US3765406A - Tiltable bed with automatic control system - Google Patents
Tiltable bed with automatic control system Download PDFInfo
- Publication number
- US3765406A US3765406A US00288719A US3765406DA US3765406A US 3765406 A US3765406 A US 3765406A US 00288719 A US00288719 A US 00288719A US 3765406D A US3765406D A US 3765406DA US 3765406 A US3765406 A US 3765406A
- Authority
- US
- United States
- Prior art keywords
- blood pressure
- bed
- tiltable
- motor
- tiltable bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000036772 blood pressure Effects 0.000 claims abstract description 77
- 208000001953 Hypotension Diseases 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000011664 signaling Effects 0.000 claims description 4
- 230000000747 cardiac effect Effects 0.000 claims description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 3
- 208000021822 hypotensive Diseases 0.000 claims description 3
- 230000001077 hypotensive effect Effects 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 238000012552 review Methods 0.000 claims description 2
- 230000035488 systolic blood pressure Effects 0.000 description 28
- 230000035487 diastolic blood pressure Effects 0.000 description 21
- 230000033001 locomotion Effects 0.000 description 19
- 230000003205 diastolic effect Effects 0.000 description 11
- 230000036543 hypotension Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000003534 oscillatory effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 200000000007 Arterial disease Diseases 0.000 description 1
- 101000635799 Homo sapiens Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 102100030852 Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Human genes 0.000 description 1
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 208000001297 phlebitis Diseases 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration by a force applied to the chest; Heart stimulation, e.g. heart massage
- A61H31/004—Heart stimulation
- A61H31/005—Heart stimulation with feedback for the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/001—Apparatus for applying movements to the whole body
- A61H1/003—Rocking or oscillating around a horizontal axis transverse to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration by a force applied to the chest; Heart stimulation, e.g. heart massage
- A61H31/004—Heart stimulation
- A61H31/006—Power driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration by a force applied to the chest; Heart stimulation, e.g. heart massage
- A61H31/008—Supine patient supports or bases, e.g. improving air-way access to the lungs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5023—Interfaces to the user
- A61H2201/5043—Displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5069—Angle sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/30—Blood pressure
Definitions
- the present invention relates to a therapeutic device and, more particularly, to a control system for tilting or inclining a bed or platform in order to regulate as much as possible within limits certain medical conditions of a patient supported thereon.
- oscillatory therapy wherein a patient is slowly tilted back and forth in accordance with selected responses and conditions such as arterial diseases of the lower extremities, shock, respiratory disturbances involving paralysis of respiration, phlebitis, stroke, and others are generally improved.
- a most appropriate exemplary application for oscillatory therapy is the control of blood systolic and diastolic pressures by elevating or lowering the patients feet and head as conditions require.
- Tiltable platforms or beds have been utilized therapeutically to affect or influence patient physical characteristics for many years. Assemblies of this nature are illustrated, for example, in U. S. Pat. Nos. 3,200,416; 3,247,528; 3,293,667; 3,392,723; 3,584,321; and 3,609,779.
- Various control mechanisms for establishing the tilt or incline of these devices are well known and include pneumatically operated oscillators, me-' chanically geared elevators, electrical drives and numerous variations of these components. All of these control systems depend, however, on manual actuation by an operator or patient to mobilize the apparatus and to achieve the desired degree of tilt or incline.
- the present invention includes a tiltable bed control system which is automatically actuated in response to controlling parameters, i.e., the patient's systolic and diastolic blood pressure, wherein the desired degree of tilt or incline is automatically established by continuously sensing and measuring these controlling parameters and determining whether or not they fall within predetermined and preselected limits.
- controlling parameters i.e., the patient's systolic and diastolic blood pressure
- control system comprising the present invention is designed to adjust automatically the incline ofa tiltable bed or platform and the supported patient in response to blood pressure values which are monitored continuously by an appropriate sensing device. Desired values of systolic and diastolic blood pressure are measured, and if the patients blood pressure exceeds preset upper pressure limits, the head or upper end of the tiltable bed is raised sufficiently to bring the blood pressure within the preset limits. If the patients blood pressure falls below lower preset limits, the head or upper end of the tiltable bed is lowered sufficiently to bring the blood pressure back within the preset limits.
- special procedures are incorporated to minimize excessive motion of the bed or platform and to provide a series of preplanned motions in response to certain physiological variables.
- a primary objective of the present invention is to provide a control system of the type described for a tiltable surface wherein controlled oscillatory motion of the surface is completely automated and requires a minimum of manual supervision.
- Another object of the present invention is to provide an automatic control system for a tiltable surface which will cause the surface to tilt in a direction that will tend to maintain the blood pressure of a patient within a specified, acceptable range.
- Yet another object of the present invention is to provide a control system for a tiltable surface of the type described which can be used for therapeutic purposes in any situation where meaningful physical parameters can be measured and controlled by oscillatory motion of the surface.
- FIG. 1 is a schematic block diagram of a very basic embodiment of the present invention wherein a tiltable surface is selectively oscillated by directing polygraph blood pressure readings to a control unit which will in turn oscillate the surface within predetermined limits in response to the readings obtained from the polygraph.
- FIG. 2 is another schematic block diagram of a more sophisticated system for automatically controlling the oscillatory motion of a tiltable surface wherein blood pressure readings are directed through a control unit to the appropriate components of the motor directly controlling the oscillatory motion of the tiltable bed.
- FIG. 3 is a block diagram of the preferred embodiment of a tiltable surface automated control system specifically illustrating the basic components and the various overriding and supplemental functions found necessary and useful in carrying out the present invention.
- FIG. 4 isja table reflecting tiltable surface motion as a function of blood pressure errors.
- FIG. 5 is a table reflecting a number of typical conditions which will generate warning signals.
- a patientlO is positioned horizontally on a tiltable bed or surface I2suitably elevated above a working surface 14 by an appropriate supporting component 16.
- a motor 18 is included in the supporting component to tilt the bed 12 as it is selectively actuated by cooperative elements which will be subsequently described.
- a polygraph 20 may be used for monitoring blood pressure of human beings.
- signals received by the polygraph can be suitably converted and transmitted to a control unit 22 in a form which will selectively activate or deactivate bed motor 18 carried by supporting structure 16.
- the motor'18 can be driven in one direction when signals of one nature are received and driven in the opposite direction when signals of another and decidedly different nature are received.
- the motor 18 can be activated to inclination of the bed 12 in one direction or another.
- FIG. 2 broadly illustrates a relatively simple control system particularly designed to regulate the incline of the tiltable bed 12 without the use of a polygraph.
- an appropriate electrical response unit monitors the blood pressure signals received by a conventional sensing device 24 from the patient, transmits these signals to a control unit which in turn regulates a motor control unit directly governing the operation of the tiltable bed motor 18.
- the monitoring device may be provided with a display or indicating component 26 for visual observance, and the motor control unit can be provided with a manual override so that an operator or the patient may at any time bypass the regulatory system and control the incline of the tiltable bed at will.
- FIG. 3 represents the preferred embodiment of the present invention and is directly associated with the control of a tiltable patient-bearing table in direct response to systolic and diastolic blood pressure measurements. While the embodiment is particularly pertinent to patientblood pressure control, obviously, numerous other physical parameters may be utilized to control the automated system as herein described when motion of the patient can be of therapeutic value.
- the raw blood pressure data is obtained on a pulse to-pulse basis from an appropriate sensing device 24 such as an indwelling catheter 25. From the catheter, the data are fed to systolic and diastolic peak blood pressure detectors 28 and to a counter 30.
- the purpose of the counter is to obtain blood pressure processing on a pulse-by-pulse of every nth pulse, wherein the n can be varied,-for example, from 2 to 100.
- values of systolic and diastolic blood pressure are detected by peak detectors and compared in a comparing unit 31 to preset values of systolic and diastolic ranges manually placed in the system through the use of the preset value unit 34. If the value of detected blood pressure is within the selected preset values, no error is stored in the systolic or diastolic error storage unit 36. However, if either the detected systolic or diastolic blood pressure or both is not within the selected preset values, an error bit is generated. Both positive errors and negative errors are stored and summed in the storage unit 38.
- the circuitry and components used in this embodiment are designed so that if there are about 10 positive error bits of the last 12 samples of blood pressure, a positive error is generated either for systolic or diastolic blood pressure. Similarly, if there are about 10 negative error bits of the last 12 samples of blood pres sure, a negative error is generated.
- the errors, if any, for systolic and diastolic blood pressure are fed to the logic unit 40 for further comparison and processing.
- a mean blood pressure is derived in the present in- ME? DBP 0.6 (SBP-DBP) 0.6 (SE?) 0.4 (DBP) where MBP is mean blood pressure, DBP is diastolic blood pressure, and SBP is systolic blood pressure.
- a short-term mean blood pressure average is obtained by averaging, for example, the last 12 samples of mean blood pressure.
- a long-term mean blood pressure is also obtained by averaging, for example, the 96 samples of mean blood pressure processed just prior to the short-term 12 samples. The value of the short-term average is compared to the value of the long-term average in the comparing unit 44. If the two averages are within an error bound, no mean blood pressure error is generated. If the two mean blood pressure averages are not within an error bound, an error signal is generated.
- a positive error means the short-term mean blood pressure average is greater than the long-term mean blood pressure average.
- the systolic blood pressure, diastolic blood pressure, and mean blood pressure errors, if any, are fed to the bed motion logic unit 40. Two parameters are checked before any logic operations are allowed to occur.
- the first parameter check is to ensure that the systolic blood pressure is greater than an established value, for example, 1 10 mm Hg
- the second parameter check is to make sure that the difference between systolic and diastolic blood pressure is greater than an established value, for example, 20 mm Hg.
- the blood pressure data will be processed if the systolic blood pressure is greater than the established systolic value, in this case mm Hg, and the difference between systolic and diastolic blood pressure is greater than 20 mm Hg.
- a catheter malfunction warning signal is generated at a warning unit 45 if the systolic blood pressure is greater than 1 10 mm Hg, but the difference between the systolic and diastolic blood pressure is less than or equal to 20 mm Hg.
- the catheter malfunction warning signal alerts attending personnel. No further blood pressure processing is done, and no change in the tiltable bed position can occur until the catheter is again functioning properly.
- systolic blood pressure is less than 1 10 mm Hg and the difference between systolic and diastolic blood pressure is less than or equal to 20 mm Hg, a hypotension warning signal is generated and the system enters a hypotension procedure. Attending personnel are alerted, and the tiltable bed enters a special hypotension program described subsequently. If the systolic blood pressure is greater than 1 10 mm Hg and the difference between systolic and diastolic blood pressure is greater than 20 mm Hg, the tiltablebed is in its normal operating mode.
- the bed motion as a function of blood pressure errors is given in the representative table designated FIG. 4. in that table, the systolic and diastolic errors are relative to preset values for systolic and diastolic values, and the mean errors are derived as discussed earlier. For example, if there is a positive error in the systolic blood pressure and no error in the diastolic blood pres sure, the head end of the tiltable bed is raised to lower the blood pressure.
- the angular volocity of the tiltable bed is of any convenient and reasonable value, but preferably around 10 per minute or less. This relatively low velocity is preferred to avoid undue motion sensation by the patient, and to allow time for physiological adjustment to a new bed incline angle.
- the bed angle is preferably restricted to lie between +25 and -l2. Beyond these limits, problems might well arise relating to patient comfort and stability on the bed.
- the time duration of the tiltable bed motion is limited in two ways. First, if the blood pressure error disappears, the bed is stopped at the angle where the error disappeared. Secondly, the bed are is preferably divided into about 8 increments with the horizontal position serving as a reference.
- the tiltable bed angle is detected by a potentiometer connected to the pivot point of the table. The analog voltage from the potentiometer is fed to an A/D converter, which has a change in digital code each 4.
- the 8 increments in the tiltable table are chosen for several reasons. It has been found that a change in the tilt angle of less than about 8 does not produce a significant change in blood pressure. A change in tilt angle of more than about eight degrees produces a significant change in blood pressure, but the physiological system is not able to adjust to a change in the tilt angle sufficiently rapidly to prevent an overshoot of the tiltable bed angle in either the positive or the negative direction.
- a special routine is activated whenever the tiltable bed angle crosses an 8 boundary.
- a change in digital bed angle code is detected, and the bed is automatically stopped for about 30 seconds. This allows time for the patients blood pressure to adjust to the new bed angle and to obtain and process blood pressure data at the new bed angle.
- bed operation is returned to the normal mode of operation described previously.
- the purpose of the check routine is to periodically check the position of the tiltable bed and to attempt to return the bed near the horizontal position for the patients comfort. For the positive angles, if the bed angle is greater than about 4, and has remained within an 8 increment for a time in minutes selected by, for example, the attending physician, the bed angle is decreased by about 8, with a positive 4 as the lower limit. When the bed angle has been decreased for about 8, the table is'stopped in the new position for approximately 2 minutes. This pause is sufficiently long to allow adjustment to the new angle and to obtain and process data at the new bed angle. At the end of the waiting period, the bed operation is returned to the normal mode.
- the check routine will allow the tiltable bed angle to be less than zero degrees for 2 minutes which is preset in the system. At the end of the preset 2 minutes, the table is returned to the zero degree position, and is stopped for 2 minutes. At the end of the waiting period at zero degrees, the bed operation is returned to the normal mode.
- the hypotension routine is initiated when the systolic blood pressure is less than or equal to an established value, for example, 1 10 mm Hg and the difference between the systolic and diastolic blood pressure is less than an established value, for example again, mm Hg.
- this routine is activated, the tiltable bed is returned to the horizontal position without any pauses at the 8 increment or interruptions from the check routine. The bed then remains in the horizontal position for 2 minutes. At the end of the 2-minute waiting period, the bed operation is returned to the normal mode. If the blood pressure is still classified as hypotension, the bed angle is decreased below zero degrees, and the check routine is activated as described earlier. The check routine then controls the tiltable bed angle.
- the hypotension and check routine combination is terminated when the measured blood pressure no longer is classified as hypotensive at the end of the check routine 2 minute waiting period at the zero degree position. The bed operation is returned to the normal mode.
- a warning system In any mode of operation, a warning system is provided. This system provides checks and warning signals when the systolic or diastolic blood pressure or bed angle exceed certain bounds. A typical set of warning conditions is shown in the table designated FIG. 5. Also included in this table are the catheter malfunction and hypotension conditions. Warning signals might well be conveyed to attending personnel by, for example, flashing lights, or other appropriate means.
- the present invention may well have application in any area where human physical parameters may be utilized to control, within limits, particular bodily conditions.
- the invention may be used to control cerebral spinal fluid pressure by sensing the magnitude of that pressure and positioning the bed at an angle to decrease the pres sure.
- cardiac rate may also be regulated with certain limits by, for example, positioning the patient in another relationship if a rapid heartbeat is detected.
- Other applications will be obvious to those skilled in the area of technical medicine.
- a tiltable bed automatic control system responsive to physiological characteristics of a patient comprising: a tiltable bed; a tiltable bed motor; physiological characteristic sensing means; tiltable bed motor means operable to selectively activate said motor and establish the incline of the said bed and responsive to the output of said sensing means whereby the magnitude of the physiological characteristic controls the activation of the tiltable bed motor and incline of the bed and the patients physiological characteristic is held within preset limits.
- said blood pressure monitoring means comprising'a catheter
- said tiltable table motor means further comprising checking means to review bed incline for allowable return of said bed to a horizontal position, and hypotensive means regulating bed incline when predetermined blood pressure conditions occur.
- said blood pressure sensing means includes discriminating means controlling the operation of said motor with respect to preset blood pressure limits.
- said blood pressure sensing means including means monitoring said blood pressure, means establishing selected blood pressure limits, and means comparing the monitored blood pressure and the selective blood pressure limits, signaling a predetermined dissimilarity therebetween, and storing the dissimilar signal
- said tiltable bed motor means including motor control means responsive to the dissimilar signal stored in said comparing, signaling, and storing means.
- the system asclaimed in claim 3 further comprising mean blood pressure deriving means, and means comparing sensed blood pressure and derived mean blood pressure for provision to said tiltable bed motor means.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pain & Pain Management (AREA)
- Rehabilitation Therapy (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
A tiltable bed automatic control system for regulation of physiological characteristics such as blood pressure within predetermined limits. For example, the patient''s blood pressure is continuously measured and monitored through the use of suitable equipment. The magnitude of that pressure selectively actuates the motor of a tiltable platform or bed to appropriately reposition the bed and affect the patient''s blood pressure accordingly.
Description
United States Patent [191 Toole et al.
[111 3,765,406 14 1 Oct. 16, 1973 1 TILTABLE BED WITH AUTOMATIC CONTROL SYSTEM [76] Inventors: James F. Toole, 1836 Virginia Road; Ralph W. Barnes, Jr., 440 Flynt Valley Drive; Richard Janeway, 2815 Country Club Road, all of Winston-Salem, NC.
[22] Filed: Sept. 13, 1972 [21] Appl. No.: 288,719
[52] US. Cl. 128/24 R, 128/1 R, 128/68 [51] Int. Cl A61h 1/00 [58] Field of Search 128/24 R, 1 R, 1 B,
[56] References Cited UNITED STATES PATENTS 2,771,069 11/1956 Baron ..128/28 5/1962 Cunningham 128/24 R 8/1967' Grosholz et al. 128/1 B Primary Examiner-Lawrence W, Trapp Attorney-Charles Y. Lackey [5 7] ABSTRACT 11 Claims, 5 Drawing Figures Polygraph Control Unit -l ifl ENiEnucnsims I 3.7653106 SHEETIUFZ lyqraph FlG.l
l2/ Monitor Control Motor l8 Subject Unit Control FIG.2
34 Preset S stollc Value 3| 45 7 Unit Special Manual 2 36 Rout nes Override 25 i l Detection of Comparison ,Systolic Errors Table Motion| Table \BlOOd Systolic and to Preset Storage Mom], Plresslire Diastolic I Systolic and Dias tolici5rror Logic Drive npu Blood Pressure Diastolic Values Storage, I 24 g 4O 'lmter Table Derivation Mean BIood Comparison Angle 30 of Mean Pre of ShortTerm sur ment Blood Pressure smmge and Long Term Mean Blood Table Pressure 42 Angle v Processing 44 FlG.3
PAlENiEnoct 16m?! 3.765406 sum 2 or 2 Table Motion as a Function of Blood Pressure Errors Systolic Diastolic Mean Table Error Error Error Motion No Error No Error X No Motion Positive No error X Raise head end Positive Positive X Raise head end No error Positive X Raise head end No error Negative X Lower head end Negative Negative X Lower head and Positive Negative No error No Motion Positive Negative Positive Raise head end Positive Negative Negative Lower head and Negative Positive No error No motion Negative Positive Positive Raise head and Negative Positive Negative Lower head end Negative No error No error No Motion Negative No error Positive Raise head end Negative No error Negative Lower head end X= Does not matter FIG.4
Systolic high Systolic blood pressure l80 mm Hg Systolic law- Systolic blood pressure g I00 mm Hg Diastolic hlgh Diastolic blood pressure I00 mm Hg Diastolic low Diastolic blood pressure S 70 mm Hg Catheter malfunction Systolic blood pressure MO mm Hg and systolic minus diastolic .blood pressure 3 20 mm Hg Hypotension Systolic blood pressure 5 I00 mm Hg and systolic minus diastolic blood pressure 3 20 mm Hg FlG.5
TILTABLE BED WITH AUTOMATIC CONTROL SYSTEM BACKGROUND, BRIEF SUMMARY AND OBJECTIVES OF THE INVENTION The present invention relates to a therapeutic device and, more particularly, to a control system for tilting or inclining a bed or platform in order to regulate as much as possible within limits certain medical conditions of a patient supported thereon.
Medical science has recognized the value of oscillatory therapy wherein a patient is slowly tilted back and forth in accordance with selected responses and conditions such as arterial diseases of the lower extremities, shock, respiratory disturbances involving paralysis of respiration, phlebitis, stroke, and others are generally improved. A most appropriate exemplary application for oscillatory therapy is the control of blood systolic and diastolic pressures by elevating or lowering the patients feet and head as conditions require.
Tiltable platforms or beds have been utilized therapeutically to affect or influence patient physical characteristics for many years. Assemblies of this nature are illustrated, for example, in U. S. Pat. Nos. 3,200,416; 3,247,528; 3,293,667; 3,392,723; 3,584,321; and 3,609,779. Various control mechanisms for establishing the tilt or incline of these devices are well known and include pneumatically operated oscillators, me-' chanically geared elevators, electrical drives and numerous variations of these components. All of these control systems depend, however, on manual actuation by an operator or patient to mobilize the apparatus and to achieve the desired degree of tilt or incline.
The present invention includes a tiltable bed control system which is automatically actuated in response to controlling parameters, i.e., the patient's systolic and diastolic blood pressure, wherein the desired degree of tilt or incline is automatically established by continuously sensing and measuring these controlling parameters and determining whether or not they fall within predetermined and preselected limits.
Specifically, the control system comprising the present invention is designed to adjust automatically the incline ofa tiltable bed or platform and the supported patient in response to blood pressure values which are monitored continuously by an appropriate sensing device. Desired values of systolic and diastolic blood pressure are measured, and if the patients blood pressure exceeds preset upper pressure limits, the head or upper end of the tiltable bed is raised sufficiently to bring the blood pressure within the preset limits. If the patients blood pressure falls below lower preset limits, the head or upper end of the tiltable bed is lowered sufficiently to bring the blood pressure back within the preset limits. In addition, special procedures are incorporated to minimize excessive motion of the bed or platform and to provide a series of preplanned motions in response to certain physiological variables.
From the foregoing, it will be apparent that a primary objective of the present invention is to provide a control system of the type described for a tiltable surface wherein controlled oscillatory motion of the surface is completely automated and requires a minimum of manual supervision.
Another object of the present invention is to provide an automatic control system for a tiltable surface which will cause the surface to tilt in a direction that will tend to maintain the blood pressure of a patient within a specified, acceptable range.
Yet another object of the present invention is to provide a control system for a tiltable surface of the type described which can be used for therapeutic purposes in any situation where meaningful physical parameters can be measured and controlled by oscillatory motion of the surface.
These and other objects of the present invention will become more apparent after a consideration of the following detailed specification taken in conjunction with the accompanying drawings where like characters of reference designate like parts throughout the several views.
FIGURE DESCRIPTION FIG. 1 is a schematic block diagram of a very basic embodiment of the present invention wherein a tiltable surface is selectively oscillated by directing polygraph blood pressure readings to a control unit which will in turn oscillate the surface within predetermined limits in response to the readings obtained from the polygraph.
FIG. 2 is another schematic block diagram of a more sophisticated system for automatically controlling the oscillatory motion of a tiltable surface wherein blood pressure readings are directed through a control unit to the appropriate components of the motor directly controlling the oscillatory motion of the tiltable bed.
FIG. 3 is a block diagram of the preferred embodiment of a tiltable surface automated control system specifically illustrating the basic components and the various overriding and supplemental functions found necessary and useful in carrying out the present invention.
FIG. 4 isja table reflecting tiltable surface motion as a function of blood pressure errors.
FIG. 5 is a table reflecting a number of typical conditions which will generate warning signals.
DETAILED DESCRIPTION OF THE DISCLOSURE Referring now to the drawings and particularly to FIG. 1, a patientlO is positioned horizontally on a tiltable bed or surface I2suitably elevated above a working surface 14 by an appropriate supporting component 16. A motor 18 is included in the supporting component to tilt the bed 12 as it is selectively actuated by cooperative elements which will be subsequently described.
A polygraph 20 may be used for monitoring blood pressure of human beings. By the use of an appropriate transducer, signals received by the polygraph can be suitably converted and transmitted to a control unit 22 in a form which will selectively activate or deactivate bed motor 18 carried by supporting structure 16. By conventional electrical circuitry, the motor'18 can be driven in one direction when signals of one nature are received and driven in the opposite direction when signals of another and decidedly different nature are received. Depending upon the nature of the received signals, the motor 18 can be activated to inclination of the bed 12 in one direction or another.
FIG. 2 broadly illustrates a relatively simple control system particularly designed to regulate the incline of the tiltable bed 12 without the use of a polygraph. Here an appropriate electrical response unit monitors the blood pressure signals received by a conventional sensing device 24 from the patient, transmits these signals to a control unit which in turn regulates a motor control unit directly governing the operation of the tiltable bed motor 18. The monitoring device may be provided with a display or indicating component 26 for visual observance, and the motor control unit can be provided with a manual override so that an operator or the patient may at any time bypass the regulatory system and control the incline of the tiltable bed at will.
It will be understood that the various units included in the systems described above are comprised of conventional electric circuitry and components having physical composition and electrical characteristics which are well known and consistently within the capabilities of those skilled in the art of designing such systems.
FIG. 3 represents the preferred embodiment of the present invention and is directly associated with the control of a tiltable patient-bearing table in direct response to systolic and diastolic blood pressure measurements. While the embodiment is particularly pertinent to patientblood pressure control, obviously, numerous other physical parameters may be utilized to control the automated system as herein described when motion of the patient can be of therapeutic value.
In FIG. 3, the raw blood pressure data is obtained on a pulse to-pulse basis from an appropriate sensing device 24 such as an indwelling catheter 25. From the catheter, the data are fed to systolic and diastolic peak blood pressure detectors 28 and to a counter 30. The purpose of the counter is to obtain blood pressure processing on a pulse-by-pulse of every nth pulse, wherein the n can be varied,-for example, from 2 to 100.
As mentioned, values of systolic and diastolic blood pressure are detected by peak detectors and compared in a comparing unit 31 to preset values of systolic and diastolic ranges manually placed in the system through the use of the preset value unit 34. If the value of detected blood pressure is within the selected preset values, no error is stored in the systolic or diastolic error storage unit 36. However, if either the detected systolic or diastolic blood pressure or both is not within the selected preset values, an error bit is generated. Both positive errors and negative errors are stored and summed in the storage unit 38.
The circuitry and components used in this embodiment are designed so that if there are about 10 positive error bits of the last 12 samples of blood pressure, a positive error is generated either for systolic or diastolic blood pressure. Similarly, if there are about 10 negative error bits of the last 12 samples of blood pres sure, a negative error is generated. The errors, if any, for systolic and diastolic blood pressure are fed to the logic unit 40 for further comparison and processing.
A mean blood pressure is derived in the present in- ME? DBP 0.6 (SBP-DBP) 0.6 (SE?) 0.4 (DBP) where MBP is mean blood pressure, DBP is diastolic blood pressure, and SBP is systolic blood pressure.
A short-term mean blood pressure average is obtained by averaging, for example, the last 12 samples of mean blood pressure. A long-term mean blood pressure is also obtained by averaging, for example, the 96 samples of mean blood pressure processed just prior to the short-term 12 samples. The value of the short-term average is compared to the value of the long-term average in the comparing unit 44. If the two averages are within an error bound, no mean blood pressure error is generated. If the two mean blood pressure averages are not within an error bound, an error signal is generated. A positive error means the short-term mean blood pressure average is greater than the long-term mean blood pressure average.
The systolic blood pressure, diastolic blood pressure, and mean blood pressure errors, if any, are fed to the bed motion logic unit 40. Two parameters are checked before any logic operations are allowed to occur.
The first parameter check is to ensure that the systolic blood pressure is greater than an established value, for example, 1 10 mm Hg, and the second parameter check is to make sure that the difference between systolic and diastolic blood pressure is greater than an established value, for example, 20 mm Hg. The blood pressure data will be processed if the systolic blood pressure is greater than the established systolic value, in this case mm Hg, and the difference between systolic and diastolic blood pressure is greater than 20 mm Hg. A catheter malfunction warning signal is generated at a warning unit 45 if the systolic blood pressure is greater than 1 10 mm Hg, but the difference between the systolic and diastolic blood pressure is less than or equal to 20 mm Hg. The catheter malfunction warning signal alerts attending personnel. No further blood pressure processing is done, and no change in the tiltable bed position can occur until the catheter is again functioning properly.
If the systolic blood pressure is less than 1 10 mm Hg and the difference between systolic and diastolic blood pressure is less than or equal to 20 mm Hg, a hypotension warning signal is generated and the system enters a hypotension procedure. Attending personnel are alerted, and the tiltable bed enters a special hypotension program described subsequently. If the systolic blood pressure is greater than 1 10 mm Hg and the difference between systolic and diastolic blood pressure is greater than 20 mm Hg, the tiltablebed is in its normal operating mode.
The bed motion as a function of blood pressure errors is given in the representative table designated FIG. 4. in that table, the systolic and diastolic errors are relative to preset values for systolic and diastolic values, and the mean errors are derived as discussed earlier. For example, if there is a positive error in the systolic blood pressure and no error in the diastolic blood pres sure, the head end of the tiltable bed is raised to lower the blood pressure. The angular volocity of the tiltable bed is of any convenient and reasonable value, but preferably around 10 per minute or less. This relatively low velocity is preferred to avoid undue motion sensation by the patient, and to allow time for physiological adjustment to a new bed incline angle. The bed angle is preferably restricted to lie between +25 and -l2. Beyond these limits, problems might well arise relating to patient comfort and stability on the bed.
The time duration of the tiltable bed motion is limited in two ways. First, if the blood pressure error disappears, the bed is stopped at the angle where the error disappeared. Secondly, the bed are is preferably divided into about 8 increments with the horizontal position serving as a reference. The tiltable bed angle is detected by a potentiometer connected to the pivot point of the table. The analog voltage from the potentiometer is fed to an A/D converter, which has a change in digital code each 4.
The 8 increments in the tiltable table are are chosen for several reasons. It has been found that a change in the tilt angle of less than about 8 does not produce a significant change in blood pressure. A change in tilt angle of more than about eight degrees produces a significant change in blood pressure, but the physiological system is not able to adjust to a change in the tilt angle sufficiently rapidly to prevent an overshoot of the tiltable bed angle in either the positive or the negative direction.
To prevent excessive over or undershooting of the tiltable bed angle, a special routine is activated whenever the tiltable bed angle crosses an 8 boundary. When the bed angle crosses an 8 boundary, a change in digital bed angle code is detected, and the bed is automatically stopped for about 30 seconds. This allows time for the patients blood pressure to adjust to the new bed angle and to obtain and process blood pressure data at the new bed angle. At the end of the waiting period, bed operation is returned to the normal mode of operation described previously.
In addition to the normal mode of operation and the 8 increment routine, two other special procedures are provided. These procedures are referred to as the check routine and the hypotension routine.
The purpose of the check routine is to periodically check the position of the tiltable bed and to attempt to return the bed near the horizontal position for the patients comfort. For the positive angles, if the bed angle is greater than about 4, and has remained within an 8 increment for a time in minutes selected by, for example, the attending physician, the bed angle is decreased by about 8, with a positive 4 as the lower limit. When the bed angle has been decreased for about 8, the table is'stopped in the new position for approximately 2 minutes. This pause is sufficiently long to allow adjustment to the new angle and to obtain and process data at the new bed angle. At the end of the waiting period, the bed operation is returned to the normal mode.
For negative angles, the check routine will allow the tiltable bed angle to be less than zero degrees for 2 minutes which is preset in the system. At the end of the preset 2 minutes, the table is returned to the zero degree position, and is stopped for 2 minutes. At the end of the waiting period at zero degrees, the bed operation is returned to the normal mode.
The hypotension routine is initiated when the systolic blood pressure is less than or equal to an established value, for example, 1 10 mm Hg and the difference between the systolic and diastolic blood pressure is less than an established value, for example again, mm Hg. When this routine is activated, the tiltable bed is returned to the horizontal position without any pauses at the 8 increment or interruptions from the check routine. The bed then remains in the horizontal position for 2 minutes. At the end of the 2-minute waiting period, the bed operation is returned to the normal mode. If the blood pressure is still classified as hypotension, the bed angle is decreased below zero degrees, and the check routine is activated as described earlier. The check routine then controls the tiltable bed angle. The hypotension and check routine combination is terminated when the measured blood pressure no longer is classified as hypotensive at the end of the check routine 2 minute waiting period at the zero degree position. The bed operation is returned to the normal mode.
In any mode of operation, a warning system is provided. This system provides checks and warning signals when the systolic or diastolic blood pressure or bed angle exceed certain bounds. A typical set of warning conditions is shown in the table designated FIG. 5. Also included in this table are the catheter malfunction and hypotension conditions. Warning signals might well be conveyed to attending personnel by, for example, flashing lights, or other appropriate means.
Several general applications and one specific embodiment of the present invention have been described. It is to be understood that these representative examples are not to be construed as a limitation in any way on the present unique concept. The present invention may well have application in any area where human physical parameters may be utilized to control, within limits, particular bodily conditions. For example, the invention may be used to control cerebral spinal fluid pressure by sensing the magnitude of that pressure and positioning the bed at an angle to decrease the pres sure. Additionally, cardiac rate may also be regulated with certain limits by, for example, positioning the patient in another relationship if a rapid heartbeat is detected. Other applications will be obvious to those skilled in the area of technical medicine.
While there has been described an automated control system for regulating a patients blood pressure or other physical characteristics, obviously alterations and variations in the representative examples may be made without departing from the spirit and scope of the present invention. Such changes and improvements are contemplated within the scope of the appended claims.
We claim:
'1. A tiltable bed automatic control system responsive to physiological characteristics of a patient comprising: a tiltable bed; a tiltable bed motor; physiological characteristic sensing means; tiltable bed motor means operable to selectively activate said motor and establish the incline of the said bed and responsive to the output of said sensing means whereby the magnitude of the physiological characteristic controls the activation of the tiltable bed motor and incline of the bed and the patients physiological characteristic is held within preset limits.
2. The system as claimed in claim 1 wherein said physiological characteristic is blood pressure.
3. The system as claimed in claim 2 having manual override means selectively controlling said tiltable bed motor means to deactivate said tiltable bed motor and provide manual control therefor.
4. The system as claimed in claim 3, said blood pressure monitoring means comprising'a catheter, and said tiltable table motor means further comprising checking means to review bed incline for allowable return of said bed to a horizontal position, and hypotensive means regulating bed incline when predetermined blood pressure conditions occur.
5. The system as claimed in claim 1 wherein said physiological characteristic is cerebral spinal fluid pressure.
6. The system as claimed in claim 1 wherein said physiological characteristic is cardiac rate.
7. The system as claimed in claim 1 wherein said blood pressure sensing means includes discriminating means controlling the operation of said motor with respect to preset blood pressure limits.
8. The system as claimed in claim 1 having manual override means selectively controlling said tiltable bed motor means to deactivate said tiltable bed motor and provide manual control therefor.
9. The system as claimed in claim 1, said blood pressure sensing means including means monitoring said blood pressure, means establishing selected blood pressure limits, and means comparing the monitored blood pressure and the selective blood pressure limits, signaling a predetermined dissimilarity therebetween, and storing the dissimilar signal, said tiltable bed motor means including motor control means responsive to the dissimilar signal stored in said comparing, signaling, and storing means.
10. The system'as claimed in claim 9 further comprising mean blood pressure deriving means, and means comparing sensed blood pressure and derived mean blood pressure for provision to said tiltable bed motor means.
1 l. The system asclaimed in claim 3 further comprising mean blood pressure deriving means, and means comparing sensed blood pressure and derived mean blood pressure for provision to said tiltable bed motor means.
Claims (11)
1. A tiltable bed automatic control system responsive to physiological characteristics of a patient comprising: a tiltable bed; a tiltable bed motor; physiological characteristic sensing means; tiltable bed motor means operable to selectively activate said motor and establish the incline of the said bed and responsive to the output of said sensing means whereby the magnitude of the physiological characteristic controls the activation of the tiltable bed motor and incline of the bed and the patient''s physiological characteristic is held within preset limits.
2. The system as claimed in claim 1 wherein said physiological characteristic is blood pressure.
3. The system as claimed in claim 2 having manual override means selectively controlling said tiltable bed motor means to deactivate said tiltable bed motor and provide manual control therefor.
4. The system as claimed in claim 3, said blood pressure monitoring means comprising a catheter, and said tiltable table motor means further comprising checking means to review bed incline for allowable return of said bed to a horizontal position, and hypotensive means regulating bed incline when predetermined blood pressure conditions occur.
5. The system as claimed in claim 1 wherein said physiological characteristic is cerebral spinal fluid pressure.
6. The system as claimed in claim 1 wherein said physiological characteristic is cardiac rate.
7. The system as claimed in claim 1 wherein said blood pressure sensing means includes discriminating means controlling the operation of said motor with respect to preset blood pressure limits.
8. The system as claimed in claim 1 having manual override means selectively controlling said tiltable bed motor means to deactivate said tiltable bed motor and provide manual control therefor.
9. The system as claimed in claim 1, said blood pressure sensing means including means monitoring said blood pressure, means establishing selected blood pressure limits, and means comparing the monitored blood pressure and the selective blood pressure limits, signaling a predetermined dissimilarity therebetween, and storing the dissimilar signal, said tiltable bed motor means including motor control means responsive to the dissimilar signal stored in said comparing, signaling, and storing means.
10. The system as claimed in claim 9 further comprising mean blood pressure deriving means, and means comparing sensed blood pressure and derived mean blood pressure for provision to said tiltable bed motor means.
11. The system as claimed in claim 3 further comprising mean blood pressure deriving means, and means comparing sensed blood pressure and derived mean blood pressure for provision to said tiltable bed motor means.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28871972A | 1972-09-13 | 1972-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3765406A true US3765406A (en) | 1973-10-16 |
Family
ID=23108337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00288719A Expired - Lifetime US3765406A (en) | 1972-09-13 | 1972-09-13 | Tiltable bed with automatic control system |
Country Status (1)
Country | Link |
---|---|
US (1) | US3765406A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2305198A1 (en) * | 1975-03-28 | 1976-10-22 | Ieram Sarl | Blood infusion pump control system - regulates operating period frequency and speed to match blood pressure measured |
US4681098A (en) * | 1985-10-11 | 1987-07-21 | Lee Arnold St J | System, apparatus and method for gathering physiological data |
US4838275A (en) * | 1985-11-29 | 1989-06-13 | Lee Arnold St J | Home medical surveillance system |
US4863147A (en) * | 1987-05-18 | 1989-09-05 | Unit Rig, Inc. | Vehicle N2/oil suspension with external damping orifice adjustment |
US4889130A (en) * | 1985-10-11 | 1989-12-26 | Lee Arnold St J | Method for monitoring a subject's heart and lung sounds |
US4889123A (en) * | 1985-10-11 | 1989-12-26 | Lee Arnold St J | Method for determining heart rate |
US4893633A (en) * | 1985-10-11 | 1990-01-16 | Lee Arnold St J | Method of temperature measurement |
US4895155A (en) * | 1985-10-11 | 1990-01-23 | Lee Arnold St J | Method for estimating blood oxygen saturation |
WO1999007320A3 (en) * | 1997-08-08 | 1999-04-15 | Hill Rom Co Inc | Proning bed |
EP0872226A3 (en) * | 1997-04-15 | 1999-06-09 | Hill-Rom GmbH | Active medical device |
US20030007598A1 (en) * | 2000-11-24 | 2003-01-09 | U-Systems, Inc. | Breast cancer screening with adjunctive ultrasound mammography |
US6526610B1 (en) | 1998-06-26 | 2003-03-04 | Hill-Rom Services, Inc. | Proning bed |
US6609260B2 (en) | 2000-03-17 | 2003-08-26 | Hill-Rom Services, Inc. | Proning bed and method of operating the same |
US6701553B1 (en) | 1999-04-21 | 2004-03-09 | Hill-Rom Services, Inc. | Proning bed |
US6817363B2 (en) | 2000-07-14 | 2004-11-16 | Hill-Rom Services, Inc. | Pulmonary therapy apparatus |
US20080306563A1 (en) * | 2007-06-05 | 2008-12-11 | Jose Roberto Kullok | System and method for cardiovascular treatment or training |
WO2009083616A3 (en) * | 2008-01-03 | 2009-09-17 | Clemens Gutknecht | Patient bed with monitoring- and therapy device |
US20160354271A1 (en) * | 2013-12-13 | 2016-12-08 | Obchectvo S Ogranichennoy Otvetstvennostiy "Belmedinnovatsia" | Method for treating and preventing diseases having neurological, cardiological and therapeutic profiles |
US9681838B2 (en) | 2004-02-05 | 2017-06-20 | Earlysense Ltd. | Monitoring a condition of a subject |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2771069A (en) * | 1951-11-07 | 1956-11-20 | Charlotte M Baron | Rocking bed structure and synchronized respirator |
US3032029A (en) * | 1958-07-09 | 1962-05-01 | Thompson Ramo Wooldridge Inc | System controlling apparatus and method |
US3335713A (en) * | 1963-11-05 | 1967-08-15 | Air Shields | Infant incubator |
-
1972
- 1972-09-13 US US00288719A patent/US3765406A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2771069A (en) * | 1951-11-07 | 1956-11-20 | Charlotte M Baron | Rocking bed structure and synchronized respirator |
US3032029A (en) * | 1958-07-09 | 1962-05-01 | Thompson Ramo Wooldridge Inc | System controlling apparatus and method |
US3335713A (en) * | 1963-11-05 | 1967-08-15 | Air Shields | Infant incubator |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2305198A1 (en) * | 1975-03-28 | 1976-10-22 | Ieram Sarl | Blood infusion pump control system - regulates operating period frequency and speed to match blood pressure measured |
US4895155A (en) * | 1985-10-11 | 1990-01-23 | Lee Arnold St J | Method for estimating blood oxygen saturation |
US4681098A (en) * | 1985-10-11 | 1987-07-21 | Lee Arnold St J | System, apparatus and method for gathering physiological data |
US4889130A (en) * | 1985-10-11 | 1989-12-26 | Lee Arnold St J | Method for monitoring a subject's heart and lung sounds |
US4889123A (en) * | 1985-10-11 | 1989-12-26 | Lee Arnold St J | Method for determining heart rate |
US4893633A (en) * | 1985-10-11 | 1990-01-16 | Lee Arnold St J | Method of temperature measurement |
US4838275A (en) * | 1985-11-29 | 1989-06-13 | Lee Arnold St J | Home medical surveillance system |
US4863147A (en) * | 1987-05-18 | 1989-09-05 | Unit Rig, Inc. | Vehicle N2/oil suspension with external damping orifice adjustment |
EP0872226A3 (en) * | 1997-04-15 | 1999-06-09 | Hill-Rom GmbH | Active medical device |
WO1999007320A3 (en) * | 1997-08-08 | 1999-04-15 | Hill Rom Co Inc | Proning bed |
US6282736B1 (en) | 1997-08-08 | 2001-09-04 | Hill-Rom Services, Inc. | Proning bed |
US6499160B2 (en) | 1997-08-08 | 2002-12-31 | Hill-Rom Services, Inc. | Hospital bed |
US6691347B2 (en) | 1997-08-08 | 2004-02-17 | Hill-Rom Services, Inc. | Hospital bed |
US6526610B1 (en) | 1998-06-26 | 2003-03-04 | Hill-Rom Services, Inc. | Proning bed |
US6862759B2 (en) | 1998-06-26 | 2005-03-08 | Hill-Rom Services, Inc. | Hospital bed |
US7137160B2 (en) | 1999-04-21 | 2006-11-21 | Hill-Rom Services, Inc. | Proning bed |
US6701553B1 (en) | 1999-04-21 | 2004-03-09 | Hill-Rom Services, Inc. | Proning bed |
US6862761B2 (en) | 2000-03-17 | 2005-03-08 | Hill-Rom Services, Inc. | Hospital proning bed |
US20040006821A1 (en) * | 2000-03-17 | 2004-01-15 | Hill-Rom Services, Inc. | Hospital bed |
US6609260B2 (en) | 2000-03-17 | 2003-08-26 | Hill-Rom Services, Inc. | Proning bed and method of operating the same |
US7343916B2 (en) | 2000-07-14 | 2008-03-18 | Hill-Rom Services, Inc. | Pulmonary therapy apparatus |
US6817363B2 (en) | 2000-07-14 | 2004-11-16 | Hill-Rom Services, Inc. | Pulmonary therapy apparatus |
US7931607B2 (en) | 2000-07-14 | 2011-04-26 | Hill-Rom Services, Inc. | Pulmonary therapy apparatus |
US20030007598A1 (en) * | 2000-11-24 | 2003-01-09 | U-Systems, Inc. | Breast cancer screening with adjunctive ultrasound mammography |
US9681838B2 (en) | 2004-02-05 | 2017-06-20 | Earlysense Ltd. | Monitoring a condition of a subject |
US20080306563A1 (en) * | 2007-06-05 | 2008-12-11 | Jose Roberto Kullok | System and method for cardiovascular treatment or training |
WO2009083616A3 (en) * | 2008-01-03 | 2009-09-17 | Clemens Gutknecht | Patient bed with monitoring- and therapy device |
US20110015499A1 (en) * | 2008-01-03 | 2011-01-20 | Clemens Gutknecht | Patient bed with monitoring and therapy device |
US20160354271A1 (en) * | 2013-12-13 | 2016-12-08 | Obchectvo S Ogranichennoy Otvetstvennostiy "Belmedinnovatsia" | Method for treating and preventing diseases having neurological, cardiological and therapeutic profiles |
US10010469B2 (en) * | 2013-12-13 | 2018-07-03 | Obchectvo S Ogranischennoy Otvetstvennostiy “Belmedinnovatsia” | Method for treating and preventing diseases having neurological, cardiological and therapeutic profiles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3765406A (en) | Tiltable bed with automatic control system | |
US4869266A (en) | Patient monitoring unit for surgical use | |
JP3485564B2 (en) | Device for monitoring dialysis unit | |
US7273053B2 (en) | Monitoring and control for a laryngeal mask airway device | |
US3882861A (en) | Auxiliary control for a blood pump | |
US5291894A (en) | Apparatus for treating a patient with acoustic waves | |
US5858239A (en) | Methods and apparatus for adjustment of blood drip chamber of dialysis machines using touchscreen interface | |
US4669484A (en) | Automatic leveling device for hemodynamic pressure measuring system | |
US3890969A (en) | Cardiopulmonary bypass system | |
KR100591226B1 (en) | Operation control apparatus for electric bed | |
US4493326A (en) | Automatic blood pressure system with servo controlled inflation and deflation | |
US4969459A (en) | Infrared heating system for surgical patients | |
EP0089369A1 (en) | Pressure-responsive tourniquet | |
JPS58103437A (en) | Cuff pressure correcting method and apparatus | |
Reid et al. | Evaluation of closed-loop control of arterial pressure after cardiopulmonary bypass | |
US4074710A (en) | Intrathoracic pressure biofeedback method | |
JPH04126159A (en) | Blood processor | |
Potter et al. | Closed loop control of vasoactive drug infusion: a preliminary report | |
JP2912885B2 (en) | Standing training bed | |
JPH0260633A (en) | Cuff pressure controller for automatic hemadynamometer | |
EP0978256B1 (en) | An apparatus for facilitating respiratory rhythm control | |
CN110227196B (en) | Intussusception reset control system and method based on PID | |
US6878273B2 (en) | Dialyzing apparatus | |
JPS6449565A (en) | Apparatus for automatically controlling extracorporeal blood circulation | |
JPH0292356A (en) | Kinesitherapy support apparatus |