US4707141A - Variable color analog timepiece - Google Patents
Variable color analog timepiece Download PDFInfo
- Publication number
- US4707141A US4707141A US07/000,667 US66787A US4707141A US 4707141 A US4707141 A US 4707141A US 66787 A US66787 A US 66787A US 4707141 A US4707141 A US 4707141A
- Authority
- US
- United States
- Prior art keywords
- color
- indication
- measured value
- temperature
- timepiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
- G04G21/02—Detectors of external physical values, e.g. temperature
- G04G21/025—Detectors of external physical values, e.g. temperature for measuring physiological data
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G9/00—Visual time or date indication means
- G04G9/08—Visual time or date indication means by building-up characters using a combination of indicating elements, e.g. by using multiplexing techniques
- G04G9/12—Visual time or date indication means by building-up characters using a combination of indicating elements, e.g. by using multiplexing techniques using light valves, e.g. liquid crystals
Definitions
- This invention relates to timepieces utilizing variable color analog display.
- An electronic timepiece disclosed in U.S. Pat. No. 3,922,847, issued on Dec. 2, 1975 to Bobby Gene Culley et al includes a time base oscillator, counters, and a display consisting of 12 monochromatic light emitting diodes arranged in an inner ring, for individually indicating hours, and 60 monochromatic light emitting diodes arranged in an outer ring, for alternatively indicating minutes and seconds.
- a liquid crystal analog timepiece disclosed in U.S Pat. No. 3,969,887, issued on July 20, 1976 to Shigeru Fukumoto, includes a display having hour and minute information segment electrodes for indicating time in a conventional format.
- Monochromatic analog display timepieces are not capable of simultaneously indicating values of time and values of a diverse quantity.
- electronic timepiece of the present invention is provided with a variable color display for providing an analog indication of time.
- the timepiece also includes a transducer for measuring a diverse quantity and for developing output electrical signals related to values of the measured quantity.
- Color control circuits are provided for controlling the color of the analog indication in accordance with the output electrical signals of the transducer.
- FIG. 1 is a block diagram of a variable color analog display system of the invention.
- FIG. 2 is a block diagram of a variable color analog timepiece with transducer.
- FIG. 3 is a block diagram of a like timepiece characterized by a variable color circular display.
- FIG. 4 is a schematic diagram of a variable color analog timepiece.
- FIG. 5 is a schematic diagram of a color control converter.
- FIG. 6 is an enlarged cross-sectional view of one display segment in FIG. 4, taken along the line A--A.
- FIG. 7 is a timing diagram showing the timing relationship of output signals in shift register chain in FIG. 4.
- FIG. 8 is a schematic diagram of a signal converter for developing color control signals.
- FIG. 9 is a schematic diagram of a temperature transducer with interface circuit.
- FIG. 1 a block diagram of an analog display system which includes a first device 10a for developing electrical signals, a suitable decoder 20 for converting the signals into a displayable analog indication, and a variable color analog display 40 for providing a visual analog indication of the signals.
- the invention resides in the addition of a color control circuit 50 for controlling the color of the analog indication in accordance with signals developed by a second device 10b.
- the variable color display system of the invention can thus simultaneously indicate values of two different quantities, from the outputs of devices 10a and 10b, by causing an analog indication representing the value of the first quantity to be exhibited on the display and by controlling the color of the indication in accordance with the value of the second quantity.
- FIG. 2 is a generalized block diagram of an analog timepiece with transducer of this invention which includes a timekeeping device 71 for keeping time and for developing output electrical signals indicative of time, decoder 20 for converting the output electrical signals to a displayable indication, and variable color analog display 40 for exhibiting an analog indication of time.
- the invention resides in the addition of a transducer 75, for measuring a diverse quantity and for developing output signals related thereto, and color control 50, for controlling the color of the analog indication in accordance with the output signals of transducer 75.
- the display 40 will thus simultaneously indicate time, in analog format, and values of the measured diverse quantity, in variable color.
- a timepiece of the invention utilizes a temperature transducer for measuring values of temperature and for developing output signals related thereto.
- Such timepiece is capable of simultaneously indicating time, by exhibiting an analog indication representing time, and temperature, by controlling the color of the analog indication in accordance with temperature.
- FIG. 3 is shown a block diagram of a like timepiece characterized by a clock pulse source 97 for furnishing a train of stable clock pulses, a shift register 78 for shifting predetermined data in accordance with the clock pulses, and variable color analog display 40 coupled to the shift register for exhibiting the data visually.
- the overall effect is a timepiece face that simulates the appearance of an hour and minute hands to present time information in substantially conventional manner.
- transducer as used throughout the description of the invention, is used in its widest sense so as to include every type of a device for performing a conversion of one type of energy to another.
- the principles of the invention may be applied to various displacement, motion, force, pressure, sound, flow, temperature, humidity, weight, magnetic, physiological, and like transducers.
- a physical transducer is defined for the purpose of this invention as means for measuring values of a physical quantity and for developing output electrical signals related thereto.
- a physiological transducer is defined as means for producing electrical signals which represent physiological conditions or events in a human body or other living matter.
- FIG. 4 is shown a schematic diagram of a variable color analog timepiece.
- the circular display designated 41 includes twelve variable color display segments 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, and 1m, regularly spaced along a circle to resemble a conventional timepiece face, which may be progressively energized to exhibit analog indication of time.
- Each display segment includes a pair of LEDs (light emitting diodes): a red LED 2 and greed LED 3, which are closely adjacent such that the light signals emitted therefrom are substantially superimposed upon each other to mix the colors.
- the LEDs are designated by segment symbols, e.g., the red LED in the segment 1a is designated as 2a, etc.
- the anodes of all red and green LED pairs are interconnected in each display segment and are electrically connected to respective outputs of commercially well known shift registers 79a, 79b, and 79c.
- the cathodes of all red LEDs 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, and 2m are commonly coupled to an electric path referred to as a red bus 5.
- the cathodes of all green LEDs 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, and 3m are commonly coupled to a like electric path referred to as a green bus 6.
- the red bus 5 is connected via a current limiting resistor 89a to the output of an inverting buffer 63a.
- the green bus 6 is connected via a current limiting resistor 89b to the output of a like buffer 63b.
- the conditions of the red and green buses can be selectively controlled by applying suitable logic control signals to the bus inputs RB (red bus) and GB (green bus).
- the display 41 is controlled by chain of shift registers 79a, 79b, and 79c adapted for shifting data to the left by having their Shift Left inputs SL respectively coupled to outputs of the next one of the shift registers and by having their select inputs S1 coupled to a high logic level, in a manner well understood by those skilled in the art.
- the parallel inputs P0, P1, P2, and P3 of all shift registers are coupled to a low logic level except for the most significant input P3 of shift register 79c which is coupled to a high logic level.
- FIG. 5 is shown a schematic diagram of a color control converter circuit which includes OR gates 60a and 60b for gating color control logic signals R (red), Y (yellow), and G (green) applied to their inputs to develop bus control signals RB (red bus) and GB (green bus) in a manner which will become clearer subsequently.
- the outputs RB and GB may be directly coupled to like inputs shown in FIG. 4.
- the operation of the timepiece will be explained on example of illuminating display segment 1a in three different colors. It is assumed for the purpose of the description that the outputs RB and GB of the color control converter in FIG. 5 are coupled to like inputs in FIG. 4.
- the display segment 1a may be illuminated when the output Q3 of shift register 79c rises to a high logic level.
- the color control input R is raised to a high logic level and color control inputs Y and G are maintained at a low logic level.
- the output of OR gate 60a rises to a high logic level, thereby forcing the output of buffer 63a to drop to a low logic level.
- the color control input G is raised to a high logic level, while the color control inputs R and Y are maintained at a low logic level.
- the output of OR gate 60b rises to a high logic level, thereby forcing the output of buffer 63b to drop to a low logic level.
- the current flows from the output Q3 of shift register 79c via green LED 3a, green bus 6, and resistor 89b to the current sinking output of buffer 63b.
- segment 1a illuminates in green color.
- the red LED 2a remains extinguished because the output of buffer 63a is at a high logic level, thereby disabling the red bus 5.
- the color control input Y is raised to a high logic level, while the color control inputs R and G are maintained at a low logic level.
- the outputs of both OR gates 60a and 60b rise to a high logic level, thereby forcing the outputs of both buffers 63a and 63b to drop to a low logic level.
- the current flows from the output Q3 of shift register 79c via red LED 2a, red bus 5, and resistor 89a to the output of buffer 63a and via green LED 3a, green bus 6 and resistor 89b to the output of buffer 63b.
- segment 1a illuminates in substantially yellow color.
- red LED 2a and green LED 3a are placed on the base of a segment body 15 which is filled with a transparent light scattering material 16.
- the LEDs 2a and 3a emit light signals of red and green colors, respectively, which are scattered within the transparent material 16, thereby blending the red and green light signals into a composite light signal that emerges at the upper surface of the segment body 15.
- the color of the composite light signal may be controlled by varying portions of the red and green light signals.
- FIG. 7 is shown a timing diagram of the output signals in the shift register chain in FIG. 4.
- Clock pulses 98 are applied to the interconnected Clock Pulse inputs CP of the shift registers to serially shift their contents to the left with each low-to-high clock transition.
- the output Q3 of shift register 79c is at a high level, while all other Q outputs are low, for causing the associated display segment 1a to illuminate.
- display segment 1b illuminates.
- display segment 1c illuminates, etc.
- the rate of movement of the analog indication on the display depends on the period of the clock.
- the display indicates one of 12 hours.
- the clock period is 5 minutes
- the display indicates time to the nearest 5 minutes.
- the clock period is 5 seconds
- the display similarly indicates time to the nearest 5 seconds. It would be obvious to add additional display segments and shift registers to provide more accurate time indication.
- FIG. 8 is shown a schematic diagram of an exemplary signal converter which converts values of analog voltage to color control logic signals R, Y, and G for controlling the color of the display segments in FIG. 4 in accordance with the magnitude of input voltage.
- An analog voltage Vin is applied to the interconnected inputs of two analog comparators 82a and 82b, in a classic ⁇ window ⁇ comparator configuration.
- Vlo low voltage limit
- the output of comparator 82a drops to a low logic level, thereby forcing the output of inverter 65a to rise to a high logic level to generate active color control signal Y for illuminating the segment in yellow color.
- the outputs R, Y, and G may be directly coupled to like inputs of the color control converter in FIG. 5. It would be obvious that the color sequences could be readily changed by differently interconnecting the outputs of the signal converter with color control inputs of the color control converter.
- temperature transducer 76 measures ambient temperature and develops at its output a current which is linearly proportional to measured temperature in degrees Kelvin.
- the current flows through a resistor 90c of suitable value (e. g., 1 k Ohm) to ground, to develop voltage proportional to the measured temperature, which is applied to the input of an op amp 86 having a feedback established by resistors 90a and 90b.
- a DC voltage 273.2 mV is applied to the other input V OFFSET.
- the invention resides in utilizing the output voltage at the terminal OUT to develop color control signals for causing the timepiece display to illuminate in a color related to measured ambient temperature.
- the terminal OUT may be connected to the input Vin of the signal converter in FIG. 8 to control the color of the timepiece display in three steps.
- the timepiece of this invention may have any conceivable form or shape, such as a wrist watch, pocket watch, clock, alarm clock, and the like.
- the timepiece may have characteristics of an article for wearing on a body of wearer or for securing to wearer's clothing, such as a bracelet, ring, ear-ring, necklace, tie tack, button, cuff link, brooch, hair ornament, and the like, or it may be built into, or associated with, an object such as a pen, pencil, ruler, lighter, briefcase, purse, and the like.
- the invention describes a method of simultaneously displaying values of time and values of a diverse quantity, on a single variable color display device, by causing an analog indication representing time to be indicated on the display device, and by controlling the color of the indication in accordance with the values of the diverse quantity.
- a timepiece with a variable color analog display for providing an analog indication of time which also includes a transducer for measuring values of a diverse quantity, such as temperature. Color control responsive to output signals of the transducer is provided for controlling the color of the analog indication in accordance with measured values of the diverse quantity.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electric Clocks (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
A timepiece includes a variable color display for providing an analog indication of time and a transducer for measuring values of a diverse quantity. The color of the analog indication may be controlled in a plurality of steps in accordance with the output of the transducer.
Description
This is a continuation-in-part of my copending application Ser. No. 06/817,114, filed on Jan. 8, 1986, entitled Variable Color Digital Timepiece, now U.S. Pat. No. 4,647,217 issued on Mar. 3, 1987.
1. Field of the Invention
This invention relates to timepieces utilizing variable color analog display.
2. Description of the Prior Art
An electronic timepiece disclosed in U.S. Pat. No. 3,922,847, issued on Dec. 2, 1975 to Bobby Gene Culley et al, includes a time base oscillator, counters, and a display consisting of 12 monochromatic light emitting diodes arranged in an inner ring, for individually indicating hours, and 60 monochromatic light emitting diodes arranged in an outer ring, for alternatively indicating minutes and seconds.
A liquid crystal analog timepiece disclosed in U.S Pat. No. 3,969,887, issued on July 20, 1976 to Shigeru Fukumoto, includes a display having hour and minute information segment electrodes for indicating time in a conventional format.
Monochromatic analog display timepieces are not capable of simultaneously indicating values of time and values of a diverse quantity.
In a broad sense, it is the principal object of this invention to provide a timepiece with a variable color analog display.
It is another object of the invention to provide an analog timepiece in which the color of the display may be controlled in accordance with a diverse quantity.
In summary, electronic timepiece of the present invention is provided with a variable color display for providing an analog indication of time. The timepiece also includes a transducer for measuring a diverse quantity and for developing output electrical signals related to values of the measured quantity. Color control circuits are provided for controlling the color of the analog indication in accordance with the output electrical signals of the transducer.
In the drawings in which are shown several embodiments of the invention,
FIG. 1 is a block diagram of a variable color analog display system of the invention.
FIG. 2 is a block diagram of a variable color analog timepiece with transducer.
FIG. 3 is a block diagram of a like timepiece characterized by a variable color circular display.
FIG. 4 is a schematic diagram of a variable color analog timepiece.
FIG. 5 is a schematic diagram of a color control converter.
FIG. 6 is an enlarged cross-sectional view of one display segment in FIG. 4, taken along the line A--A.
FIG. 7 is a timing diagram showing the timing relationship of output signals in shift register chain in FIG. 4.
FIG. 8 is a schematic diagram of a signal converter for developing color control signals.
FIG. 9 is a schematic diagram of a temperature transducer with interface circuit.
Throughout the drawings, like characters indicate like parts.
Referring now, more particularly, to the drawings, in FIG. 1 is shown a block diagram of an analog display system which includes a first device 10a for developing electrical signals, a suitable decoder 20 for converting the signals into a displayable analog indication, and a variable color analog display 40 for providing a visual analog indication of the signals. The invention resides in the addition of a color control circuit 50 for controlling the color of the analog indication in accordance with signals developed by a second device 10b. The variable color display system of the invention can thus simultaneously indicate values of two different quantities, from the outputs of devices 10a and 10b, by causing an analog indication representing the value of the first quantity to be exhibited on the display and by controlling the color of the indication in accordance with the value of the second quantity.
FIG. 2 is a generalized block diagram of an analog timepiece with transducer of this invention which includes a timekeeping device 71 for keeping time and for developing output electrical signals indicative of time, decoder 20 for converting the output electrical signals to a displayable indication, and variable color analog display 40 for exhibiting an analog indication of time. The invention resides in the addition of a transducer 75, for measuring a diverse quantity and for developing output signals related thereto, and color control 50, for controlling the color of the analog indication in accordance with the output signals of transducer 75. The display 40 will thus simultaneously indicate time, in analog format, and values of the measured diverse quantity, in variable color.
As will be more fully pointed out subsequently, the preferred embodiment of a timepiece of the invention utilizes a temperature transducer for measuring values of temperature and for developing output signals related thereto. Such timepiece is capable of simultaneously indicating time, by exhibiting an analog indication representing time, and temperature, by controlling the color of the analog indication in accordance with temperature.
In FIG. 3 is shown a block diagram of a like timepiece characterized by a clock pulse source 97 for furnishing a train of stable clock pulses, a shift register 78 for shifting predetermined data in accordance with the clock pulses, and variable color analog display 40 coupled to the shift register for exhibiting the data visually. The overall effect is a timepiece face that simulates the appearance of an hour and minute hands to present time information in substantially conventional manner.
The term transducer, as used throughout the description of the invention, is used in its widest sense so as to include every type of a device for performing a conversion of one type of energy to another. The principles of the invention may be applied to various displacement, motion, force, pressure, sound, flow, temperature, humidity, weight, magnetic, physiological, and like transducers. A physical transducer is defined for the purpose of this invention as means for measuring values of a physical quantity and for developing output electrical signals related thereto. A physiological transducer is defined as means for producing electrical signals which represent physiological conditions or events in a human body or other living matter.
In FIG. 4 is shown a schematic diagram of a variable color analog timepiece. The circular display designated 41 includes twelve variable color display segments 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, and 1m, regularly spaced along a circle to resemble a conventional timepiece face, which may be progressively energized to exhibit analog indication of time. Each display segment includes a pair of LEDs (light emitting diodes): a red LED 2 and greed LED 3, which are closely adjacent such that the light signals emitted therefrom are substantially superimposed upon each other to mix the colors. To facilitate the illustration, the LEDs are designated by segment symbols, e.g., the red LED in the segment 1a is designated as 2a, etc. The anodes of all red and green LED pairs are interconnected in each display segment and are electrically connected to respective outputs of commercially well known shift registers 79a, 79b, and 79c. The cathodes of all red LEDs 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, and 2m are commonly coupled to an electric path referred to as a red bus 5. The cathodes of all green LEDs 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, and 3m are commonly coupled to a like electric path referred to as a green bus 6.
The red bus 5 is connected via a current limiting resistor 89a to the output of an inverting buffer 63a. The green bus 6 is connected via a current limiting resistor 89b to the output of a like buffer 63b. The conditions of the red and green buses can be selectively controlled by applying suitable logic control signals to the bus inputs RB (red bus) and GB (green bus).
The display 41 is controlled by chain of shift registers 79a, 79b, and 79c adapted for shifting data to the left by having their Shift Left inputs SL respectively coupled to outputs of the next one of the shift registers and by having their select inputs S1 coupled to a high logic level, in a manner well understood by those skilled in the art. The parallel inputs P0, P1, P2, and P3 of all shift registers are coupled to a low logic level except for the most significant input P3 of shift register 79c which is coupled to a high logic level. When a short positive pulse LOAD is applied to the interconnected select inputs S2, the data from the parallel inputs are loaded into the shift registers, appear at their outputs Q0, Q1, Q2, and Q3, and may be progressively shifted to the left with each active clock transition when the inputs S2 are returned to a low logic level. A high logic level at a particular output Q of the shift registers will forwardly bias one or both LEDs in the associated display segments, depending on the conditions of the bus control inputs RB and GB.
In FIG. 5 is shown a schematic diagram of a color control converter circuit which includes OR gates 60a and 60b for gating color control logic signals R (red), Y (yellow), and G (green) applied to their inputs to develop bus control signals RB (red bus) and GB (green bus) in a manner which will become clearer subsequently. The outputs RB and GB may be directly coupled to like inputs shown in FIG. 4.
Returning again to FIG. 4, the operation of the timepiece will be explained on example of illuminating display segment 1a in three different colors. It is assumed for the purpose of the description that the outputs RB and GB of the color control converter in FIG. 5 are coupled to like inputs in FIG. 4. The display segment 1a may be illuminated when the output Q3 of shift register 79c rises to a high logic level. To illuminate the segment 1a in red color, the color control input R is raised to a high logic level and color control inputs Y and G are maintained at a low logic level. As a result, the output of OR gate 60a rises to a high logic level, thereby forcing the output of buffer 63a to drop to a low logic level. The current flows from the output Q3 of shift register 79c via red LED 2a, red bus 5, and resistor 89a to the current sinking output of buffer 63a. As a result, segment 1a illuminates in red color. The green LED 3a remains extinguished because the output of buffer 63b is at a high logic level, thereby disabling the green bus 6.
To illuminate the segment 1a in green color, the color control input G is raised to a high logic level, while the color control inputs R and Y are maintained at a low logic level. As a result, the output of OR gate 60b rises to a high logic level, thereby forcing the output of buffer 63b to drop to a low logic level. The current flows from the output Q3 of shift register 79c via green LED 3a, green bus 6, and resistor 89b to the current sinking output of buffer 63b. As a result, segment 1a illuminates in green color. The red LED 2a remains extinguished because the output of buffer 63a is at a high logic level, thereby disabling the red bus 5.
To illuminate the segment 1a in yellow color, the color control input Y is raised to a high logic level, while the color control inputs R and G are maintained at a low logic level. As a result, the outputs of both OR gates 60a and 60b rise to a high logic level, thereby forcing the outputs of both buffers 63a and 63b to drop to a low logic level. The current flows from the output Q3 of shift register 79c via red LED 2a, red bus 5, and resistor 89a to the output of buffer 63a and via green LED 3a, green bus 6 and resistor 89b to the output of buffer 63b. As a result of internally blending light of red and green colors, segment 1a illuminates in substantially yellow color.
In FIG. 6, red LED 2a and green LED 3a are placed on the base of a segment body 15 which is filled with a transparent light scattering material 16. When forwardly biased, the LEDs 2a and 3a emit light signals of red and green colors, respectively, which are scattered within the transparent material 16, thereby blending the red and green light signals into a composite light signal that emerges at the upper surface of the segment body 15. The color of the composite light signal may be controlled by varying portions of the red and green light signals.
In FIG. 7 is shown a timing diagram of the output signals in the shift register chain in FIG. 4. Clock pulses 98 are applied to the interconnected Clock Pulse inputs CP of the shift registers to serially shift their contents to the left with each low-to-high clock transition. Initially, the output Q3 of shift register 79c is at a high level, while all other Q outputs are low, for causing the associated display segment 1a to illuminate. When the high level is shifted to the output Q2 of the same shift register, display segment 1b illuminates. When the high level is shifted to the output Q1 of the same shift register, display segment 1c illuminates, etc.
It is readily apparent that the rate of movement of the analog indication on the display depends on the period of the clock. When the clock period is 1 hour, the display indicates one of 12 hours. When the clock period is 5 minutes, the display indicates time to the nearest 5 minutes. When the clock period is 5 seconds, the display similarly indicates time to the nearest 5 seconds. It would be obvious to add additional display segments and shift registers to provide more accurate time indication.
In FIG. 8 is shown a schematic diagram of an exemplary signal converter which converts values of analog voltage to color control logic signals R, Y, and G for controlling the color of the display segments in FIG. 4 in accordance with the magnitude of input voltage. An analog voltage Vin is applied to the interconnected inputs of two analog comparators 82a and 82b, in a classic `window` comparator configuration. When the voltage Vin is lower than the low voltage limit Vlo, set by a potentiometer 92a, the output of comparator 82a drops to a low logic level, thereby forcing the output of inverter 65a to rise to a high logic level to generate active color control signal Y for illuminating the segment in yellow color.
When the voltage Vin is higher than the high voltage limit Vhi, set by a potentiometer 92b, the output of comparator 82b drops to a low logic level, thereby forcing the output of inverter 65b to rise to a high logic level to generate active color control signal R for illuminating the segment in red color.
When the voltage Vin is between the low voltage limit Vlo and high voltage limit Vhi, the outputs of comparators 82a, 82b rise to a high logic level, thereby causing the output of AND gate 66 to rise to a high logic level to generate active color control signal G for illuminating the segment in green color.
The outputs R, Y, and G may be directly coupled to like inputs of the color control converter in FIG. 5. It would be obvious that the color sequences could be readily changed by differently interconnecting the outputs of the signal converter with color control inputs of the color control converter.
In a schematic diagram shown in FIG. 9, temperature transducer 76 measures ambient temperature and develops at its output a current which is linearly proportional to measured temperature in degrees Kelvin. The current flows through a resistor 90c of suitable value (e. g., 1 k Ohm) to ground, to develop voltage proportional to the measured temperature, which is applied to the input of an op amp 86 having a feedback established by resistors 90a and 90b. To read at the op amp's output OUT voltage that directly corresponds to temperature in degrees Celsius, a DC voltage 273.2 mV is applied to the other input V OFFSET. The invention resides in utilizing the output voltage at the terminal OUT to develop color control signals for causing the timepiece display to illuminate in a color related to measured ambient temperature. To achieve this, the terminal OUT may be connected to the input Vin of the signal converter in FIG. 8 to control the color of the timepiece display in three steps.
Although not shown in the drawings, it will be appreciated that the timepiece of this invention may have any conceivable form or shape, such as a wrist watch, pocket watch, clock, alarm clock, and the like. Alternatively, the timepiece may have characteristics of an article for wearing on a body of wearer or for securing to wearer's clothing, such as a bracelet, ring, ear-ring, necklace, tie tack, button, cuff link, brooch, hair ornament, and the like, or it may be built into, or associated with, an object such as a pen, pencil, ruler, lighter, briefcase, purse, and the like.
In brief summary, the invention describes a method of simultaneously displaying values of time and values of a diverse quantity, on a single variable color display device, by causing an analog indication representing time to be indicated on the display device, and by controlling the color of the indication in accordance with the values of the diverse quantity.
A timepiece with a variable color analog display for providing an analog indication of time was disclosed which also includes a transducer for measuring values of a diverse quantity, such as temperature. Color control responsive to output signals of the transducer is provided for controlling the color of the analog indication in accordance with measured values of the diverse quantity.
All matter herein described and illustrated in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. It would be obvious that numerous modifications can be made in the construction of the preferred embodiments shown herein, without departing from the spirit of the invention as defined in the appended claims. It is contemplated that the principles of the invention may be also applied to numerous diverse types of display devices, such are liquid crystal, plasma devices, and the like.
CORRELATION TABLE ______________________________________ This is a correlation table of reference characters used in the drawings herein, their descriptions, and examples of commercially available parts. # DESCRIPTION EXAMPLE ______________________________________ 1display element 2red LED 3greed LED 5red bus 6green bus 10 device developingelectrical signals 15segment body 16light scattering material 20decoder 40 variablecolor analog display 41 variable colorcircular display 50color control 60 2-input OR gate 74HC32 63 inverting buffer 74LS240 65inverter 74HC04 66 2-input ANDgate 74HC08 71timekeeping device 75transducer 76 Analog Devicestemperature transducer AD590J 78 shift register 79 4-bit shift register 74LS194 82analog comparator LM339 86 op amp LM741 89resistor 90 resistor 91 resistor 92potentiometer 97clock pulse source 98 clock pulse 99 pulse ______________________________________
Claims (7)
1. A timepiece comprising:
timekeeping means;
variable color analog display means for providing an analog indication of time;
means for measuring a diverse quantity and for developing output signals related thereto; and
color control means responsive to said output signals for controlling the color of said indication in accordance with said diverse quantity.
2. A timepiece as defined in claim 1 wherein said color control means controls the color of said indication in three steps.
3. A timepiece as defined in claim 1 more characterized by:
comparator means for effecting a comparison of said output signals with a low and high predetermined limits to determine whether measured value of said diverse quantity is lower than said low predetermined limit, or higher than said high predetermined limit, or within the bounds of said low and high predetermined limits, and for developing comparison signals accordingly; and
said color control means illuminating said indication in a first color when the measured value of said diverse quantity is lower than said low predetermined limit, in a second color when the measured value of said diverse quantity is higher than said high predetermined limit, and in a third color when the measured value of said diverse quantity is within the bounds of said low and high predetermined limits, said first, second, and third colors being respectively different.
4. A timepiece comprising:
timekeeping means;
variable color analog display means for providing an analog indication of time;
temperature transducer means for measuring temperature and for developing output electrical signals related thereto; and
color control means responsive to said output electrical signals for controlling the color of said indication in accordance with the values of temperature.
5. A timepiece as defined in claim 4 more characterized by:
comparator means for effecting a comparison of measured value of temperature with a low and high predetermined limits to determine whether the measured value of temperature is lower than said low predetermined limit, or higher than said high predetermined limit, or within the bounds of said low and high predetermined limits, and for developing comparison signals accordingly; and
said color control means being responsive to said comparison signals for illuminating said indication in a first color when the measured value of temperature is lower than said low predetermined limit, in a second color when the measured value of temperature is higher than said high predetermined limit, and in a third color when the measured value of temperature is within the bounds of said low and high predetermined limits, said first, second, and third colors being respectively different.
6. A timepiece comprising:
timekeeping means;
variable color analog display means for providing an analog indication of time;
means for measuring a diverse quantity and for developing output signals related thereto;
comparator means for effecting a comparison of said output signals with predetermined limits, to determine the range in which the measured value of said diverse quantity lies, and for developing comparison signals accordingly; and
color control means responsive to said comparison signals for controlling the color of said indication in accordance with the range in which the measured value of said divrse quantity lies.
7. A timepiece comprising:
timekeeping means;
variable color analog display means for providing an analog indication of time;
temperature transducer means for measuring temperature and for developing output electrical signals related thereto;
comparator means for effecting a comparison of said output electrical signals with predetermined limits, to determine the range in which the measured value of temperature lies, and for developing comparison signals accordingly; and
color control means responsive to said comparison signals for controlling the color of said indication in accordance with the range in which the measured value of temperature lies.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/000,667 US4707141A (en) | 1986-01-08 | 1987-01-06 | Variable color analog timepiece |
CA000551766A CA1243504A (en) | 1987-01-06 | 1987-11-13 | Variable colour analog timepiece |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/817,114 US4647217A (en) | 1986-01-08 | 1986-01-08 | Variable color digital timepiece |
US07/000,667 US4707141A (en) | 1986-01-08 | 1987-01-06 | Variable color analog timepiece |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/817,114 Continuation-In-Part US4647217A (en) | 1986-01-08 | 1986-01-08 | Variable color digital timepiece |
Publications (1)
Publication Number | Publication Date |
---|---|
US4707141A true US4707141A (en) | 1987-11-17 |
Family
ID=25222372
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/817,114 Expired - Fee Related US4647217A (en) | 1986-01-08 | 1986-01-08 | Variable color digital timepiece |
US07/000,667 Expired - Fee Related US4707141A (en) | 1986-01-08 | 1987-01-06 | Variable color analog timepiece |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/817,114 Expired - Fee Related US4647217A (en) | 1986-01-08 | 1986-01-08 | Variable color digital timepiece |
Country Status (4)
Country | Link |
---|---|
US (2) | US4647217A (en) |
CA (1) | CA1232144A (en) |
GB (1) | GB2186400A (en) |
IN (1) | IN167164B (en) |
Cited By (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4934852A (en) * | 1987-03-13 | 1990-06-19 | Karel Havel | Variable color display typewriter |
US5134387A (en) * | 1989-11-06 | 1992-07-28 | Texas Digital Systems, Inc. | Multicolor display system |
EP0607018A2 (en) * | 1993-01-14 | 1994-07-20 | Kabushiki Kaisha Toshiba | Apparatus for displaying time on a screen |
US5636185A (en) * | 1995-03-10 | 1997-06-03 | Boit Incorporated | Dynamically changing liquid crystal display timekeeping apparatus |
WO1998059382A1 (en) * | 1997-06-23 | 1998-12-30 | Fed Corporation | Voltage controlled color organic light emitting device and method of producing the same |
US6340868B1 (en) | 1997-08-26 | 2002-01-22 | Color Kinetics Incorporated | Illumination components |
US6528954B1 (en) | 1997-08-26 | 2003-03-04 | Color Kinetics Incorporated | Smart light bulb |
US20030076745A1 (en) * | 2001-10-22 | 2003-04-24 | Chapman Peter A. | Combination clock radio, weather station and message organizer |
US20030100837A1 (en) * | 1997-08-26 | 2003-05-29 | Ihor Lys | Precision illumination methods and systems |
US6577080B2 (en) | 1997-08-26 | 2003-06-10 | Color Kinetics Incorporated | Lighting entertainment system |
US6608453B2 (en) | 1997-08-26 | 2003-08-19 | Color Kinetics Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US6624597B2 (en) | 1997-08-26 | 2003-09-23 | Color Kinetics, Inc. | Systems and methods for providing illumination in machine vision systems |
US20030211999A1 (en) * | 2002-03-15 | 2003-11-13 | Gellman Samuel H. | Polypeptides containing gamma-amino acids |
US20040051722A1 (en) * | 2002-09-13 | 2004-03-18 | Tak Chun Lee | Variable colour display and articles incorporating same |
US6714488B1 (en) | 2001-09-04 | 2004-03-30 | Eric J. Vogel | Kinetichrome |
US6717376B2 (en) | 1997-08-26 | 2004-04-06 | Color Kinetics, Incorporated | Automotive information systems |
US6720745B2 (en) | 1997-08-26 | 2004-04-13 | Color Kinetics, Incorporated | Data delivery track |
US6774584B2 (en) | 1997-08-26 | 2004-08-10 | Color Kinetics, Incorporated | Methods and apparatus for sensor responsive illumination of liquids |
US20040155609A1 (en) * | 1997-12-17 | 2004-08-12 | Color Kinetics, Incorporated | Data delivery track |
US6777891B2 (en) | 1997-08-26 | 2004-08-17 | Color Kinetics, Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US6781329B2 (en) | 1997-08-26 | 2004-08-24 | Color Kinetics Incorporated | Methods and apparatus for illumination of liquids |
US6788011B2 (en) | 1997-08-26 | 2004-09-07 | Color Kinetics, Incorporated | Multicolored LED lighting method and apparatus |
US6801003B2 (en) | 2001-03-13 | 2004-10-05 | Color Kinetics, Incorporated | Systems and methods for synchronizing lighting effects |
US20050041536A1 (en) * | 2003-08-04 | 2005-02-24 | Lang Timothy R. | Color timepiece |
US6869204B2 (en) | 1997-08-26 | 2005-03-22 | Color Kinetics Incorporated | Light fixtures for illumination of liquids |
US6888322B2 (en) | 1997-08-26 | 2005-05-03 | Color Kinetics Incorporated | Systems and methods for color changing device and enclosure |
US6897624B2 (en) | 1997-08-26 | 2005-05-24 | Color Kinetics, Incorporated | Packaged information systems |
US6936978B2 (en) | 1997-08-26 | 2005-08-30 | Color Kinetics Incorporated | Methods and apparatus for remotely controlled illumination of liquids |
US6965205B2 (en) | 1997-08-26 | 2005-11-15 | Color Kinetics Incorporated | Light emitting diode based products |
US6967448B2 (en) | 1997-08-26 | 2005-11-22 | Color Kinetics, Incorporated | Methods and apparatus for controlling illumination |
US6975079B2 (en) | 1997-08-26 | 2005-12-13 | Color Kinetics Incorporated | Systems and methods for controlling illumination sources |
US7031920B2 (en) | 2000-07-27 | 2006-04-18 | Color Kinetics Incorporated | Lighting control using speech recognition |
US7038399B2 (en) | 2001-03-13 | 2006-05-02 | Color Kinetics Incorporated | Methods and apparatus for providing power to lighting devices |
US7038398B1 (en) | 1997-08-26 | 2006-05-02 | Color Kinetics, Incorporated | Kinetic illumination system and methods |
US7042172B2 (en) | 2000-09-01 | 2006-05-09 | Color Kinetics Incorporated | Systems and methods for providing illumination in machine vision systems |
US7064498B2 (en) | 1997-08-26 | 2006-06-20 | Color Kinetics Incorporated | Light-emitting diode based products |
US7079452B2 (en) * | 2002-04-16 | 2006-07-18 | Harrison Shelton E | Time display system, method and device |
US20060203619A1 (en) * | 2003-01-25 | 2006-09-14 | David Wigley | Time display apparatus |
US7113541B1 (en) | 1997-08-26 | 2006-09-26 | Color Kinetics Incorporated | Method for software driven generation of multiple simultaneous high speed pulse width modulated signals |
US7178941B2 (en) | 2003-05-05 | 2007-02-20 | Color Kinetics Incorporated | Lighting methods and systems |
US7187141B2 (en) | 1997-08-26 | 2007-03-06 | Color Kinetics Incorporated | Methods and apparatus for illumination of liquids |
US7186003B2 (en) | 1997-08-26 | 2007-03-06 | Color Kinetics Incorporated | Light-emitting diode based products |
US7202613B2 (en) | 2001-05-30 | 2007-04-10 | Color Kinetics Incorporated | Controlled lighting methods and apparatus |
US7231060B2 (en) | 1997-08-26 | 2007-06-12 | Color Kinetics Incorporated | Systems and methods of generating control signals |
US7242152B2 (en) | 1997-08-26 | 2007-07-10 | Color Kinetics Incorporated | Systems and methods of controlling light systems |
US7300192B2 (en) | 2002-10-03 | 2007-11-27 | Color Kinetics Incorporated | Methods and apparatus for illuminating environments |
US7303300B2 (en) | 2000-09-27 | 2007-12-04 | Color Kinetics Incorporated | Methods and systems for illuminating household products |
US7309965B2 (en) | 1997-08-26 | 2007-12-18 | Color Kinetics Incorporated | Universal lighting network methods and systems |
US7352339B2 (en) | 1997-08-26 | 2008-04-01 | Philips Solid-State Lighting Solutions | Diffuse illumination systems and methods |
US7358679B2 (en) | 2002-05-09 | 2008-04-15 | Philips Solid-State Lighting Solutions, Inc. | Dimmable LED-based MR16 lighting apparatus and methods |
US7385359B2 (en) | 1997-08-26 | 2008-06-10 | Philips Solid-State Lighting Solutions, Inc. | Information systems |
US7427840B2 (en) | 1997-08-26 | 2008-09-23 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling illumination |
US7482764B2 (en) | 1997-08-26 | 2009-01-27 | Philips Solid-State Lighting Solutions, Inc. | Light sources for illumination of liquids |
US20090159919A1 (en) * | 2007-12-20 | 2009-06-25 | Altair Engineering, Inc. | Led lighting apparatus with swivel connection |
US7572028B2 (en) | 1999-11-18 | 2009-08-11 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for generating and modulating white light illumination conditions |
US7598681B2 (en) | 2001-05-30 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling devices in a networked lighting system |
US7598686B2 (en) | 1997-12-17 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Organic light emitting diode methods and apparatus |
US20090290334A1 (en) * | 2008-05-23 | 2009-11-26 | Altair Engineering, Inc. | Electric shock resistant l.e.d. based light |
US7642730B2 (en) | 2000-04-24 | 2010-01-05 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for conveying information via color of light |
US20100008085A1 (en) * | 2008-07-09 | 2010-01-14 | Altair Engineering, Inc. | Method of forming led-based light and resulting led-based light |
US20100027259A1 (en) * | 2008-07-31 | 2010-02-04 | Altair Engineering, Inc. | Fluorescent tube replacement having longitudinally oriented leds |
US7659674B2 (en) | 1997-08-26 | 2010-02-09 | Philips Solid-State Lighting Solutions, Inc. | Wireless lighting control methods and apparatus |
US20100052542A1 (en) * | 2008-09-02 | 2010-03-04 | Altair Engineering, Inc. | Led lamp failure alerting system |
US20100067231A1 (en) * | 2008-09-15 | 2010-03-18 | Altair Engineering, Inc. | Led-based light having rapidly oscillating leds |
US20100106306A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Integration of led lighting with building controls |
US20100103673A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | End cap substitute for led-based tube replacement light |
US20100102730A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Light and light sensor |
US20100103664A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
US20100172149A1 (en) * | 2007-12-21 | 2010-07-08 | Altair Engineering, Inc. | Light distribution using a light emitting diode assembly |
US20100177532A1 (en) * | 2009-01-15 | 2010-07-15 | Altair Engineering, Inc. | Led lens |
US20100181933A1 (en) * | 2009-01-21 | 2010-07-22 | Altair Engineering, Inc. | Direct ac-to-dc converter for passive component minimization and universal operation of led arrays |
US20100181925A1 (en) * | 2009-01-21 | 2010-07-22 | Altair Engineering, Inc. | Ballast/Line Detection Circuit for Fluorescent Replacement Lamps |
US7764026B2 (en) | 1997-12-17 | 2010-07-27 | Philips Solid-State Lighting Solutions, Inc. | Systems and methods for digital entertainment |
US20100220469A1 (en) * | 2008-05-23 | 2010-09-02 | Altair Engineering, Inc. | D-shaped cross section l.e.d. based light |
US20100296370A1 (en) * | 2007-09-06 | 2010-11-25 | Gro-Group International Limited | Device |
US7845823B2 (en) | 1997-08-26 | 2010-12-07 | Philips Solid-State Lighting Solutions, Inc. | Controlled lighting methods and apparatus |
US20100321921A1 (en) * | 2009-06-23 | 2010-12-23 | Altair Engineering, Inc. | Led lamp with a wavelength converting layer |
US20100320922A1 (en) * | 2009-06-23 | 2010-12-23 | Altair Engineering, Inc. | Illumination device including leds and a switching power control system |
US20110235318A1 (en) * | 2010-03-26 | 2011-09-29 | Altair Engineering, Inc. | Led light tube with dual sided light distribution |
US8299695B2 (en) | 2009-06-02 | 2012-10-30 | Ilumisys, Inc. | Screw-in LED bulb comprising a base having outwardly projecting nodes |
US8330381B2 (en) | 2009-05-14 | 2012-12-11 | Ilumisys, Inc. | Electronic circuit for DC conversion of fluorescent lighting ballast |
US8454193B2 (en) | 2010-07-08 | 2013-06-04 | Ilumisys, Inc. | Independent modules for LED fluorescent light tube replacement |
US8523394B2 (en) | 2010-10-29 | 2013-09-03 | Ilumisys, Inc. | Mechanisms for reducing risk of shock during installation of light tube |
US8541958B2 (en) | 2010-03-26 | 2013-09-24 | Ilumisys, Inc. | LED light with thermoelectric generator |
US8540401B2 (en) | 2010-03-26 | 2013-09-24 | Ilumisys, Inc. | LED bulb with internal heat dissipating structures |
US8596813B2 (en) | 2010-07-12 | 2013-12-03 | Ilumisys, Inc. | Circuit board mount for LED light tube |
US8653984B2 (en) | 2008-10-24 | 2014-02-18 | Ilumisys, Inc. | Integration of LED lighting control with emergency notification systems |
US8866396B2 (en) | 2000-02-11 | 2014-10-21 | Ilumisys, Inc. | Light tube and power supply circuit |
US8870415B2 (en) | 2010-12-09 | 2014-10-28 | Ilumisys, Inc. | LED fluorescent tube replacement light with reduced shock hazard |
US8901823B2 (en) | 2008-10-24 | 2014-12-02 | Ilumisys, Inc. | Light and light sensor |
US9072171B2 (en) | 2011-08-24 | 2015-06-30 | Ilumisys, Inc. | Circuit board mount for LED light |
US9163794B2 (en) | 2012-07-06 | 2015-10-20 | Ilumisys, Inc. | Power supply assembly for LED-based light tube |
US9184518B2 (en) | 2012-03-02 | 2015-11-10 | Ilumisys, Inc. | Electrical connector header for an LED-based light |
US9244439B1 (en) | 2009-04-14 | 2016-01-26 | Charles Allison | Color changing wrist watch device and associated method |
US9267650B2 (en) | 2013-10-09 | 2016-02-23 | Ilumisys, Inc. | Lens for an LED-based light |
US9271367B2 (en) | 2012-07-09 | 2016-02-23 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
US9285084B2 (en) | 2013-03-14 | 2016-03-15 | Ilumisys, Inc. | Diffusers for LED-based lights |
US9510400B2 (en) | 2014-05-13 | 2016-11-29 | Ilumisys, Inc. | User input systems for an LED-based light |
US9574717B2 (en) | 2014-01-22 | 2017-02-21 | Ilumisys, Inc. | LED-based light with addressed LEDs |
US10161568B2 (en) | 2015-06-01 | 2018-12-25 | Ilumisys, Inc. | LED-based light with canted outer walls |
US10321528B2 (en) | 2007-10-26 | 2019-06-11 | Philips Lighting Holding B.V. | Targeted content delivery using outdoor lighting networks (OLNs) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5122733A (en) | 1986-01-15 | 1992-06-16 | Karel Havel | Variable color digital multimeter |
US6310590B1 (en) | 1986-01-15 | 2001-10-30 | Texas Digital Systems, Inc. | Method for continuously controlling color of display device |
US5561365A (en) * | 1986-07-07 | 1996-10-01 | Karel Havel | Digital color display system |
US4824269A (en) * | 1987-03-13 | 1989-04-25 | Karel Havel | Variable color display typewriter |
GB2281420B (en) * | 1993-08-17 | 1996-11-27 | Central Plaza Management Compa | Timepiece |
DE9416434U1 (en) * | 1994-10-12 | 1995-02-09 | Imle, Walter, Dr., 80333 München | Clock, especially wristwatch, with calorie calculator |
US6414662B1 (en) | 1999-10-12 | 2002-07-02 | Texas Digital Systems, Inc. | Variable color complementary display device using anti-parallel light emitting diodes |
FI113404B (en) * | 2000-06-08 | 2004-04-15 | Polar Electro Oy | Electronic device carried around the wrist and its control procedure |
GB0022979D0 (en) * | 2000-09-19 | 2000-11-01 | Lall Sardool S | System for controlling the seconds display on a watch |
GB2367385A (en) * | 2000-09-25 | 2002-04-03 | Protein Ltd | Clock |
AU2002255568B8 (en) | 2001-02-20 | 2014-01-09 | Adidas Ag | Modular personal network systems and methods |
US6987710B2 (en) * | 2001-11-30 | 2006-01-17 | Equity Industries, Inc. | Alarm clock with dial illumination |
WO2003048821A1 (en) * | 2001-11-30 | 2003-06-12 | Equity Industries Corp. | Clocks with diffusion reflector lighting |
US7054233B2 (en) * | 2001-11-30 | 2006-05-30 | Equity Industries, Inc. | Wall clock with dial illumination |
US20040141321A1 (en) * | 2002-11-20 | 2004-07-22 | Color Kinetics, Incorporated | Lighting and other perceivable effects for toys and other consumer products |
US20040171956A1 (en) * | 2003-01-30 | 2004-09-02 | Bruce Babashan | Heart rate monitor using color to convey information |
WO2004078028A2 (en) * | 2003-02-28 | 2004-09-16 | Ken Avicola | Flashing jewelry heartbeat monitor with multiple lights |
US20050134529A1 (en) * | 2003-12-18 | 2005-06-23 | Luiz Lei | Color changing segmented display |
US7015877B2 (en) * | 2004-06-30 | 2006-03-21 | Litech Electronic Products Limited | Multi-color segmented display |
US20080084327A1 (en) * | 2005-10-25 | 2008-04-10 | John Rubis | Multicolor illumination system |
US8221290B2 (en) | 2007-08-17 | 2012-07-17 | Adidas International Marketing B.V. | Sports electronic training system with electronic gaming features, and applications thereof |
US8360904B2 (en) | 2007-08-17 | 2013-01-29 | Adidas International Marketing Bv | Sports electronic training system with sport ball, and applications thereof |
US8702430B2 (en) | 2007-08-17 | 2014-04-22 | Adidas International Marketing B.V. | Sports electronic training system, and applications thereof |
US20090054751A1 (en) * | 2007-08-22 | 2009-02-26 | Bruce Babashan | Touchless Sensor for Physiological Monitor Device |
DE102009015273A1 (en) | 2009-04-01 | 2010-10-14 | Albert-Ludwigs-Universität Freiburg | Method and device for determining the endurance performance of a subject |
US8105208B2 (en) | 2009-05-18 | 2012-01-31 | Adidas Ag | Portable fitness monitoring systems with displays and applications thereof |
US8200323B2 (en) | 2009-05-18 | 2012-06-12 | Adidas Ag | Program products, methods, and systems for providing fitness monitoring services |
US20120258433A1 (en) | 2011-04-05 | 2012-10-11 | Adidas Ag | Fitness Monitoring Methods, Systems, And Program Products, And Applications Thereof |
EP2565461B1 (en) * | 2011-08-29 | 2016-08-17 | Grundfos Holding A/S | Pump power unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3763647A (en) * | 1972-09-22 | 1973-10-09 | Kyoshin Sangyo Co Ltd | Polychromatic watch dial plate |
US3922847A (en) * | 1974-05-06 | 1975-12-02 | Texas Instruments Inc | VLED solid state watch |
FR2274966A1 (en) * | 1974-06-12 | 1976-01-09 | Peter Uhren Gmbh | Large wall clock incorporating temperature indication - latter employing series of different coloured elements |
US3969887A (en) * | 1973-03-08 | 1976-07-20 | Kabushiki Kaisha Suncrux Research Office | Electronically controlled timepieces using liquid crystal display elements |
JPS5419788A (en) * | 1977-07-13 | 1979-02-14 | Sharp Corp | Electronic watch with thermometer |
US4451157A (en) * | 1982-05-13 | 1984-05-29 | Reap James D | Combined time and temperature indicating device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3760174A (en) * | 1972-05-31 | 1973-09-18 | Westinghouse Electric Corp | Programmable light source |
DE2425254C3 (en) * | 1973-05-28 | 1980-11-20 | Citizen Watch Co., Ltd., Tokio | Portable electronic watch |
CH587515B5 (en) * | 1975-01-06 | 1977-05-13 | Ebauches Sa | |
US3978849A (en) * | 1975-04-17 | 1976-09-07 | International Telephone And Telegraph Corporation | Pulse rate indicator |
JPS5221861A (en) * | 1975-08-11 | 1977-02-18 | Seiko Instr & Electronics Ltd | Digital liquid-clystal electronic watch |
US4086514A (en) * | 1975-09-15 | 1978-04-25 | Karel Havel | Variable color display device |
JPS53101296A (en) * | 1977-02-16 | 1978-09-04 | Seiko Epson Corp | Display unit |
US4181134A (en) * | 1977-09-21 | 1980-01-01 | Mason Richard C | Cardiotachometer |
-
1986
- 1986-01-08 US US06/817,114 patent/US4647217A/en not_active Expired - Fee Related
- 1986-12-09 CA CA000524804A patent/CA1232144A/en not_active Expired
- 1986-12-23 GB GB08630661A patent/GB2186400A/en not_active Withdrawn
-
1987
- 1987-01-06 US US07/000,667 patent/US4707141A/en not_active Expired - Fee Related
- 1987-03-10 IN IN197/CAL/87A patent/IN167164B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3763647A (en) * | 1972-09-22 | 1973-10-09 | Kyoshin Sangyo Co Ltd | Polychromatic watch dial plate |
US3969887A (en) * | 1973-03-08 | 1976-07-20 | Kabushiki Kaisha Suncrux Research Office | Electronically controlled timepieces using liquid crystal display elements |
US3922847A (en) * | 1974-05-06 | 1975-12-02 | Texas Instruments Inc | VLED solid state watch |
FR2274966A1 (en) * | 1974-06-12 | 1976-01-09 | Peter Uhren Gmbh | Large wall clock incorporating temperature indication - latter employing series of different coloured elements |
JPS5419788A (en) * | 1977-07-13 | 1979-02-14 | Sharp Corp | Electronic watch with thermometer |
US4451157A (en) * | 1982-05-13 | 1984-05-29 | Reap James D | Combined time and temperature indicating device |
Cited By (193)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4934852A (en) * | 1987-03-13 | 1990-06-19 | Karel Havel | Variable color display typewriter |
US5134387A (en) * | 1989-11-06 | 1992-07-28 | Texas Digital Systems, Inc. | Multicolor display system |
US5278542A (en) * | 1989-11-06 | 1994-01-11 | Texas Digital Systems, Inc. | Multicolor display system |
EP0607018A2 (en) * | 1993-01-14 | 1994-07-20 | Kabushiki Kaisha Toshiba | Apparatus for displaying time on a screen |
EP0607018A3 (en) * | 1993-01-14 | 1997-11-26 | Kabushiki Kaisha Toshiba | Apparatus for displaying time on a screen |
US5821914A (en) * | 1993-01-14 | 1998-10-13 | Kabushiki Kaisha Toshiba | Apparatus for displaying time on a screen |
US5636185A (en) * | 1995-03-10 | 1997-06-03 | Boit Incorporated | Dynamically changing liquid crystal display timekeeping apparatus |
US5995456A (en) * | 1995-03-10 | 1999-11-30 | Boit Incorporated | Dynamically changing liquid crystal display timekeeping apparatus |
WO1998059382A1 (en) * | 1997-06-23 | 1998-12-30 | Fed Corporation | Voltage controlled color organic light emitting device and method of producing the same |
US7309965B2 (en) | 1997-08-26 | 2007-12-18 | Color Kinetics Incorporated | Universal lighting network methods and systems |
US6967448B2 (en) | 1997-08-26 | 2005-11-22 | Color Kinetics, Incorporated | Methods and apparatus for controlling illumination |
US20030100837A1 (en) * | 1997-08-26 | 2003-05-29 | Ihor Lys | Precision illumination methods and systems |
US6577080B2 (en) | 1997-08-26 | 2003-06-10 | Color Kinetics Incorporated | Lighting entertainment system |
US6608453B2 (en) | 1997-08-26 | 2003-08-19 | Color Kinetics Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US6624597B2 (en) | 1997-08-26 | 2003-09-23 | Color Kinetics, Inc. | Systems and methods for providing illumination in machine vision systems |
US6717376B2 (en) | 1997-08-26 | 2004-04-06 | Color Kinetics, Incorporated | Automotive information systems |
US7659674B2 (en) | 1997-08-26 | 2010-02-09 | Philips Solid-State Lighting Solutions, Inc. | Wireless lighting control methods and apparatus |
US7274160B2 (en) | 1997-08-26 | 2007-09-25 | Color Kinetics Incorporated | Multicolored lighting method and apparatus |
US6720745B2 (en) | 1997-08-26 | 2004-04-13 | Color Kinetics, Incorporated | Data delivery track |
US6774584B2 (en) | 1997-08-26 | 2004-08-10 | Color Kinetics, Incorporated | Methods and apparatus for sensor responsive illumination of liquids |
US7308296B2 (en) | 1997-08-26 | 2007-12-11 | Color Kinetics Incorporated | Precision illumination methods and systems |
US7113541B1 (en) | 1997-08-26 | 2006-09-26 | Color Kinetics Incorporated | Method for software driven generation of multiple simultaneous high speed pulse width modulated signals |
US6781329B2 (en) | 1997-08-26 | 2004-08-24 | Color Kinetics Incorporated | Methods and apparatus for illumination of liquids |
US6788011B2 (en) | 1997-08-26 | 2004-09-07 | Color Kinetics, Incorporated | Multicolored LED lighting method and apparatus |
US6340868B1 (en) | 1997-08-26 | 2002-01-22 | Color Kinetics Incorporated | Illumination components |
US6806659B1 (en) | 1997-08-26 | 2004-10-19 | Color Kinetics, Incorporated | Multicolored LED lighting method and apparatus |
US7253566B2 (en) | 1997-08-26 | 2007-08-07 | Color Kinetics Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US6528954B1 (en) | 1997-08-26 | 2003-03-04 | Color Kinetics Incorporated | Smart light bulb |
US7242152B2 (en) | 1997-08-26 | 2007-07-10 | Color Kinetics Incorporated | Systems and methods of controlling light systems |
US6869204B2 (en) | 1997-08-26 | 2005-03-22 | Color Kinetics Incorporated | Light fixtures for illumination of liquids |
US6888322B2 (en) | 1997-08-26 | 2005-05-03 | Color Kinetics Incorporated | Systems and methods for color changing device and enclosure |
US6897624B2 (en) | 1997-08-26 | 2005-05-24 | Color Kinetics, Incorporated | Packaged information systems |
US6936978B2 (en) | 1997-08-26 | 2005-08-30 | Color Kinetics Incorporated | Methods and apparatus for remotely controlled illumination of liquids |
US6965205B2 (en) | 1997-08-26 | 2005-11-15 | Color Kinetics Incorporated | Light emitting diode based products |
US7135824B2 (en) | 1997-08-26 | 2006-11-14 | Color Kinetics Incorporated | Systems and methods for controlling illumination sources |
US7845823B2 (en) | 1997-08-26 | 2010-12-07 | Philips Solid-State Lighting Solutions, Inc. | Controlled lighting methods and apparatus |
US6975079B2 (en) | 1997-08-26 | 2005-12-13 | Color Kinetics Incorporated | Systems and methods for controlling illumination sources |
US7231060B2 (en) | 1997-08-26 | 2007-06-12 | Color Kinetics Incorporated | Systems and methods of generating control signals |
US7525254B2 (en) | 1997-08-26 | 2009-04-28 | Philips Solid-State Lighting Solutions, Inc. | Vehicle lighting methods and apparatus |
US7482764B2 (en) | 1997-08-26 | 2009-01-27 | Philips Solid-State Lighting Solutions, Inc. | Light sources for illumination of liquids |
US7038398B1 (en) | 1997-08-26 | 2006-05-02 | Color Kinetics, Incorporated | Kinetic illumination system and methods |
US7462997B2 (en) | 1997-08-26 | 2008-12-09 | Philips Solid-State Lighting Solutions, Inc. | Multicolored LED lighting method and apparatus |
US7064498B2 (en) | 1997-08-26 | 2006-06-20 | Color Kinetics Incorporated | Light-emitting diode based products |
US7453217B2 (en) | 1997-08-26 | 2008-11-18 | Philips Solid-State Lighting Solutions, Inc. | Marketplace illumination methods and apparatus |
US7427840B2 (en) | 1997-08-26 | 2008-09-23 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling illumination |
US6777891B2 (en) | 1997-08-26 | 2004-08-17 | Color Kinetics, Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US7248239B2 (en) | 1997-08-26 | 2007-07-24 | Color Kinetics Incorporated | Systems and methods for color changing device and enclosure |
US20080183081A1 (en) * | 1997-08-26 | 2008-07-31 | Philips Solid-State Lighting Solutions | Precision illumination methods and systems |
US7161311B2 (en) | 1997-08-26 | 2007-01-09 | Color Kinetics Incorporated | Multicolored LED lighting method and apparatus |
US7385359B2 (en) | 1997-08-26 | 2008-06-10 | Philips Solid-State Lighting Solutions, Inc. | Information systems |
US7187141B2 (en) | 1997-08-26 | 2007-03-06 | Color Kinetics Incorporated | Methods and apparatus for illumination of liquids |
US7186003B2 (en) | 1997-08-26 | 2007-03-06 | Color Kinetics Incorporated | Light-emitting diode based products |
US7352339B2 (en) | 1997-08-26 | 2008-04-01 | Philips Solid-State Lighting Solutions | Diffuse illumination systems and methods |
US7221104B2 (en) | 1997-08-26 | 2007-05-22 | Color Kinetics Incorporated | Linear lighting apparatus and methods |
US7132804B2 (en) | 1997-12-17 | 2006-11-07 | Color Kinetics Incorporated | Data delivery track |
US7764026B2 (en) | 1997-12-17 | 2010-07-27 | Philips Solid-State Lighting Solutions, Inc. | Systems and methods for digital entertainment |
US20040155609A1 (en) * | 1997-12-17 | 2004-08-12 | Color Kinetics, Incorporated | Data delivery track |
US7598686B2 (en) | 1997-12-17 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Organic light emitting diode methods and apparatus |
US7959320B2 (en) | 1999-11-18 | 2011-06-14 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for generating and modulating white light illumination conditions |
US7572028B2 (en) | 1999-11-18 | 2009-08-11 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for generating and modulating white light illumination conditions |
US9746139B2 (en) | 2000-02-11 | 2017-08-29 | Ilumisys, Inc. | Light tube and power supply circuit |
US9752736B2 (en) | 2000-02-11 | 2017-09-05 | Ilumisys, Inc. | Light tube and power supply circuit |
US9803806B2 (en) | 2000-02-11 | 2017-10-31 | Ilumisys, Inc. | Light tube and power supply circuit |
US9416923B1 (en) | 2000-02-11 | 2016-08-16 | Ilumisys, Inc. | Light tube and power supply circuit |
US9222626B1 (en) | 2000-02-11 | 2015-12-29 | Ilumisys, Inc. | Light tube and power supply circuit |
US8866396B2 (en) | 2000-02-11 | 2014-10-21 | Ilumisys, Inc. | Light tube and power supply circuit |
US9970601B2 (en) | 2000-02-11 | 2018-05-15 | Ilumisys, Inc. | Light tube and power supply circuit |
US10054270B2 (en) | 2000-02-11 | 2018-08-21 | Ilumisys, Inc. | Light tube and power supply circuit |
US8870412B1 (en) | 2000-02-11 | 2014-10-28 | Ilumisys, Inc. | Light tube and power supply circuit |
US9739428B1 (en) | 2000-02-11 | 2017-08-22 | Ilumisys, Inc. | Light tube and power supply circuit |
US9777893B2 (en) | 2000-02-11 | 2017-10-03 | Ilumisys, Inc. | Light tube and power supply circuit |
US9006993B1 (en) | 2000-02-11 | 2015-04-14 | Ilumisys, Inc. | Light tube and power supply circuit |
US9759392B2 (en) | 2000-02-11 | 2017-09-12 | Ilumisys, Inc. | Light tube and power supply circuit |
US9006990B1 (en) | 2000-02-11 | 2015-04-14 | Ilumisys, Inc. | Light tube and power supply circuit |
US10557593B2 (en) | 2000-02-11 | 2020-02-11 | Ilumisys, Inc. | Light tube and power supply circuit |
US7642730B2 (en) | 2000-04-24 | 2010-01-05 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for conveying information via color of light |
US7031920B2 (en) | 2000-07-27 | 2006-04-18 | Color Kinetics Incorporated | Lighting control using speech recognition |
US9955541B2 (en) | 2000-08-07 | 2018-04-24 | Philips Lighting Holding B.V. | Universal lighting network methods and systems |
US7042172B2 (en) | 2000-09-01 | 2006-05-09 | Color Kinetics Incorporated | Systems and methods for providing illumination in machine vision systems |
US7303300B2 (en) | 2000-09-27 | 2007-12-04 | Color Kinetics Incorporated | Methods and systems for illuminating household products |
US7652436B2 (en) | 2000-09-27 | 2010-01-26 | Philips Solid-State Lighting Solutions, Inc. | Methods and systems for illuminating household products |
US7038399B2 (en) | 2001-03-13 | 2006-05-02 | Color Kinetics Incorporated | Methods and apparatus for providing power to lighting devices |
US7449847B2 (en) | 2001-03-13 | 2008-11-11 | Philips Solid-State Lighting Solutions, Inc. | Systems and methods for synchronizing lighting effects |
US6801003B2 (en) | 2001-03-13 | 2004-10-05 | Color Kinetics, Incorporated | Systems and methods for synchronizing lighting effects |
US7352138B2 (en) | 2001-03-13 | 2008-04-01 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for providing power to lighting devices |
US7550931B2 (en) | 2001-05-30 | 2009-06-23 | Philips Solid-State Lighting Solutions, Inc. | Controlled lighting methods and apparatus |
US7598684B2 (en) | 2001-05-30 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling devices in a networked lighting system |
US7598681B2 (en) | 2001-05-30 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling devices in a networked lighting system |
US7202613B2 (en) | 2001-05-30 | 2007-04-10 | Color Kinetics Incorporated | Controlled lighting methods and apparatus |
US6714488B1 (en) | 2001-09-04 | 2004-03-30 | Eric J. Vogel | Kinetichrome |
US20030076745A1 (en) * | 2001-10-22 | 2003-04-24 | Chapman Peter A. | Combination clock radio, weather station and message organizer |
US6967900B2 (en) * | 2001-10-22 | 2005-11-22 | Maverick Industries, Inc. | Combination clock radio, weather station and message organizer |
US20030211999A1 (en) * | 2002-03-15 | 2003-11-13 | Gellman Samuel H. | Polypeptides containing gamma-amino acids |
US7079452B2 (en) * | 2002-04-16 | 2006-07-18 | Harrison Shelton E | Time display system, method and device |
US20070189123A1 (en) * | 2002-04-16 | 2007-08-16 | Harrison Shelton E Jr | Time display system, method and device |
US7525877B2 (en) * | 2002-04-16 | 2009-04-28 | Harrison Jr Shelton E | Time display system, method and device |
US7358679B2 (en) | 2002-05-09 | 2008-04-15 | Philips Solid-State Lighting Solutions, Inc. | Dimmable LED-based MR16 lighting apparatus and methods |
US6995739B2 (en) | 2002-09-13 | 2006-02-07 | Zexus Technology Limited | Variable color display and articles incorporating same |
US20040051722A1 (en) * | 2002-09-13 | 2004-03-18 | Tak Chun Lee | Variable colour display and articles incorporating same |
US7300192B2 (en) | 2002-10-03 | 2007-11-27 | Color Kinetics Incorporated | Methods and apparatus for illuminating environments |
US20060203619A1 (en) * | 2003-01-25 | 2006-09-14 | David Wigley | Time display apparatus |
US7178941B2 (en) | 2003-05-05 | 2007-02-20 | Color Kinetics Incorporated | Lighting methods and systems |
US8207821B2 (en) | 2003-05-05 | 2012-06-26 | Philips Solid-State Lighting Solutions, Inc. | Lighting methods and systems |
US20050041536A1 (en) * | 2003-08-04 | 2005-02-24 | Lang Timothy R. | Color timepiece |
US7362662B2 (en) * | 2003-08-04 | 2008-04-22 | Lang Timothy R | Color timepiece |
US20100296370A1 (en) * | 2007-09-06 | 2010-11-25 | Gro-Group International Limited | Device |
US10321528B2 (en) | 2007-10-26 | 2019-06-11 | Philips Lighting Holding B.V. | Targeted content delivery using outdoor lighting networks (OLNs) |
US20090159919A1 (en) * | 2007-12-20 | 2009-06-25 | Altair Engineering, Inc. | Led lighting apparatus with swivel connection |
US8118447B2 (en) | 2007-12-20 | 2012-02-21 | Altair Engineering, Inc. | LED lighting apparatus with swivel connection |
US8928025B2 (en) | 2007-12-20 | 2015-01-06 | Ilumisys, Inc. | LED lighting apparatus with swivel connection |
US7926975B2 (en) | 2007-12-21 | 2011-04-19 | Altair Engineering, Inc. | Light distribution using a light emitting diode assembly |
US20100172149A1 (en) * | 2007-12-21 | 2010-07-08 | Altair Engineering, Inc. | Light distribution using a light emitting diode assembly |
US8360599B2 (en) | 2008-05-23 | 2013-01-29 | Ilumisys, Inc. | Electric shock resistant L.E.D. based light |
US20090290334A1 (en) * | 2008-05-23 | 2009-11-26 | Altair Engineering, Inc. | Electric shock resistant l.e.d. based light |
US20100220469A1 (en) * | 2008-05-23 | 2010-09-02 | Altair Engineering, Inc. | D-shaped cross section l.e.d. based light |
US8807785B2 (en) | 2008-05-23 | 2014-08-19 | Ilumisys, Inc. | Electric shock resistant L.E.D. based light |
US7976196B2 (en) | 2008-07-09 | 2011-07-12 | Altair Engineering, Inc. | Method of forming LED-based light and resulting LED-based light |
US20100008085A1 (en) * | 2008-07-09 | 2010-01-14 | Altair Engineering, Inc. | Method of forming led-based light and resulting led-based light |
US7946729B2 (en) | 2008-07-31 | 2011-05-24 | Altair Engineering, Inc. | Fluorescent tube replacement having longitudinally oriented LEDs |
US20100027259A1 (en) * | 2008-07-31 | 2010-02-04 | Altair Engineering, Inc. | Fluorescent tube replacement having longitudinally oriented leds |
US20100052542A1 (en) * | 2008-09-02 | 2010-03-04 | Altair Engineering, Inc. | Led lamp failure alerting system |
US8674626B2 (en) | 2008-09-02 | 2014-03-18 | Ilumisys, Inc. | LED lamp failure alerting system |
US20100067231A1 (en) * | 2008-09-15 | 2010-03-18 | Altair Engineering, Inc. | Led-based light having rapidly oscillating leds |
US8256924B2 (en) | 2008-09-15 | 2012-09-04 | Ilumisys, Inc. | LED-based light having rapidly oscillating LEDs |
US8653984B2 (en) | 2008-10-24 | 2014-02-18 | Ilumisys, Inc. | Integration of LED lighting control with emergency notification systems |
US8901823B2 (en) | 2008-10-24 | 2014-12-02 | Ilumisys, Inc. | Light and light sensor |
US10176689B2 (en) | 2008-10-24 | 2019-01-08 | Ilumisys, Inc. | Integration of led lighting control with emergency notification systems |
US10932339B2 (en) | 2008-10-24 | 2021-02-23 | Ilumisys, Inc. | Light and light sensor |
US10036549B2 (en) | 2008-10-24 | 2018-07-31 | Ilumisys, Inc. | Lighting including integral communication apparatus |
US10973094B2 (en) | 2008-10-24 | 2021-04-06 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US9353939B2 (en) | 2008-10-24 | 2016-05-31 | iLumisys, Inc | Lighting including integral communication apparatus |
US8444292B2 (en) | 2008-10-24 | 2013-05-21 | Ilumisys, Inc. | End cap substitute for LED-based tube replacement light |
US10342086B2 (en) | 2008-10-24 | 2019-07-02 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US10560992B2 (en) | 2008-10-24 | 2020-02-11 | Ilumisys, Inc. | Light and light sensor |
US7938562B2 (en) | 2008-10-24 | 2011-05-10 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
US11073275B2 (en) | 2008-10-24 | 2021-07-27 | Ilumisys, Inc. | Lighting including integral communication apparatus |
US11333308B2 (en) | 2008-10-24 | 2022-05-17 | Ilumisys, Inc. | Light and light sensor |
US8324817B2 (en) | 2008-10-24 | 2012-12-04 | Ilumisys, Inc. | Light and light sensor |
US20100103664A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
US10182480B2 (en) | 2008-10-24 | 2019-01-15 | Ilumisys, Inc. | Light and light sensor |
US10571115B2 (en) | 2008-10-24 | 2020-02-25 | Ilumisys, Inc. | Lighting including integral communication apparatus |
US8946996B2 (en) | 2008-10-24 | 2015-02-03 | Ilumisys, Inc. | Light and light sensor |
US20100102730A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Light and light sensor |
US20100103673A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | End cap substitute for led-based tube replacement light |
US20100106306A1 (en) * | 2008-10-24 | 2010-04-29 | Altair Engineering, Inc. | Integration of led lighting with building controls |
US8251544B2 (en) | 2008-10-24 | 2012-08-28 | Ilumisys, Inc. | Lighting including integral communication apparatus |
US8214084B2 (en) | 2008-10-24 | 2012-07-03 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US9101026B2 (en) | 2008-10-24 | 2015-08-04 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US9635727B2 (en) | 2008-10-24 | 2017-04-25 | Ilumisys, Inc. | Light and light sensor |
US9585216B2 (en) | 2008-10-24 | 2017-02-28 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US10713915B2 (en) | 2008-10-24 | 2020-07-14 | Ilumisys, Inc. | Integration of LED lighting control with emergency notification systems |
US20110188240A1 (en) * | 2008-10-24 | 2011-08-04 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
US9398661B2 (en) | 2008-10-24 | 2016-07-19 | Ilumisys, Inc. | Light and light sensor |
US20100177532A1 (en) * | 2009-01-15 | 2010-07-15 | Altair Engineering, Inc. | Led lens |
US8556452B2 (en) | 2009-01-15 | 2013-10-15 | Ilumisys, Inc. | LED lens |
US8362710B2 (en) | 2009-01-21 | 2013-01-29 | Ilumisys, Inc. | Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays |
US8664880B2 (en) | 2009-01-21 | 2014-03-04 | Ilumisys, Inc. | Ballast/line detection circuit for fluorescent replacement lamps |
US20100181933A1 (en) * | 2009-01-21 | 2010-07-22 | Altair Engineering, Inc. | Direct ac-to-dc converter for passive component minimization and universal operation of led arrays |
US20100181925A1 (en) * | 2009-01-21 | 2010-07-22 | Altair Engineering, Inc. | Ballast/Line Detection Circuit for Fluorescent Replacement Lamps |
US9244439B1 (en) | 2009-04-14 | 2016-01-26 | Charles Allison | Color changing wrist watch device and associated method |
US8330381B2 (en) | 2009-05-14 | 2012-12-11 | Ilumisys, Inc. | Electronic circuit for DC conversion of fluorescent lighting ballast |
US8299695B2 (en) | 2009-06-02 | 2012-10-30 | Ilumisys, Inc. | Screw-in LED bulb comprising a base having outwardly projecting nodes |
US20100321921A1 (en) * | 2009-06-23 | 2010-12-23 | Altair Engineering, Inc. | Led lamp with a wavelength converting layer |
US20100320922A1 (en) * | 2009-06-23 | 2010-12-23 | Altair Engineering, Inc. | Illumination device including leds and a switching power control system |
US8421366B2 (en) | 2009-06-23 | 2013-04-16 | Ilumisys, Inc. | Illumination device including LEDs and a switching power control system |
US9013119B2 (en) | 2010-03-26 | 2015-04-21 | Ilumisys, Inc. | LED light with thermoelectric generator |
US9057493B2 (en) | 2010-03-26 | 2015-06-16 | Ilumisys, Inc. | LED light tube with dual sided light distribution |
US8541958B2 (en) | 2010-03-26 | 2013-09-24 | Ilumisys, Inc. | LED light with thermoelectric generator |
US8840282B2 (en) | 2010-03-26 | 2014-09-23 | Ilumisys, Inc. | LED bulb with internal heat dissipating structures |
US9395075B2 (en) | 2010-03-26 | 2016-07-19 | Ilumisys, Inc. | LED bulb for incandescent bulb replacement with internal heat dissipating structures |
US8540401B2 (en) | 2010-03-26 | 2013-09-24 | Ilumisys, Inc. | LED bulb with internal heat dissipating structures |
US20110235318A1 (en) * | 2010-03-26 | 2011-09-29 | Altair Engineering, Inc. | Led light tube with dual sided light distribution |
US8454193B2 (en) | 2010-07-08 | 2013-06-04 | Ilumisys, Inc. | Independent modules for LED fluorescent light tube replacement |
US8596813B2 (en) | 2010-07-12 | 2013-12-03 | Ilumisys, Inc. | Circuit board mount for LED light tube |
US8523394B2 (en) | 2010-10-29 | 2013-09-03 | Ilumisys, Inc. | Mechanisms for reducing risk of shock during installation of light tube |
US8894430B2 (en) | 2010-10-29 | 2014-11-25 | Ilumisys, Inc. | Mechanisms for reducing risk of shock during installation of light tube |
US8870415B2 (en) | 2010-12-09 | 2014-10-28 | Ilumisys, Inc. | LED fluorescent tube replacement light with reduced shock hazard |
US9072171B2 (en) | 2011-08-24 | 2015-06-30 | Ilumisys, Inc. | Circuit board mount for LED light |
US9184518B2 (en) | 2012-03-02 | 2015-11-10 | Ilumisys, Inc. | Electrical connector header for an LED-based light |
US9163794B2 (en) | 2012-07-06 | 2015-10-20 | Ilumisys, Inc. | Power supply assembly for LED-based light tube |
US10278247B2 (en) | 2012-07-09 | 2019-04-30 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
US9271367B2 (en) | 2012-07-09 | 2016-02-23 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
US9807842B2 (en) | 2012-07-09 | 2017-10-31 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
US10966295B2 (en) | 2012-07-09 | 2021-03-30 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
US9285084B2 (en) | 2013-03-14 | 2016-03-15 | Ilumisys, Inc. | Diffusers for LED-based lights |
US9267650B2 (en) | 2013-10-09 | 2016-02-23 | Ilumisys, Inc. | Lens for an LED-based light |
US10260686B2 (en) | 2014-01-22 | 2019-04-16 | Ilumisys, Inc. | LED-based light with addressed LEDs |
US9574717B2 (en) | 2014-01-22 | 2017-02-21 | Ilumisys, Inc. | LED-based light with addressed LEDs |
US9510400B2 (en) | 2014-05-13 | 2016-11-29 | Ilumisys, Inc. | User input systems for an LED-based light |
US10161568B2 (en) | 2015-06-01 | 2018-12-25 | Ilumisys, Inc. | LED-based light with canted outer walls |
US10690296B2 (en) | 2015-06-01 | 2020-06-23 | Ilumisys, Inc. | LED-based light with canted outer walls |
US11028972B2 (en) | 2015-06-01 | 2021-06-08 | Ilumisys, Inc. | LED-based light with canted outer walls |
US11428370B2 (en) | 2015-06-01 | 2022-08-30 | Ilumisys, Inc. | LED-based light with canted outer walls |
Also Published As
Publication number | Publication date |
---|---|
GB8630661D0 (en) | 1987-02-04 |
GB2186400A (en) | 1987-08-12 |
US4647217A (en) | 1987-03-03 |
CA1232144A (en) | 1988-02-02 |
IN167164B (en) | 1990-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4707141A (en) | Variable color analog timepiece | |
US4702615A (en) | Analog display timepiece | |
US4705406A (en) | Electronic timepiece with physical transducer | |
CA1243492A (en) | Analog display timepiece | |
US4687340A (en) | Electronic timepiece with transducers | |
US3760584A (en) | Integrated circuit solid state watch | |
CN113268111B (en) | Intelligent wearable equipment with interactive watchband and watch dial | |
CA1243504A (en) | Variable colour analog timepiece | |
US3839856A (en) | Solid state watch with calendar display | |
US4048478A (en) | Marking apparatus with electronic counters | |
US4081953A (en) | Hybrid horological display using space modulation | |
WO2006036296A2 (en) | Timepiece with lcd schedule function | |
US4421419A (en) | Electronic timepiece | |
CA1258378A (en) | Digital display timepiece | |
JP2006513433A (en) | Time display device | |
US20030090961A1 (en) | Digital timepiece with approximate time messaging | |
JPS6243150B2 (en) | ||
US4209972A (en) | Digital electronic timepiece having an alarm display | |
JP2000266877A (en) | Display method for multiple function watch and multiple function watch | |
JPS57196182A (en) | Electronic watch with bio-rhythm function | |
GB2044963A (en) | Electronic analogue timepiece | |
US20060109749A1 (en) | Unified digital time displays | |
RU2147374C1 (en) | Clock with additional function | |
WO2025055316A1 (en) | Fibonacci sequence-based clock timing method and apparatus | |
KR910006445Y1 (en) | New numeric display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19951122 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |