US4650830A - Thermoplastic elastomer composition and process for preparation thereof - Google Patents
Thermoplastic elastomer composition and process for preparation thereof Download PDFInfo
- Publication number
- US4650830A US4650830A US06/615,244 US61524484A US4650830A US 4650830 A US4650830 A US 4650830A US 61524484 A US61524484 A US 61524484A US 4650830 A US4650830 A US 4650830A
- Authority
- US
- United States
- Prior art keywords
- copolymer
- propylene
- mole
- thermoplastic elastomer
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/14—Copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C08L23/22—Copolymers of isobutene; Butyl rubber; Homopolymers or copolymers of other iso-olefins
Definitions
- the present invention relates to a thermoplastic elastomer composition excellent in injection fusion bondability and surface gloss.
- An olefin type thermoplastic elastomer for example, a partially crosslinked elastomer (TPE) comprising a crystalline polyolefin and an amorphous ethylene/ ⁇ -olefin copolymer, shows an elastomeric property similar to that of a vulcanized rubber, and also shows a moldability equivalent to the moldability of a thermoplastic resin such as polyethylene or polypropylene.
- TPE partially crosslinked elastomer
- the olefin type thermoplastic elastomer is molded in the same manner as ordinary resins, and molded article is used in the fields where the elastomeric property is required, for example, as a vehicle bumper, an exterior moleskin, a window shield gasket, an emblem, an interior surface sheet or a gasket for a construction material.
- This TPE does not possess the surface gloss required in the market, and an improvement of the surface gloss has been desired especially for exterior moleskins and emblems of vehicles where great importance is attached to the surface gloss.
- An olefin type thermoplastic elastomer to be used for window shield gaskets of vehicles or various construction gaskets, for which properties similar to those of a vulcanized rubber are required, is obtained by increasing the content of an ethylene/ ⁇ -olefin copolymer elastomer component in an ordinary olefin type thermoplastic elastomer.
- thermoplastic elastomer rich in the softness is poor in the flowability in the fused state, and therefore, a window shield gasket for a vehicle or a construction gasket, for which a complicated shape is required, can hardly be prepared directly by injection molding of this thermoplastic elastomer.
- this soft thermoplastic elastomer is excellent in profile moldability, there may be considered a method for forming the above molded article by extrusion molding. In this case, it is necessary to bond the ends of molded articles formed by profile extrusion.
- This bonding is preferably accomplished according to a method in which at least two-extrusion-molded articles to be bonded are placed in a split mold and a thermoplastic elastomer having good fusion bondability is injected between the ends of the molded articles to fusion-bond the molded articles through the injected thermoplastic elastomer.
- the split mold should have a structure to which injection molding is applicable.
- Another object of the present invention is to provide an olefin type thermoplastic elastomer having excellent injection moldability and high fusion bondability to a soft olefin type thermoplastic elastomer placed in an injection mold.
- Still another object of the present invention is to provide a process for the preparation of an olefin type thermoplastic elastomer having the above-mentioned excellent properties.
- thermoplastic elastomer composition excellent in injection fusion bondability and surface gloss which comprises (1) an amorphous ethylene/ ⁇ -olefin copolymer (a) and (2) (i) a low crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms, (ii) a polymer (d) composed mainly of 1-butene or (iii) a combination of the copolymer (b) or the polymer (d) with a crystalline polymer (c) composed mainly of propylene, wherein the component (1) is present in an amount of 10 to 95% by weight based on the total amount of the components (1) and (2), the component (2) is present in an amount of 5 to 90% by weight based on the total amount of the components (1) and (2), and the component (1) or the components (1) and (2) are partially crosslinked.
- thermoplastic elastomer composition set forth above, wherein a radical-polymerizable monomer (e) havibng at least two polymerizable groups is contained in an amount of 0.05 to 1% by weight based on total amount of the components (1) and (2) and the partial crosslinking is effected by grafting of said monomer.
- a radical-polymerizable monomer (e) havibng at least two polymerizable groups is contained in an amount of 0.05 to 1% by weight based on total amount of the components (1) and (2) and the partial crosslinking is effected by grafting of said monomer.
- the amorphous ethylene/ ⁇ -olefin copolymer used as the component (a) in the present invention includes a binary copolymer of ethylene with an ⁇ -olefin and a terpolymer or multi-component copolymer comprising as a third component an unconjugated diene, for example, an aliphatic diene such as 1,4-hexadiene or an alicyclic diene such as dicyclopentadiene, 5-ethylidenenorbornene, 5-meethylenenorbornene or 5-vinylnorbornene, and the copolymer (a) has a crystallization degree lower than 35%, preferably lower than 20%, as determined by X-ray diffractometry.
- the ethylene unit content is ordinarily 30 to 95 mole % and preferably 50 to 85 mole %, the balance being an ⁇ -olefin.
- the melt flow rate (190° C.) is ordinarily 0.1 to 120 g/10 min and preferably 0.1 to 20 g/10 min, and the melt flow rate (230° C.) is ordinarily 0.1 to 200 g/10 min and preferably 0.1 to 50 g/10 min.
- the iodine value is ordinarily smaller than 1.
- the ethylene unit content is ordinarily 30 to 95 mole % and preferably 50 to 85 mole %
- the ⁇ -olefin unit content is ordinarily 5 to 70 mole % and preferably 15 to 50 mole %
- the unconjugated diene unit content is ordinarily 1 to 10 mole % and preferably 3 to 6 mole % (a iodine value of 1 to 60, preferably 5 to 30.)
- the Mooney viscosity [ML 1+4 (100° C.)] is ordinarily 5 to 200 and preferably 40 to 120
- the iodine value is ordinarily 1 to 50 and preferably 5 to 30.
- An ethylene/propylene copolymer (EPM) and an ethylene/1-butene copolymer (EBM) are preferred as the binary copolymer, and in these preferred copolymers, the ethylene unit content is 50 to 95 mole %, the crystallization degree is lower than 20%, the melt flow rate (190° C.) is 0.1 to 20 g/10 min and the melt flow rate (230° C.) is 0.1 to 50 g/10 min.
- an ethylene/propylene/dicyclopentadiene terpolymer, an ethylene/propylene/2-ethylidene-5-norbornene terpolymer (EPDM), ethylene/1-butene/dicyclopentadiene terpolymer and an ethylene/1-butene/2-ethylidene-5-norbornene terpolymer (EBDM) are preferred as the terpolymer, and in these preferred terpolymers, the ethylene unit content is 50 to 95 mole %, the propylene or 1-butene unit content is 5 to 50 mole %, the unconjugated diene unit content is 0.1 to 20 mole % (this range corresponds ordinarily to an iodine value of 1 to 60, preferably 5 to 30), the crystallization degree is lower than 20%, the Mooney viscosity [ML 1+4 (100° C.)] is 40 to 160 and the iodine value is 5 to 30.
- a lowly crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms is incorporated into the above-mentioned amorphous ethylene/ ⁇ -olefin copolymer (a).
- the component (b) used in the present invention is characterized in that the compatibility with the component (a) is higher than that of other olefin resins such as polypropylene, and the component (b) is effective for prominently improving the surface gloss of a molded article and improving the injection moldability and the fusion bondability to other elastomers.
- the low crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms is prepared by copolymerizing propylene with at least one ⁇ -olefin such as 1-butene, 4-methyl-1-pentene, 1-octene or 1-decene, and the copolymer (b) has a crystallization degree lower than 40%, preferably lower than 30%, as determined by X-ray diffractometry.
- the propylene unit content is ordinarily 40 to 90 mole %, the balance being an ⁇ -olefin having at least 4 carbon atoms. When at least two ⁇ -olefin are used, the total amount is regarded as the ⁇ -olefin amount.
- the melt flow rate [MFR(230° C.)] of the copolymer is ordinarily 0.1 to 200 g/10 min and preferably 1 to 40 g/10 min.
- copolymer As the preferred copolymer, there can be mentioned a propylene/1-butene copolymer having a propylene unit content of 55 to 85 mole %, a crystallization degree of 10 to 30% and a melt flow rate of 1 to 40 g/10 min. Copolymers of this type are described in, for example, Japanese Patent Publications No. 11322/82 and No. 36859/82.
- the component (b) alone may be incorporated into the component (a), but it is preferred that the component (b) be incorporated in combination with a crystalline polyolefin (c) composed mainly of an ⁇ -olefin having at least 3 carbon atoms into component (a).
- a crystalline polyolefin (c) composed mainly of an ⁇ -olefin having at least 3 carbon atoms into component (a).
- the component (c) is preferably radical-decomposable.
- the component (c) is a homopolymer or copolymer of an ⁇ -olefin having at least 3 carbon atoms or a mixture thereof, and the crystallization degree is ordinarily higher than 40% and preferably higher than 50%, as determined by X-ray diffractometry.
- Component (c) may contain ethylene as a comonomer, but the ethylene unit content is ordinarily lower than 40 mole % and preferably lower than 20%.
- the copolymer may be prepared by either block polymerization or random polymerization.
- the content of the monomer of a smaller amount is adjusted to lower than 15 mole %, preferably lower than 10 mole %, and in case of block copolymerization, the content of the monomer of a smaller amount is adjusted to lower than 40 mole %, preferably lower than 20 mole %.
- Polypropylene having a crystallization degree higher than 50% is most preferred.
- the 1-butene polymer (d) used instead of the component (b) in the present invention there can be mentioned (i) a crystalline homopolymer of 1-butene, (ii) a crystalline copolymer of 1-butene with other ⁇ -olefin or diolefin ordinarily in an amount smaller than 10 mole %, (iii) a crystalline copolymer of 1-butene with a copolymerizable vinyl monomer such as vinyl acetate, acrylic acid or a derivative thereof ordinarily in an amount smaller than 10 mole %, (iv) a mixture of at least two members selected from the above-mentioned polymers (i), (ii) and (iii), and (v) a crystalline modified polymer obtained by grafting styrene, a derivative thereof, an unsaturated carboxylic acid or a derivative thereof to a member selected from the above-mentioned polymers (i) through (iv) or a polymer obtained
- This 1-butene polymer (d) is combined with the above-mentioned crystalline propylene polymer (c).
- the amorphous ethylene/ ⁇ -olefin copolymer (a) is used in an amount of 10 to 95 parts by weight, preferably 10 to 60 parts by weight, and the lowly crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms or the combination of the crystalline polyolefin (c) and the 1-butene polymer (d) is used in an amount of 5 to 90 parts by weight, preferably 10 to 60 parts by weight.
- the amount of the component (b) or the combination of the components (c) and (d) is too small and is below the above-mentioned range, the surface gloss of a molded article, the injection fusion bondability and the bonding strength of a bonded article are degraded as compared with these properties attained when the amount is within the range specified in the present invention.
- the elastomeric property is degraded as compared with the elastomeric property attained when the amount of the component (a) is within the range specified in the present invention.
- the components (d) and (c) be used instead of the component (b), it is preferred that the components (d) and (c) be used in such amounts that the weight ratio of component (d)/component (c) be in the range of from 100/0 to 10/90, especially from 80/20 to 20/80.
- component (b) when used in combination with the component (c), it is preferred that they be used in such amounts that the weight ratio of component (b)/component (c) is in the range of from 100/0 to 90/10, especially from 80/20 to 20/80.
- thermoplastic elastomer composition excellent in injection fusion moldability and surface gloss, which comprises heating and kneading a composition comprising an amorphous ethylene/ ⁇ -olefin copolymer (a) and a radical-decomposable crystalline polyolefin (c), especially polypropylene, under a radical-forming condition to obtain a partially crosslinked thermoplastic elastomer, and fusion-kneading the partially crosslinked thermoplastic elastomer and a lowly crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms or a 1-butene polymer (d).
- a composition comprising an amorphous ethylene/ ⁇ -olefin copolymer (a) and a radical-decomposable crystalline polyolefin (c), especially polypropylene, under a radical-forming condition to obtain a partially crosslinked thermoplastic elastomer, and fusion-knea
- thermoplastic elastomer composition excellent in surface gloss which comprises adding an organic peroxide (f) and a radical-polymerizable monomer (e) having at least two polymerizable groups to a composition comprising an amorphous ethylene/ ⁇ -olefin copolymer (a), a lowly crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms and optionally a crystalline polyolefin (c) composed mainly of an ⁇ -olefin having at least 3 carbon atoms, and dynamically heat-treating the resulting mixture.
- thermoplastic elastomer composition excellent in surface gloss which comprises dynamically heat-treating a composition comprising a crystalline polyolefin (c) composed mainly of an ⁇ -olefin having at least 3 carbon atoms, an amorphous ethylene/ ⁇ -olefin copolymer (a), an organic peroxide (f) and a radical-polymerizable monomer (e) having at least two polymerizable groups, adding a low crystalline copolymer (b) of propylene with an ⁇ -olefin having at least 4 carbon atoms or a 1-butene polymer (d) and fusion-kneading the resulting mixture, or adding the low crystalline copolymer (b) to said composition when said composition is fusion-kneaded.
- a crystalline polyolefin composed mainly of an ⁇ -olefin having at least 3 carbon atoms, an amorphous ethylene/ ⁇ -olefin copolymer (a),
- radical-forming condition is meant not only a condition forming radicals by decomposition of an added radical forming agent but also a condition forming radicals by irradiation with ionizing radiations or electron beams.
- dynamic heat treatment a heat treatment conducted under a shearing force.
- the applied shearing force is 10 to 10 4 sec -1 , preferably 10 2 to 10 3 sec -1 , expressed as the shear rate
- the heat treatment temperature is 150° to 280° C., preferably 170° to 240° C.
- the heat treatment time is 1 to 20 minutes, preferably 3 to 10 minutes.
- the partial crosslinking is effected by the action of the free radical on the tertiary carbon atom, which is generated in the polymer chain of the above-mentioned components.
- the above component (a) and the above component (b) or the combination of the components (d) and (c) are partially crosslinked through the chain of an ⁇ -olefin such as propylene to form a partially crosslinked elastomer.
- This partial crosslinking structure can be accomplished very assuredly by incorporating and grafting a radical-polymerizable monomer (e) having at least two polymerizable groups in the molecule, and the degree of the partial crosslinking attained by this method is such that excellent injection fusion moldability and surface gloss are obtained.
- radical-polymerizable monomer (e) having at least two polymerizable groups examples of the radical-polymerizable monomer (e) having at least two polymerizable groups, to be used in combination with the radical-forming agent, the following compounds can be mentioned.
- Aromatic compounds such as divinylbenzene (DVB), isopropenylstyrene and diisopropenylbenzene.
- Aliphatic compounds such as ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylol propane trimethacrylate and allyl methacrylate.
- p-divinylbenzene and p-diisopropenylbenzene are preferred.
- the typical instance of the radical-forming agent to be used for the production of the composition of the present invention is an organic peroxide, and any of organic peroxides decomposable at a temperature higher than the softening point of the polymer component which is most difficultly softened among the components of the composition can be used in the present invention.
- organic peroxide (f) to be used in the present invention there can be mentioned, for example, aromatic compounds such as dibenzoyl peroxide, dicumyl peroxide and 1,3-bis(t-butylperoxyisopropyl)benzene (marketed under the tradename of "Parkadox 14”), aliphatic compounds such as di-t-butyl peroxide, dilauroyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane (marketed under the tradename of "Perhexa 25B"), 2,5-dimethyl-2,5-bis(t-butylperoxy)hexene-3 and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3 (marketed under the tradename of "Perhexyne”), aromatic-aliphatic compounds such as di(t-butylperoxy)perbenzoate, and alicyclic compounds such as p-menthane per
- a crosslinking assistant may be used for the partial crosslinking treatment.
- the crosslinking assistant there can be mentioned, for example, p-quinone oxime, p,p'-dibenzoylquinone dioxime, N-methyl-N,N-dinitrosoaniline, nitrobenzene, diphenylguanidine and trimethylolpropane-N,N'-m-phenylene dimaleimide.
- Each of the amounts added of the radical-polymerizable monomer (e) having at least two polymerizable groups and the organic peroxide (f) as a typical instance of the radical initiator is ordinarily 0.05 to 3 parts and preferably 0.1 to 1 part by weight per 100 parts by weight of the total amount of the polymer components.
- Kneading is carried out in the molten state of the above-mentioned composition at a temperature within the above-mentioned range, especially at a temperature at which the half-value period of the organic peroxide used is within 1 minute. It is preferred that kneading be carried out in a non-opened type apparatus in an atmosphere of an inert gas such as nitrogen or carbon dioxide gas.
- the kneading apparatus there may be used a mixing roll, an intensive mixer such as a Benbury mixer, a kneader or a monoaxial or biaxial extruder.
- an intensive mixer such as a Benbury mixer, a kneader or a monoaxial or biaxial extruder.
- a kneading apparatus of the non-opened type is preferred.
- composition of the present invention may further comprise a softener (spreading oil or plasticizer), a small amount of other elastomer such as butyl rubber (IIR) or polyisobutylene, carbon black, white carbon, other modifier, a filler, an antioxidant, an oxidation stabilizer, a weathering stability, a photostabilizer, a processing assistant, an antistatic agent, a pigment and the like according to intended uses.
- a softener spreading oil or plasticizer
- IIR butyl rubber
- polyisobutylene carbon black
- other modifier elastomer
- filler an antioxidant, an oxidation stabilizer, a weathering stability, a photostabilizer, a processing assistant, an antistatic agent, a pigment and the like according to intended uses.
- the kneaded composition was shaped into a sheet by passing it through rolls and was pelletized by a sheet cutter. Then, 100 parts of the pelletized composition was mixed for 1 minute by a Henschel mixer with a liquid formed by dispersing 0.3 part of 1,3-bis(t-butylperoxyisopropyl)benzene as the organic peroxide in 0.5 part of divinylbenzene to stick the solution of the peroxide uniformly on the surface of the pelletized composition. Then, the pellet was charged into an extruder and was then extruded while dynamically heat-treating the composition at 210° C. in a nitrogen atmosphere for a residence time of 5 minutes to obtain a thermoplastic elastomer pellet.
- the pellet was molded into a rectangular plate having a size of 150 mm ⁇ 120 mm ⁇ 3 mm by an injection molding machine (Dina-Melter supplied by Meiki Seisakusho). The gloss was measured to obtain the results shown in Table 1.
- thermoplastic elastomer pellet obtained in Referential Example 1 was mixed with 30 parts of a lowly crystalline propylene/1-butene copolymer pellet having a propylene unit content of 70 mole % and a melt flow rate (230° C.) of 7 g/10 min (hereinafter referred to as "PBR"), and the mixture was charged in an extruder and was extruded at 210° C. in a nitrogen atmosphere for a residence time of 5 minutes to obtain an intended composition.
- PBR melt flow rate
- a rectangular plate having the same size as that of the rectangular plate prepared in Example 1 was molded by using the same injection molding as used in Example 1 in the same manner as described in Example 1 except that an ethylene/vinyl acetate copolymer having a vinyl acetate unit content of 14 mole % and a melt flow rate (190° C.) of 15 g/min. The surface gloss was measured. The obtained results are shown in Table 1.
- Example 2 The same EPDM, PP, PBR and antioxidant as used in Example 1 were charged in a Banbury mixer in amounts of 50 parts, 20 parts, 30 parts and 0.3 part, respectively, and the mixture was kneaded at 180° C. in a nitrogen atmosphere for 5 minutes. The kneaded mixture was passed through rolls to form a sheet and the sheet was pelletized by a sheet cutter. Then, 100 parts of the pellet was contacted with a liquid formed by dispersing 0.3 part of the same organic peroxide as used in Example 1 in 0.5 part of divinylbenzene by a Henschel mixer to stick the solution unformly on the surface of the pellet. Then, the pellet was charged into an extruder and was extruded while dynamically heat-treating the pellet at 210° C. in a nitrogen atmosphere for a residence time of 5 minutes to obtain a pellet of a thermoplastic elastomer composition.
- thermoplastic elastomer was obtained in the same manner as described in Example 2 except that the same PP as used in Referential Example 1 was used instead of 30 parts of PBR, and a rectangular plate was prepared by injection molding and the surface gloss of the rectangular plate was measured. The obtained results are shown in Table 1.
- the pellet was mixed with a liquid prepared by dispersing 0.3 part of 1,3-bis-(t-butylperoxyisopropyl)benzene in 0.5 part of divinylbenzene in a Henschel mixer to stick the solution uniformly on the surface of the pellet. Then, the pellet was extruded through an extruder at 210° C. in a nitrogen atmosphere for a residence time of 5 minutes to effect a dynamic heat treatment and obtain a thermoplastic elastomer.
- a sheet having a size of 120 mm ⁇ 100 mm ⁇ 2 mm was molded from the thermoplastic elastomer by using an injection molding machine.
- a test piece having a width of 25 mm was cut from the sheet, and the test piece was pulled in the longitudinal direction and the stress at break was measured. It was found that the stress at break was 40 kg/cm 2 .
- the surface gloss was 8%.
- thermoplastic elastomer The strength at break of the thermoplastic elastomer was measured according to the method described in Referential Example 2. It was found that the strength at break was 90 kg/cm 2 .
- the injection-molded sheet obtained in Referential Example 2 was cut into two parts and placed in the split mold used for formation of the sheet, and the thermoplastic elastomer obtained in Example 3 was injection-fused to bond the cut parts of the sheet.
- the bonding strength was measured and the surface gloss of the fusion-bonded portion was measured according to JIS Z-8741. The obtained results are shown in Table 2.
- Example 3 The procedures of Example 3 were repeated in the same manner except that the thermoplastic elastomer obtained in Referential Example 2 was injection-fused, and the bonding strength was measured. The obtained results are shown in Table 2.
- thermoplastic elastomer obtained in Referential Example 2 80 parts was mixed with 20 parts of a lowly crystalline propylene/1-butene copolymer having a propylene unit content of 70 mole % and a melt flow rate (230° C.) of 7 g/10 min (hereinafter referred to as "PBR"), and a pellet of the mixture was extruded through an extruder at 210° C. for a residence time of 5 minutes in a nitrogen atmosphere to obtain an intended composition.
- PBR melt flow rate
- the injection-molded sheet obtained in Referential Example 2 was cut into two parts and placed in the split mold used for formation of the sheet, and the thermoplastic elastomer composition obtained in Example 4 was injection-fused to bond the cut parts of the sheet.
- the bonding strength was measured and the surface gloss of the fusion-bonded portion was measured according to JIS Z-8741. The obtained results are shown in Table 2.
- thermoplastic elastomer was prepared in the same manner as described in Example 4 except that 20 parts of an ethylene/vinyl acetate copolymer resin having a melt flow rate (190° C., 2.16 kg) of 15, a density of 0.93 g/cc and a vinyl acetate content of 14% by weight (hereinafter referred to as "EVA") was used instead of 20 parts of PBR.
- EVA ethylene/vinyl acetate copolymer resin having a melt flow rate (190° C., 2.16 kg) of 15, a density of 0.93 g/cc and a vinyl acetate content of 14% by weight
- composition of the present invention can be tightly injection-fusion-bonded to a molded article composed of a thermoplastic elastomer.
- the bonding strengths at break of the sheets of Examples 3 and 4 are 28 and 32 kg/cm 2 , respectively, which are about 2 times the strengths at break of the sheets of Comparative Examples, which are 10 and 15 kg/cm 2 , respectively.
- the state of fracture is only a partial material fracture. Accordingly, it is seen that bonding is not mere adhesion but can be regarded as fusion of both the materials.
- the strength at break in Referential Example 2 is 40 kg/cm 2 but it is a strength of a single plate.
- the fact that the strengths at break of the sheets obtained in Examples 3 and 4 correspond to 70 and 80% of the strength attained in Referential Example 2 indicates that surprisingly high fusion bonding can be formed between different materials when the composition of the present invention is used.
- a Banbury mixer 70 parts of EPDM having an ethylene content of 78 mole %, an iodine value of 15 and a Mooney viscosity ML 1+4 (100° C.) of 70, 10 parts of crystalline PP having a melt flow rate (230° C., 2.16 kg) of 11 and a density of 0.91 g/cc, 20 parts of a poly-1-butene resin having a melt flow rate (190° C., 2.16 kg) of 2.0 (hereinafter referred to as "PB-1”) were kneaded at 180° C. for 5 minutes in a nitrogen atmosphere, and the kneaded mixture was passed through rolls and pelletized by a sheet cutter.
- PB-1 poly-1-butene resin
- the pellet was mixed with a solution obtained by dispersing 0.3 part of 1,3-bis(t-butylperoxyisopropyl)benzene in 0.5 part of divinylbenzene to stick the solution uniformly on the surface of the pellet. Then, the pellet was extruded through an extruder at 210° C. for a residence time of 5 minutes in a nitrogen atmosphere to effect a dynamic heat treatment and obtain a thermoplastic elastomer. When the strength at break was measured according to the method described in Referential Example 2, it was found that the strength at break was 73.5 kg/cm 2 .
- Example 5 The procedures of Example 5 were repeated in the same manner except that the thermoplastic elastomer obtained in Referential Example 2 was injection-fused, and the bonding strength was measured. The obtained results are shown in Table 3.
- thermoplastic elastomer 80 parts was mixed with 20 parts of lowly crystalline PB-1 having a melt flow rate (190° C.) of 20, and the pellet was extruded through an extruder at 210° C. for a residence time of 5 minutes in a nitrogen atmosphere to obtain an intended composition.
- the injection-molded sheet obtained in Referential Example 2 was cut into two parts and placed in the split mold used for formation of the sheet, and the thermoplastic elastomer composition of Example 6 was injection-fused. The bonding strength was measured. The obtained results are shown in Table 3.
- thermoplastic elastomer was prepared in the same manner as described in Example 6 except that 20 parts of an ethylene/vinyl acetate copolymer resin having a melt flow rate (190° C., 2.16 kg) of 15, a density of 0.93 g/cc and a vinyl acetate content of 14% by weight (hereinafter referred to as "EVA") was used instead of 20 parts of PB-1.
- EVA ethylene/vinyl acetate copolymer resin having a melt flow rate (190° C., 2.16 kg) of 15, a density of 0.93 g/cc and a vinyl acetate content of 14% by weight
- composition of the present invention can be tightly injection-fusion-bonded to a molded article composed of a thermoplastic elastomer.
- the bonding strengths at break of the sheets of Examples 5 and 6 are 35 and 30 kg/cm 2 , respectively, which are about 2 times the strengths at break of the sheets of Comparative Examples 5 and 6, which are 10 and 15 kg/cm 2 , respectively.
- the state of fracture is only a partial material fracture. Accordingly, it is seen that bonding is not mere adhesion but can be regarded as fusion of both the materials.
- the strength at break in Referential Example 2 is 40 kg/cm 2 but it is a strength of a single plate.
- the fact that the strengths at break of the sheets obtained in Examples 5 and 6 correspond to 90 and 75% of the strength at break attained in Referential Example 2 indicates that surprisingly high fusion bonding can be formed between different materials when the composition of the present invention is used.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
TABLE 1 __________________________________________________________________________ Referential Example Comparative Example Comparative Example 1 1 Example 1 2 Example 2 __________________________________________________________________________ Composition (parts by weight) EPDM 70 70 70 50 50 PP 30 30 30 20 50 PBR -- 43* -- 30 -- EVA -- -- 43* -- -- POXD 0.3 0.3 0.3 0.3 0.3 DVB 0.5 0.5 0.5 0.5 0.5 Surface Gloss (%) 10 50 22 40 20 Basic Physical Properties Stress (kg/cm.sup.2) at 100% 49 60 55 50 90 % elongation Tensile strength (kg/cm.sup.2) 100 130 110 160 170 Elongation (%) at 500 560 550 700 600 tensile break Spring hardness 88 93 86 94 97 __________________________________________________________________________ *The value per 100 parts, which was converted from 30 parts per 70 parts of the composition obtained by dynamically heattreating EPDM/PP/POXD/DVB (=70/30/0.3/0.5).
TABLE 2 ______________________________________ Comparative Comparative Example 3 Example 3 Example 4 Example 4 ______________________________________ Resin Referential Referential Referential Referential Bonded Example 2 Example 2 Example 2 Example 2 Adhesive Example 3 Referential Example 4 Comparative Resin Example 2 Example 4 Strength 28 10 32 15 (kg/cm.sup.2) at Break State of partial peeling partial peeling Fracture material material fracture fracture Gloss 40 8 45 20 (60°) ______________________________________
TABLE 3 ______________________________________ Comparative Comparative Example 5 Example 5 Example 6 Example 6 ______________________________________ Resin Referential Referential Referential Referential Bonded Example 2 Example 2 Example 2 Example 2 Adhesive Example 5 Referential Example 6 Comparative Resin Example 2 Example 6 Strength 35 10 30 15 (kg/cm.sup.2) at Break State of partial peeling partial peeling Fracture material material fracture fracture ______________________________________
Claims (5)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58-95073 | 1983-05-31 | ||
JP58-95074 | 1983-05-31 | ||
JP58095074A JPS59221347A (en) | 1983-05-31 | 1983-05-31 | Injection fusion method for thermoplastic elastomer |
JP58095073A JPH0615645B2 (en) | 1983-05-31 | 1983-05-31 | Thermoplastic elastomer composition having excellent surface gloss and method for producing the same |
JP59027350A JPH0672194B2 (en) | 1984-02-17 | 1984-02-17 | Injection-fusing property and good gloss thermoplastic elastomer composition |
JP59-27350 | 1984-02-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06799985 Division | 1985-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4650830A true US4650830A (en) | 1987-03-17 |
Family
ID=27285750
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/615,244 Expired - Lifetime US4650830A (en) | 1983-05-31 | 1984-05-30 | Thermoplastic elastomer composition and process for preparation thereof |
US07/201,254 Expired - Lifetime US4906694A (en) | 1983-05-31 | 1988-05-09 | Thermoplastic elastomer composition and process for preparation thereof |
US07/774,144 Expired - Lifetime US5128413A (en) | 1983-05-31 | 1991-10-15 | Thermoplastic elastomer composition and process for preparation thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/201,254 Expired - Lifetime US4906694A (en) | 1983-05-31 | 1988-05-09 | Thermoplastic elastomer composition and process for preparation thereof |
US07/774,144 Expired - Lifetime US5128413A (en) | 1983-05-31 | 1991-10-15 | Thermoplastic elastomer composition and process for preparation thereof |
Country Status (4)
Country | Link |
---|---|
US (3) | US4650830A (en) |
EP (1) | EP0132931B1 (en) |
CA (1) | CA1246268A (en) |
DE (1) | DE3484608D1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4808442A (en) * | 1986-01-23 | 1989-02-28 | Akzo Nv | Composition suitable for use in polymer cross-linking processes |
US4906694A (en) * | 1983-05-31 | 1990-03-06 | Mitsui Petrochemical Industries, Ltd. | Thermoplastic elastomer composition and process for preparation thereof |
EP0472956A2 (en) * | 1990-08-28 | 1992-03-04 | Montell North America Inc. | Dynamically partially crosslinked thermoplastic elastomer containing polybutene-1 |
US5115030A (en) * | 1988-08-04 | 1992-05-19 | Mitsui Petrochemical Industries, Ltd. | Polypropylene resin composition |
US5292811A (en) * | 1988-11-21 | 1994-03-08 | Mitsui Petrochemical Industries, Ltd. | Process for preparing thermoplastic elastomers |
US5298560A (en) * | 1990-05-14 | 1994-03-29 | Nippon Petrochemicals Company, Limited | Partially crosslinked thermoplastic resin composition |
US5349005A (en) * | 1990-06-12 | 1994-09-20 | Advanced Elastomer Systems, L.P. | Thermoplastic elastomer composition |
US5635281A (en) * | 1994-08-12 | 1997-06-03 | Donnelly Corporation | Glazing using a melt-processible gasket material |
US5723546A (en) * | 1997-03-24 | 1998-03-03 | Rexene Corporation | Low- and high-molecular weight amorphous polyalphaolefin polymer blends having high melt viscosity, and products thereof |
US6080818A (en) * | 1997-03-24 | 2000-06-27 | Huntsman Polymers Corporation | Polyolefin blends used for non-woven applications |
US6340531B1 (en) * | 1994-07-20 | 2002-01-22 | Kojima Press Industry Co., Ltd. | Interior trim for automobile |
EP1195404A1 (en) * | 2000-04-21 | 2002-04-10 | JSR Corporation | Thermoplastic elastomer composition |
US6610785B1 (en) * | 1992-12-15 | 2003-08-26 | Montell North America Inc. | Thermoplastic olefin elastomers and process for their preparation |
US20060276091A1 (en) * | 2005-06-01 | 2006-12-07 | Trevor Arthurs | Polyethylene fabric with improved physical properties and method for making thereof |
US20080171821A1 (en) * | 2007-01-12 | 2008-07-17 | Tonson Abraham | Thermoplastic vulcanizates with improved mechanical properties |
US7851556B2 (en) | 2007-01-12 | 2010-12-14 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizates with low compression set |
CN101679702B (en) * | 2007-06-14 | 2012-07-04 | 三井化学株式会社 | Thermoplastic elastomer composition |
US20150135964A1 (en) * | 2004-10-19 | 2015-05-21 | Koninklijke Douwe Egberts B.V. | System and method for preparing a beverage suitable for consumption |
US20150299446A1 (en) * | 2012-12-17 | 2015-10-22 | Versalis S.P.A. | Expandable polymeric composition with improved flexibility and relative preparation process |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173535A (en) * | 1988-02-11 | 1992-12-22 | Dow Corning Corporation | Plastics containing sustained release of functional materials |
JPH051185A (en) * | 1990-11-16 | 1993-01-08 | Mitsubishi Petrochem Co Ltd | Thermoplastic resin composition having excellent strength and method for producing the same |
JPH08302114A (en) * | 1995-04-28 | 1996-11-19 | Sumitomo Chem Co Ltd | Thermoplastic resin composition |
DE19719665A1 (en) * | 1996-05-10 | 1997-11-13 | Sumitomo Chemical Co | Thermoplastic elastomer powder giving complex moulding without edge thinning and voids |
US6143804A (en) * | 1998-07-13 | 2000-11-07 | Toray Industries, Inc. | Curable and foamable polyolefinic resin composition, cured foam of polyolefinic resin and method for producing it |
JP3514179B2 (en) * | 1999-08-24 | 2004-03-31 | 豊田合成株式会社 | Plastic molded product |
JP4031622B2 (en) | 2001-05-30 | 2008-01-09 | バセル ポリオレフィン イタリア エス.アール.エル. | Polypropylene resin composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3806558A (en) * | 1971-08-12 | 1974-04-23 | Uniroyal Inc | Dynamically partially cured thermoplastic blend of monoolefin copolymer rubber and polyolefin plastic |
US4211852A (en) * | 1977-09-26 | 1980-07-08 | Mitsui Petrochemical Industries Ltd. | Thermoplastic olefin resin composition and laminated film or sheet thereof |
US4311807A (en) * | 1980-07-22 | 1982-01-19 | Shell Oil Company | Polybutylene modified masterbatches for impact resistant polypropylene |
US4368280A (en) * | 1980-12-31 | 1983-01-11 | Mitsubishi Petrochemical Company, Ltd. | Partially cross-linkable compositions and process for preparing partially cross-linked thermoplastic elastomers |
US4454092A (en) * | 1981-08-07 | 1984-06-12 | Mitsui Petrochemical Industries, Ltd. | Method of producing partially crosslinked rubber-resin composition |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2520095C3 (en) * | 1975-05-06 | 1979-10-31 | Chemische Werke Huels Ag, 4370 Marl | Heat-weldable vulcanizates |
US4078020A (en) * | 1976-04-02 | 1978-03-07 | Ciba-Geigy Corporation | Thermoplastic elastomers comprising ethylene-α-olefin copolymer, polypropylene and polybutene |
CA1107885A (en) * | 1976-11-01 | 1981-08-25 | Roger C. Cotton | Compositions comprising polybytene, epom and polyolefin |
DE2822815C2 (en) * | 1977-05-26 | 1994-02-17 | Mitsui Petrochemical Ind | Process for the preparation of a partially vulcanized thermoplastic composition |
US4220579A (en) * | 1978-04-17 | 1980-09-02 | Uniroyal, Inc. | Thermoplastic elastomeric blend of monoolefin copolymer rubber, amorphous polypropylene resin and crystalline polyolefin resin |
JPS5641238A (en) * | 1979-09-10 | 1981-04-17 | Mitsubishi Petrochem Co Ltd | Thermoplastic elastomer composition |
CA1246268A (en) * | 1983-05-31 | 1988-12-06 | Katsuyoshi Yonekura | Thermoplastic elastomer composition and process for preparation thereof |
-
1984
- 1984-05-30 CA CA000455409A patent/CA1246268A/en not_active Expired
- 1984-05-30 US US06/615,244 patent/US4650830A/en not_active Expired - Lifetime
- 1984-05-31 DE DE8484303657T patent/DE3484608D1/en not_active Expired - Lifetime
- 1984-05-31 EP EP84303657A patent/EP0132931B1/en not_active Expired
-
1988
- 1988-05-09 US US07/201,254 patent/US4906694A/en not_active Expired - Lifetime
-
1991
- 1991-10-15 US US07/774,144 patent/US5128413A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3806558A (en) * | 1971-08-12 | 1974-04-23 | Uniroyal Inc | Dynamically partially cured thermoplastic blend of monoolefin copolymer rubber and polyolefin plastic |
US4211852A (en) * | 1977-09-26 | 1980-07-08 | Mitsui Petrochemical Industries Ltd. | Thermoplastic olefin resin composition and laminated film or sheet thereof |
US4311807A (en) * | 1980-07-22 | 1982-01-19 | Shell Oil Company | Polybutylene modified masterbatches for impact resistant polypropylene |
US4368280A (en) * | 1980-12-31 | 1983-01-11 | Mitsubishi Petrochemical Company, Ltd. | Partially cross-linkable compositions and process for preparing partially cross-linked thermoplastic elastomers |
US4454092A (en) * | 1981-08-07 | 1984-06-12 | Mitsui Petrochemical Industries, Ltd. | Method of producing partially crosslinked rubber-resin composition |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906694A (en) * | 1983-05-31 | 1990-03-06 | Mitsui Petrochemical Industries, Ltd. | Thermoplastic elastomer composition and process for preparation thereof |
US4808442A (en) * | 1986-01-23 | 1989-02-28 | Akzo Nv | Composition suitable for use in polymer cross-linking processes |
US5115030A (en) * | 1988-08-04 | 1992-05-19 | Mitsui Petrochemical Industries, Ltd. | Polypropylene resin composition |
US5292811A (en) * | 1988-11-21 | 1994-03-08 | Mitsui Petrochemical Industries, Ltd. | Process for preparing thermoplastic elastomers |
US5298560A (en) * | 1990-05-14 | 1994-03-29 | Nippon Petrochemicals Company, Limited | Partially crosslinked thermoplastic resin composition |
US5349005A (en) * | 1990-06-12 | 1994-09-20 | Advanced Elastomer Systems, L.P. | Thermoplastic elastomer composition |
EP0472956A2 (en) * | 1990-08-28 | 1992-03-04 | Montell North America Inc. | Dynamically partially crosslinked thermoplastic elastomer containing polybutene-1 |
EP0472956A3 (en) * | 1990-08-28 | 1992-05-06 | Himont Incorporated | Dynamically partially crosslinked thermoplastic elastomer containing polybutene-1 |
US5143978A (en) * | 1990-08-28 | 1992-09-01 | Himont Incorporated | Dynamically partially crosslinked thermoplastic elastomer containing polybutene-1 |
AU649260B2 (en) * | 1990-08-28 | 1994-05-19 | Montell North America Inc. | Dynamically partially crosslinked thermoplastic elastomer containing polybutene-1 |
US6610785B1 (en) * | 1992-12-15 | 2003-08-26 | Montell North America Inc. | Thermoplastic olefin elastomers and process for their preparation |
US6340531B1 (en) * | 1994-07-20 | 2002-01-22 | Kojima Press Industry Co., Ltd. | Interior trim for automobile |
US5822932A (en) * | 1994-08-12 | 1998-10-20 | Donnelly Corporation | Method for making a vehicle window panel using a melt-processible gasket material |
US5635281A (en) * | 1994-08-12 | 1997-06-03 | Donnelly Corporation | Glazing using a melt-processible gasket material |
US6080818A (en) * | 1997-03-24 | 2000-06-27 | Huntsman Polymers Corporation | Polyolefin blends used for non-woven applications |
US5723546A (en) * | 1997-03-24 | 1998-03-03 | Rexene Corporation | Low- and high-molecular weight amorphous polyalphaolefin polymer blends having high melt viscosity, and products thereof |
EP1195404A1 (en) * | 2000-04-21 | 2002-04-10 | JSR Corporation | Thermoplastic elastomer composition |
EP1195404A4 (en) * | 2000-04-21 | 2003-07-16 | Jsr Corp | Thermoplastic elastomer composition |
US6696516B2 (en) | 2000-04-21 | 2004-02-24 | Jsr Corporation | Thermoplastic elastomer composition |
US20150135964A1 (en) * | 2004-10-19 | 2015-05-21 | Koninklijke Douwe Egberts B.V. | System and method for preparing a beverage suitable for consumption |
WO2006130566A2 (en) * | 2005-06-01 | 2006-12-07 | Central Products Company | Polyethylene fabric with improved physical properties and method for making thereof |
WO2006130566A3 (en) * | 2005-06-01 | 2007-12-06 | Central Products Company | Polyethylene fabric with improved physical properties and method for making thereof |
US7875562B2 (en) | 2005-06-01 | 2011-01-25 | Intertape Polymer Corp. | Polyethylene fabric with improved physical properties and method for making thereof |
US20060276091A1 (en) * | 2005-06-01 | 2006-12-07 | Trevor Arthurs | Polyethylene fabric with improved physical properties and method for making thereof |
US20080171821A1 (en) * | 2007-01-12 | 2008-07-17 | Tonson Abraham | Thermoplastic vulcanizates with improved mechanical properties |
US7851556B2 (en) | 2007-01-12 | 2010-12-14 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizates with low compression set |
US7858689B2 (en) | 2007-01-12 | 2010-12-28 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizates with improved mechanical properties |
CN101679702B (en) * | 2007-06-14 | 2012-07-04 | 三井化学株式会社 | Thermoplastic elastomer composition |
US20150299446A1 (en) * | 2012-12-17 | 2015-10-22 | Versalis S.P.A. | Expandable polymeric composition with improved flexibility and relative preparation process |
US9963582B2 (en) * | 2012-12-17 | 2018-05-08 | Versalis S.P.A. | Expandable polymeric composition with improved flexibility and relative preparation process |
Also Published As
Publication number | Publication date |
---|---|
US5128413A (en) | 1992-07-07 |
EP0132931A3 (en) | 1986-01-08 |
EP0132931B1 (en) | 1991-05-22 |
US4906694A (en) | 1990-03-06 |
CA1246268A (en) | 1988-12-06 |
DE3484608D1 (en) | 1991-06-27 |
EP0132931A2 (en) | 1985-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4650830A (en) | Thermoplastic elastomer composition and process for preparation thereof | |
JP2610426B2 (en) | Thermoplastic elastomer composition | |
US5525675A (en) | Thermoplastic elastomer, composition therefor and production process thereof, as well as molded or otherwise formed product obtained from the thermoplastic elastomer | |
US4087485A (en) | Polypropylene blends having high impact strength and improved optical properties | |
US5118753A (en) | Olefinic thermoplastic elastomer composition | |
US4656098A (en) | Laminate excellent in surface gloss and surface harness, and preparation process and use thereof | |
JP3761590B2 (en) | Thermoplastic elastomer composition | |
US4800130A (en) | Laminate excellent in surface gloss and surface hardness, and preparation process and use thereof | |
JP3083007B2 (en) | Thermoplastic elastomer two-layer sheet | |
EP0603580B1 (en) | Olefinic resin composition | |
US5602203A (en) | Olefin resin composition | |
JP3230770B2 (en) | Thermoplastic elastomer skin sheet | |
JP2740204B2 (en) | Thermoplastic elastomer composition | |
JPS59221347A (en) | Injection fusion method for thermoplastic elastomer | |
JP2582856B2 (en) | Method for producing thermoplastic elastomer sheet | |
JPH0742367B2 (en) | Injection-fusing property and good gloss thermoplastic elastomer composition | |
JPS59221346A (en) | Thermoplastic elastomer composition having excellent surface gloss and its production | |
JP2655899B2 (en) | Thermoplastic elastomer composition | |
JPH056577B2 (en) | ||
JPS5856575B2 (en) | Method for producing thermoplastic elastomer composition | |
JPS60173032A (en) | Thermoplastic elastomer composition good in injection weldability and gloss | |
JPH0379650A (en) | Production of thermoplastic elastomer | |
JP3254806B2 (en) | Method for producing thermoplastic elastomer composition | |
JPH0564662B2 (en) | ||
JPH0733917A (en) | Thermoplastic elastomer composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUI PETROCHEMICAL INDUSTRIES, LTD., 2-5, 3-CHOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:YONEKURA, KATSUYOSHI;UCHIYAMA, AKIRA;MATSUDA, AKIRA;REEL/FRAME:004266/0907 Effective date: 19840523 Owner name: MITSUI PETROCHEMICAL INDUSTRIES, LTD.,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YONEKURA, KATSUYOSHI;UCHIYAMA, AKIRA;MATSUDA, AKIRA;REEL/FRAME:004266/0907 Effective date: 19840523 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: MITSUI CHEMICALS, INC., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MITSUI PETROCHEMICAL INDUSTRIES, LTD.;REEL/FRAME:009297/0678 Effective date: 19971001 |
|
FPAY | Fee payment |
Year of fee payment: 12 |