |
EP0948818A1 (en) * | 1996-07-19 | 1999-10-13 | SILICONIX Incorporated | High density trench dmos transistor with trench bottom implant |
US5969378A (en) * | 1997-06-12 | 1999-10-19 | Cree Research, Inc. | Latch-up free power UMOS-bipolar transistor |
US5981996A (en) * | 1995-02-17 | 1999-11-09 | Fuji Electric Co., Ltd. | Vertical trench misfet and method of manufacturing the same |
US5998836A (en) * | 1995-06-02 | 1999-12-07 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode |
US5998837A (en) * | 1995-06-02 | 1999-12-07 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode having adjustable breakdown voltage |
US6049108A (en) * | 1995-06-02 | 2000-04-11 | Siliconix Incorporated | Trench-gated MOSFET with bidirectional voltage clamping |
US6051488A (en) * | 1997-01-14 | 2000-04-18 | Fairchild Korea Semiconductor, Ltd. | Methods of forming semiconductor switching devices having trench-gate electrodes |
US6103635A (en) * | 1997-10-28 | 2000-08-15 | Fairchild Semiconductor Corp. | Trench forming process and integrated circuit device including a trench |
US6121633A (en) * | 1997-06-12 | 2000-09-19 | Cree Research, Inc. | Latch-up free power MOS-bipolar transistor |
US6121089A (en) * | 1997-10-17 | 2000-09-19 | Intersil Corporation | Methods of forming power semiconductor devices having merged split-well body regions therein |
US6133587A (en) * | 1996-01-23 | 2000-10-17 | Denso Corporation | Silicon carbide semiconductor device and process for manufacturing same |
US6140678A (en) * | 1995-06-02 | 2000-10-31 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode |
US6180958B1 (en) | 1997-02-07 | 2001-01-30 | James Albert Cooper, Jr. | Structure for increasing the maximum voltage of silicon carbide power transistors |
US6380569B1 (en) * | 1999-08-10 | 2002-04-30 | Rockwell Science Center, Llc | High power unipolar FET switch |
US6404011B2 (en) * | 1998-10-28 | 2002-06-11 | Electronics And Telecommunications Research Institute | Semiconductor power integrated circuit |
US6426260B1 (en) * | 1997-12-02 | 2002-07-30 | Magepower Semiconductor Corp. | Switching speed improvement in DMO by implanting lightly doped region under gate |
US6429481B1 (en) | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US6461918B1 (en) | 1999-12-20 | 2002-10-08 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US20030080375A1 (en) * | 2001-10-30 | 2003-05-01 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
WO2003043091A1 (en) * | 2001-11-16 | 2003-05-22 | Koninklijke Philips Electronics N.V. | Trench-gate semiconductor devices and the manufacture thereof |
US6570185B1 (en) | 1997-02-07 | 2003-05-27 | Purdue Research Foundation | Structure to reduce the on-resistance of power transistors |
US6573559B2 (en) * | 2000-03-01 | 2003-06-03 | Shindengen Electric Manufacturing Co., Ltd. | Transistor and method of manufacturing the same |
US6717864B2 (en) | 1991-11-05 | 2004-04-06 | Monlithic System Technology, Inc. | Latched sense amplifiers as high speed memory in a memory system |
US20040180500A1 (en) * | 2003-03-11 | 2004-09-16 | Metzler Richard A. | MOSFET power transistors and methods |
US20040185622A1 (en) * | 1999-04-22 | 2004-09-23 | Advanced Analogic Technologies, Inc. | Self-aligned trench transistor using etched contact |
DE10341793A1 (en) * | 2003-09-10 | 2005-04-21 | Infineon Technologies Ag | Semiconductor component with cell field of strip-shaped trench structures for trench field effect transistors and modified doping regions at lateral ends of trench structures |
EP1536480A1 (en) * | 2003-11-28 | 2005-06-01 | STMicroelectronics S.r.l. | Semiconductor power device with insulated gate, trenchgate structure and corresponding manufacturing method |
US20050167744A1 (en) * | 2004-02-02 | 2005-08-04 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
KR100521994B1 (en) * | 1996-12-27 | 2005-12-21 | 페어차일드코리아반도체 주식회사 | Trench gate type MOS transistor and its manufacturing method |
EP1453105A3 (en) * | 2003-02-26 | 2006-04-19 | Toyota Jidosha Kabushiki Kaisha | Vertical field effect transistor having a high withstand voltage |
WO2006041823A2 (en) | 2004-10-08 | 2006-04-20 | Fairchild Semiconductor Corporation | Mos-gated transistor with reduced miller capacitance |
US20060091455A1 (en) * | 2004-10-29 | 2006-05-04 | Adan Alberto O | Trench MOSFET and method of manufacturing same |
US7078296B2 (en) | 2002-01-16 | 2006-07-18 | Fairchild Semiconductor Corporation | Self-aligned trench MOSFETs and methods for making the same |
US20060237793A1 (en) * | 2005-04-22 | 2006-10-26 | International Rectifier Corporation | IGBT with injection regions between MOSFET cells |
US7265416B2 (en) | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US20070290260A1 (en) * | 2005-06-08 | 2007-12-20 | Adan Alberto O | Trench Type Mosfet And Method Of Fabricating The Same |
US7319256B1 (en) | 2006-06-19 | 2008-01-15 | Fairchild Semiconductor Corporation | Shielded gate trench FET with the shield and gate electrodes being connected together |
US7345342B2 (en) | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US7352036B2 (en) | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
US7368777B2 (en) | 2003-12-30 | 2008-05-06 | Fairchild Semiconductor Corporation | Accumulation device with charge balance structure and method of forming the same |
US7385248B2 (en) | 2005-08-09 | 2008-06-10 | Fairchild Semiconductor Corporation | Shielded gate field effect transistor with improved inter-poly dielectric |
US20080149963A1 (en) * | 2005-06-08 | 2008-06-26 | Adan Alberto O | Trench Type Mosfet and Method of Fabricating the Same |
US20080164515A1 (en) * | 2007-01-08 | 2008-07-10 | Jian Li | High-density power MOSFET with planarized metalization |
US7429523B2 (en) | 2001-10-17 | 2008-09-30 | Fairchild Semiconductor Corporation | Method of forming schottky diode with charge balance structure |
US20080246081A1 (en) * | 2007-04-03 | 2008-10-09 | Vishay-Siliconix | Self-Aligned Trench MOSFET and Method of Manufacture |
US7504306B2 (en) | 2005-04-06 | 2009-03-17 | Fairchild Semiconductor Corporation | Method of forming trench gate field effect transistor with recessed mesas |
US20090072304A1 (en) * | 2005-08-03 | 2009-03-19 | Adan Alberto O | Trench misfet |
US20090090967A1 (en) * | 2007-10-05 | 2009-04-09 | Vishay-Siliconix | Mosfet active area and edge termination area charge balance |
US7576388B1 (en) | 2002-10-03 | 2009-08-18 | Fairchild Semiconductor Corporation | Trench-gate LDMOS structures |
US20090206924A1 (en) * | 2008-02-14 | 2009-08-20 | Maxpower Semiconductor Inc. | Semiconductor Device Structures and Related Processes |
US7582519B2 (en) | 2002-11-05 | 2009-09-01 | Fairchild Semiconductor Corporation | Method of forming a trench structure having one or more diodes embedded therein adjacent a PN junction |
US7638841B2 (en) | 2003-05-20 | 2009-12-29 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US7772668B2 (en) | 2007-12-26 | 2010-08-10 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US20110024831A1 (en) * | 2008-03-26 | 2011-02-03 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US20110089486A1 (en) * | 2009-10-20 | 2011-04-21 | Vishay-Siliconix | Super-high density trench mosfet |
US20120091474A1 (en) * | 2010-10-13 | 2012-04-19 | NuPGA Corporation | Novel semiconductor and optoelectronic devices |
US8319290B2 (en) | 2010-06-18 | 2012-11-27 | Fairchild Semiconductor Corporation | Trench MOS barrier schottky rectifier with a planar surface using CMP techniques |
CN103000670A (en) * | 2011-09-15 | 2013-03-27 | 英飞凌科技股份有限公司 | Silicon carbide MOSFET with high mobility channel |
US20130146897A1 (en) * | 2011-11-28 | 2013-06-13 | Hitachi, Ltd. | 4h-SiC SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR DEVICE |
CN103413825A (en) * | 2013-08-09 | 2013-11-27 | 上海北车永电电子科技有限公司 | Flat type insulated gate bipolar transistor and manufacturing method thereof |
US8704295B1 (en) | 2008-02-14 | 2014-04-22 | Maxpower Semiconductor, Inc. | Schottky and MOSFET+Schottky structures, devices, and methods |
US20140118055A1 (en) * | 2012-10-26 | 2014-05-01 | Ixys Corporation | Igbt die structure with auxiliary p well terminal |
US8785278B2 (en) | 2012-02-02 | 2014-07-22 | Alpha And Omega Semiconductor Incorporated | Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact |
US8872278B2 (en) | 2011-10-25 | 2014-10-28 | Fairchild Semiconductor Corporation | Integrated gate runner and field implant termination for trench devices |
US20140332844A1 (en) * | 2013-05-10 | 2014-11-13 | Yongping Ding | A process method and structure for high voltage mosfets |
US8963212B2 (en) | 2008-12-08 | 2015-02-24 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US20150187913A1 (en) * | 2011-12-07 | 2015-07-02 | Nxp B.V. | Trench-gate resurf semiconductor device and manufacturing method |
CN104979350A (en) * | 2014-04-14 | 2015-10-14 | 株式会社捷太格特 | Semiconductor device |
EP2933841A1 (en) * | 2014-04-14 | 2015-10-21 | Jtekt Corporation | Semiconductor device |
CN105280640A (en) * | 2014-07-15 | 2016-01-27 | 英飞凌科技奥地利有限公司 | Semiconductor Device Comprising a Plurality of Transistor Cells and Manufacturing Method |
CN105789290A (en) * | 2016-04-26 | 2016-07-20 | 电子科技大学 | Trench gate insulated gate bipolar transistor (IGBT) device and manufacturing method thereof |
CN105845718A (en) * | 2016-05-19 | 2016-08-10 | 杭州电子科技大学 | 4H-SiC trench type insulation gate bipolar transistor |
US9431249B2 (en) | 2011-12-01 | 2016-08-30 | Vishay-Siliconix | Edge termination for super junction MOSFET devices |
US9443974B2 (en) | 2009-08-27 | 2016-09-13 | Vishay-Siliconix | Super junction trench power MOSFET device fabrication |
CN106057905A (en) * | 2016-08-16 | 2016-10-26 | 上海华虹宏力半导体制造有限公司 | Trench gate field effect transistor and manufacturing method |
US9508596B2 (en) | 2014-06-20 | 2016-11-29 | Vishay-Siliconix | Processes used in fabricating a metal-insulator-semiconductor field effect transistor |
US20170047440A1 (en) * | 2015-08-11 | 2017-02-16 | Kabushiki Kaisha Toshiba | Semiconductor device |
DE102015113493A1 (en) * | 2015-08-14 | 2017-02-16 | Infineon Technologies Ag | Semiconductor devices and a circuit for controlling a field effect transistor of a semiconductor device |
US9614043B2 (en) | 2012-02-09 | 2017-04-04 | Vishay-Siliconix | MOSFET termination trench |
US9722041B2 (en) | 2012-09-19 | 2017-08-01 | Vishay-Siliconix | Breakdown voltage blocking device |
US9842911B2 (en) | 2012-05-30 | 2017-12-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US9882044B2 (en) | 2014-08-19 | 2018-01-30 | Vishay-Siliconix | Edge termination for super-junction MOSFETs |
US9887259B2 (en) | 2014-06-23 | 2018-02-06 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
US20190006496A1 (en) * | 2017-06-30 | 2019-01-03 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
US10234486B2 (en) | 2014-08-19 | 2019-03-19 | Vishay/Siliconix | Vertical sense devices in vertical trench MOSFET |
US10468519B2 (en) | 2017-04-26 | 2019-11-05 | National Tsing Hua University | Structure of trench metal-oxide-semiconductor field-effect transistor |
US10714574B2 (en) | 2018-05-08 | 2020-07-14 | Ipower Semiconductor | Shielded trench devices |
US11004936B2 (en) * | 2018-06-01 | 2021-05-11 | Fuji Electric Co., Ltd. | Silicon carbide insulated-gate power field effect transistor |
EP4040497A1 (en) * | 2021-01-22 | 2022-08-10 | Fuji Electric Co., Ltd. | Semiconductor device |
US11538911B2 (en) | 2018-05-08 | 2022-12-27 | Ipower Semiconductor | Shielded trench devices |
US11824090B2 (en) | 2018-10-01 | 2023-11-21 | Ipower Semiconductor | Back side dopant activation in field stop IGBT |
US12262553B2 (en) | 2023-10-12 | 2025-03-25 | Ipower Semiconductor | Field stop IGBT with grown injection region |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3307785B2 (en) * | 1994-12-13 | 2002-07-24 | 三菱電機株式会社 | Insulated gate semiconductor device |
US6008520A (en) * | 1994-12-30 | 1999-12-28 | Siliconix Incorporated | Trench MOSFET with heavily doped delta layer to provide low on- resistance |
US5688725A (en) * | 1994-12-30 | 1997-11-18 | Siliconix Incorporated | Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance |
US6040599A (en) | 1996-03-12 | 2000-03-21 | Mitsubishi Denki Kabushiki Kaisha | Insulated trench semiconductor device with particular layer structure |
US5770878A (en) * | 1996-04-10 | 1998-06-23 | Harris Corporation | Trench MOS gate device |
JPH1098188A (en) * | 1996-08-01 | 1998-04-14 | Kansai Electric Power Co Inc:The | Insulated gate semiconductor device |
EP0893830A1 (en) * | 1996-12-11 | 1999-01-27 | The Kansai Electric Power Co., Inc. | Insulated gate semiconductor device |
US6342709B1 (en) | 1997-12-10 | 2002-01-29 | The Kansai Electric Power Co., Inc. | Insulated gate semiconductor device |
JP4738562B2 (en) * | 2000-03-15 | 2011-08-03 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
US6399998B1 (en) * | 2000-09-29 | 2002-06-04 | Rockwell Technologies, Llc | High voltage insulated-gate bipolar switch |
US6537921B2 (en) * | 2001-05-23 | 2003-03-25 | Vram Technologies, Llc | Vertical metal oxide silicon field effect semiconductor diodes |
JP4500558B2 (en) * | 2004-02-09 | 2010-07-14 | トヨタ自動車株式会社 | Insulated gate type semiconductor device manufacturing method |
JP4498796B2 (en) * | 2004-03-29 | 2010-07-07 | トヨタ自動車株式会社 | Insulated gate semiconductor device and manufacturing method thereof |
JP4500639B2 (en) * | 2004-09-24 | 2010-07-14 | トヨタ自動車株式会社 | Trench gate type semiconductor device and manufacturing method thereof |
JP2006093457A (en) * | 2004-09-24 | 2006-04-06 | Toyota Motor Corp | Insulated gate semiconductor device |
JP2009135360A (en) * | 2007-12-03 | 2009-06-18 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP5303965B2 (en) * | 2008-03-03 | 2013-10-02 | 富士電機株式会社 | Manufacturing method of semiconductor device |
US9425305B2 (en) * | 2009-10-20 | 2016-08-23 | Vishay-Siliconix | Structures of and methods of fabricating split gate MIS devices |
JP6885414B2 (en) * | 2019-03-11 | 2021-06-16 | 富士電機株式会社 | Semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4503449A (en) * | 1981-09-14 | 1985-03-05 | U.S. Philips Corporation | V-Mos field effect transistor |
US4553151A (en) * | 1982-09-23 | 1985-11-12 | Eaton Corporation | Bidirectional power FET with field shaping |
US4835585A (en) * | 1984-11-26 | 1989-05-30 | American Telephone And Telegraph Company, At&T Bell Laboratories | Trench gate structures |
US4835586A (en) * | 1987-09-21 | 1989-05-30 | Siliconix Incorporated | Dual-gate high density fet |
US4893160A (en) * | 1987-11-13 | 1990-01-09 | Siliconix Incorporated | Method for increasing the performance of trenched devices and the resulting structure |
US5072266A (en) * | 1988-12-27 | 1991-12-10 | Siliconix Incorporated | Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658267A (en) * | 1979-10-17 | 1981-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Insulated gate type field-effect transistor |
JPS5916379A (en) * | 1982-07-19 | 1984-01-27 | Matsushita Electronics Corp | Mos field-effect transistor and manufacture thereof |
JPS6028271A (en) * | 1983-07-26 | 1985-02-13 | Nissan Motor Co Ltd | Vertical type mosfet |
JPS61142775A (en) * | 1984-12-15 | 1986-06-30 | Matsushita Electric Works Ltd | MOS transistor |
US4767722A (en) * | 1986-03-24 | 1988-08-30 | Siliconix Incorporated | Method for making planar vertical channel DMOS structures |
US4941026A (en) * | 1986-12-05 | 1990-07-10 | General Electric Company | Semiconductor devices exhibiting minimum on-resistance |
JPH0783118B2 (en) * | 1988-06-08 | 1995-09-06 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
JPH02206175A (en) * | 1989-02-06 | 1990-08-15 | Fuji Electric Co Ltd | Mos semiconductor device |
JPH1185976A (en) * | 1997-09-08 | 1999-03-30 | Dainippon Screen Mfg Co Ltd | Picture noise analysis method and recording medium |
-
1991
- 1991-01-31 US US07/648,711 patent/US5168331A/en not_active Expired - Fee Related
-
1992
- 1992-01-30 EP EP19920905726 patent/EP0523223A4/en not_active Withdrawn
- 1992-01-30 JP JP92505750A patent/JPH05506335A/en active Pending
- 1992-01-30 WO PCT/US1992/000843 patent/WO1992014269A1/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4503449A (en) * | 1981-09-14 | 1985-03-05 | U.S. Philips Corporation | V-Mos field effect transistor |
US4553151A (en) * | 1982-09-23 | 1985-11-12 | Eaton Corporation | Bidirectional power FET with field shaping |
US4835585A (en) * | 1984-11-26 | 1989-05-30 | American Telephone And Telegraph Company, At&T Bell Laboratories | Trench gate structures |
US4835586A (en) * | 1987-09-21 | 1989-05-30 | Siliconix Incorporated | Dual-gate high density fet |
US4893160A (en) * | 1987-11-13 | 1990-01-09 | Siliconix Incorporated | Method for increasing the performance of trenched devices and the resulting structure |
US5072266A (en) * | 1988-12-27 | 1991-12-10 | Siliconix Incorporated | Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry |
Non-Patent Citations (2)
Title |
---|
Yilmaz, H. et al., Insulated Gate Transistor Physics: Modeling and Optimization of the On State Characteristics , IEEE Transactions on Electron Devices, vol. ED 32, No. 12, Dec. 1985, pp. 2812 2818. * |
Yilmaz, H. et al., Insulated Gate Transistor Physics: Modeling and Optimization of the On-State Characteristics, IEEE Transactions on Electron Devices, vol. ED-32, No. 12, Dec. 1985, pp. 2812-2818. |
Cited By (239)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7634707B2 (en) | 1991-11-05 | 2009-12-15 | Mosys, Inc. | Error detection/correction method |
US6717864B2 (en) | 1991-11-05 | 2004-04-06 | Monlithic System Technology, Inc. | Latched sense amplifiers as high speed memory in a memory system |
US5350934A (en) * | 1992-03-05 | 1994-09-27 | Kabushiki Kaisha Toshiba | Conductivity modulation type insulated gate field effect transistor |
US5910669A (en) * | 1992-07-24 | 1999-06-08 | Siliconix Incorporated | Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof |
US5532179A (en) * | 1992-07-24 | 1996-07-02 | Siliconix Incorporated | Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof |
US5558313A (en) * | 1992-07-24 | 1996-09-24 | Siliconix Inorporated | Trench field effect transistor with reduced punch-through susceptibility and low RDSon |
US5981344A (en) * | 1992-07-24 | 1999-11-09 | Siliconix Incorporated | Trench field effect transistor with reduced punch-through susceptibility and low RDSon |
US5506421A (en) * | 1992-11-24 | 1996-04-09 | Cree Research, Inc. | Power MOSFET in silicon carbide |
US5474943A (en) * | 1993-03-15 | 1995-12-12 | Siliconix Incorporated | Method for fabricating a short channel trenched DMOS transistor |
US5341011A (en) * | 1993-03-15 | 1994-08-23 | Siliconix Incorporated | Short channel trenched DMOS transistor |
US5866931A (en) * | 1993-04-14 | 1999-02-02 | Siliconix Incorporated | DMOS power transistor with reduced number of contacts using integrated body-source connections |
US5349224A (en) * | 1993-06-30 | 1994-09-20 | Purdue Research Foundation | Integrable MOS and IGBT devices having trench gate structure |
US5578508A (en) * | 1993-10-28 | 1996-11-26 | Kabushiki Kaisha Toshiba | Vertical power MOSFET and process of fabricating the same |
US5541425A (en) * | 1994-01-20 | 1996-07-30 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device having trench structure |
DE19501556A1 (en) * | 1994-01-20 | 1995-07-27 | Mitsubishi Electric Corp | Semiconductor component with trench structure |
DE19501556C2 (en) * | 1994-01-20 | 1999-03-04 | Mitsubishi Electric Corp | Semiconductor device with a trench structure, use of a semiconductor device with a trench structure and method for producing a semiconductor device with a trench structure |
US5795792A (en) * | 1994-01-20 | 1998-08-18 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor device having a trench structure |
US5471075A (en) * | 1994-05-26 | 1995-11-28 | North Carolina State University | Dual-channel emitter switched thyristor with trench gate |
US5488236A (en) * | 1994-05-26 | 1996-01-30 | North Carolina State University | Latch-up resistant bipolar transistor with trench IGFET and buried collector |
US5639676A (en) * | 1994-08-15 | 1997-06-17 | Siliconix Incorporated | Trenched DMOS transistor fabrication having thick termination region oxide |
US5578851A (en) * | 1994-08-15 | 1996-11-26 | Siliconix Incorporated | Trenched DMOS transistor having thick field oxide in termination region |
US5895952A (en) * | 1994-12-30 | 1999-04-20 | Siliconix Incorporated | Trench MOSFET with multi-resistivity drain to provide low on-resistance |
US5674766A (en) * | 1994-12-30 | 1997-10-07 | Siliconix Incorporated | Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer |
US5614751A (en) * | 1995-01-10 | 1997-03-25 | Siliconix Incorporated | Edge termination structure for power MOSFET |
US5597765A (en) * | 1995-01-10 | 1997-01-28 | Siliconix Incorporated | Method for making termination structure for power MOSFET |
WO1996024953A1 (en) * | 1995-02-10 | 1996-08-15 | Siliconix Incorporated | TRENCH FIELD EFFECT TRANSISTOR WITH REDUCED PUNCH-THROUGH SUSCEPTIBILITY AND LOW R¿DSon? |
US5917216A (en) * | 1995-02-10 | 1999-06-29 | Siliconix Incorporated | Trenched field effect transistor with PN depletion barrier |
US6174773B1 (en) | 1995-02-17 | 2001-01-16 | Fuji Electric Co., Ltd. | Method of manufacturing vertical trench misfet |
US5981996A (en) * | 1995-02-17 | 1999-11-09 | Fuji Electric Co., Ltd. | Vertical trench misfet and method of manufacturing the same |
US5661312A (en) * | 1995-03-30 | 1997-08-26 | Motorola | Silicon carbide MOSFET |
US6140678A (en) * | 1995-06-02 | 2000-10-31 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode |
US6049108A (en) * | 1995-06-02 | 2000-04-11 | Siliconix Incorporated | Trench-gated MOSFET with bidirectional voltage clamping |
US5998837A (en) * | 1995-06-02 | 1999-12-07 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode having adjustable breakdown voltage |
US5998836A (en) * | 1995-06-02 | 1999-12-07 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode |
US6133587A (en) * | 1996-01-23 | 2000-10-17 | Denso Corporation | Silicon carbide semiconductor device and process for manufacturing same |
US5821583A (en) * | 1996-03-06 | 1998-10-13 | Siliconix Incorporated | Trenched DMOS transistor with lightly doped tub |
WO1997033320A1 (en) * | 1996-03-06 | 1997-09-12 | Siliconix Incorporated | Trenched dmos transistor with lightly doped tub |
US5719409A (en) * | 1996-06-06 | 1998-02-17 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
US5831288A (en) * | 1996-06-06 | 1998-11-03 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
EP0948818A1 (en) * | 1996-07-19 | 1999-10-13 | SILICONIX Incorporated | High density trench dmos transistor with trench bottom implant |
EP0948818A4 (en) * | 1996-07-19 | 2000-01-19 | Siliconix Inc | High density trench dmos transistor with trench bottom implant |
EP2043158A3 (en) * | 1996-07-19 | 2010-04-28 | SILICONIX Incorporated | Trench DMOS transistor with trench bottom implant |
KR100521994B1 (en) * | 1996-12-27 | 2005-12-21 | 페어차일드코리아반도체 주식회사 | Trench gate type MOS transistor and its manufacturing method |
US6051488A (en) * | 1997-01-14 | 2000-04-18 | Fairchild Korea Semiconductor, Ltd. | Methods of forming semiconductor switching devices having trench-gate electrodes |
US6180958B1 (en) | 1997-02-07 | 2001-01-30 | James Albert Cooper, Jr. | Structure for increasing the maximum voltage of silicon carbide power transistors |
WO1998035390A1 (en) * | 1997-02-07 | 1998-08-13 | Cooper James Albert Jr | Structure for increasing the maximum voltage of silicon carbide power transistors |
US6570185B1 (en) | 1997-02-07 | 2003-05-27 | Purdue Research Foundation | Structure to reduce the on-resistance of power transistors |
US6121633A (en) * | 1997-06-12 | 2000-09-19 | Cree Research, Inc. | Latch-up free power MOS-bipolar transistor |
US5969378A (en) * | 1997-06-12 | 1999-10-19 | Cree Research, Inc. | Latch-up free power UMOS-bipolar transistor |
US5912497A (en) * | 1997-08-06 | 1999-06-15 | North Carolina State University | Semiconductor switching devices having buried gate electrodes and methods of forming same |
US5923979A (en) * | 1997-09-03 | 1999-07-13 | Siliconix Incorporated | Planar DMOS transistor fabricated by a three mask process |
US6121089A (en) * | 1997-10-17 | 2000-09-19 | Intersil Corporation | Methods of forming power semiconductor devices having merged split-well body regions therein |
US6103635A (en) * | 1997-10-28 | 2000-08-15 | Fairchild Semiconductor Corp. | Trench forming process and integrated circuit device including a trench |
US6429481B1 (en) | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US7511339B2 (en) | 1997-11-14 | 2009-03-31 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US7696571B2 (en) | 1997-11-14 | 2010-04-13 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US7148111B2 (en) | 1997-11-14 | 2006-12-12 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US8476133B2 (en) | 1997-11-14 | 2013-07-02 | Fairchild Semiconductor Corporation | Method of manufacture and structure for a trench transistor having a heavy body region |
US7736978B2 (en) | 1997-11-14 | 2010-06-15 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US8044463B2 (en) | 1997-11-14 | 2011-10-25 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US6710406B2 (en) | 1997-11-14 | 2004-03-23 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US20050079676A1 (en) * | 1997-11-14 | 2005-04-14 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US6828195B2 (en) | 1997-11-14 | 2004-12-07 | Fairchild Semiconductor Corporation | Method of manufacturing a trench transistor having a heavy body region |
US6426260B1 (en) * | 1997-12-02 | 2002-07-30 | Magepower Semiconductor Corp. | Switching speed improvement in DMO by implanting lightly doped region under gate |
US6404011B2 (en) * | 1998-10-28 | 2002-06-11 | Electronics And Telecommunications Research Institute | Semiconductor power integrated circuit |
US20040185622A1 (en) * | 1999-04-22 | 2004-09-23 | Advanced Analogic Technologies, Inc. | Self-aligned trench transistor using etched contact |
US6924198B2 (en) * | 1999-04-22 | 2005-08-02 | Advanced Analogic Technologies, Inc. | Self-aligned trench transistor using etched contact |
US6380569B1 (en) * | 1999-08-10 | 2002-04-30 | Rockwell Science Center, Llc | High power unipolar FET switch |
US7625793B2 (en) | 1999-12-20 | 2009-12-01 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US6461918B1 (en) | 1999-12-20 | 2002-10-08 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US6534825B2 (en) | 1999-12-20 | 2003-03-18 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US6706615B2 (en) | 2000-03-01 | 2004-03-16 | Shindengen Electric Manufacturing Co., Ltd. | Method of manufacturing a transistor |
US20030203576A1 (en) * | 2000-03-01 | 2003-10-30 | Shindengen Electric Manufacturing Co., Ltd. | Method of manufacturing a transistor |
US6573559B2 (en) * | 2000-03-01 | 2003-06-03 | Shindengen Electric Manufacturing Co., Ltd. | Transistor and method of manufacturing the same |
US7345342B2 (en) | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US9368587B2 (en) | 2001-01-30 | 2016-06-14 | Fairchild Semiconductor Corporation | Accumulation-mode field effect transistor with improved current capability |
US7429523B2 (en) | 2001-10-17 | 2008-09-30 | Fairchild Semiconductor Corporation | Method of forming schottky diode with charge balance structure |
US6909142B2 (en) * | 2001-10-30 | 2005-06-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including a channel stop structure and method of manufacturing the same |
US20050233542A1 (en) * | 2001-10-30 | 2005-10-20 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including a channel stop structure and method of manufacturing the same |
US20050208723A1 (en) * | 2001-10-30 | 2005-09-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including a channel stop structure and method of manufacturing the same |
US20030080375A1 (en) * | 2001-10-30 | 2003-05-01 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US7189620B2 (en) | 2001-10-30 | 2007-03-13 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including a channel stop structure and method of manufacturing the same |
WO2003043091A1 (en) * | 2001-11-16 | 2003-05-22 | Koninklijke Philips Electronics N.V. | Trench-gate semiconductor devices and the manufacture thereof |
US6784488B2 (en) | 2001-11-16 | 2004-08-31 | Koninklijke Philips Electronics N.V. | Trench-gate semiconductor devices and the manufacture thereof |
US7078296B2 (en) | 2002-01-16 | 2006-07-18 | Fairchild Semiconductor Corporation | Self-aligned trench MOSFETs and methods for making the same |
US7605040B2 (en) | 2002-02-23 | 2009-10-20 | Fairchild Korea Semiconductor Ltd. | Method of forming high breakdown voltage low on-resistance lateral DMOS transistor |
US7265416B2 (en) | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US7576388B1 (en) | 2002-10-03 | 2009-08-18 | Fairchild Semiconductor Corporation | Trench-gate LDMOS structures |
US8198677B2 (en) | 2002-10-03 | 2012-06-12 | Fairchild Semiconductor Corporation | Trench-gate LDMOS structures |
US7582519B2 (en) | 2002-11-05 | 2009-09-01 | Fairchild Semiconductor Corporation | Method of forming a trench structure having one or more diodes embedded therein adjacent a PN junction |
EP1453105A3 (en) * | 2003-02-26 | 2006-04-19 | Toyota Jidosha Kabushiki Kaisha | Vertical field effect transistor having a high withstand voltage |
WO2004082111A3 (en) * | 2003-03-11 | 2004-12-02 | Vram Technologies Llc | Mosfet power transistors and methods |
US20040180500A1 (en) * | 2003-03-11 | 2004-09-16 | Metzler Richard A. | MOSFET power transistors and methods |
WO2004082111A2 (en) * | 2003-03-11 | 2004-09-23 | Vram Technologies, Llc | Mosfet power transistors and methods |
US6958275B2 (en) | 2003-03-11 | 2005-10-25 | Integrated Discrete Devices, Llc | MOSFET power transistors and methods |
US8013387B2 (en) | 2003-05-20 | 2011-09-06 | Fairchild Semiconductor Corporation | Power semiconductor devices with shield and gate contacts and methods of manufacture |
US7855415B2 (en) | 2003-05-20 | 2010-12-21 | Fairchild Semiconductor Corporation | Power semiconductor devices having termination structures and methods of manufacture |
US7638841B2 (en) | 2003-05-20 | 2009-12-29 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US8143123B2 (en) | 2003-05-20 | 2012-03-27 | Fairchild Semiconductor Corporation | Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices |
US7982265B2 (en) | 2003-05-20 | 2011-07-19 | Fairchild Semiconductor Corporation | Trenched shield gate power semiconductor devices and methods of manufacture |
US8129245B2 (en) | 2003-05-20 | 2012-03-06 | Fairchild Semiconductor Corporation | Methods of manufacturing power semiconductor devices with shield and gate contacts |
US8143124B2 (en) | 2003-05-20 | 2012-03-27 | Fairchild Semiconductor Corporation | Methods of making power semiconductor devices with thick bottom oxide layer |
US8786045B2 (en) | 2003-05-20 | 2014-07-22 | Fairchild Semiconductor Corporation | Power semiconductor devices having termination structures |
US8350317B2 (en) | 2003-05-20 | 2013-01-08 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US7652326B2 (en) | 2003-05-20 | 2010-01-26 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US8013391B2 (en) | 2003-05-20 | 2011-09-06 | Fairchild Semiconductor Corporation | Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture |
US8936985B2 (en) | 2003-05-20 | 2015-01-20 | Fairchild Semiconductor Corporation | Methods related to power semiconductor devices with thick bottom oxide layers |
US8889511B2 (en) | 2003-05-20 | 2014-11-18 | Fairchild Semiconductor Corporation | Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor |
US7446373B2 (en) | 2003-09-10 | 2008-11-04 | Infineon Technologies Ag | Semiconductor component and method for producing it |
DE10341793A1 (en) * | 2003-09-10 | 2005-04-21 | Infineon Technologies Ag | Semiconductor component with cell field of strip-shaped trench structures for trench field effect transistors and modified doping regions at lateral ends of trench structures |
DE10341793B4 (en) | 2003-09-10 | 2021-09-23 | Infineon Technologies Ag | Semiconductor component and method for its manufacture |
US7863680B2 (en) | 2003-09-10 | 2011-01-04 | Infineon Technologies Ag | Semiconductor component and method for producing it |
EP1536480A1 (en) * | 2003-11-28 | 2005-06-01 | STMicroelectronics S.r.l. | Semiconductor power device with insulated gate, trenchgate structure and corresponding manufacturing method |
US20050145977A1 (en) * | 2003-11-28 | 2005-07-07 | Alessandria Antonino S. | Semiconductor power device with insulated gate and trench-gate structure and corresponding manufacturing method |
US7205607B2 (en) | 2003-11-28 | 2007-04-17 | Stmicroelectronics S.R.L | Semiconductor power device with insulated gate and trench-gate structure and corresponding manufacturing method |
US7936008B2 (en) | 2003-12-30 | 2011-05-03 | Fairchild Semiconductor Corporation | Structure and method for forming accumulation-mode field effect transistor with improved current capability |
US7368777B2 (en) | 2003-12-30 | 2008-05-06 | Fairchild Semiconductor Corporation | Accumulation device with charge balance structure and method of forming the same |
US8518777B2 (en) | 2003-12-30 | 2013-08-27 | Fairchild Semiconductor Corporation | Method for forming accumulation-mode field effect transistor with improved current capability |
US20050167744A1 (en) * | 2004-02-02 | 2005-08-04 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US7489011B2 (en) | 2004-02-02 | 2009-02-10 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US7323386B2 (en) | 2004-02-02 | 2008-01-29 | Hamza Yilmaz | Method of fabricating semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US20060065924A1 (en) * | 2004-02-02 | 2006-03-30 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US7405452B2 (en) | 2004-02-02 | 2008-07-29 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US20050167695A1 (en) * | 2004-02-02 | 2005-08-04 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated pn junction for enhanced breakdown characteristics |
US7427800B2 (en) * | 2004-02-02 | 2008-09-23 | Hamza Yilmaz | Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US20060170036A1 (en) * | 2004-02-02 | 2006-08-03 | Hamza Yilmaz | Method of fabricating semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics |
US8026558B2 (en) | 2004-08-03 | 2011-09-27 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
US7732876B2 (en) | 2004-08-03 | 2010-06-08 | Fairchild Semiconductor Corporation | Power transistor with trench sinker for contacting the backside |
US8148233B2 (en) | 2004-08-03 | 2012-04-03 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
US7352036B2 (en) | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
EP1803159A2 (en) * | 2004-10-08 | 2007-07-04 | Fairchild Semiconductor Corporation | Mos-gated transistor with reduced miller capacitance |
EP1803159A4 (en) * | 2004-10-08 | 2008-12-24 | Fairchild Semiconductor | MOS GRID TRANSISTOR HAVING REDUCED MILLING CAPABILITY |
WO2006041823A2 (en) | 2004-10-08 | 2006-04-20 | Fairchild Semiconductor Corporation | Mos-gated transistor with reduced miller capacitance |
US7265415B2 (en) | 2004-10-08 | 2007-09-04 | Fairchild Semiconductor Corporation | MOS-gated transistor with reduced miller capacitance |
US7534683B2 (en) | 2004-10-08 | 2009-05-19 | Fairchild Semiconductor Corporation | Method of making a MOS-gated transistor with reduced miller capacitance |
US20060091455A1 (en) * | 2004-10-29 | 2006-05-04 | Adan Alberto O | Trench MOSFET and method of manufacturing same |
US7504306B2 (en) | 2005-04-06 | 2009-03-17 | Fairchild Semiconductor Corporation | Method of forming trench gate field effect transistor with recessed mesas |
US8084327B2 (en) | 2005-04-06 | 2011-12-27 | Fairchild Semiconductor Corporation | Method for forming trench gate field effect transistor with recessed mesas using spacers |
US8680611B2 (en) | 2005-04-06 | 2014-03-25 | Fairchild Semiconductor Corporation | Field effect transistor and schottky diode structures |
US20060237793A1 (en) * | 2005-04-22 | 2006-10-26 | International Rectifier Corporation | IGBT with injection regions between MOSFET cells |
WO2006116161A1 (en) * | 2005-04-22 | 2006-11-02 | International Rectifier Corporation | Igbt with injection regions between mosfet cells |
US7235825B2 (en) * | 2005-04-22 | 2007-06-26 | International Rectifier Corporation | IGBT with injection regions between MOSFET cells |
US20080149963A1 (en) * | 2005-06-08 | 2008-06-26 | Adan Alberto O | Trench Type Mosfet and Method of Fabricating the Same |
US7705396B2 (en) | 2005-06-08 | 2010-04-27 | Sharp Kabushiki Kaisha | Trench type MOSFET and method of fabricating the same |
US20070290260A1 (en) * | 2005-06-08 | 2007-12-20 | Adan Alberto O | Trench Type Mosfet And Method Of Fabricating The Same |
US20090072304A1 (en) * | 2005-08-03 | 2009-03-19 | Adan Alberto O | Trench misfet |
US7598144B2 (en) | 2005-08-09 | 2009-10-06 | Fairchild Semiconductor Corporation | Method for forming inter-poly dielectric in shielded gate field effect transistor |
US7385248B2 (en) | 2005-08-09 | 2008-06-10 | Fairchild Semiconductor Corporation | Shielded gate field effect transistor with improved inter-poly dielectric |
US7859047B2 (en) | 2006-06-19 | 2010-12-28 | Fairchild Semiconductor Corporation | Shielded gate trench FET with the shield and gate electrodes connected together in non-active region |
US7473603B2 (en) | 2006-06-19 | 2009-01-06 | Fairchild Semiconductor Corporation | Method for forming a shielded gate trench FET with the shield and gate electrodes being connected together |
US7319256B1 (en) | 2006-06-19 | 2008-01-15 | Fairchild Semiconductor Corporation | Shielded gate trench FET with the shield and gate electrodes being connected together |
US20080164515A1 (en) * | 2007-01-08 | 2008-07-10 | Jian Li | High-density power MOSFET with planarized metalization |
US9437729B2 (en) | 2007-01-08 | 2016-09-06 | Vishay-Siliconix | High-density power MOSFET with planarized metalization |
US9947770B2 (en) | 2007-04-03 | 2018-04-17 | Vishay-Siliconix | Self-aligned trench MOSFET and method of manufacture |
US20080246081A1 (en) * | 2007-04-03 | 2008-10-09 | Vishay-Siliconix | Self-Aligned Trench MOSFET and Method of Manufacture |
US9761696B2 (en) | 2007-04-03 | 2017-09-12 | Vishay-Siliconix | Self-aligned trench MOSFET and method of manufacture |
US20090090967A1 (en) * | 2007-10-05 | 2009-04-09 | Vishay-Siliconix | Mosfet active area and edge termination area charge balance |
US9484451B2 (en) | 2007-10-05 | 2016-11-01 | Vishay-Siliconix | MOSFET active area and edge termination area charge balance |
US7772668B2 (en) | 2007-12-26 | 2010-08-10 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US9224853B2 (en) | 2007-12-26 | 2015-12-29 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US8659076B2 (en) | 2008-02-14 | 2014-02-25 | Maxpower Semiconductor, Inc. | Semiconductor device structures and related processes |
EP2248159A4 (en) * | 2008-02-14 | 2011-07-13 | Maxpower Semiconductor Inc | SEMICONDUCTOR DEVICE STRUCTURES AND METHODS RELATING THERETO |
US8076719B2 (en) | 2008-02-14 | 2011-12-13 | Maxpower Semiconductor, Inc. | Semiconductor device structures and related processes |
US20090206924A1 (en) * | 2008-02-14 | 2009-08-20 | Maxpower Semiconductor Inc. | Semiconductor Device Structures and Related Processes |
US8466025B2 (en) | 2008-02-14 | 2013-06-18 | Maxpower Semiconductor, Inc. | Semiconductor device structures and related processes |
EP2248159A2 (en) * | 2008-02-14 | 2010-11-10 | Maxpower Semiconductor, Inc. | Semiconductor device structures and related processes |
US8704295B1 (en) | 2008-02-14 | 2014-04-22 | Maxpower Semiconductor, Inc. | Schottky and MOSFET+Schottky structures, devices, and methods |
US12034073B2 (en) | 2008-03-26 | 2024-07-09 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
CN101981701B (en) * | 2008-03-26 | 2013-10-02 | 罗姆股份有限公司 | Semiconductor device, and method for manufacturing the same |
US10290733B2 (en) | 2008-03-26 | 2019-05-14 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US20110024831A1 (en) * | 2008-03-26 | 2011-02-03 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US11127851B2 (en) | 2008-03-26 | 2021-09-21 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US12009420B2 (en) | 2008-03-26 | 2024-06-11 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US8283721B2 (en) * | 2008-03-26 | 2012-10-09 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US9166038B2 (en) | 2008-03-26 | 2015-10-20 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US10686067B2 (en) | 2008-03-26 | 2020-06-16 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US9496387B2 (en) | 2008-03-26 | 2016-11-15 | Rohm Co., Ltd. | Semiconductor device, and method for manufacturing the same |
US9391193B2 (en) | 2008-12-08 | 2016-07-12 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US8963212B2 (en) | 2008-12-08 | 2015-02-24 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US9443974B2 (en) | 2009-08-27 | 2016-09-13 | Vishay-Siliconix | Super junction trench power MOSFET device fabrication |
US9431530B2 (en) | 2009-10-20 | 2016-08-30 | Vishay-Siliconix | Super-high density trench MOSFET |
US20110089486A1 (en) * | 2009-10-20 | 2011-04-21 | Vishay-Siliconix | Super-high density trench mosfet |
US8319290B2 (en) | 2010-06-18 | 2012-11-27 | Fairchild Semiconductor Corporation | Trench MOS barrier schottky rectifier with a planar surface using CMP techniques |
US8432000B2 (en) | 2010-06-18 | 2013-04-30 | Fairchild Semiconductor Corporation | Trench MOS barrier schottky rectifier with a planar surface using CMP techniques |
US20120091474A1 (en) * | 2010-10-13 | 2012-04-19 | NuPGA Corporation | Novel semiconductor and optoelectronic devices |
CN103000670A (en) * | 2011-09-15 | 2013-03-27 | 英飞凌科技股份有限公司 | Silicon carbide MOSFET with high mobility channel |
US8872278B2 (en) | 2011-10-25 | 2014-10-28 | Fairchild Semiconductor Corporation | Integrated gate runner and field implant termination for trench devices |
US9029979B2 (en) * | 2011-11-28 | 2015-05-12 | Hitachi, Ltd. | 4h-SiC semiconductor element and semiconductor device |
US20130146897A1 (en) * | 2011-11-28 | 2013-06-13 | Hitachi, Ltd. | 4h-SiC SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR DEVICE |
US9431249B2 (en) | 2011-12-01 | 2016-08-30 | Vishay-Siliconix | Edge termination for super junction MOSFET devices |
US20150187913A1 (en) * | 2011-12-07 | 2015-07-02 | Nxp B.V. | Trench-gate resurf semiconductor device and manufacturing method |
US9735254B2 (en) * | 2011-12-07 | 2017-08-15 | Nexperia B.V. | Trench-gate RESURF semiconductor device and manufacturing method |
US8785278B2 (en) | 2012-02-02 | 2014-07-22 | Alpha And Omega Semiconductor Incorporated | Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact |
US9614043B2 (en) | 2012-02-09 | 2017-04-04 | Vishay-Siliconix | MOSFET termination trench |
US9935193B2 (en) | 2012-02-09 | 2018-04-03 | Siliconix Technology C. V. | MOSFET termination trench |
US9842911B2 (en) | 2012-05-30 | 2017-12-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US10229988B2 (en) | 2012-05-30 | 2019-03-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US9722041B2 (en) | 2012-09-19 | 2017-08-01 | Vishay-Siliconix | Breakdown voltage blocking device |
US20140118055A1 (en) * | 2012-10-26 | 2014-05-01 | Ixys Corporation | Igbt die structure with auxiliary p well terminal |
US9911838B2 (en) * | 2012-10-26 | 2018-03-06 | Ixys Corporation | IGBT die structure with auxiliary P well terminal |
US10535760B2 (en) | 2012-10-26 | 2020-01-14 | Littelfuse, Inc. | IGBT die structure with auxiliary P well terminal |
US9887283B2 (en) * | 2013-05-10 | 2018-02-06 | Alpha And Omega Semiconductor Incorporated | Process method and structure for high voltage MOSFETs |
US20140332844A1 (en) * | 2013-05-10 | 2014-11-13 | Yongping Ding | A process method and structure for high voltage mosfets |
CN103413825B (en) * | 2013-08-09 | 2016-05-11 | 上海北车永电电子科技有限公司 | Plane insulated gate bipolar transistor and manufacture method thereof |
CN103413825A (en) * | 2013-08-09 | 2013-11-27 | 上海北车永电电子科技有限公司 | Flat type insulated gate bipolar transistor and manufacturing method thereof |
US9601572B2 (en) | 2014-04-14 | 2017-03-21 | Jtekt Corporation | Semiconductor device for reducing gate wiring length |
EP2933841A1 (en) * | 2014-04-14 | 2015-10-21 | Jtekt Corporation | Semiconductor device |
US9601573B2 (en) | 2014-04-14 | 2017-03-21 | Jtekt Corporation | Semiconductor device for reducing propagation time of gate input signals |
CN104979350A (en) * | 2014-04-14 | 2015-10-14 | 株式会社捷太格特 | Semiconductor device |
EP2933840A1 (en) * | 2014-04-14 | 2015-10-21 | Jtekt Corporation | Semiconductor device |
US9508596B2 (en) | 2014-06-20 | 2016-11-29 | Vishay-Siliconix | Processes used in fabricating a metal-insulator-semiconductor field effect transistor |
US9887259B2 (en) | 2014-06-23 | 2018-02-06 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
US10283587B2 (en) | 2014-06-23 | 2019-05-07 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
CN105280640A (en) * | 2014-07-15 | 2016-01-27 | 英飞凌科技奥地利有限公司 | Semiconductor Device Comprising a Plurality of Transistor Cells and Manufacturing Method |
US10527654B2 (en) | 2014-08-19 | 2020-01-07 | Vishay SIliconix, LLC | Vertical sense devices in vertical trench MOSFET |
US9882044B2 (en) | 2014-08-19 | 2018-01-30 | Vishay-Siliconix | Edge termination for super-junction MOSFETs |
US10340377B2 (en) | 2014-08-19 | 2019-07-02 | Vishay-Siliconix | Edge termination for super-junction MOSFETs |
US10234486B2 (en) | 2014-08-19 | 2019-03-19 | Vishay/Siliconix | Vertical sense devices in vertical trench MOSFET |
US10444262B2 (en) | 2014-08-19 | 2019-10-15 | Vishay-Siliconix | Vertical sense devices in vertical trench MOSFET |
US20170047440A1 (en) * | 2015-08-11 | 2017-02-16 | Kabushiki Kaisha Toshiba | Semiconductor device |
US10586862B2 (en) * | 2015-08-11 | 2020-03-10 | Kabushiki Kaisha Toshiba | Semiconductor device |
CN106449756A (en) * | 2015-08-11 | 2017-02-22 | 株式会社东芝 | Semiconductor device |
DE102015113493B4 (en) * | 2015-08-14 | 2018-07-12 | Infineon Technologies Ag | Semiconductor devices and a circuit for controlling a field effect transistor of a semiconductor device |
DE102015113493A1 (en) * | 2015-08-14 | 2017-02-16 | Infineon Technologies Ag | Semiconductor devices and a circuit for controlling a field effect transistor of a semiconductor device |
CN105789290B (en) * | 2016-04-26 | 2018-10-23 | 电子科技大学 | A kind of trench gate IGBT device and its manufacturing method |
CN105789290A (en) * | 2016-04-26 | 2016-07-20 | 电子科技大学 | Trench gate insulated gate bipolar transistor (IGBT) device and manufacturing method thereof |
CN105845718B (en) * | 2016-05-19 | 2019-11-05 | 杭州电子科技大学 | A kind of 4H-SiC trench-type insulated gate bipolar transistor |
CN105845718A (en) * | 2016-05-19 | 2016-08-10 | 杭州电子科技大学 | 4H-SiC trench type insulation gate bipolar transistor |
CN106057905A (en) * | 2016-08-16 | 2016-10-26 | 上海华虹宏力半导体制造有限公司 | Trench gate field effect transistor and manufacturing method |
US10468519B2 (en) | 2017-04-26 | 2019-11-05 | National Tsing Hua University | Structure of trench metal-oxide-semiconductor field-effect transistor |
US10651301B2 (en) * | 2017-06-30 | 2020-05-12 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
US20190006496A1 (en) * | 2017-06-30 | 2019-01-03 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
US10714574B2 (en) | 2018-05-08 | 2020-07-14 | Ipower Semiconductor | Shielded trench devices |
US11538911B2 (en) | 2018-05-08 | 2022-12-27 | Ipower Semiconductor | Shielded trench devices |
US11004936B2 (en) * | 2018-06-01 | 2021-05-11 | Fuji Electric Co., Ltd. | Silicon carbide insulated-gate power field effect transistor |
US11824090B2 (en) | 2018-10-01 | 2023-11-21 | Ipower Semiconductor | Back side dopant activation in field stop IGBT |
EP4040497A1 (en) * | 2021-01-22 | 2022-08-10 | Fuji Electric Co., Ltd. | Semiconductor device |
US12040361B2 (en) | 2021-01-22 | 2024-07-16 | Fuji Electric Co., Ltd. | Semiconductor device |
US12262553B2 (en) | 2023-10-12 | 2025-03-25 | Ipower Semiconductor | Field stop IGBT with grown injection region |
Also Published As
Publication number | Publication date |
---|---|
WO1992014269A1 (en) | 1992-08-20 |
JPH05506335A (en) | 1993-09-16 |
EP0523223A1 (en) | 1993-01-20 |
EP0523223A4 (en) | 1993-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5168331A (en) | Power metal-oxide-semiconductor field effect transistor | |
US5438220A (en) | High breakdown voltage semiconductor device | |
KR100256903B1 (en) | Field effect transistor | |
US7271067B2 (en) | Voltage sustaining layer with opposite-doped islands for semiconductor power devices | |
KR100218873B1 (en) | Insulated gate type semiconductor device and manufacturing method thereof | |
US5702961A (en) | Methods of forming insulated gate bipolar transistors having built-in freewheeling diodes and transistors formed thereby | |
US4631564A (en) | Gate shield structure for power MOS device | |
US7115475B2 (en) | Method of manufacturing semiconductor device | |
US20060108634A1 (en) | Semiconductor apparatus and method for manufacturing the same | |
US20240222498A1 (en) | Semiconductor device including trench gate structure and buried shielding region and method of manufacturing | |
KR20030005385A (en) | Field effect transistor structure and method of manufacture | |
US20020195627A1 (en) | Lateral superjunction semiconductor device | |
KR100883795B1 (en) | Symmetrical trench MOSF device and method of manufacturing the same | |
KR100514398B1 (en) | Silicon carbide field controlled bipolar switch | |
JP4108762B2 (en) | Semiconductor devices that can be controlled by field effects | |
EP1044474B1 (en) | Trench-gate semiconductor device | |
KR0163875B1 (en) | Semiconductor device and manufacturing method | |
US4713681A (en) | Structure for high breakdown PN diode with relatively high surface doping | |
US20240413229A1 (en) | Semiconductor device having first trenches with a gate electrode and second trenches with a source electrode | |
EP0103934B1 (en) | Insulated-gate field-effect transistors | |
EP0665597A1 (en) | IGBT and manufacturing process therefore | |
US5223732A (en) | Insulated gate semiconductor device with reduced based-to-source electrode short | |
JP4088263B2 (en) | High voltage semiconductor element | |
US5243211A (en) | Power fet with shielded channels | |
US5210432A (en) | Insulated gate gto thyristor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILICONIX, INC., A CORP OF DE, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:YILMAZ, HAMZA;REEL/FRAME:005598/0791 Effective date: 19910130 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20001201 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |