[go: up one dir, main page]

JPS6028271A - Vertical type mosfet - Google Patents

Vertical type mosfet

Info

Publication number
JPS6028271A
JPS6028271A JP58136195A JP13619583A JPS6028271A JP S6028271 A JPS6028271 A JP S6028271A JP 58136195 A JP58136195 A JP 58136195A JP 13619583 A JP13619583 A JP 13619583A JP S6028271 A JPS6028271 A JP S6028271A
Authority
JP
Japan
Prior art keywords
conductivity type
well region
electrode
vertical
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58136195A
Other languages
Japanese (ja)
Inventor
Tamotsu Tominaga
富永 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58136195A priority Critical patent/JPS6028271A/en
Priority to DE19843427293 priority patent/DE3427293A1/en
Publication of JPS6028271A publication Critical patent/JPS6028271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の分野) この発明は、オン抵抗およびスレッショルド電圧をとも
に低下させた縦ffMOsFE−rG、:関ザる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vertical FF MOsFE-rG with reduced on-resistance and reduced threshold voltage.

(従来技術とその問題点) この種の縦型MO8FETとしては、例えばAdolp
h ’ 31ict+ar署、 1981 Acade
mic press社(3an Francisco)
発行に係わるrFicld Effect and B
ipolar power Transister P
 hysicsJの139 (270p 〜305p)
に開示されている。
(Prior art and its problems) As this type of vertical MO8FET, for example, Adolp
h'31ict+ar station, 1981 Acade
mic press (3an Francisco)
rFicld Effect and B related to issuance
ipolar power transistor P
139 of hysicsJ (270p ~ 305p)
has been disclosed.

第1図はこのような縦型MO8F E Tの一例を示す
もので、この縦型MO8FETは、N十型シリコンウェ
ファ1上にN型エピタキシャル層2を形成してなる半導
体基体3を用意し、この半導体基体3の1主面4上にゲ
ート酸化膜5を介してポリシリコンからなるグーI−電
極膜6を形成し、次いでゲート電極膜6に開けられたソ
ース窓7がらP型ウェル領域8およびN÷型ソース領域
9を順次自己整合的に2重拡散により形成し、1〕型ウ
エル領域8とN生型ソース領域9の横方向拡散を利用し
て、ソース領域4の拡散後に残ったPウェル領域8の表
面にチャンネル部CI−1が形成されるJ:うにしたも
のである。
FIG. 1 shows an example of such a vertical MO8FET. This vertical MO8FET is made by preparing a semiconductor substrate 3 in which an N-type epitaxial layer 2 is formed on an N0-type silicon wafer 1, A goo I-electrode film 6 made of polysilicon is formed on one main surface 4 of this semiconductor substrate 3 via a gate oxide film 5, and then a P-type well region 8 is formed through a source window 7 opened in the gate electrode film 6. and N÷ type source regions 9 are sequentially formed by double diffusion in a self-aligned manner, and by utilizing the lateral diffusion of the 1] type well region 8 and the N type source region 9, the remaining after the diffusion of the source region 4 is formed. A channel portion CI-1 is formed on the surface of the P well region 8.

しかしながら、このような従来の縦型MO8FETにあ
っては、Pウェル領域8のソース接合面での不純物濃度
(最も不純物濃度が高い)によってFETのスレッショ
ルド電圧VTHが決まる構造となっていたため、FET
のオン抵抗を下げるためドレイン高抵抗層(エピタキシ
ャル層)2の抵抗を下げるべく不純物濃度を高くしてい
くと、同一スレッショルド電圧VTHのウェル領域拡散
潤度では、チャンネル長がどんどん短くなり、ドレイン
側から延びる空乏層(図中点線で示す)がゲート電圧O
でもソース領域9に達してしにい、図中矢印に示す如く
、パンデスルーによってり−り電流が流れる、いわゆる
知チトンネル効果が生じるという問題点があった。
However, in such a conventional vertical MO8FET, the threshold voltage VTH of the FET is determined by the impurity concentration (the highest impurity concentration) at the source junction surface of the P-well region 8.
When the impurity concentration is increased to lower the resistance of the drain high-resistance layer (epitaxial layer) 2 in order to lower the on-resistance of The depletion layer (indicated by the dotted line in the figure) extending from the gate voltage O
However, once the source region 9 is reached, there is a problem in that a current flows due to pan de-through as shown by the arrow in the figure, which is the so-called chichi tunnel effect.

(発明の目的) この発明の[1的は、オン抵抗およびスレッショルド電
圧VTHがともに低い縦型M OS F E 1−を提
供することにある。
(Object of the Invention) An object of the present invention is to provide a vertical MOS F E 1- that has low on-resistance and low threshold voltage VTH.

(発明の構成) この発明は、−F記の目的を達成づるために、主電極(
ソース電極またはドレイン電極)の一方どなる第1導電
型の半導体基体と主rri極の他方となる第1導電型の
ウェル領域との間に位置する第2導電型ウエル領域の表
面を、基体表面に対して傾斜させて形成するとともに、
この第2導電型ウエル領域の表面に沿って絶縁膜を介し
て前記グー1〜電極を配置させたものである。
(Structure of the Invention) In order to achieve the object of -F, the present invention provides a main electrode (
The surface of the second conductivity type well region located between the semiconductor substrate of the first conductivity type, which is one of the source electrode or the drain electrode, and the first conductivity type well region, which is the other of the main rri electrode, is attached to the substrate surface. In addition to forming it at an angle to the
The goo 1 to electrode are arranged along the surface of this second conductivity type well region with an insulating film interposed therebetween.

(実施例の説明) 第2図はこの発明に係る縦型M OS F E Tの素
子断面図である。なお、同図において前記従来例と同一
構成部分については同符丹を付して説明は省略する。
(Description of Embodiments) FIG. 2 is a cross-sectional view of a vertical MOS FET according to the present invention. In the figure, the same components as those in the conventional example are marked with the same reference numerals, and the explanation thereof will be omitted.

同図に示す如く、この縦型M OS F E Tにあっ
ては、ソース領域となるN+ウェル領域9どドレイン領
域となるN型エピタキシャル層2との間に位置づるPつ
1ル領域の表面に、基体主面4に対して傾斜した斜面1
0が形成されていて、前記ゲート電極膜6はこの斜面1
0上に絶縁膜5を介して載置されているものである。な
お、CHはチャンネル部である。
As shown in the figure, in this vertical MOS FET, the surface of the P well region 9, which is the source region, and the N-type epitaxial layer 2, which is the drain region. , a slope 1 inclined with respect to the main surface 4 of the base body.
0 is formed, and the gate electrode film 6 is formed on this slope 1.
0 with an insulating film 5 interposed therebetween. Note that CH is a channel section.

次に、この縦型MO8FETの製造工程を第3図を参照
しながら説明する。
Next, the manufacturing process of this vertical MO8FET will be explained with reference to FIG.

まず、第1の工程では第3図(a )に示J−如く、N
生型シリコンウェファ1上にN型エピタキシャル層2を
有する半導体基体3を用意し、この半導体基体3の1主
面4上を3μ01程度エツヂングして斜面10を形成す
る。
First, in the first step, as shown in Figure 3(a), N
A semiconductor substrate 3 having an N-type epitaxial layer 2 is prepared on a green silicon wafer 1, and one main surface 4 of the semiconductor substrate 3 is etched by about 3 μ01 to form a slope 10.

次いで、第2の工程では第3図(b)に示寸如く、基体
3の1主面側に、ゲート酸化膜5とポリシリコンからな
るゲート電極膜6を順次積層形成する。
Next, in a second step, a gate oxide film 5 and a gate electrode film 6 made of polysilicon are sequentially laminated on one main surface side of the base 3 as shown in FIG. 3(b).

次いで、第3の工程では第3図(C)に示寸如く、絶縁
膜5およびゲート電極膜6を必要な部分のみを残してエ
ツチングによって除去する。
Next, in the third step, the insulating film 5 and the gate electrode film 6 are removed by etching leaving only necessary portions as shown in FIG. 3(C).

次いで、第4の工程では第3図(d )に示J゛如く、
ポリシリコンよりなるゲート電極膜6をマスクとして、
Pつ1ル領域8を約4μmの深さに拡散形成する。
Next, in the fourth step, as shown in FIG. 3(d),
Using the gate electrode film 6 made of polysilicon as a mask,
A P single region 8 is formed by diffusion to a depth of approximately 4 μm.

次いで、第5の■稈では第3図(e )に示す如く、所
定のレジストをマスクとして、前記Pウェル領域8の中
火部に電極取出用のP+つl小領域11を約0.5〜1
μmFi!度の深さに拡散形成りる。
Next, in the fifth culm, as shown in FIG. 3(e), using a predetermined resist as a mask, a P + 1 small area 11 for electrode extraction is formed in the medium heat part of the P well area 8 by about 0.5 mm. ~1
μmFi! Diffusion formation occurs at a depth of 300°.

次いで、第6の工程では第3図(f)に示す如(、前記
ゲート電極膜6をマスクとして2重拡散ににリソース領
域となるN+ウェル領域9を拡散によって形成する。
Next, in a sixth step, as shown in FIG. 3(f), an N+ well region 9, which will become a resource region, is formed by double diffusion using the gate electrode film 6 as a mask.

次いで、第7の工程では第3図(9)に示づ如く、基体
3の表面にCVD等によって、リンガラスからなる層間
絶縁膜12を形成し、その後コンタクト穴13を1jt
1口形成する。
Next, in the seventh step, as shown in FIG. 3 (9), an interlayer insulating film 12 made of phosphor glass is formed on the surface of the base 3 by CVD or the like, and then a contact hole 13 is formed by 1 jt.
Form one mouth.

次いで、第8の工程では第3図(h)に示づ゛如く、以
上で層成された基体3の表面にA、el極層14を蒸着
形成する。
Next, in the eighth step, as shown in FIG. 3(h), an A, EL electrode layer 14 is formed by vapor deposition on the surface of the substrate 3 layered above.

以上の工程で製作された縦型MO8FETにあっては、
不純物の横方向の拡散は同じ表面濃度でも水平に広がる
場合と斜め下に広がる場合とでは異なり、斜めの場合の
方が広く広がるため、同じVTHを与えるウェル濃度に
おいては水平に横方向拡散させる場合より横方向のウェ
ル領域が広くなる。従って、水平方向に2重拡散した場
合にドレイン空乏層が、ゲート電圧Oでもソース領域に
達してしまう程度にしか実効チャンネルができない不純
物濃度の高いトレイン層に対しても、VTHを大ぎくす
ることなく実効チャンネル長を長くでき、いわゆる知ヂ
【Iンネル効果を生ずることがない。
In the vertical MO8FET manufactured by the above process,
The horizontal diffusion of impurities differs between horizontal diffusion and diagonal downward diffusion even if the surface concentration is the same, and the diagonal diffusion is wider, so for the well concentration that gives the same VTH, horizontal lateral diffusion is different. The lateral well area becomes wider. Therefore, it is important to increase VTH even for a train layer with a high impurity concentration, where an effective channel can only be formed to the extent that the drain depletion layer reaches the source region even at a gate voltage of 0 when double-diffused in the horizontal direction. The effective channel length can be increased without causing the so-called channel effect.

次に、第4図はこの発明に係わる縦型MO3FETの製
造工程の他の例を示す図である。この実施例方法にあっ
ては、シリコンの部分的酸化(LOCO8)技術で厚い
酸化膜を作り、その際に形成されるバーズビークと呼ば
れる部分を前記斜面どして利用するとともに、該厚い酸
化膜をマスクにウェル領域とソース領域の2!!!拡散
を自己整合的に行なおうとり一るもので、斜面に対して
位置ずれすることなくチャンネルを形成できる。
Next, FIG. 4 is a diagram showing another example of the manufacturing process of the vertical MO3FET according to the present invention. In this embodiment method, a thick oxide film is formed using a silicon partial oxidation (LOCO8) technique, and a part called a bird's beak formed at that time is used as the slope, and the thick oxide film is 2 well and source regions on the mask! ! ! It is designed to perform diffusion in a self-aligned manner, and a channel can be formed without shifting its position with respect to the slope.

まず、第1の工程では第4図<a >に示づ如く、N+
シリコンウェファ1上にN型1ビタキシャル層2を備え
た半導体基体3を用意し、その上面にウェル、ソース領
域の拡散部分に対応して図示しない薄い3i 02膜を
形成し、更にその上にCvD等によってSi 3N4膜
20を形成する。
First, in the first step, as shown in Fig. 4<a>, N+
A semiconductor substrate 3 having an N-type 1 bitaxial layer 2 is prepared on a silicon wafer 1, and a thin 3i 02 film (not shown) is formed on the upper surface of the substrate in correspondence with the diffusion portion of the well and source regions, and a CvD film is further formed on it. A Si 3N4 film 20 is formed by the following steps.

次いで、第2の工程では、第4図(b)に示づ如く、半
導体基体3の表面を2μm程度の厚さに酸化し、これに
より3isN+膜20に覆われていない部分に厚い5i
O221を成長さぜる。この厚いS! 0221の周辺
部にはバーズビークと呼ばれる斜面29が形成される。
Next, in the second step, as shown in FIG. 4(b), the surface of the semiconductor substrate 3 is oxidized to a thickness of about 2 μm, thereby forming a thick 5i layer on the portion not covered with the 3isN+ film 20.
Grow O221. This thick S! A slope 29 called a bird's beak is formed around 0221.

次に、第3の工程では、第4図(C)に示す如く、Si
 3N4膜20を除去し、前記厚い5tO221をマス
クとしてイオン注入等によりP型不純物を4μm程度の
厚さに拡散して、Pウェル領域22を形成する。
Next, in the third step, as shown in FIG. 4(C), Si
The 3N4 film 20 is removed, and P-type impurities are diffused to a thickness of about 4 μm by ion implantation using the thick 5tO 221 as a mask to form a P well region 22.

次いで、第4の工程では、第4図(d >に示づ如く、
Pウェル領域22のコンタク1−を取るため、高温度の
P生型不純物拡散領域23を形成する。
Next, in the fourth step, as shown in FIG.
In order to remove the contact 1- of the P well region 22, a high temperature P native impurity diffusion region 23 is formed.

次いで、第5の工程では、第4図(e )に示づ如く、
5iO221をマスクとしてN型不純物を0.5μm程
度の深さに拡散して、ソース領域となるN+ウェル22
を形成する。
Next, in the fifth step, as shown in FIG. 4(e),
Using 5iO221 as a mask, N-type impurities are diffused to a depth of about 0.5 μm to form an N+ well 22 that will become a source region.
form.

次いで、第6の工程では、第4図(f)に示J゛如く、
St 0221をエツチングで完全に除去し、グー1−
酸化膜となる3i 02股24.グーl−電極となるポ
リシリコン膜25を熱酸化、CVD等で順次形成する。
Next, in the sixth step, as shown in FIG. 4(f),
St 0221 was completely removed by etching, and Goo 1-
3i 02 crotch 24. A polysilicon film 25 that will become a negative electrode is sequentially formed by thermal oxidation, CVD, or the like.

次いで、第7の工程では、第4図(q )に示づ如く、
前記Si 02膜24およびポリシリコン膜25を必要
な部分についてエツチングで除去した後、更に層間絶縁
膜となるP S G l1ff 26をCVDでその全
面に形成した後、コンタクト穴27を間口′?I−る。
Next, in the seventh step, as shown in FIG. 4(q),
After removing the necessary portions of the Si02 film 24 and polysilicon film 25 by etching, a PSG l1ff 26, which will serve as an interlayer insulating film, is formed on the entire surface by CVD, and then a contact hole 27 is formed with a width '?'. I-ru.

次いで、第8の]工程では、第4図(h)に示す如く、
基体3の全面にソース電極となるA f 躾28を蒸着
形成する。
Next, in the eighth step, as shown in FIG. 4(h),
An A f layer 28 that will become a source electrode is formed on the entire surface of the substrate 3 by vapor deposition.

以上の工程で得られる縦型MO8FETにあっては、L
OGO8技術を用い゛C斜1a1を形成した後の厚い酸
化膜をマスクにして、ウェル領域とソース領域を拡散す
るようにしたため、斜面とチャンネル長自己整合的に形
成でき、これによりチップ勺イズを小さくできるという
効果が1qられる。
In the vertical MO8FET obtained by the above process, L
Since the well region and source region are diffused using the thick oxide film after forming the C slope 1a1 using OGO8 technology as a mask, the slope and channel length can be formed in self-alignment, thereby reducing chip size. The effect of being able to make it smaller is 1q.

(発明の効果) 以上の各実施例の説明でも明らかなJ:うに、この発明
に係わる縦型MO8FETによれば、ウェル領域のソー
ス領域との接合面の不純物濃度で決まる縦型MO8FE
Tのスレッショルド電圧を変えることなく、短チャンネ
ル効果を抑止でき、低オン抵抗でしかも低スレツシヨル
ド電圧の縦型MO8FE’T−を得ることができる。
(Effects of the Invention) As is clear from the description of each embodiment above, according to the vertical MO8FET according to the present invention, the vertical MO8FET is determined by the impurity concentration of the junction surface between the well region and the source region.
The short channel effect can be suppressed without changing the threshold voltage of T, and a vertical MO8FE'T- with low on-resistance and low threshold voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の縦型M OS F E ’rのチャンネ
ル部を示す素子断面図、第2図は本発明に係わる縦型M
 OS F E Tのチャンネル部を示J索子断面図、
第3図は斜面をエツチングによって形成する場合のf!
A造工程の一例を示ず工程図、第4図は斜面をLOCO
8技術を用いて形成し、斜面に対しチャンネルを自己整
合的に形成する揚台の製造工程の一例を示づ工程図であ
る。 1・・・シリコンウェファ 2・・・エピタキシャル層 3・・・半導体基体 4・・・基体の1主面 5・・・グー1〜酸化膜 6・・・グー1〜電極膜 8・・・Pウェル領域 9・・・ソースとなるN十領域 10.29・・・斜面 CH・・・チャンネル部 特許出願人 日産自動車株式会社 第I図 第2図 べ
FIG. 1 is an element cross-sectional view showing the channel part of a conventional vertical MOS F E'r, and FIG.
A cross-sectional view of the J cord showing the channel part of OS FET,
Figure 3 shows f! when the slope is formed by etching.
The process diagram does not show an example of the A construction process, and Figure 4 shows the slope at LOCO.
8 is a process diagram showing an example of the manufacturing process of a platform in which a channel is formed in a self-aligned manner with respect to a slope. 1... Silicon wafer 2... Epitaxial layer 3... Semiconductor base 4... 1 main surface of base 5... Goo 1 to oxide film 6... Goo 1 to electrode film 8...P Well region 9...N10 region serving as a source 10.29...Slope CH...Channel portion Patent applicant Nissan Motor Co., Ltd. Figure I Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)主電極(ソース電極またはドレイン電極)の一方
となる第1導電型の半導体基体と;前記半導体基体の1
主面側に設けられた第2導電型のウェル領域と; 前記第2導電型のウェル領域内に設けられ、かつ主電極
の他方となる第1導電型のウェル領域と;主電極の一方
となる第1導電型の半導体基体と主電極の他方となる第
1導電型のウェル領域とにまたがって、基体表面に絶縁
膜を介して配置されたゲート電極とを備えた縦型MO8
FETであって; 前記主電極の一方となる第1導電型の半導体基体と主電
極の他方となる第1導電型のウェル領域との間に位置す
る第2導電型ウエル領域の表面は、基体表面に対しで傾
斜した斜面となっていて、かつ前記ゲート電極は前記斜
面に沿って絶縁膜を介して配置されていることを特徴と
する縦型MO8FET。
(1) a semiconductor substrate of a first conductivity type that becomes one of the main electrodes (source electrode or drain electrode);
a well region of a second conductivity type provided on the main surface side; a well region of a first conductivity type provided in the well region of the second conductivity type and serving as the other main electrode; one of the main electrodes; A vertical MO8 comprising a gate electrode disposed on the surface of the substrate with an insulating film interposed between the semiconductor substrate of the first conductivity type and the well region of the first conductivity type, which is the other main electrode.
FET; the surface of the second conductivity type well region located between the first conductivity type semiconductor substrate serving as one of the main electrodes and the first conductivity type well region serving as the other main electrode; A vertical MO8FET characterized in that the slope is inclined with respect to the surface, and the gate electrode is arranged along the slope with an insulating film interposed therebetween.
JP58136195A 1983-07-26 1983-07-26 Vertical type mosfet Pending JPS6028271A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58136195A JPS6028271A (en) 1983-07-26 1983-07-26 Vertical type mosfet
DE19843427293 DE3427293A1 (en) 1983-07-26 1984-07-24 Vertical MOSFET device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136195A JPS6028271A (en) 1983-07-26 1983-07-26 Vertical type mosfet

Publications (1)

Publication Number Publication Date
JPS6028271A true JPS6028271A (en) 1985-02-13

Family

ID=15169558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136195A Pending JPS6028271A (en) 1983-07-26 1983-07-26 Vertical type mosfet

Country Status (2)

Country Link
JP (1) JPS6028271A (en)
DE (1) DE3427293A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218643A (en) * 1989-11-17 1991-09-26 Toshiba Corp High power semiconductor device
WO1993003502A1 (en) * 1991-07-26 1993-02-18 Nippondenso Co., Ltd. Method of producing vertical mosfet
US5470770A (en) * 1994-03-31 1995-11-28 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
JPH09293861A (en) * 1996-04-26 1997-11-11 Denso Corp Semiconductor device and manufacturing method thereof
US6015737A (en) * 1991-07-26 2000-01-18 Denso Corporation Production method of a vertical type MOSFET
US6316300B1 (en) 1998-09-16 2001-11-13 Denso Corporation Method of manufacturing a semiconductor device having an oxidation process for selectively forming an oxide film
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
US6627950B1 (en) 1988-12-27 2003-09-30 Siliconix, Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US6781195B2 (en) * 2001-01-23 2004-08-24 Semiconductor Components Industries, L.L.C. Semiconductor bidirectional switching device and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168331A (en) * 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
JP2799252B2 (en) * 1991-04-23 1998-09-17 三菱電機株式会社 MOS type semiconductor device and method of manufacturing the same
US6107661A (en) * 1995-09-29 2000-08-22 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
FR2739493B1 (en) * 1995-09-29 2000-07-28 Nippon Denso Co POWER MOSFET AND MANUFACTURING METHOD THEREOF

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627950B1 (en) 1988-12-27 2003-09-30 Siliconix, Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
JPH03218643A (en) * 1989-11-17 1991-09-26 Toshiba Corp High power semiconductor device
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
WO1993003502A1 (en) * 1991-07-26 1993-02-18 Nippondenso Co., Ltd. Method of producing vertical mosfet
US5460985A (en) * 1991-07-26 1995-10-24 Ipics Corporation Production method of a verticle type MOSFET
US6015737A (en) * 1991-07-26 2000-01-18 Denso Corporation Production method of a vertical type MOSFET
US5470770A (en) * 1994-03-31 1995-11-28 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
JPH09293861A (en) * 1996-04-26 1997-11-11 Denso Corp Semiconductor device and manufacturing method thereof
US6278155B1 (en) 1996-04-26 2001-08-21 Denso Corporation P-channel MOSFET semiconductor device having a low on resistance
US6114207A (en) * 1996-04-26 2000-09-05 Denso Corporation Method of producing a semiconductor device
US5877527A (en) * 1996-04-26 1999-03-02 Denso Corporation Semiconductor device and method of producing the same
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6828195B2 (en) 1997-11-14 2004-12-07 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US7511339B2 (en) 1997-11-14 2009-03-31 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US7696571B2 (en) 1997-11-14 2010-04-13 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US8044463B2 (en) 1997-11-14 2011-10-25 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US6316300B1 (en) 1998-09-16 2001-11-13 Denso Corporation Method of manufacturing a semiconductor device having an oxidation process for selectively forming an oxide film
US6781195B2 (en) * 2001-01-23 2004-08-24 Semiconductor Components Industries, L.L.C. Semiconductor bidirectional switching device and method

Also Published As

Publication number Publication date
DE3427293A1 (en) 1985-02-14

Similar Documents

Publication Publication Date Title
US5981997A (en) Horizontal field effect transistor and method of manufacturing the same
JPS6028271A (en) Vertical type mosfet
US8207575B2 (en) Semiconductor device and method of manufacturing the same
JPH03173180A (en) Semiconductor element
JPH0622274B2 (en) Semiconductor integrated circuit device
EP0308612A2 (en) Field effect transistor and manufacturing method thereof
JPH0456473B2 (en)
JP2021153163A (en) Manufacturing method for semiconductor device, and semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JPS6197967A (en) Semiconductor device and its manufacturing method
JPH0350771A (en) Semiconductor device
JPH06177376A (en) Method for manufacturing MOS field effect semiconductor device
JPS59168675A (en) Manufacturing method for semiconductor devices
JPS5868979A (en) semiconductor equipment
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JPS62248256A (en) Semiconductor device
JP2776891B2 (en) Semiconductor integrated circuit device
JP3123140B2 (en) Field effect transistor
JPS62293767A (en) semiconductor integrated circuit
JPH0548109A (en) Vertical MOS transistor and method of manufacturing the same
JPS6151875A (en) Semiconductor device
JPH0778983A (en) Semiconductor device and manufacturing method thereof
JPH01270272A (en) Manufacturing method of MIS type semiconductor device
JPS61125084A (en) Semiconductor integrated circuit device
JPS60103661A (en) Semiconductor ic device and manufacture thereof