US3853497A - Low pour vacuum gas oil compositions - Google Patents
Low pour vacuum gas oil compositions Download PDFInfo
- Publication number
- US3853497A US3853497A US30467672A US3853497A US 3853497 A US3853497 A US 3853497A US 30467672 A US30467672 A US 30467672A US 3853497 A US3853497 A US 3853497A
- Authority
- US
- United States
- Prior art keywords
- alkyl
- gas oil
- vacuum gas
- pour
- residuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 239000000446 fuel Substances 0.000 claims abstract description 9
- 239000003921 oil Substances 0.000 claims description 57
- 239000000295 fuel oil Substances 0.000 claims description 13
- 238000009835 boiling Methods 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000003208 petroleum Substances 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 2
- 241001641150 Anapis Species 0.000 claims 1
- 125000000217 alkyl group Chemical group 0.000 abstract description 23
- 230000000881 depressing effect Effects 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 50
- 239000001993 wax Substances 0.000 description 20
- 229920000058 polyacrylate Polymers 0.000 description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000178 monomer Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- TYWMIZZBOVGFOV-UHFFFAOYSA-N tetracosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCO TYWMIZZBOVGFOV-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- -1 alkyl isof Chemical compound 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1963—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
Definitions
- a vacuum gas oil fuel composition suitable for pipeline transportation of substantially reduced pour point comprising a wax containing vacuum gas oil base stock having incorporated therein a minor amount of high asphaltene residuum such as an Arabian Light 1,050,F. residuum and a pour depressing amount of an interpolymeric poly( n-alkylacrylate) of a molecular weight between about 3,000 and 100,000 wherein said alkyl isof at least 18 carbons and at least 70 wt. of said alkyl is between about 20 and 24 carbons inclusively, the C to C alkyl group consisting of between about 2 and 65 wt. of C alkyl, between about 18 and 65 wt. C alkyl and between about 8 and 35 wt. C alkyl.
- This invention relates to improved vacuum gas oil compositions of significantly reduced pour point and to transportation of these compositions in pipelines. More particularly, it pertains to vacuum gas oil compositions comprising a wax containing vacuum gas oil base stock. having a pour. depressing amount of an interpolymeric poly(n-alkylacrylate) and a minor amount of high asphaltene residuum incorporated therein.
- Gas oils are generally defined in the petroleum industry as hydrocarbon fractions in a crude oil ranging between the kerosene fraction and the lubricating oil fraction. However, the boundaries of the gas oil fraction can overlap into adjacent fractions within the standard definition employed.
- the vacuum gasoils are normally the heavier, that is, higher boiling portions of the gas oil fraction being recovered asits name denotes under vacuum, e.g., 0.05'0.2 atmosphere.
- pour depressors Petroleum hydrocarbon oils employed in cold climates or exposed to low temperature frequently require the use of an additive to maintain their fluidity, e.g., in pipeline transportation, or to meet pour point specifications. Additives that are effective for this are called pour depressors. The art discloses numerous classes of pour depressors. v
- Pour depressant additives are mostly high molecular weight organic compositions prepared by alkylation of benzene, naphthalene or derivatives thereof, by polymerization of low molecular weight methacrylates, and by the condensation polymerization of various types of these compounds. Many of these additives are not entirely suitable in vacuum gas oils because of their high cost, high concentration required or becausethey are relatively ineffective in reducing the pour point ofvacuumgas oil base stocks containing higher molecular weight waxes.
- pour depressants Although a wide variety of different pour depressants mentioned above are useful for incorporating in heating oils, diesel'fuels and many other liquid hydrocarbon oils, they havebeen found, in general, to be relatively ineffective in decreasing the pour point of vacuum gas oil base stocks containing the higher molecular weight waxes. The poor performance of these additives may result from the structural and/or molecular weight difference of waxes occurring in the various oil fractions.
- a main object of the present-invention is to improve the pour point characteristics of Wax containing vacuum gas oils without utilizing elaborate and expensive solvent extraction or centrifugal dewaxing procedures.
- Another object of this invention is to provide improved vacuum gas oil compositions prepared by incorporating therein a pour depressing amount of an oil soluble .interpolymeric poly(n-alkylacrylate) and a vacuum residuum of high asphaltene contentin a wax containing vacuum gas'oil.
- Still another object'of the invention isto improve the wax containing vacuum gas oil base stocks so they may be handled, e.g., in pipeline transportation with greater easeand flexibility in climates where ambient temperatures are neartheir pour points.
- a vacuum gas oil fuel composition of reduced pour point comprising a vacuum gas oilhaving a wax content of between about 0.5 and 20 wt. and containing the pour reducing combination of between about 1 and 20 wt. of a high asphaltene containing petroleum residuum and between about 0.002 and 3 wt. of a pour depressing quantity of an oil soluble poly(nalkylacrylate) of a molecular weight between about 3,000 and 100,000 wherein said alkyl is of at least 18 carbons and at least wt. of said alkyl is about 20 to 24 carbons, the C to C n-alkyl group consisting of between about 2 and 65 wt. C alkyl, between about 18 and 65 wt. C alkyl and between about 8 and 35 wt. C alkyl.
- this invention relates to a process for the pipeline transporation of the above mentioned fuel oil compositions.
- the waxy type vacuum gas oil base stocks contemplated herein have a wax content between about 0.5 and 20 wt. a pour point betweenabout 60 and lO0F.-, an atmospheric boiling point between about 450 and l,050F., an API gravity between about 20 and 35 and are normally derived from the distillation of crude oils such as Arabian Light crude oils at vacuum pressures ranging between about 0.05 to 0.2 atmospheres.
- Typical vacuum gas oils which may be employed are Desulfurized Arabian Light Vacuum Gas Oil (DS Arabian Lt.
- the pour point depressant additives useful in the practice of this invention are the gas oil soluble interpolymeric po1y(n-a1ky1acry1ate)s of a molecular weight between about 3.000 and 100.000.
- Lago interpolymers are derived from standard polymeriza- Medio (650F. or greater), a thermally cracked tion techniques such as polymerizing the alkylacrylate heavy fraction of Amna Crude (650F. or greater), 35 monomers in the presence of acrylate polymerization West Texas Sour Residuum (650F. or greater) and catalyst, e.g., azo catalyst such as azobisisobutronitrile thermal cycle fuel oil from various crude sources.
- catalyst e.g., azo catalyst such as azobisisobutronitrile thermal cycle fuel oil from various crude sources.
- the residuous stocks employed will have an asperoxide catalysts such as benzoyl peroxide and lauroyl phaltene content of about 4 to about '15 wt. and a peroxide, utili'zingcatalyst quantities of between about carbon residue of about 5 to 25 wt. Gravity of the 0.1 and 5 wt.
- asperoxide catalysts such as benzoyl peroxide and lauroyl phaltene content of about 4 to about '15 wt. and a peroxide, utili'zingcatalyst quantities of between about carbon residue of about 5 to 25 wt. Gravity of the 0.1 and 5 wt.
- Polymerization is normally conducted residuous stocks will range from about 5 to about 20 at a temperature between about and 150C., prefer- APl (F Although the amount of residuum 1n the ably at -l00C.,' utilizing a nitrogen blanket to prefuel oilcompositions of this invention can be varied vent oxidation-of the catalyst.
- the maximum amount which can be normally a periodic sample is taken for refractive index utilized is about 20 wt. and preferably will be from 45 (R1) determination.
- the polymerization reaction is continued until the refractive index remains steady.
- the reaction time is normally between about 1 and 10 hours.
- n-alkylacrylate monomers from which the interpolymeric poly(n-alkylacrylate) products are prepared are made by standard esterification techniques through the reaction of acrylic acid with n-alkanol mixtures wherein the reactive n-alkanols in said mixture have at Tests on Residue Stocks nsoluble. wt.
- Alfols are impure mixtures of n-alkanols of various chain lengths, the remainder consisting of hydrocarbons, ketones and hindered unreactive alcohols. Typical analysis of two suitable examples of the Alfol alcohols are as follows:
- a standard means of acrylate monomer precursor preparation is reacting (esterifying) the alcohol mixture with acrylic acid in the presence of an esteritication catalyst such as p-toluenesulfonic acid and a polymerization inhibitor, e.g., hydroquinone desirably in the presence of an azeotroping agentfor water byproduct removal such as benzene.
- the esterification is conducted, for example. at a temperature between about 190 and 200F. and is continued until the amount of water by-product is removed as overhead indicating that the esterification is essentially complete.
- the residuum component can be mixed with the base vacuum gas oil or gas oils and the polyacrylate can be admixed as a solution in toluene, xylene, light lube oil or in the vacuum gas oil itself.
- One preferred solvent to facilitate introduction of the polyacrylate pour depressor into the vacuum gas oil base stock is a solvent such as a light lubricating oil of a kinematic viscosity of between about 2 and 4 cs. at 100F. to form between about and 50 wt. polyacrylate lube oil concentrate.
- the residuum and gas oil components are heated to a temperature of about 175 to 300F., preferably at 175 to 250F. prior to the addition of the polyacrylate following which addition the resulting mixture is heated at a temperature of about 175 to 300F., preferably 175 to 250F., for about 0.2 to 1.5 hours or more to insure complete solution of the interpolymeric blend.
- the polyacrylate pour depressor be introduced at a temperature above the solution point of the wax component. 1f the polyacrylate is mixed with a vacuum gas oil at a temperature substantially below the solution point of a substantial portion of the wax component, there is little or no pour depressing effect afforded by the polyacrylate-- residuum combination.
- the improved process of this invention for the pipeline transportation of viscous fuel oils comprises introducing into the pipeline a fuel oil composition comprising a major amount of vacuum gas oil boiling between 450 and 1,050F. and a minor amount (i.e. not over 20 percent by weight and preferably about 1 to about 15 wt. based on the weight of the composition) of a high asphaltene residuum and an effective pour depressant amount of a poly(n-alkylacrylate) as heretofore described.
- EXAMPLE I This example describes two species of the po1y(nalkylacrylate), Polyacrylate A and B, contemplated herein and their method of preparation.
- Blends D, F and H are representative of the compositions of the invention and Blends A, C, E and G are comparative blends.
- Table 4 when only vacuum residuum is employed as the pour depressing ingredient even in amount of 10 wt. essentially no pour depression takes place.
- the polyacrylate is'employed as the sole pour depressor at 0.1 wt. amount the pour depression is about 15F.
- the average pour depression is about F.
- Fuel oils of the type presented in Table 4 normally carry an ASTM pour requirement of +60F. maximum.
- a vacuum gas oil fuel oil composition comprising a major amount of vacuum gas oil boiling between about 450 and 1,050F. and having a wax content between about 0.5 and 20 wt. containing 1). between about 1 and 20 wt. of an asphaltene petroleum residuum having an asphaltene content of between about 4 and 15 wt. and an API Gravity of between about and 20 and a carbon residue of between about 5 and 25 wt. and 2). between about 0.002 and 3 wt. of an interpolymeric poly(n-alkylacrylate) of amolecular weight between about 3,000 and 100,000 wherein said n-alkyl is at least 18 carbons and where at least 70 wt.
- n-alkyl is of 20 to 24 carbons consisting of between about 2 and 65 wt. C alkyl, between about 18 and 65 wt. C alkyl, and between about 8 and 35 wt. C alkyl, said p oly(n-alkylacrylate) incorporated in said base stock at a temperature above the solution point of said wax.
- the improvement which comprises introducing into the said pipeline a fuel composition comprising a major amount of vacuum gas oil boiling between about 450 and 1,050F. and having a wax content between about 0.5 and 20 wt. containing 1). between about l and 20 wt. of an asphaltene petroleum residuum having an asphaltene content of between about 4 and wt.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30467672 US3853497A (en) | 1972-11-08 | 1972-11-08 | Low pour vacuum gas oil compositions |
DE19732338727 DE2338727A1 (de) | 1972-11-08 | 1973-07-31 | Heizoel mit verringertem stockpunkt |
JP10041673A JPS4978705A (fr) | 1972-11-08 | 1973-09-07 | |
CA182,635A CA1017144A (en) | 1972-11-08 | 1973-10-04 | Low pour vacuum gas oil compositions |
GB4877273A GB1395264A (en) | 1972-11-08 | 1973-10-19 | Low pour vacuum gas oil composition |
NL7314846A NL7314846A (fr) | 1972-11-08 | 1973-10-30 | |
FR7339656A FR2205568B2 (fr) | 1972-11-08 | 1973-11-08 | |
IT3105773A IT1045919B (it) | 1972-11-08 | 1973-11-08 | Composizione a base di gasolio a basso punto di scorrimento |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30467672 US3853497A (en) | 1972-11-08 | 1972-11-08 | Low pour vacuum gas oil compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US3853497A true US3853497A (en) | 1974-12-10 |
Family
ID=23177499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US30467672 Expired - Lifetime US3853497A (en) | 1972-11-08 | 1972-11-08 | Low pour vacuum gas oil compositions |
Country Status (8)
Country | Link |
---|---|
US (1) | US3853497A (fr) |
JP (1) | JPS4978705A (fr) |
CA (1) | CA1017144A (fr) |
DE (1) | DE2338727A1 (fr) |
FR (1) | FR2205568B2 (fr) |
GB (1) | GB1395264A (fr) |
IT (1) | IT1045919B (fr) |
NL (1) | NL7314846A (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4074978A (en) * | 1973-10-12 | 1978-02-21 | Exxon Research & Engineering Co. | Combination of asphaltenes with flow improver polymers to improve the flow properties of high boiling fuel oils |
US4156434A (en) * | 1972-06-21 | 1979-05-29 | Texaco Inc. | Low pour point fuel compositions |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US4663491A (en) * | 1980-08-23 | 1987-05-05 | Chemische Fabrik Stockhausen Gmbh | Copolymers of n-alkyl acrylates and maleic anhydride and their use as crystallization inhibitors for paraffin-bearing crude oils |
US5189231A (en) * | 1990-04-30 | 1993-02-23 | Societa' Italiana Additivi Per Carburanti S.R.L. | Compositions of liquid hydrocarbons from refining endowed with improved behavior at low temperatures |
US7279017B2 (en) | 2001-04-27 | 2007-10-09 | Colt Engineering Corporation | Method for converting heavy oil residuum to a useful fuel |
US7341102B2 (en) | 2005-04-28 | 2008-03-11 | Diamond Qc Technologies Inc. | Flue gas injection for heavy oil recovery |
US20080073247A1 (en) * | 2005-07-18 | 2008-03-27 | Oiltreid Limited Liabilities Company | Heavy Oil Fuel |
US7770640B2 (en) | 2006-02-07 | 2010-08-10 | Diamond Qc Technologies Inc. | Carbon dioxide enriched flue gas injection for hydrocarbon recovery |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0662964B2 (ja) * | 1986-10-31 | 1994-08-17 | 住友化学工業株式会社 | 燃料油組成物 |
DE3807395A1 (de) * | 1988-03-07 | 1989-09-21 | Henkel Kgaa | Verwendung ausgewaehlter copolymertypen der acryl- und/oder methacrylsaeureester als fliessverbesserer in paraffinreichen erdoelen und erdoelfraktionen (ii) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2020714A (en) * | 1932-10-12 | 1935-11-12 | Ig Farbenindustrie Ag | Lubricating hydrocarbon product |
US2091627A (en) * | 1934-06-08 | 1937-08-31 | Rohm & Haas | Composition of matter and process |
US2891991A (en) * | 1956-09-28 | 1959-06-23 | California Research Corp | Process for preparing higher alkyl esters of methacrylic acid |
US2917375A (en) * | 1958-07-31 | 1959-12-15 | Sinclair Refining Co | Fuel oils |
US2967816A (en) * | 1957-07-23 | 1961-01-10 | Sinclair Refining Co | Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil |
FR1398539A (fr) * | 1963-06-13 | 1965-05-07 | Exxon Research Engineering Co | Fractions de pétrole paraffiniques dont l'aptitude au pompage est améliorée |
-
1972
- 1972-11-08 US US30467672 patent/US3853497A/en not_active Expired - Lifetime
-
1973
- 1973-07-31 DE DE19732338727 patent/DE2338727A1/de active Pending
- 1973-09-07 JP JP10041673A patent/JPS4978705A/ja active Pending
- 1973-10-04 CA CA182,635A patent/CA1017144A/en not_active Expired
- 1973-10-19 GB GB4877273A patent/GB1395264A/en not_active Expired
- 1973-10-30 NL NL7314846A patent/NL7314846A/xx not_active Application Discontinuation
- 1973-11-08 FR FR7339656A patent/FR2205568B2/fr not_active Expired
- 1973-11-08 IT IT3105773A patent/IT1045919B/it active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2020714A (en) * | 1932-10-12 | 1935-11-12 | Ig Farbenindustrie Ag | Lubricating hydrocarbon product |
US2091627A (en) * | 1934-06-08 | 1937-08-31 | Rohm & Haas | Composition of matter and process |
US2891991A (en) * | 1956-09-28 | 1959-06-23 | California Research Corp | Process for preparing higher alkyl esters of methacrylic acid |
US2967816A (en) * | 1957-07-23 | 1961-01-10 | Sinclair Refining Co | Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil |
US2917375A (en) * | 1958-07-31 | 1959-12-15 | Sinclair Refining Co | Fuel oils |
FR1398539A (fr) * | 1963-06-13 | 1965-05-07 | Exxon Research Engineering Co | Fractions de pétrole paraffiniques dont l'aptitude au pompage est améliorée |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156434A (en) * | 1972-06-21 | 1979-05-29 | Texaco Inc. | Low pour point fuel compositions |
US4074978A (en) * | 1973-10-12 | 1978-02-21 | Exxon Research & Engineering Co. | Combination of asphaltenes with flow improver polymers to improve the flow properties of high boiling fuel oils |
US4663491A (en) * | 1980-08-23 | 1987-05-05 | Chemische Fabrik Stockhausen Gmbh | Copolymers of n-alkyl acrylates and maleic anhydride and their use as crystallization inhibitors for paraffin-bearing crude oils |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US5189231A (en) * | 1990-04-30 | 1993-02-23 | Societa' Italiana Additivi Per Carburanti S.R.L. | Compositions of liquid hydrocarbons from refining endowed with improved behavior at low temperatures |
US7279017B2 (en) | 2001-04-27 | 2007-10-09 | Colt Engineering Corporation | Method for converting heavy oil residuum to a useful fuel |
US7341102B2 (en) | 2005-04-28 | 2008-03-11 | Diamond Qc Technologies Inc. | Flue gas injection for heavy oil recovery |
US20080073247A1 (en) * | 2005-07-18 | 2008-03-27 | Oiltreid Limited Liabilities Company | Heavy Oil Fuel |
US7708876B2 (en) | 2005-07-18 | 2010-05-04 | Oiltreid Limited Liabilities Company | Heavy fuel oil |
US7770640B2 (en) | 2006-02-07 | 2010-08-10 | Diamond Qc Technologies Inc. | Carbon dioxide enriched flue gas injection for hydrocarbon recovery |
Also Published As
Publication number | Publication date |
---|---|
JPS4978705A (fr) | 1974-07-30 |
IT1045919B (it) | 1980-06-10 |
DE2338727A1 (de) | 1974-05-09 |
FR2205568B2 (fr) | 1977-05-27 |
GB1395264A (en) | 1975-05-21 |
FR2205568A2 (fr) | 1974-05-31 |
NL7314846A (fr) | 1974-05-10 |
CA1017144A (en) | 1977-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10047314B2 (en) | Fuel oil compositions with improved cold flow properties | |
US2655479A (en) | Polyester pour depressants | |
US3904385A (en) | Polyacrylates and waxy residual fuel compositions thereof | |
US4867894A (en) | Pour point improving additives for mineral oils | |
US3853497A (en) | Low pour vacuum gas oil compositions | |
US3897353A (en) | Method of preventing haze in oil concentrates containing an amorphous ethylene-propylene copolymer viscosity index improver | |
US3250599A (en) | Fuels of improved low temperature pumpability | |
US3846093A (en) | Middle distillate fuel containing additive combination providing improved filterability | |
JPS58138791A (ja) | 燃料油用流動性向上剤 | |
US4156434A (en) | Low pour point fuel compositions | |
JP2545585B2 (ja) | 中間留分用のポリマーの流動性改良剤 | |
US3574575A (en) | Liquid hydrocarbon oil compositions containing esters of styrene-maleic anhydride copolymers as fluidity improvers | |
EP1391498B1 (fr) | Agent fluidifiant et composition de mazout | |
US20020040546A1 (en) | Cloud point depressants for middle distiliate fuels | |
US2992987A (en) | Lubricating oil additive concentrate | |
US4834776A (en) | Low temperature fluidity improver | |
US3447915A (en) | Fuel oil compositions | |
US3634052A (en) | Liquid petroleum hydrocarbon compositions containing esters of an alkyl itaconate-maleic anhydride copolymer as fluidity improvers | |
KR100273608B1 (ko) | 오일 첨가제 및 조성물 | |
CA2020104A1 (fr) | Methode d'augmentation de la fluidite des huiles minerales et de leurs distillats | |
US4160459A (en) | Low pour crude oil compositions | |
US3947368A (en) | Lubricating oil compositions | |
US3675671A (en) | Process for transportation of waxy crude oils | |
US3445205A (en) | Fuel oil composition having improved low temperature properties | |
US3260728A (en) | Process for polymerizing ethylene with lauryl methacrylate and n-vinyl-2-pyrrolidone |