US3820168A - System for operating a prosthetic limb - Google Patents
System for operating a prosthetic limb Download PDFInfo
- Publication number
- US3820168A US3820168A US00288093A US28809372A US3820168A US 3820168 A US3820168 A US 3820168A US 00288093 A US00288093 A US 00288093A US 28809372 A US28809372 A US 28809372A US 3820168 A US3820168 A US 3820168A
- Authority
- US
- United States
- Prior art keywords
- contacts
- prosthetic limb
- limb
- housing
- muscle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/68—Operating or control means
- A61F2/70—Operating or control means electrical
- A61F2/72—Bioelectric control, e.g. myoelectric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/54—Artificial arms or hands or parts thereof
- A61F2/58—Elbows; Wrists ; Other joints; Hands
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S200/00—Electricity: circuit makers and breakers
- Y10S200/02—Body attached switches
Definitions
- a servomotor for moving a prosthetic limb is actuated by a controller which responds to local variations in muscular rigidity as determined by one or more pressure sensors bearing upon the flesh of the wearer within an annular frame contacting an area of his body.
- the frame may be resiliently supported in a cutout of a rigid sleeve by one or more springs urging it into contact with an underlying stump.
- the contacts of the sensor form part of an electromagnetic vibrator whose oscillations, felt by the user, are modulated by a feedback signal controlled by the position or the speed of the prosthetic limb.
- My present invention relates to the control of servoactuated prosthetic limbs.
- Such prosthetic appliances e.g., when powered by small batteries, have been controlled in the past by electromechanical systems responsive to major movements of some part of the body of the wearer such as a shoulder or the stump of an arm. More recently, sensors have been developed which are capable of detecting muscular contractions and expansions and which, therefore, can be utilized as part of a more sensitive control mechanism for a prosthetic limb. Prior devices of this nature, however, required cumbersome har- 1 nesses to maintain the proper physical correlation between the sensor and the part of the body engaged thereby.
- My invention therefore, aims at providing a simple
- a more particular object is to provide a controller of this description which is compact enough to be mounted on a stump socket for engagement with an underlying area of the body.
- Another object of my invention is to provide means in such a controller for giving the wearer a feel of the motion of the prosthetic limb in response to voluntary muscular changes.
- both normal and atrophied muscles undergo distinct and mechanically detectable structural changes in response to impulses transmitted to them through the nervous system, generally in the form of a localized stiffening of the flesh.
- the resistance of the body to outside pressure has a definite distribution throughout a limited area which is modified by the play of a muscle so that the resistance gradient varies in magnitude and, frequently, in sign at the willof the amputee.
- the resulting lateral relocation of the zone of maximumpressure resistance within a predetermined area of the body can therefore be used, pursuant to one aspect of my invention, to generate alternate command signals for the movement of the limb in one direction or the other.
- a control device embodying the present improvement has a plurality of relatively movable contactors closely juxtaposable on a selected body area, in combination with output means such as a set of electrical contacts coupled with these contactors for generating the requisite command signal or signals.
- these relatively movable contactors are a single pressure sensor and a preferably annular support on which this sensor is movably mounted; a more elaborate device includes two or more independently movable pressure sensors supported on a common bodycontacting frame.
- the vibrations may be modulated, in intensity and/or in frequency, by a feedback signal from a signal generator such as a variable impedance mechanically coupled with the prosthetic limb, either directly or through the transmission linking it with its drive motor.
- contacts closed by the sensor in the stiffened condition of its controlling muscle are part of an electromagnetic interrupter which acts as the vibrator.
- the pulsating current generated by this interrupter may be used directly or indirectly, after amplification if necessary, to energize the limb drive.
- FIG. 1 is a perspective view of a prosthetic hand fitted onto an arm stump and provided with a controller embodying the invention
- FIG. 2 is a cross-sectional view of a controller similar to that shown in FIG. 1 but drawn to a larger scale;
- FIG. 3 is a cross-sectional view taken on the line III III of FIG. 2;
- FIGS. 4 and 5 diagrammatically illustrate the pressure distribution along the surface of a muscle, contacted by a single sensor, in its state of relaxation and stress, respectively;
- FIGS. 6 and 7 are views similar to FIGS. 4 and 5, respectively, showing the muscle engaged by three juxtaposed sensors.
- FIG. 8 shows a circuit diagram for the control of a servomotor by the three sensors of FIGS. 6 and 7.
- FIG. I I have shown at l the stump of an arm onto which a socket or sleeve of metal or plastic material is fitted in the conventional manner.
- Sleeve 2 terminates in a prosthetic hand 50 which, with the aid of a servomotor not shown in this Figure, may be rotated at the wrist against the force of a restoring spring likewise not illustrated. It will be apparent that this hand could also be provided with movable fingers operated in a similar manner by a servomotor.
- a controller 3 secured to the sleeve 2, in a manner more fully described hereinafter, by a bracket 4 riveted to the sleeve at 41.
- Sleeve 2 has a circular cutout 42 traversed with slight clearance by the controller.
- Controller 3 as shown in FIGS. 2 and 3, comprises a housing 6 of plastic material topped by a lid 5 which is removably fastened thereto by screws 31 (FIG. 1).
- Housing 6 has a frustoconically concave bottom 6b forming a rim around a central circular recess 6c accommodating a pressure sensor in the form of a contactor 6a framed by the housing bottom.
- Pressure sensor 6a has a stem 6d threadedly engaged by a screw 7 whose head bears upon a surrounding guide sleeve 8 through an upper end wall thereof.
- a flexible diaphragm 9 is anchored to an outer ring 33, embedded in lid 5, and an inner ring 34 frictionally engaging the upper end of sleeve 8.
- a similar diaphragm 10 spans the annular gap between an outer ring 35, embedded in housing bottom 6b, and an inner ring 36 embracing the sleeve 8 with a friction fit.
- These two diaphragms which together with housing 6 and lid 5 define a fluidtight compartment 12, are thus vertically movable with sensor 6a relatively to the housing. This movement is resisted by a spring yoke 11 with a cross-brace 37 engaged by a bolt l9'which is adjustably screwed into an internal ledge of housing 6 to vary the biasing force exerted by the free ends of the yoke upon an extension 8a of sleeve 8.
- Extension 8a carries a movable contact 13 confronting a fixed contact 14 on the lower surface of an arm 15 carried by the lid 5.
- Contacts 13 and 14 are included in a circuit, more fully described hereinafter with reference to FIG. 8, which comprises wires 16, 17 forming part of a cable 18 that leads to the servomotor 70 driving the hand 50.
- the energizing circuit for this servomotor further includes a magnetic armature 23, rigid with sleeve extension 8a, and a surrounding electromagnetic coil 24 fixedly secured to housing 6.
- an extension 43 of the controllercarrying bracket 4 (FIG. 1) is traversed by a bolt 44 around whose projecting ends two looped springs 20 are coiled, the free ends of these springs being received in lugs 6e of housing 6.
- the springs 20 exert upon the controller 3 a certain pressure (downwardly in FIG. 2) urging the sensor 6a and the surrounding frame portion 6b of the housing into contact with a limited area of muscle 22 forming part of the stump I of FIG. 1.
- FIGS. 4 and 5 This mode of operation is diagrammatically illustrated in FIGS. 4 and 5 in which the controller 3 has been shown subjected to a contact pressure P, i.e., the force exerted upon it by its mounting springs 20 (FIGS. 2 and 3).
- This contact pressure gives rise to a muscular reaction force p which in the relaxed condition of muscle 22 (FIG. 4) is substantially evenly distributed so that all body-engaging parts of the controller, i.e., the sensor 6a and the frame 6b, are uniformly loaded.
- Biasing spring 11 keeps the contacts l3, l4 separated under these circumstances so that the motor circuit remains open.
- the muscle 22 is stressed (FIG. 5). the disby the muscle are normally evenly distributed as shown in FIG. 6. In the stressed state of the muscle illustrated in FIG.
- FIG. 8 illustrates the possibility of using three sets of contacts 71, 72, 73, respectively controlled by sensors 61, 62 and 63, for the selective energization of a reversible servomotor from a battery 74 to displace the movable part of the associated prosthetic limb in one or the other direction, depending on a shift in the relative magnitudes of muscular forces p p and p in FIGS. 6 and 7.
- Each set of contacts 71 73 may be similar to the contacts 13, 14 shown in FIG. 2.
- the operating circuit of servomotor 70 upon the joint actuation of sensors 61 and 62 can be traced from battery 74 via contacts 72, coil 24a (which corresponds to coil 24 of FIGS. 2 and 3), member 13a of contact pair 71 carrying the armature 23a'(which corresponds to coil 23 of FIGS. 2 and 3), member 14a of contact pair 71, the primary winding of a transformer 26a to ground via a potentiometer 25a driven by motor 70; the secondary winding of transformer 26a is connected to a forward input of motor 70 through a rectifier network schematically illustrated as a diode 27a.
- An analogous circuit including coil 24b with armature 23b, contact members 13b, 14b, a transformer 26b, a motor-driven potentiometer 25b and a diode 27b, comes into existence upon the joint actuation of sensors 62 and 63 to drive the servomotor 70 in the reverse direction.
- the frequency of the vibrations generated by interrupter 71, 23a, 24a or 73, 23b, 24b depends on the circuit impedances as well as on the mass of the movable elements and the elasticity of the stiffened muscle; this frequency can therefore be modified by varying the muscular tension.
- the effective resistance of potentiometer 25a increases along with the time constant of the electromagnetic circuit so that the vibration frequency is reduced; in a limiting position, in which the slider of the potentiometer moves off its resistor, the current flow through transformer 25a is completely interrupted so that the motor 70 stops. Since the cadence of the pulsations passing the rectifier 27a determines the motor speed, the vibration frequency as felt by the wearer is a measure of that speed as well as an indication of the position reached by the prosthetic limb 50.
- Potentiometers 25a and 25b are part of a signal generator 25, mechanically coupled with the limb 50, with transformers 26a, 26b acting as correlated responders feeding back positional information to the sensors 61, 63 in the form of physically detectable vibration changes.
- sensors 62 and 63 could be omitted, together with contacts 73, coil 24b,
- the mechanical contacts l3, 14 of FIGS. 2 and 3 could also be replaced by electronic circuit closers such as, for example, a piezo transistor inserted between the contactor 6a and the upper housing wall 5, preferably in combination with a surrounding coil spring absorbing part of the contact pressure as disclosed in my prior application Ser. No. 33,694.
- electronic circuit closers such as, for example, a piezo transistor inserted between the contactor 6a and the upper housing wall 5, preferably in combination with a surrounding coil spring absorbing part of the contact pressure as disclosed in my prior application Ser. No. 33,694.
- any electromechanical vibrator in direct pressuretransmitting relationship with the underlying muscle may be employed, with the operating energy supplied by an external source such as battery 74.
- the present system dissipates energy only during actual movement of the controlled prosthetic member so that its operation is highly economical.
- a system for operating a proshetic limb comprising a support provided with fastening means for placing same in contact with the body of a wearer;
- an energizing circuit for said drive means including pressure-sensing means on said support movable relatively thereto for engagement with said body;
- electromechanical vibrating means on said support connected in said energizing circuit and operative in the energized state of said drive means to transmit to the wearer a physically detectable oscillation upon a displacement of said limb;
- frequency-modulating means for said oscillation controlled by said drive means to signal to the wearer the speed and extent of such displacement.
- said vibrating means includes a circuit closer and an electromagnetic coil in series therewith, said pressure-sensing means comprising a contactor operatively linked with said circuit closer and an armature for said coil rigid with said contactor.
- said support comprises a housing enclosing said coil and said armature, said contactor projecting outwardly from said housing into a bottom recess thereof framed by an annular rim, said coil being rigid with said housing.
- circuit closer comprises a first contact fixedly mounted in said housing and a co-operating second contact mounted on an extension of said contactor.
- said support comprises a sleeve adapted to receive a stump to be fitted with said limb, said sleeve being provided with a cutout, a frame in said cutout adapted to surround a bearing area of the stump fitted into the sleeve, and spring means on said sleeve engaging said frame with an inwardly directed loading force, said pressuresensing means being positioned to confront said bearing area within said frame.
- said pressure-sensing means comprises two sensors positioned to confront different parts of said bearing area, said sensors being independently actuatable with opposite effect upon the direction of displacement of said limb by said drive means.
Landscapes
- Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
A SERVOMOTOR FOR MOVING A PROSTHETIC LIMB IS ACTUATED BY A CONTROLLER WHICH RESPONDS TO LOCAL VARIATIONS IN MUSCULAR RIGIDITY AS DETERMINED BY ONE OR MORE PRESSURE SENSORS BEARING UPON THE FLESH OF THE WEARER WITHIN AN ANNUAL FRAME CONTACTING AN AREA OF HIS BODY. THE FRAME MAY BE RESILIENTLY SUPPORTED IN A CUTOUT OF A RIGID SLEEVE BY ONE OR MORE SPRINGS URGING IT INTO CONTACT WITH AN UNDERLYING STUMP. THE CONTACTS OF THE SENSOR FORM PART OF AN ELECTROMAGNETIC VIBRATOR WHOSE OSCILLATIONS, FELT BY THE USER, ARE MODULATED BY A FEEDBACK SIGNAL CONTROLLED BY THE POSITION OR THE SPEED OF THE PROSTHETIC LIMB.
Description
llll 3,820,168
[ June 28, 1974 SYSTEM FOR OPERATING A PROSTHETIC LIMB [75] Inventor: Eduard Horvath, Duderstadt,
Germany [73] Assignee: F irma Otto Bock Orthopadische Industrie KG, Duderstadt, Germany [22] Filed: Sept. 11, 1972 [2]] Appl. No.: 288,093
Related US. Application Data [63] Continuation-in-part of Ser. No. 33,694,'May 1,
I970, abandoned.
[30] Foreign Application Priority Data Oct. l6, 1971 Germany 2l5l563 [52] US. Cl. 3/l.l-, ZOO/DIG. 2 [51] Int. Cl A6lf 1/00, A6lf H06 [58'] Field of Search 3/].1, 1.2; 200/85 R, DIG. 2
[5 6] References Cited UNITED STATES PATENTS 2,086,066 7/1937 Churchill ZOO/85 R 2,679,649 6/1954 Alderson 3/l.l FOREIGN PATENTS OR APPLICATIONS 1,917,057 [0/1969 Germany 3/l.l
163,718 l/l965 U.S.S.R 3/l.l
OTHER PUBLICATIONS Human Limbs & Their Substitutes, by Klopsted and Wilson et al., McGraw-I-Iill Book Co., Inc., N.Y., Toronto, London, 1954, pp. 39l392.
Primary ExaminerRichard A. Gaudet Assistant Examiner-Ronald L. Frinks Attorney, Agent, or Firm-Karl F. Ross; Herbert Dubno ABSTRACT A servomotor for moving a prosthetic limb is actuated by a controller which responds to local variations in muscular rigidity as determined by one or more pressure sensors bearing upon the flesh of the wearer within an annular frame contacting an area of his body. The frame may be resiliently supported in a cutout of a rigid sleeve by one or more springs urging it into contact with an underlying stump. The contacts of the sensor form part of an electromagnetic vibrator whose oscillations, felt by the user, are modulated by a feedback signal controlled by the position or the speed of the prosthetic limb.
8 Claims, 8 Drawing Figures 2Z6 REVERSE i i minnows m4 3.820.168
saw 1 0P4 Eduard Horvafh lnreman Attorney PATENTEDJUHZB 1w 3,820,168
SHEET 2 BF 4 61- 6a 6 35 TDSERVO MOTOR PATENTEDJUHZB mm 3820 168 SHEET 3 OF 4 Fig.4 LP
nuscuz 5 22 P LL/ fl BONE I Eduard Horvafh lnreman Attorney 1 SYSTEM FOR OPERATING A PROSTHETIC LIMB This application is a continuation-in-part of my copending application Ser. No. 33,694 filed May 1, 1970 and now abandoned.
My present invention relates to the control of servoactuated prosthetic limbs.
Such prosthetic appliances, e.g., when powered by small batteries, have been controlled in the past by electromechanical systems responsive to major movements of some part of the body of the wearer such as a shoulder or the stump of an arm. More recently, sensors have been developed which are capable of detecting muscular contractions and expansions and which, therefore, can be utilized as part of a more sensitive control mechanism for a prosthetic limb. Prior devices of this nature, however, required cumbersome har- 1 nesses to maintain the proper physical correlation between the sensor and the part of the body engaged thereby.
My invention, therefore, aims at providing a simple,
efficient and sensitive controller for an extemallypowered prosthetic limb. A more particular object is to provide a controller of this description which is compact enough to be mounted on a stump socket for engagement with an underlying area of the body.
Another object of my invention is to provide means in such a controller for giving the wearer a feel of the motion of the prosthetic limb in response to voluntary muscular changes.
I have found, in accordance with the present invention, that both normal and atrophied muscles undergo distinct and mechanically detectable structural changes in response to impulses transmitted to them through the nervous system, generally in the form of a localized stiffening of the flesh. In many instances, the resistance of the body to outside pressure has a definite distribution throughout a limited area which is modified by the play of a muscle so that the resistance gradient varies in magnitude and, frequently, in sign at the willof the amputee. The resulting lateral relocation of the zone of maximumpressure resistance within a predetermined area of the body can therefore be used, pursuant to one aspect of my invention, to generate alternate command signals for the movement of the limb in one direction or the other.
Thus, a control device embodying the present improvement has a plurality of relatively movable contactors closely juxtaposable on a selected body area, in combination with output means such as a set of electrical contacts coupled with these contactors for generating the requisite command signal or signals. In a simple case, these relatively movable contactors are a single pressure sensor and a preferably annular support on which this sensor is movably mounted; a more elaborate device includes two or more independently movable pressure sensors supported on a common bodycontacting frame.
In order to report back to the controlling muscle the change in position of the controlled prosthetic limb, I
provide the sensor with an electromechanical vibrator which is included in or coupled to the energizing circuit of the limb drive so as to operate as long as that drive is active. The vibrations may be modulated, in intensity and/or in frequency, by a feedback signal from a signal generator such as a variable impedance mechanically coupled with the prosthetic limb, either directly or through the transmission linking it with its drive motor.
Advantageously,pursuant to a further feature of my invention, contacts closed by the sensor in the stiffened condition of its controlling muscle are part of an electromagnetic interrupter which acts as the vibrator. The pulsating current generated by this interrupter may be used directly or indirectly, after amplification if necessary, to energize the limb drive.
The above and other features of my invention will be described in greater detail hereinafter with reference to the accompanying drawing in which:
FIG. 1 is a perspective view of a prosthetic hand fitted onto an arm stump and provided with a controller embodying the invention;
FIG. 2 is a cross-sectional view of a controller similar to that shown in FIG. 1 but drawn to a larger scale;
FIG. 3 is a cross-sectional view taken on the line III III of FIG. 2;
FIGS. 4 and 5 diagrammatically illustrate the pressure distribution along the surface of a muscle, contacted by a single sensor, in its state of relaxation and stress, respectively;
FIGS. 6 and 7 are views similar to FIGS. 4 and 5, respectively, showing the muscle engaged by three juxtaposed sensors; and
FIG. 8 shows a circuit diagram for the control of a servomotor by the three sensors of FIGS. 6 and 7.
In FIG. I I have shown at l the stump of an arm onto which a socket or sleeve of metal or plastic material is fitted in the conventional manner. Sleeve 2 terminates in a prosthetic hand 50 which, with the aid of a servomotor not shown in this Figure, may be rotated at the wrist against the force of a restoring spring likewise not illustrated. It will be apparent that this hand could also be provided with movable fingers operated in a similar manner by a servomotor.
For the control of such a servomotor there is shown provided a controller 3 secured to the sleeve 2, in a manner more fully described hereinafter, by a bracket 4 riveted to the sleeve at 41. Sleeve 2 has a circular cutout 42 traversed with slight clearance by the controller.
As shown in FIG. 3, an extension 43 of the controllercarrying bracket 4 (FIG. 1) is traversed by a bolt 44 around whose projecting ends two looped springs 20 are coiled, the free ends of these springs being received in lugs 6e of housing 6. The springs 20 exert upon the controller 3 a certain pressure (downwardly in FIG. 2) urging the sensor 6a and the surrounding frame portion 6b of the housing into contact with a limited area of muscle 22 forming part of the stump I of FIG. 1.
In the operation of the device 3, a hardening of the muscle 22 in the zone engaged by sensor 6a (but unaccompanied by a corresponding stiffening in the region contaced by frame 6b) raises the sensor 6a and, with it,
, and interrupter contacts 13 and 14, thereby operating the associated servomotor and vibrating the contactor 6a with reference to housing 6. When the muscle subsequently relaxes, this circuit is broken so that the controlled prosthetic member (here the hand 50) is caused to remain in the position last reached or returns to its original position under the control of a restoring spring. The fluidtight seal around space 12 prevents any contamination of the contacts by perspiration or other extraneous matter which could interfere with the generation of the proper command signal.
This mode of operation is diagrammatically illustrated in FIGS. 4 and 5 in which the controller 3 has been shown subjected to a contact pressure P, i.e., the force exerted upon it by its mounting springs 20 (FIGS. 2 and 3). This contact pressure gives rise to a muscular reaction force p which in the relaxed condition of muscle 22 (FIG. 4) is substantially evenly distributed so that all body-engaging parts of the controller, i.e., the sensor 6a and the frame 6b, are uniformly loaded. Biasing spring 11 keeps the contacts l3, l4 separated under these circumstances so that the motor circuit remains open. When the muscle 22 is stressed (FIG. 5). the disby the muscle are normally evenly distributed as shown in FIG. 6. In the stressed state of the muscle illustrated in FIG. 7, force P exceeds the forces P, and P;; so that a larger pressure p is required to restore the balance; this involves, of course, the raising of the middle sensor 62 to increase the stress of its biasing spring, as symbolized by the lengthening of arrows p FIG. 8 illustrates the possibility of using three sets of contacts 71, 72, 73, respectively controlled by sensors 61, 62 and 63, for the selective energization of a reversible servomotor from a battery 74 to displace the movable part of the associated prosthetic limb in one or the other direction, depending on a shift in the relative magnitudes of muscular forces p p and p in FIGS. 6 and 7.
Thus, a stiffening of the left-hand portion of muscle 22 would increase the reaction forces 11,, p with reference to force 12,, thereby closing contacts 71 and 72 to drive the motor 70 in the forward direction; an increased compression resistance in the right-hand part of the muscle would increase the forces p p compared with force p, to close the contacts 72 and 73 for reverse operation. Each set of contacts 71 73 may be similar to the contacts 13, 14 shown in FIG. 2.
The operating circuit of servomotor 70 upon the joint actuation of sensors 61 and 62 can be traced from battery 74 via contacts 72, coil 24a (which corresponds to coil 24 of FIGS. 2 and 3), member 13a of contact pair 71 carrying the armature 23a'(which corresponds to coil 23 of FIGS. 2 and 3), member 14a of contact pair 71, the primary winding of a transformer 26a to ground via a potentiometer 25a driven by motor 70; the secondary winding of transformer 26a is connected to a forward input of motor 70 through a rectifier network schematically illustrated as a diode 27a. An analogous circuit, including coil 24b with armature 23b, contact members 13b, 14b, a transformer 26b, a motor-driven potentiometer 25b and a diode 27b, comes into existence upon the joint actuation of sensors 62 and 63 to drive the servomotor 70 in the reverse direction.
The frequency of the vibrations generated by interrupter 71, 23a, 24a or 73, 23b, 24b depends on the circuit impedances as well as on the mass of the movable elements and the elasticity of the stiffened muscle; this frequency can therefore be modified by varying the muscular tension. As the motor 70 advances the hand 50 from a starting position in what has been referred to above as the forward direction, the effective resistance of potentiometer 25a increases along with the time constant of the electromagnetic circuit so that the vibration frequency is reduced; in a limiting position, in which the slider of the potentiometer moves off its resistor, the current flow through transformer 25a is completely interrupted so that the motor 70 stops. Since the cadence of the pulsations passing the rectifier 27a determines the motor speed, the vibration frequency as felt by the wearer is a measure of that speed as well as an indication of the position reached by the prosthetic limb 50.
Similar considerations apply, of course, upon the reversal of the motion of motor 70 by the simultaneous operation of sensors 62 and 63. Potentiometers 25a and 25b are part of a signal generator 25, mechanically coupled with the limb 50, with transformers 26a, 26b acting as correlated responders feeding back positional information to the sensors 61, 63 in the form of physically detectable vibration changes.
It will be apparent that sensors 62 and 63 could be omitted, together with contacts 73, coil 24b,
transformer 26b, potentiometer 25b and diode 27b and with short-circuiting of contacts 72, if the shaft of motor 70 were provided with a restoring spring tending to rotate it in the direction (here counterclockwise) opposite the sense of rotation imparted to the motor by the secondary current of transformer 26a. In such a case, though, the user will have to maintain an offnormal position of limb 50 by the application of a positive force (muscular contraction).
The mechanical contacts l3, 14 of FIGS. 2 and 3 could also be replaced by electronic circuit closers such as, for example, a piezo transistor inserted between the contactor 6a and the upper housing wall 5, preferably in combination with a surrounding coil spring absorbing part of the contact pressure as disclosed in my prior application Ser. No. 33,694. In fact, any electromechanical vibrator in direct pressuretransmitting relationship with the underlying muscle may be employed, with the operating energy supplied by an external source such as battery 74.
With a normally open-circuited power supply, as described with reference to FIGS. 2 and 8, the present system dissipates energy only during actual movement of the controlled prosthetic member so that its operation is highly economical.
I claim:
1. A system for operating a proshetic limb, comprisa support provided with fastening means for placing same in contact with the body of a wearer;
electric drive means for displacing said limb;
an energizing circuit for said drive means including pressure-sensing means on said support movable relatively thereto for engagement with said body;
biasing means on said support urging said pressuresensing means into engagement with said body;
electromechanical vibrating means on said support connected in said energizing circuit and operative in the energized state of said drive means to transmit to the wearer a physically detectable oscillation upon a displacement of said limb; and
frequency-modulating means for said oscillation controlled by said drive means to signal to the wearer the speed and extent of such displacement.
2. A system as defined in claim 1 wherein said vibrating means includes a circuit closer and an electromagnetic coil in series therewith, said pressure-sensing means comprising a contactor operatively linked with said circuit closer and an armature for said coil rigid with said contactor.
3. A system as defined in claim 2 wherein said support comprises a housing enclosing said coil and said armature, said contactor projecting outwardly from said housing into a bottom recess thereof framed by an annular rim, said coil being rigid with said housing.
4. A system as defined in claim 3 wherein said circuit closer comprises a first contact fixedly mounted in said housing and a co-operating second contact mounted on an extension of said contactor.
5. A system as defined in claim 4 wherein said housing is internally provided with two partitions defining a fluidtight compartment for said contacts, at least one of said partitions being a flexible diaphragm mechanically connected with said extension for displacement with reference to said housing.
6. A system as defined in claim 5 wherein said armature and said coil are disposed in said compartment.
7. A system as defined in claim 1 wherein said support comprises a sleeve adapted to receive a stump to be fitted with said limb, said sleeve being provided with a cutout, a frame in said cutout adapted to surround a bearing area of the stump fitted into the sleeve, and spring means on said sleeve engaging said frame with an inwardly directed loading force, said pressuresensing means being positioned to confront said bearing area within said frame.
8. A system as defined in claim 7 wherein said pressure-sensing means comprises two sensors positioned to confront different parts of said bearing area, said sensors being independently actuatable with opposite effect upon the direction of displacement of said limb by said drive means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00288093A US3820168A (en) | 1970-05-01 | 1972-09-11 | System for operating a prosthetic limb |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3369470A | 1970-05-01 | 1970-05-01 | |
DE19712151563 DE2151563C3 (en) | 1971-10-16 | Method for controlling the drive of an external force prosthesis | |
US00288093A US3820168A (en) | 1970-05-01 | 1972-09-11 | System for operating a prosthetic limb |
Publications (1)
Publication Number | Publication Date |
---|---|
US3820168A true US3820168A (en) | 1974-06-28 |
Family
ID=27183785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00288093A Expired - Lifetime US3820168A (en) | 1970-05-01 | 1972-09-11 | System for operating a prosthetic limb |
Country Status (1)
Country | Link |
---|---|
US (1) | US3820168A (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866246A (en) * | 1972-11-14 | 1975-02-18 | Us Navy | Shoulder disarticulation prosthetic system |
US4087730A (en) * | 1975-09-18 | 1978-05-02 | Viennatone Gesellschaft M.B.H. | Electric control circuit |
US4770662A (en) * | 1987-07-13 | 1988-09-13 | Giampapa Vincent C | Sensate vibratory prosthesis |
US5246463A (en) * | 1992-02-21 | 1993-09-21 | Giampapa Vincent C | Sensate and spacially responsive prosthesis |
US5413611A (en) * | 1992-07-21 | 1995-05-09 | Mcp Services, Inc. | Computerized electronic prosthesis apparatus and method |
US6344062B1 (en) * | 1999-03-18 | 2002-02-05 | The State University Rutgers | Biomimetic controller for a multi-finger prosthesis |
US6500210B1 (en) | 1992-09-08 | 2002-12-31 | Seattle Systems, Inc. | System and method for providing a sense of feel in a prosthetic or sensory impaired limb |
US20030036805A1 (en) * | 2001-07-17 | 2003-02-20 | Martin Senior | Gripper device |
US6610101B2 (en) | 2000-03-29 | 2003-08-26 | Massachusetts Institute Of Technology | Speed-adaptive and patient-adaptive prosthetic knee |
US6660042B1 (en) * | 2001-02-02 | 2003-12-09 | Rutgers, The State University Of New Jersey | Methods of biomimetic finger control by filtering of distributed forelimib pressures |
US20050125078A1 (en) * | 2002-07-08 | 2005-06-09 | Hilmar Br. Janusson | Socket liner incorporating sensors to monitor amputee progress |
US20050192677A1 (en) * | 2004-02-12 | 2005-09-01 | Ragnarsdottir Heidrun G. | System and method for motion-controlled foot unit |
US20060074493A1 (en) * | 2003-05-02 | 2006-04-06 | Bisbee Charles R Iii | Systems and methods of loading fluid in a prosthetic knee |
US20060085082A1 (en) * | 2004-05-07 | 2006-04-20 | Asgeirsson Sigurdur A | Systems and methods of controlling pressure within a prosthetic knee |
US20060135883A1 (en) * | 2004-12-22 | 2006-06-22 | Jonsson Helgi | Systems and methods for processing limb motion |
US20060173552A1 (en) * | 2005-02-02 | 2006-08-03 | Roy Kim D | Prosthetic and orthotic systems usable for rehabilitation |
US20060224247A1 (en) * | 2004-02-12 | 2006-10-05 | Clausen Arinbjorn V | Systems and methods for actuating a prosthetic ankle based on a relaxed position |
US20060235544A1 (en) * | 2005-03-29 | 2006-10-19 | Motion Control | Device and system for prosthetic knees and ankles |
US20070050045A1 (en) * | 2005-09-01 | 2007-03-01 | Clausen Arinbjorn V | Sensing system and method for motion-controlled foot unit |
US20070156252A1 (en) * | 2005-09-01 | 2007-07-05 | Ossur Hf | Actuator assebmly for prosthetic or orthotic joint |
USRE39961E1 (en) | 1996-06-27 | 2007-12-25 | össur hf | Computer controlled hydraulic resistance device for a prosthesis and other apparatus |
US20080277943A1 (en) * | 2005-08-10 | 2008-11-13 | Donelan James M | Method and apparatus for harvesting biomechanical energy |
US20090229398A1 (en) * | 2008-03-24 | 2009-09-17 | Franklin Leon Vargas | Electromechanical motion hand |
US20090319055A1 (en) * | 2005-03-29 | 2009-12-24 | Motion Control | Energy storing foot plate |
US20100185124A1 (en) * | 2004-03-10 | 2010-07-22 | Ossur Engineering, Inc. | Control system and method for a prosthetic knee |
US20100286796A1 (en) * | 2009-05-05 | 2010-11-11 | Ossur Hf | Control systems and methods for prosthetic or orthotic devices |
US20100324698A1 (en) * | 2009-06-17 | 2010-12-23 | Ossur Hf | Feedback control systems and methods for prosthetic or orthotic devices |
US20110098606A1 (en) * | 2005-02-02 | 2011-04-28 | Ossur Hf | Sensing systems and methods for monitoring gait dynamics |
US8057550B2 (en) | 2004-02-12 | 2011-11-15 | össur hf. | Transfemoral prosthetic systems and methods for operating the same |
US8323354B2 (en) | 2003-11-18 | 2012-12-04 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
US8702811B2 (en) | 2005-09-01 | 2014-04-22 | össur hf | System and method for determining terrain transitions |
US8736087B2 (en) | 2011-09-01 | 2014-05-27 | Bionic Power Inc. | Methods and apparatus for control of biomechanical energy harvesting |
US8801802B2 (en) | 2005-02-16 | 2014-08-12 | össur hf | System and method for data communication with a mechatronic device |
US8814949B2 (en) | 2005-04-19 | 2014-08-26 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US9017419B1 (en) | 2012-03-09 | 2015-04-28 | össur hf | Linear actuator |
US9060884B2 (en) | 2011-05-03 | 2015-06-23 | Victhom Human Bionics Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
DE102009049465B4 (en) * | 2009-10-15 | 2015-11-26 | Molla-Ahmadi Nader | Use of a vibration cuff to optimize fitting and facilitate fitting prostheses |
US9358137B2 (en) | 2002-08-22 | 2016-06-07 | Victhom Laboratory Inc. | Actuated prosthesis for amputees |
US9526636B2 (en) | 2003-11-18 | 2016-12-27 | Victhom Laboratory Inc. | Instrumented prosthetic foot |
US20160374835A1 (en) * | 2015-06-29 | 2016-12-29 | International Business Machines Corporation | Prosthetic device control with a wearable device |
US9561118B2 (en) | 2013-02-26 | 2017-02-07 | össur hf | Prosthetic foot with enhanced stability and elastic energy return |
US9649206B2 (en) | 2002-08-22 | 2017-05-16 | Victhom Laboratory Inc. | Control device and system for controlling an actuated prosthesis |
US9775662B2 (en) | 2012-12-06 | 2017-10-03 | Ossur Hf | Electrical stimulation for orthopedic devices |
US9949850B2 (en) | 2015-09-18 | 2018-04-24 | Össur Iceland Ehf | Magnetic locking mechanism for prosthetic or orthotic joints |
US10195099B2 (en) | 2016-01-11 | 2019-02-05 | Bionic Power Inc. | Method and system for intermittently assisting body motion |
US10912662B2 (en) | 2018-06-21 | 2021-02-09 | Bionicarm Ltd. | Electrically driven artificial arm and method of use |
-
1972
- 1972-09-11 US US00288093A patent/US3820168A/en not_active Expired - Lifetime
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866246A (en) * | 1972-11-14 | 1975-02-18 | Us Navy | Shoulder disarticulation prosthetic system |
US4087730A (en) * | 1975-09-18 | 1978-05-02 | Viennatone Gesellschaft M.B.H. | Electric control circuit |
US4770662A (en) * | 1987-07-13 | 1988-09-13 | Giampapa Vincent C | Sensate vibratory prosthesis |
US5246463A (en) * | 1992-02-21 | 1993-09-21 | Giampapa Vincent C | Sensate and spacially responsive prosthesis |
US5413611A (en) * | 1992-07-21 | 1995-05-09 | Mcp Services, Inc. | Computerized electronic prosthesis apparatus and method |
US6500210B1 (en) | 1992-09-08 | 2002-12-31 | Seattle Systems, Inc. | System and method for providing a sense of feel in a prosthetic or sensory impaired limb |
USRE39961E1 (en) | 1996-06-27 | 2007-12-25 | össur hf | Computer controlled hydraulic resistance device for a prosthesis and other apparatus |
US6344062B1 (en) * | 1999-03-18 | 2002-02-05 | The State University Rutgers | Biomimetic controller for a multi-finger prosthesis |
US20040039454A1 (en) * | 2000-03-29 | 2004-02-26 | Herr Hugh M. | Speed-adaptive and patient-adaptive prosthetic knee |
US6610101B2 (en) | 2000-03-29 | 2003-08-26 | Massachusetts Institute Of Technology | Speed-adaptive and patient-adaptive prosthetic knee |
US7799091B2 (en) | 2000-03-29 | 2010-09-21 | Massachusetts Institute Of Technology | Control system for prosthetic knee |
US7279009B2 (en) | 2000-03-29 | 2007-10-09 | Massachusetts Institute Of Technology | Speed-adaptive and patient-adaptive prosthetic knee |
US6660042B1 (en) * | 2001-02-02 | 2003-12-09 | Rutgers, The State University Of New Jersey | Methods of biomimetic finger control by filtering of distributed forelimib pressures |
US6846331B2 (en) * | 2001-07-17 | 2005-01-25 | Hugh Steeper Limited | Gripper device |
US20030036805A1 (en) * | 2001-07-17 | 2003-02-20 | Martin Senior | Gripper device |
US20050125078A1 (en) * | 2002-07-08 | 2005-06-09 | Hilmar Br. Janusson | Socket liner incorporating sensors to monitor amputee progress |
US7780741B2 (en) * | 2002-07-08 | 2010-08-24 | össur hf | Socket liner incorporating sensors to monitor amputee progress |
US9649206B2 (en) | 2002-08-22 | 2017-05-16 | Victhom Laboratory Inc. | Control device and system for controlling an actuated prosthesis |
US9358137B2 (en) | 2002-08-22 | 2016-06-07 | Victhom Laboratory Inc. | Actuated prosthesis for amputees |
US20060074493A1 (en) * | 2003-05-02 | 2006-04-06 | Bisbee Charles R Iii | Systems and methods of loading fluid in a prosthetic knee |
US7198071B2 (en) | 2003-05-02 | 2007-04-03 | Össur Engineering, Inc. | Systems and methods of loading fluid in a prosthetic knee |
US9526636B2 (en) | 2003-11-18 | 2016-12-27 | Victhom Laboratory Inc. | Instrumented prosthetic foot |
US8986397B2 (en) | 2003-11-18 | 2015-03-24 | Victhom Human Bionics, Inc. | Instrumented prosthetic foot |
US8323354B2 (en) | 2003-11-18 | 2012-12-04 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
US20050197717A1 (en) * | 2004-02-12 | 2005-09-08 | Ragnarsdottir Heidrun G. | System and method for motion-controlled foot unit |
US8657886B2 (en) | 2004-02-12 | 2014-02-25 | össur hf | Systems and methods for actuating a prosthetic ankle |
US20050192677A1 (en) * | 2004-02-12 | 2005-09-01 | Ragnarsdottir Heidrun G. | System and method for motion-controlled foot unit |
US7431737B2 (en) | 2004-02-12 | 2008-10-07 | össur hf. | System and method for motion-controlled foot unit |
US8057550B2 (en) | 2004-02-12 | 2011-11-15 | össur hf. | Transfemoral prosthetic systems and methods for operating the same |
US20060224246A1 (en) * | 2004-02-12 | 2006-10-05 | Clausen Arinbjorn V | Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle |
US9271851B2 (en) | 2004-02-12 | 2016-03-01 | össur hf. | Systems and methods for actuating a prosthetic ankle |
US7811334B2 (en) | 2004-02-12 | 2010-10-12 | Ossur Hf. | System and method for motion-controlled foot unit |
US20060224247A1 (en) * | 2004-02-12 | 2006-10-05 | Clausen Arinbjorn V | Systems and methods for actuating a prosthetic ankle based on a relaxed position |
US7896927B2 (en) | 2004-02-12 | 2011-03-01 | össur hf. | Systems and methods for actuating a prosthetic ankle based on a relaxed position |
US10195057B2 (en) | 2004-02-12 | 2019-02-05 | össur hf. | Transfemoral prosthetic systems and methods for operating the same |
US7637957B2 (en) | 2004-02-12 | 2009-12-29 | össur hf | System and method for motion-controlled foot unit |
US7637959B2 (en) | 2004-02-12 | 2009-12-29 | össur hf | Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle |
US20100185124A1 (en) * | 2004-03-10 | 2010-07-22 | Ossur Engineering, Inc. | Control system and method for a prosthetic knee |
US8617254B2 (en) | 2004-03-10 | 2013-12-31 | Ossur Hf | Control system and method for a prosthetic knee |
US9345591B2 (en) | 2004-03-10 | 2016-05-24 | össur hf | Control system and method for a prosthetic knee |
US7691154B2 (en) | 2004-05-07 | 2010-04-06 | össur hf | Systems and methods of controlling pressure within a prosthetic knee |
US20060085082A1 (en) * | 2004-05-07 | 2006-04-20 | Asgeirsson Sigurdur A | Systems and methods of controlling pressure within a prosthetic knee |
US7455696B2 (en) | 2004-05-07 | 2008-11-25 | össur hf | Dynamic seals for a prosthetic knee |
US9078774B2 (en) | 2004-12-22 | 2015-07-14 | össur hf | Systems and methods for processing limb motion |
US7811333B2 (en) | 2004-12-22 | 2010-10-12 | Ossur Hf | Systems and methods for processing limb motion |
US20060135883A1 (en) * | 2004-12-22 | 2006-06-22 | Jonsson Helgi | Systems and methods for processing limb motion |
US8048007B2 (en) | 2005-02-02 | 2011-11-01 | össur hf | Prosthetic and orthotic systems usable for rehabilitation |
US20110098606A1 (en) * | 2005-02-02 | 2011-04-28 | Ossur Hf | Sensing systems and methods for monitoring gait dynamics |
US9462966B2 (en) | 2005-02-02 | 2016-10-11 | össur hf | Sensing systems and methods for monitoring gait dynamics |
US20060173552A1 (en) * | 2005-02-02 | 2006-08-03 | Roy Kim D | Prosthetic and orthotic systems usable for rehabilitation |
US10290235B2 (en) | 2005-02-02 | 2019-05-14 | össur hf | Rehabilitation using a prosthetic device |
US8869626B2 (en) | 2005-02-02 | 2014-10-28 | össur hf | Sensing systems and methods for monitoring gait dynamics |
US8122772B2 (en) | 2005-02-02 | 2012-02-28 | össur hf | Sensing systems and methods for monitoring gait dynamics |
US8858648B2 (en) | 2005-02-02 | 2014-10-14 | össur hf | Rehabilitation using a prosthetic device |
US10369025B2 (en) | 2005-02-02 | 2019-08-06 | Össur Iceland Ehf | Sensing systems and methods for monitoring gait dynamics |
US8801802B2 (en) | 2005-02-16 | 2014-08-12 | össur hf | System and method for data communication with a mechatronic device |
US20060235544A1 (en) * | 2005-03-29 | 2006-10-19 | Motion Control | Device and system for prosthetic knees and ankles |
US20090319055A1 (en) * | 2005-03-29 | 2009-12-24 | Motion Control | Energy storing foot plate |
US8888864B2 (en) | 2005-03-29 | 2014-11-18 | Motion Control | Energy storing foot plate |
US7942935B2 (en) * | 2005-03-29 | 2011-05-17 | Motion Control | Device and system for prosthetic knees and ankles |
US9717606B2 (en) | 2005-04-19 | 2017-08-01 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US8814949B2 (en) | 2005-04-19 | 2014-08-26 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US9066819B2 (en) | 2005-04-19 | 2015-06-30 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US20100276944A1 (en) * | 2005-08-10 | 2010-11-04 | Simon Fraser University | Methods and apparatus for harvesting biomechanical energy |
US20080277943A1 (en) * | 2005-08-10 | 2008-11-13 | Donelan James M | Method and apparatus for harvesting biomechanical energy |
US8299634B2 (en) | 2005-08-10 | 2012-10-30 | Bionic Power Inc. | Methods and apparatus for harvesting biomechanical energy |
US8487456B2 (en) | 2005-08-10 | 2013-07-16 | Bionic Power Inc. | Methods and apparatus for harvesting biomechanical energy |
US9057361B2 (en) | 2005-08-10 | 2015-06-16 | Bionic Power Inc. | Methods and apparatus for harvesting biomechanical energy |
US7652386B2 (en) * | 2005-08-10 | 2010-01-26 | Bionic Power Inc. | Method and apparatus for harvesting biomechanical energy |
US7659636B2 (en) | 2005-08-10 | 2010-02-09 | Bionic Power Inc. | Methods and apparatus for harvesting biomechanical energy |
US7531006B2 (en) | 2005-09-01 | 2009-05-12 | össur hf | Sensing system and method for motion-controlled foot unit |
US8709097B2 (en) | 2005-09-01 | 2014-04-29 | össur hf | Actuator assembly for prosthetic or orthotic joint |
US8048172B2 (en) | 2005-09-01 | 2011-11-01 | össur hf | Actuator assembly for prosthetic or orthotic joint |
US8702811B2 (en) | 2005-09-01 | 2014-04-22 | össur hf | System and method for determining terrain transitions |
US20070050045A1 (en) * | 2005-09-01 | 2007-03-01 | Clausen Arinbjorn V | Sensing system and method for motion-controlled foot unit |
US8852292B2 (en) | 2005-09-01 | 2014-10-07 | Ossur Hf | System and method for determining terrain transitions |
US9351854B2 (en) | 2005-09-01 | 2016-05-31 | össur hf | Actuator assembly for prosthetic or orthotic joint |
US20070156252A1 (en) * | 2005-09-01 | 2007-07-05 | Ossur Hf | Actuator assebmly for prosthetic or orthotic joint |
US10299943B2 (en) | 2008-03-24 | 2019-05-28 | össur hf | Transfemoral prosthetic systems and methods for operating the same |
US20090229398A1 (en) * | 2008-03-24 | 2009-09-17 | Franklin Leon Vargas | Electromechanical motion hand |
US9017418B2 (en) | 2009-05-05 | 2015-04-28 | össur hf | Control systems and methods for prosthetic or orthotic devices |
US20100286796A1 (en) * | 2009-05-05 | 2010-11-11 | Ossur Hf | Control systems and methods for prosthetic or orthotic devices |
US9387096B2 (en) | 2009-06-17 | 2016-07-12 | Ossur Hf | Feedback control systems and methods for prosthetic or orthotic devices |
US20100324698A1 (en) * | 2009-06-17 | 2010-12-23 | Ossur Hf | Feedback control systems and methods for prosthetic or orthotic devices |
DE102009049465B4 (en) * | 2009-10-15 | 2015-11-26 | Molla-Ahmadi Nader | Use of a vibration cuff to optimize fitting and facilitate fitting prostheses |
US11185429B2 (en) | 2011-05-03 | 2021-11-30 | Victhom Laboratory Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US10251762B2 (en) | 2011-05-03 | 2019-04-09 | Victhom Laboratory Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US9060884B2 (en) | 2011-05-03 | 2015-06-23 | Victhom Human Bionics Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US9222468B2 (en) | 2011-09-01 | 2015-12-29 | Bionic Power Inc. | Methods and apparatus for control of biomechanical energy harvesting |
US8736087B2 (en) | 2011-09-01 | 2014-05-27 | Bionic Power Inc. | Methods and apparatus for control of biomechanical energy harvesting |
US9017419B1 (en) | 2012-03-09 | 2015-04-28 | össur hf | Linear actuator |
US9775662B2 (en) | 2012-12-06 | 2017-10-03 | Ossur Hf | Electrical stimulation for orthopedic devices |
US10369019B2 (en) | 2013-02-26 | 2019-08-06 | Ossur Hf | Prosthetic foot with enhanced stability and elastic energy return |
US12220330B2 (en) | 2013-02-26 | 2025-02-11 | Össur Iceland Ehf | Prosthetic foot with enhanced stability and elastic energy return |
US11285024B2 (en) | 2013-02-26 | 2022-03-29 | Össur Iceland Ehf | Prosthetic foot with enhanced stability and elastic energy return |
US9561118B2 (en) | 2013-02-26 | 2017-02-07 | össur hf | Prosthetic foot with enhanced stability and elastic energy return |
US10166123B2 (en) * | 2015-06-29 | 2019-01-01 | International Business Machines Corporation | Controlling prosthetic devices with smart wearable technology |
US20160374835A1 (en) * | 2015-06-29 | 2016-12-29 | International Business Machines Corporation | Prosthetic device control with a wearable device |
US10722386B2 (en) | 2015-09-18 | 2020-07-28 | Össur Iceland Ehf | Magnetic locking mechanism for prosthetic or orthotic joints |
US9949850B2 (en) | 2015-09-18 | 2018-04-24 | Össur Iceland Ehf | Magnetic locking mechanism for prosthetic or orthotic joints |
US11707365B2 (en) | 2015-09-18 | 2023-07-25 | Össur Iceland Ehf | Magnetic locking mechanism for prosthetic or orthotic joints |
US10195099B2 (en) | 2016-01-11 | 2019-02-05 | Bionic Power Inc. | Method and system for intermittently assisting body motion |
US10912662B2 (en) | 2018-06-21 | 2021-02-09 | Bionicarm Ltd. | Electrically driven artificial arm and method of use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3820168A (en) | System for operating a prosthetic limb | |
Alles | Information transmission by phantom sensations | |
US7438724B2 (en) | System and method for force feedback | |
EP0964661A1 (en) | System and method for providing a sense of feel in a prosthetic or sensory impaired limb | |
DK790D0 (en) | MEASURER FOR MEASUREMENT | |
ATE363935T1 (en) | SKI OR SNOWBOARD WITH A PIEZO ELECTRIC DAMPER | |
MY100986A (en) | Frequency feedback on a current loop of a current -to-pressure converter | |
DK264384D0 (en) | DEVICE FOR MONITORING A PERSON'S PRESENCE IN A BED | |
EP0456968A3 (en) | Piezoelectric transducer | |
EP0391880A3 (en) | Measurement and control of magnetostrictive transducer motion | |
KR20000052699A (en) | Dynamic mattress and method of operation | |
Brown et al. | The exoskeleton glove for control of paralyzed hands | |
Mann | Paper 15: Efferent and Afferent Control of an Electromyographic, Proportional-Rate, Force Sensing Artificial Elbow with Cutaneous Display of Joint Angle | |
JPS53132988A (en) | Piezo-vibrator | |
US3609769A (en) | Control system for electrically powered artificial limbs | |
US3220405A (en) | Vibrating massage device with wobbling magnet | |
EP0251656A3 (en) | Apparatus for diagnosis and/or training of proprioceptor feedback capabilities in a muscle and joint system of a human patient | |
ES8400702A1 (en) | Chopping drive circuit for an electromagnetic print hammer or the like. | |
ES2070371T3 (en) | APPARATUS FOR THE TREATMENT OF DISEASES BY ULTRASONICS. | |
KR920003743B1 (en) | Silent Time Signal Generator and Method for Generating Silent Time Signal | |
FR2369813A1 (en) | Electrically operated bed rocking device - has eccentric weight driven at approximately 1.5 Hz to rock bed to induce sleep | |
RU2702304C1 (en) | Device for positional sensing of movability of fingers of an artificial hand | |
RU2026663C1 (en) | Device for massage | |
JPH0145636B2 (en) | ||
FR2417136A1 (en) | Electronic pulse generator for switch control - provides stepless regulation for vibratory drive unit for spiral bowl feeder |