US3662758A - Stimulator apparatus for muscular organs with external transmitter and implantable receiver - Google Patents
Stimulator apparatus for muscular organs with external transmitter and implantable receiver Download PDFInfo
- Publication number
- US3662758A US3662758A US837701A US3662758DA US3662758A US 3662758 A US3662758 A US 3662758A US 837701 A US837701 A US 837701A US 3662758D A US3662758D A US 3662758DA US 3662758 A US3662758 A US 3662758A
- Authority
- US
- United States
- Prior art keywords
- power
- electrodes
- stimulator
- organ
- control signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/378—Electrical supply
- A61N1/3787—Electrical supply from an external energy source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36007—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/903—Radio telemetry
Definitions
- ABSTRACT A unit adapted to be implanted in a human body including a power supply for having power induced therein from a source external of the body, electrodes adapted to be attached to a muscular organ, such as a bladder or the like, capacitors and SCR's in circuit with said electrodes and said power supply for normally storing electrical energy and discharging said electrical energy through the electrodes upon conduction of the SCRs, triggering circuitry connected between the power supply and the SCRs for triggering the SCR's when the power induced in the power supply is temporarily interrupted and an FM transmitter connected to the power supply and between a pair of spaced apart electrodes so as to transmit a signal varying in frequency according to the resistance of the material between the electrodes; and an external control unit including means for inducing
- Eucs/vs (3. G1. 0 van A T TORNEYS STIMULATOR APPARATUS FOR MuscULAR ORGANS wirn EXTERNAL TRANSMITTER AND IMPLANTABLE RECEIVER BACKGROUND OF THE INVENTION cord and a peripheral system of sympathetic and parasympathetic nerves and ganglia connected between the spinal cord and the bladder.
- a disturbance to any one of these nerve systems, the portions of the brain or spinal cord concerned with micturition or the peripheral system, will usually result in impairment of the micturition reflex, such that the patient is unable to empty his bladder properly, even though the muscle tissue of the bladder itself is healthy.
- This condition is referred to as the neurogenic bladder," signifying that the bladder is incapacitated because of damage to the nervous system.
- the operation of a muscular organ is impaired, through damage to other parts of the body, some other control for that organ must be incorporated into the system.
- One such .prior art device includes an implantable bladder stimulator with a battery power pack. Obviously this is undesirable since the patient would have to undergo surgery each time the batteries become low in electrical energy.
- a tuned tank circuit having a capacitor attached thereto with electrodes connected to the bladder. so that the capacitor receives energy from the tank circuit to stimulate the electrodes, is implanted in the patient.
- This device is also undesirable since experience shows that three electrodes are necessary to produce adequate stimulation and emptying of the bladder. Each of these electrodes requires a pulse of 50 volts at 1 amp. for l millisecond.
- no means of storing power is provided, so the power pulses delivered to the electrodes must be received at the tank circuit.
- the transmitter does not operate between stimulus pulses, but only at the time of the pulse for the duration of the pulse. Therefore the tank circuit receiver must receive 150 watts peak power. Since the coupling'between the outside transmitter and the receiver located inside the body is very inefficient, the pulse power output of the transmitter must be in excess of l kilowatt.
- the present invention pertains to stimulator apparatus for the external control of a muscular organ
- animplantable unit having at least one electrode adapted to be affixed to the organ with controllable energizing means connected to the electrode for energi'zation thereof and power means for receiving induced power and control signals from an external source connected to said energizing means for supplying electrical power thereto with control means connected to said power means for utilizing said control signals to control the energizing means;,and an external unit having transmitting means for inducing power into the internal power means and modulating means connected to said transmitting means for supplying control signals thereto.
- Said external unit further including indicating means adapted to receive signals from said implantable unit for indicating the operation of the muscular organ.
- FIG. 1 is a block diagram of the external unit
- FIG. 2 is an electrical schematic diagram'of the implantable unit.
- the control unit includes a remote transmitting or induction coil 10 adapted to be positioned adjacent to any desirable portion of a body, as will be described in detail presently.
- the remote transmitting coil 10 is connected to the output of a power oscillator circuit 11 by means of a cable having at least two conductors and a length sufficient to allow movement of the transmitting coil 10 to the desired area of a body.
- the power oscillator circuit 11 may be any desired oscillator capable of providing the required frequency and power output.
- the output power of the power oscillator circuit 11 is variable over a range of 0 to approximately 50 watts at a frequency of approximately 350 kilocycles. It should be understood that any desired frequency and power output which will perform the desired functions can be utilized and the foregoing values are only for exemplary purposes. Further, the oscillator circuit 11 is not illustrated in schematic form since any oscillator circuit which can perform the desired functions may beu tilized.
- control unit is adapted to receive power from a ll0-volt AC source, represented by terminal 12.
- the 1 10 volts AC are supplied to an isolation transformer and rectifier 13, which supplies the required quantity of DC power to the remainder of the circuitry.
- Apower output regulator 14 is connected to the isolation transformer and rectifier l3 and regulates the amount of power supplied to the oscillator circuit 11 and, thus, the amount of output power from the oscillator circuit ll.
- An oscillator enable circuit 15 is illustrated between the power output regulator 14 and the oscillator circuit 11.
- the enable circuit 15 includes a monostable multivibrator or the like the operation of which is controlled by a trigger circuit 16, which includes a free-running multivibrator or the like.
- the trigger circuit 16 provides periodic and/or sequential signals to the enable circuit 15, which signals cause the enable circuit 15 to periodically and/or sequentially change states.
- the enable circuit 15 When the enable circuit 15 is in the normal state the power oscillator circuit 11 is supplying power to the remote transmitting coil 10. When the enable circuit 15 switches states, the power oscillator circuit 11 is turned off until the enable'circuit 15 returns to its original state. No specific circuitry is illustrated for the enable circuit 15 and trigger circuit 16 since the exemplary circuits described are well known to those skilled in the art and any circuit which will perform the desired functions may be utilized.
- the free-running multivibrator of the trigger circuit 16 is constructed so that it is unsymmetrical and one side remains conducting for 5 milliseconds while the other side is adjustable to provide a variable output repetition rate in the range of approximately 0 to 50 completed cycles per second.
- the monostable multivibrator of the enable circuit 15 receives signals or pulses from each side of the freerunning multivibrator in the trigger circuit 16 and provides an output pulse approximately one-tenth to two-tenths milliseconds in duration each time a signal or pulse is applied thereto from the trigger circuit 16.
- the enable circuit 15 supplies a first pulse to the power oscillator circuit 11 when the trigger circuit 16 switches and 5 milliseconds later, when the trigger circuit 16 switches states, the enable circuit supplies a second pulse to the power oscillator circuit 11.
- the trigger circuit 16 remains in the second state for the period of time to which it is adjusted and the enable circuit 15 remains in its normal state.
- the trigger circuit 16 again switches states for 5 milliseconds and the enable circuit provides two output pulses approximately 5 milliseconds apart.
- the power oscillator circuit 11 is deenergized or shut ofi for the duration of the output pulses from the enable circuit 15.
- the enable circuit 15 and trigger circuit 16 in essence modulate the output of the power oscillator circuit 11 or superimpose control signals on the output thereof.
- an FM (frequency modulated) receiver 20 including detector and demodulator, having an input affixed to a receiving antenna 21, which antenna 21 may be remotely positionable so that it can be placed adjacent various portions of a body.
- An indicator or calibrated meter readout 22 is attached to the output of the FM receiver so as to provide an indication of changes in frequency of the output.
- the indicator 22, for example, may be calibrated in terms of material contained in a bladder ranging from empty to full.
- variable characteristic other than frequency is utilized to provide an indicator of the operation of the muscular organ being controlled, but the present system is utilized because it is believed to be the most accurate under various changing conditions, such as variation in electrical power, variations in muscular material being operated upon, variations in distances between transmitters and receivers, etc.
- FIG. 2 illustrates an implantable unit which cooperates with the control unit of FIG. 1 to provide complete stimulator apparatus.
- the implantable unit includes power means generally designated 30, controllable energizing means generally designated 31, control means generally designated 32, transmitting means generally designated 33 and a regulated power supply for the control means 32 and transmitting means 33, generally designated 34.
- the power means 30 includes a tank circuit 40 tuned to the frequency of the power oscillator circuit 11 in the control unit. Since the entire circuitry illustrated in FIG. 2 is implantable, generally within the body ofa human or other animal, it is inaccessible from the exterior and power is induced into the tank circuit 40 by the transmitting coil 10. The electrical power from the tank circuit 40 is rectified, filtered and at least partially regulated to provide DC power at the line 41.
- the amplitude of the DC power on the line 41 is externally variable through the output regulator 14.
- the DC power on the line 41 is connected to the controllable energizing means 31 and to the regulated power supply 34.
- the filtering in the power means 30 is such that control signals superimposed on the energy induced into the tank circuit 40 appear at the line 41.
- the regulated power supply 34 has sufficient regulation so that control signals superimposed on the DC power at the line 41 have substantially no efiect on the output thereof.
- control signals and DC voltage are available on line 41 while only a regulated DC voltage is applied to the control means 32 and transmitting means 33 from the regulated power supply 34.
- the line 41 having control signals thereon is also connected to an input 42 ofthe control means 32.
- the controllable energizing means 31 includes a plurality of stimulator circuits 45a, 45b, 450, etc., each of which includes a pair of electrodes 46a, 46b, 460, a storage capacitor 47a, 47b, 47c, and an SCR (silicon controlled rectifier) 48a, 48b, 480, respectively.
- the pair of electrodes 46a and the storage capacitor 47a are connected to the line 41 across the output of the power means 30 so that the storage capacitor 47a is normally charged to the output voltage thereof.
- the SCR 48a is connected in circuit with the pair of electrodes 46a and storage capacitor 47a so that conduction of the SCR 48a provides a discharge path for the storage capacitor 47a through the pair of electrodes 460.
- a plurality of stimulator circuits 4511-45 are utilized to increase the chances that at least one of the stimulator circuits 45a-45c will remain operable in the event of component failures, etc.
- the electrodes 46a are adapted to be affixed to the muscular organ it is desired to control, such as a bladder or the like, and discharge of the storage capacitor 47 through the electrodes 46 stimulates the muscular tissue causing operation or contraction thereof.
- the amplitude of the power output from the power means 30 is adjusted, through the output regulator 14, so that the voltage supplied to the electrodes 46a, 46b, 46c, etc., is sufi'icient to provide the desired results without causing adverse effects.
- the control means 32 includes a monostable multivibrator 50 and a 4-bit shift register 51. While many or all of the circuits in the implantable unit may be provided in integrated form, the 4-bit shift register 51 is the only one so illustrated, since this is the most common form for commercially purchased shift registers at the present time and since illustrating all of the circuitry contained therein would lend nothing to this explanation.
- the 4-bit shift register is connected so that pulses from the monostable multivibrator 50 are received therein to provide serial readout or commutatcd signals, at the four outputs thereof, with the first three outputs being utilized to trigger the SCR's 48a, 48b and 480, and the fourth output being applied to reset the shift register 51 and prepare it for the next series of input pulses. It should be understood that many circuits might be utilized to sequentially apply triggering signals to the various stimulator circuits 45a, 45b and 45c, and the 4-bit shift register 51 is utilized because of its simplicity, size and relatively small expense.
- the monostable multivibrator 50 is constructed so that it provides an output pulse having a duration of approximately 7 milliseconds upon actuation thereof.
- the line 41 has a DC voltage prevalent thereon with control signals, consisting of negative-going pulses or periods during which there is an absence of DC voltage, of a duration between one-tenth and two-tenths of a millisecond. These control signals appear in pairs approximately 5 milliseconds apart, with each pair being separated by some predetermined or adjustable time.
- the second control signal on the line 41 has no ef feet on the monostable multivibrator 50.
- the first control signal in a pair of control signals appearing on the line 41 causes the monostable multivibrator 50 to produce a pulse which, through the shift register 51, triggers one of the SCR's 48a, 48b or 480. Once the SCR 48a, 48b or 48c is triggered it continues to conduct even after the triggering pulse is removed therefrom.
- a second control signal appears on the line 41 and temporarily removes the DC voltage from across the conducting SCR 48a, 48b or 48c, thereby, terminating the conduction.
- a second pair of control signals appear on the line 41 and the next SCR 48a, 48b or 48c is triggered into temporary operation.
- the transmitting means 33 includes a free-running multivibrator 52 and an amplifier-transmitter 55.
- the output of the free-running multivibrator 52 is connected directly to one of the pairs of electrodes 46b by means of a lead 53 and the input of the amplifier-transmitter 55 is connected directly to one of the pairs of electrodes 46c through a lead 54.
- the signal from the free-running multivibrator 52 applied to the muscular organ between the electrodes 46b and 460 is a low-level signal (in this embodiment approximately 400 to 500 millivolts) so that it has no adverse effect on the organ.
- the output signal from the free-running multivibrator 52 is amplified and utilized to modulate the output of the transmitter in the amplifier-transmitter 55.
- the impedance of the material between the electrodes 46b and 460 dictates the amount of the signal from the free-running multivibrator 52 which will reach the amplifier-transmitter 55.
- the output frequency of the amplifier-transmitter 55 is representative of the impedance of the material between the electrodes 46b and 460.
- the impedance thereacross is approximately 400 ohms when the bladder is full, or the muscle is stretched, and approximately 100 ohms when the bladder is empty, or the muscle is relaxed.
- the variations in frequency of the amplifier-transmitter 55 output are, therefore, a direct indication as to the operation of a muscular organ, such as the content of a bladder.
- the meter readout or indicator 22 can thus be calibrated directly in the particular operation or indication it is desired to monitor, such as bladder content.
- stimulator apparatus for the external control of a muscular organ
- an implantable unit which can be produced in an extremely miniature size through integrated circuits and the like, is affixed to an internal muscular organ in the bodies of humans, mammals, other animals, etc., and all signals, including control signals and power, are induced therein from an external control unit.
- the stimulator apparatus provides means for the storage of power in the internal or implantable unit, enabling the external transmitter to operate a greater period of time, approximately 97 percent of the time as opposed to only 28 percent of the time in prior art devices. This enables the peak power of the transmitter to be reduced, generally by a factor of 50, and the power handling requirements of the internal receiver section may be reduced in like manner.
- the operation of the internal muscular organ is monitored by inducing power into the implantable unit and receiving signals from the internal transmitter. Further, control signals are superimposed upon the induced power signals to cause the implanted unit to stimulate the muscular organ and cause operation thereof. While specific times and frequencies have been set forth in the description of the preferred embodiment, it should be understood that these times and frequencies can be varied according to the needs of the particular function being performed or the particular patient being acted upon. Further, some specific circuits are disclosed to facilitate the explanation of the operation and, it should be understood, that these circuits are only exemplary and many other embodiments might be devised by those skilled in the art to perform the functions set forth.
- Stimulator apparatus for the external control of a muscular organ comprising:
- an external transmitter unit including 1. transmitting means for producing a substantially continuous wave power signal, g
- modulating means connected to said transmitting means for superimposing control signals on said power signal
- an implantable unit including 1. power means for inductively receiving said power signal from said external transmitter unit and operable to produce both supply potential and control signals therefrom,
- At least one electrode adapted to be afiixed to the organ desired to be externally controlled
- controllable energizing means connecting said power means to said electrode and operable to provide energization of said electrode to provide stimulation of said organ
- control means connected to said power means and to said energizing means for controlling the operation of said energizing means in response to control signals from said power means.
- said modulating means includes electrical means for sequentially interrupting the induction of power into said implantable unit by said transmitting means.
- said implantable unit includes a plurality of said electrodes
- said controllable energizing means includes a plurality of parallel stimulator circuits each connected to a different pair of said electrodes;
- control means is connected to each of said plurality of parallel stimulator circuits and includes means for selectively controlling the operation thereof.
- each of said plurality of parallel stimulator circuits include an electrical energy storage device in circuit with a silicon controlled rectitier.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Electrotherapy Devices (AREA)
Abstract
A unit adapted to be implanted in a human body including a power supply for having power induced therein from a source external of the body, electrodes adapted to be attached to a muscular organ, such as a bladder or the like, capacitors and SCR''s in circuit with said electrodes and said power supply for normally storing electrical energy and discharging said electrical energy through the electrodes upon conduction of the SCR''s, triggering circuitry connected between the power supply and the SCR''s for triggering the SCR''s when the power induced in the power supply is temporarily interrupted and an FM transmitter connected to the power supply and between a pair of spaced apart electrodes so as to transmit a signal varying in frequency according to the resistance of the material between the electrodes; and an external control unit including means for inducing power into the internal power supply and controllable to periodically and temporarily remove power to control the energy supplied to the electrodes and an FM receiver with indicating means attached to provide an indication as to the operation of the muscular organ.
Description
United States Patent Glover [15] 3,662,758 [451 May 16,1972
[73] Assignee:
[54] STIMULATOR APPARATUS FOR MUSCULAR ORGANS WITH EXTERNAL TRANSMITTER AND IMPLANTABLE RECEIVER [72] Inventor: Eugene G. Glover, Minneapolis, Minn.
Mentor Corporation, Minneapolis, Minn. [22] Filed: June 30, 1969 [21] Appl. No.: 837,701
' OTHER PUBLICATIONS Young, et al.; American Journal of Medical Electronics" Apr.- June, 1964, pp. 28- 33 Primary Examiner-William E. Kamm Anarney-Merchant & Gould [57] ABSTRACT A unit adapted to be implanted in a human body including a power supply for having power induced therein from a source external of the body, electrodes adapted to be attached to a muscular organ, such as a bladder or the like, capacitors and SCR's in circuit with said electrodes and said power supply for normally storing electrical energy and discharging said electrical energy through the electrodes upon conduction of the SCRs, triggering circuitry connected between the power supply and the SCRs for triggering the SCR's when the power induced in the power supply is temporarily interrupted and an FM transmitter connected to the power supply and between a pair of spaced apart electrodes so as to transmit a signal varying in frequency according to the resistance of the material between the electrodes; and an external control unit including means for inducing power into the internal power supply and controllable to periodically and temporarily remove power to control the energy supplied to the electrodes and an FM receiver with indicating means attached to provide an indication as to the operation of the muscular organ.
4 Claims, 2 Drawing Figures PME'NTEMHsmn 8.662.758
Ta 5 2 INDICATOR RECEIVER l l2 5 I}; L 4 j /0 I I 0.0. POWER POWER ENABLE 05 c l SUPPLY REGULA TOR CRKT. g A.0.L i
45/7' SHIFT l I l I REGISTER l T T I V I L INVENTOR.
Eucs/vs (3. G1. 0 van A T TORNEYS STIMULATOR APPARATUS FOR MuscULAR ORGANS wirn EXTERNAL TRANSMITTER AND IMPLANTABLE RECEIVER BACKGROUND OF THE INVENTION cord and a peripheral system of sympathetic and parasympathetic nerves and ganglia connected between the spinal cord and the bladder. A disturbance to any one of these nerve systems, the portions of the brain or spinal cord concerned with micturition or the peripheral system, will usually result in impairment of the micturition reflex, such that the patient is unable to empty his bladder properly, even though the muscle tissue of the bladder itself is healthy. This condition is referred to as the neurogenic bladder," signifying that the bladder is incapacitated because of damage to the nervous system. When the operation of a muscular organ is impaired, through damage to other parts of the body, some other control for that organ must be incorporated into the system.
2. Description of the Prior Art In the prior art many attempts have been made to solve this problem electronically. One such .prior art device includes an implantable bladder stimulator with a battery power pack. Obviously this is undesirable since the patient would have to undergo surgery each time the batteries become low in electrical energy. In a similar prior art device a tuned tank circuit having a capacitor attached thereto with electrodes connected to the bladder. so that the capacitor receives energy from the tank circuit to stimulate the electrodes, is implanted in the patient. This device is also undesirable since experience shows that three electrodes are necessary to produce adequate stimulation and emptying of the bladder. Each of these electrodes requires a pulse of 50 volts at 1 amp. for l millisecond. This represents a peak pulse power of 50 watts for each electrode, or a total of 150 watts peak power if all stimulus pulses are delivered simultaneously, as they must be in the case of the tank circuit and capacitor. In the prior invention no means of storing power is provided, so the power pulses delivered to the electrodes must be received at the tank circuit. The transmitter does not operate between stimulus pulses, but only at the time of the pulse for the duration of the pulse. Therefore the tank circuit receiver must receive 150 watts peak power. Since the coupling'between the outside transmitter and the receiver located inside the body is very inefficient, the pulse power output of the transmitter must be in excess of l kilowatt.
SUMMARY OF THE INVENTION The present invention pertains to stimulator apparatus for the external control of a muscular organ including animplantable unit having at least one electrode adapted to be affixed to the organ with controllable energizing means connected to the electrode for energi'zation thereof and power means for receiving induced power and control signals from an external source connected to said energizing means for supplying electrical power thereto with control means connected to said power means for utilizing said control signals to control the energizing means;,and an external unit having transmitting means for inducing power into the internal power means and modulating means connected to said transmitting means for supplying control signals thereto. Said external unit further including indicating means adapted to receive signals from said implantable unit for indicating the operation of the muscular organ.
It is an object of the present invention to provide new and improved stimulator apparatus for the external control of a muscular organ.
It is a further object of the present invention to provide stimulator apparatus including means for indicating'the ap proximate operation of the muscular organ, such as the. fullness of a bladder, etc.
These and other objects of this invention will become apparent to those skilled in the art upon consideration of the accompanying specification, claims and drawings.
- BRIEF DESCRIPTION OF THE DRAWINGS Referring to the drawings, wherein like characters indicate like parts throughout the figures:
FIG. 1 is a block diagram of the external unit; and
FIG. 2 is an electrical schematic diagram'of the implantable unit.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. I, an external or control unit is illustrated in block form..The control unit includes a remote transmitting or induction coil 10 adapted to be positioned adjacent to any desirable portion of a body, as will be described in detail presently. The remote transmitting coil 10 is connected to the output of a power oscillator circuit 11 by means of a cable having at least two conductors and a length sufficient to allow movement of the transmitting coil 10 to the desired area of a body. The power oscillator circuit 11 may be any desired oscillator capable of providing the required frequency and power output. In the present embodiment the output power of the power oscillator circuit 11 is variable over a range of 0 to approximately 50 watts at a frequency of approximately 350 kilocycles. It should be understood that any desired frequency and power output which will perform the desired functions can be utilized and the foregoing values are only for exemplary purposes. Further, the oscillator circuit 11 is not illustrated in schematic form since any oscillator circuit which can perform the desired functions may beu tilized.
In the present embodiment the control unit is adapted to receive power from a ll0-volt AC source, represented by terminal 12. The 1 10 volts AC are supplied to an isolation transformer and rectifier 13, which supplies the required quantity of DC power to the remainder of the circuitry. Apower output regulator 14 is connected to the isolation transformer and rectifier l3 and regulates the amount of power supplied to the oscillator circuit 11 and, thus, the amount of output power from the oscillator circuit ll. An oscillator enable circuit 15 is illustrated between the power output regulator 14 and the oscillator circuit 11. The enable circuit 15 includes a monostable multivibrator or the like the operation of which is controlled by a trigger circuit 16, which includes a free-running multivibrator or the like. The trigger circuit 16 provides periodic and/or sequential signals to the enable circuit 15, which signals cause the enable circuit 15 to periodically and/or sequentially change states. When the enable circuit 15 is in the normal state the power oscillator circuit 11 is supplying power to the remote transmitting coil 10. When the enable circuit 15 switches states, the power oscillator circuit 11 is turned off until the enable'circuit 15 returns to its original state. No specific circuitry is illustrated for the enable circuit 15 and trigger circuit 16 since the exemplary circuits described are well known to those skilled in the art and any circuit which will perform the desired functions may be utilized.
In the present embodiment, the free-running multivibrator of the trigger circuit 16 is constructed so that it is unsymmetrical and one side remains conducting for 5 milliseconds while the other side is adjustable to provide a variable output repetition rate in the range of approximately 0 to 50 completed cycles per second. The monostable multivibrator of the enable circuit 15 receives signals or pulses from each side of the freerunning multivibrator in the trigger circuit 16 and provides an output pulse approximately one-tenth to two-tenths milliseconds in duration each time a signal or pulse is applied thereto from the trigger circuit 16. Thus, the enable circuit 15 supplies a first pulse to the power oscillator circuit 11 when the trigger circuit 16 switches and 5 milliseconds later, when the trigger circuit 16 switches states, the enable circuit supplies a second pulse to the power oscillator circuit 11. The trigger circuit 16 remains in the second state for the period of time to which it is adjusted and the enable circuit 15 remains in its normal state. After the predetermined period of time has passed the trigger circuit 16 again switches states for 5 milliseconds and the enable circuit provides two output pulses approximately 5 milliseconds apart. The power oscillator circuit 11 is deenergized or shut ofi for the duration of the output pulses from the enable circuit 15. Thus, the enable circuit 15 and trigger circuit 16 in essence modulate the output of the power oscillator circuit 11 or superimpose control signals on the output thereof.
Also included in the control unit is an FM (frequency modulated) receiver 20, including detector and demodulator, having an input affixed to a receiving antenna 21, which antenna 21 may be remotely positionable so that it can be placed adjacent various portions of a body. An indicator or calibrated meter readout 22 is attached to the output of the FM receiver so as to provide an indication of changes in frequency of the output. The indicator 22, for example, may be calibrated in terms of material contained in a bladder ranging from empty to full. Various other types of receivers and indicators might be utilized wherein a variable characteristic other than frequency is utilized to provide an indicator of the operation of the muscular organ being controlled, but the present system is utilized because it is believed to be the most accurate under various changing conditions, such as variation in electrical power, variations in muscular material being operated upon, variations in distances between transmitters and receivers, etc.
FIG. 2 illustrates an implantable unit which cooperates with the control unit of FIG. 1 to provide complete stimulator apparatus. The implantable unit includes power means generally designated 30, controllable energizing means generally designated 31, control means generally designated 32, transmitting means generally designated 33 and a regulated power supply for the control means 32 and transmitting means 33, generally designated 34. The power means 30 includes a tank circuit 40 tuned to the frequency of the power oscillator circuit 11 in the control unit. Since the entire circuitry illustrated in FIG. 2 is implantable, generally within the body ofa human or other animal, it is inaccessible from the exterior and power is induced into the tank circuit 40 by the transmitting coil 10. The electrical power from the tank circuit 40 is rectified, filtered and at least partially regulated to provide DC power at the line 41.
As previously described in conjunction with FIG. 1, the amplitude of the DC power on the line 41 is externally variable through the output regulator 14. The DC power on the line 41 is connected to the controllable energizing means 31 and to the regulated power supply 34. It should be noted that the filtering in the power means 30 is such that control signals superimposed on the energy induced into the tank circuit 40 appear at the line 41. Further, the regulated power supply 34 has sufficient regulation so that control signals superimposed on the DC power at the line 41 have substantially no efiect on the output thereof. Thus, with regard to effect on the remainder of the circuitry, control signals and DC voltage are available on line 41 while only a regulated DC voltage is applied to the control means 32 and transmitting means 33 from the regulated power supply 34. The line 41 having control signals thereon is also connected to an input 42 ofthe control means 32.
The controllable energizing means 31 includes a plurality of stimulator circuits 45a, 45b, 450, etc., each of which includes a pair of electrodes 46a, 46b, 460, a storage capacitor 47a, 47b, 47c, and an SCR (silicon controlled rectifier) 48a, 48b, 480, respectively. The pair of electrodes 46a and the storage capacitor 47a are connected to the line 41 across the output of the power means 30 so that the storage capacitor 47a is normally charged to the output voltage thereof. The SCR 48a is connected in circuit with the pair of electrodes 46a and storage capacitor 47a so that conduction of the SCR 48a provides a discharge path for the storage capacitor 47a through the pair of electrodes 460. A plurality of stimulator circuits 4511-45 are utilized to increase the chances that at least one of the stimulator circuits 45a-45c will remain operable in the event of component failures, etc. The electrodes 46a are adapted to be affixed to the muscular organ it is desired to control, such as a bladder or the like, and discharge of the storage capacitor 47 through the electrodes 46 stimulates the muscular tissue causing operation or contraction thereof. In general the amplitude of the power output from the power means 30 is adjusted, through the output regulator 14, so that the voltage supplied to the electrodes 46a, 46b, 46c, etc., is sufi'icient to provide the desired results without causing adverse effects.
The control means 32 includes a monostable multivibrator 50 and a 4-bit shift register 51. While many or all of the circuits in the implantable unit may be provided in integrated form, the 4-bit shift register 51 is the only one so illustrated, since this is the most common form for commercially purchased shift registers at the present time and since illustrating all of the circuitry contained therein would lend nothing to this explanation. The 4-bit shift register is connected so that pulses from the monostable multivibrator 50 are received therein to provide serial readout or commutatcd signals, at the four outputs thereof, with the first three outputs being utilized to trigger the SCR's 48a, 48b and 480, and the fourth output being applied to reset the shift register 51 and prepare it for the next series of input pulses. It should be understood that many circuits might be utilized to sequentially apply triggering signals to the various stimulator circuits 45a, 45b and 45c, and the 4-bit shift register 51 is utilized because of its simplicity, size and relatively small expense.
The monostable multivibrator 50 is constructed so that it provides an output pulse having a duration of approximately 7 milliseconds upon actuation thereof. As previously described, the line 41 has a DC voltage prevalent thereon with control signals, consisting of negative-going pulses or periods during which there is an absence of DC voltage, of a duration between one-tenth and two-tenths of a millisecond. These control signals appear in pairs approximately 5 milliseconds apart, with each pair being separated by some predetermined or adjustable time. Since the control signals are only 5 milliseconds apart and the first control signal changes the state of the monostable multivibrator 50, for a duration of 7 milliseconds, the second control signal on the line 41 has no ef feet on the monostable multivibrator 50. Thus, the first control signal in a pair of control signals appearing on the line 41 causes the monostable multivibrator 50 to produce a pulse which, through the shift register 51, triggers one of the SCR's 48a, 48b or 480. Once the SCR 48a, 48b or 48c is triggered it continues to conduct even after the triggering pulse is removed therefrom. Five milliseconds after the first control signal appears on the line 41, causing one of the SCRs 48a, 48b or 480, to be triggered, a second control signal appears on the line 41 and temporarily removes the DC voltage from across the conducting SCR 48a, 48b or 48c, thereby, terminating the conduction. At some predetermined time later a second pair of control signals appear on the line 41 and the next SCR 48a, 48b or 48c is triggered into temporary operation. Thus, as long as the trigger circuit 16 is energized to provide control signals in the implantable unit, the controllable energizing means 31 is energized to stimulate the muscular organ to which the electrodes 46a, 46b and 46c are attached.
The transmitting means 33 includes a free-running multivibrator 52 and an amplifier-transmitter 55. The output of the free-running multivibrator 52 is connected directly to one of the pairs of electrodes 46b by means of a lead 53 and the input of the amplifier-transmitter 55 is connected directly to one of the pairs of electrodes 46c through a lead 54. The signal from the free-running multivibrator 52 applied to the muscular organ between the electrodes 46b and 460 is a low-level signal (in this embodiment approximately 400 to 500 millivolts) so that it has no adverse effect on the organ. When the electrodes 46b and 460 are properly attached to a muscular organ, the output signal from the free-running multivibrator 52 is amplified and utilized to modulate the output of the transmitter in the amplifier-transmitter 55. The impedance of the material between the electrodes 46b and 460 dictates the amount of the signal from the free-running multivibrator 52 which will reach the amplifier-transmitter 55. Thus, the output frequency of the amplifier-transmitter 55 is representative of the impedance of the material between the electrodes 46b and 460. In a bladder for example, typically the impedance thereacross is approximately 400 ohms when the bladder is full, or the muscle is stretched, and approximately 100 ohms when the bladder is empty, or the muscle is relaxed. The variations in frequency of the amplifier-transmitter 55 output are, therefore, a direct indication as to the operation of a muscular organ, such as the content of a bladder. The meter readout or indicator 22 can thus be calibrated directly in the particular operation or indication it is desired to monitor, such as bladder content.
Thus, stimulator apparatus for the external control of a muscular organ is disclosed wherein an implantable unit, which can be produced in an extremely miniature size through integrated circuits and the like, is affixed to an internal muscular organ in the bodies of humans, mammals, other animals, etc., and all signals, including control signals and power, are induced therein from an external control unit. The stimulator apparatus provides means for the storage of power in the internal or implantable unit, enabling the external transmitter to operate a greater period of time, approximately 97 percent of the time as opposed to only 28 percent of the time in prior art devices. This enables the peak power of the transmitter to be reduced, generally by a factor of 50, and the power handling requirements of the internal receiver section may be reduced in like manner. The operation of the internal muscular organ is monitored by inducing power into the implantable unit and receiving signals from the internal transmitter. Further, control signals are superimposed upon the induced power signals to cause the implanted unit to stimulate the muscular organ and cause operation thereof. While specific times and frequencies have been set forth in the description of the preferred embodiment, it should be understood that these times and frequencies can be varied according to the needs of the particular function being performed or the particular patient being acted upon. Further, some specific circuits are disclosed to facilitate the explanation of the operation and, it should be understood, that these circuits are only exemplary and many other embodiments might be devised by those skilled in the art to perform the functions set forth.
What is claimed is:
l. Stimulator apparatus for the external control of a muscular organ comprising:
a. an external transmitter unit including 1. transmitting means for producing a substantially continuous wave power signal, g
2. modulating means connected to said transmitting means for superimposing control signals on said power signal,
b. an implantable unit including 1. power means for inductively receiving said power signal from said external transmitter unit and operable to produce both supply potential and control signals therefrom,
2. at least one electrode adapted to be afiixed to the organ desired to be externally controlled,
3. controllable energizing means connecting said power means to said electrode and operable to provide energization of said electrode to provide stimulation of said organ, and
4. control means connected to said power means and to said energizing means for controlling the operation of said energizing means in response to control signals from said power means. 2. The stimulator apparatus of claim 1 wherein said modulating means includes electrical means for sequentially interrupting the induction of power into said implantable unit by said transmitting means.
3. The stimulator apparatus of claim 1 wherein:
a, said implantable unit includes a plurality of said electrodes;
b. said controllable energizing means includes a plurality of parallel stimulator circuits each connected to a different pair of said electrodes; and
c. said control means is connected to each of said plurality of parallel stimulator circuits and includes means for selectively controlling the operation thereof.
4. The stimulator apparatus of claim 3 wherein each of said plurality of parallel stimulator circuits include an electrical energy storage device in circuit with a silicon controlled rectitier.
Claims (8)
1. Stimulator apparatus for the external control of a muscular organ comprising: a. an external transmitter unit including 1. transmitting means for producing a substantially continuous wave power signal, 2. modulating means connected to said transmitting means for superimposing control signals on said power signal, b. an implantable unit including 1. power means for inductively receiving said power signal from said external transmitter unit and operable to produce both supply potential and control signals therefrom, 2. at least one electrode adapted to be affixed to the organ desired to be externally controlled, 3. controllable energizing means connecting said power means to said electrode and operable to provide energization of said electrode to provide stimulation of said organ, and 4. control means connected to said power means and to said energizing means for controlling the operation of said energizing means in response to control signals from said power means.
2. modulating means connected to said transmitting means for superimposing control signals on said power signal, b. an implantable unit including
2. at least one electrode adapted to be affixed to the organ desired to be externally controlled,
2. The stimulator apparatus of claim 1 wherein said modulating means includes electrical means for sequentially interrupting the induction of power into said implantable unit by said transmitting means.
3. The stimulator apparatus of claim 1 wherein: a, said implantable unit includes a plurality of said electrodes; b. said controllable energizing means includes a plurality of parallel stimulator circuits each connected to a different pair of said electrodes; and c. said control means is connected to each of said plurality of parallel stimulator circuits and includes means for selectively controlling the operation thereof.
3. controllable energizing means connecting said power means to said electrode and operable to provide energization of said electrode to provide stimulation of said organ, and
4. control means connected to said power means and to said energizing means for controlling the operation of said energizing means in response to control signals from said power means.
4. The stimulator apparatus of claim 3 wherein each of said plurality of parallel stimulator circuits include an electrical energy storage device in circuit with a silicon contRolled rectifier.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83770169A | 1969-06-30 | 1969-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3662758A true US3662758A (en) | 1972-05-16 |
Family
ID=25275177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US837701A Expired - Lifetime US3662758A (en) | 1969-06-30 | 1969-06-30 | Stimulator apparatus for muscular organs with external transmitter and implantable receiver |
Country Status (1)
Country | Link |
---|---|
US (1) | US3662758A (en) |
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727616A (en) * | 1971-06-15 | 1973-04-17 | Gen Dynamics Corp | Electronic system for the stimulation of biological systems |
FR2191876A2 (en) * | 1970-07-10 | 1974-02-08 | Gen Electric | |
US3833005A (en) * | 1971-07-26 | 1974-09-03 | Medtronic Inc | Compared count digitally controlled pacemaker |
US3851651A (en) * | 1972-12-22 | 1974-12-03 | P Icenbice | Facial stimulating apparatus having sequentially energized electrodes |
US3888260A (en) * | 1972-06-28 | 1975-06-10 | Univ Johns Hopkins | Rechargeable demand inhibited cardiac pacer and tissue stimulator |
US3952750A (en) * | 1974-04-25 | 1976-04-27 | Mieczyslaw Mirowski | Command atrial cardioverting device |
FR2317825A1 (en) * | 1975-07-09 | 1977-02-04 | Mefina Sa | DEVICE FOR TRANSMITTING INFORMATION BY MAGNETIC INDUCTION |
US4026305A (en) * | 1975-06-26 | 1977-05-31 | Research Corporation | Low current telemetry system for cardiac pacers |
US4041954A (en) * | 1974-05-07 | 1977-08-16 | Kabushiki Kaisha Daini Seikosha | System for detecting information in an artificial cardiac pacemaker |
US4044775A (en) * | 1976-04-29 | 1977-08-30 | Medtronic, Inc. | Implantable receiver circuit |
US4057069A (en) * | 1974-08-30 | 1977-11-08 | Commissariat A L'energie Atomique | Method of nerve stimulation and a stimulator for the application of the method |
US4066086A (en) * | 1975-06-05 | 1978-01-03 | Medtronic, Inc. | Programmable body stimulator |
US4102344A (en) * | 1976-11-15 | 1978-07-25 | Mentor Corporation | Stimulator apparatus for internal body organ |
US4109644A (en) * | 1977-01-12 | 1978-08-29 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Miniature implantable ultrasonic echosonometer |
US4146029A (en) * | 1974-04-23 | 1979-03-27 | Ellinwood Jr Everett H | Self-powered implanted programmable medication system and method |
WO1980002498A1 (en) * | 1979-05-14 | 1980-11-27 | Medtronic Inc | Telemetry transmission system for analog and digital data from an implanted source |
US4408608A (en) * | 1981-04-09 | 1983-10-11 | Telectronics Pty. Ltd. | Implantable tissue-stimulating prosthesis |
US4524774A (en) * | 1981-07-30 | 1985-06-25 | Deutsche Nemectron Gmbh | Apparatus and method for the stimulation of a human muscle |
US4549547A (en) * | 1982-07-27 | 1985-10-29 | Trustees Of The University Of Pennsylvania | Implantable bone growth stimulator |
US4585005A (en) * | 1984-04-06 | 1986-04-29 | Regents Of University Of California | Method and pacemaker for stimulating penile erection |
USRE32361E (en) * | 1979-05-14 | 1987-02-24 | Medtronic, Inc. | Implantable telemetry transmission system for analog and digital data |
US4652877A (en) * | 1983-07-01 | 1987-03-24 | Rockwell International Corporation | Meter data gathering and transmission system |
US4690146A (en) * | 1985-06-17 | 1987-09-01 | Chattanooga Corporation | Neuromuscular stimulating apparatus |
US4706689A (en) * | 1985-10-30 | 1987-11-17 | Daniel Man | Implantable homing device |
US4758836A (en) * | 1983-06-20 | 1988-07-19 | Rockwell International Corporation | Inductive coupling system for the bi-directional transmission of digital data |
US4763656A (en) * | 1985-06-13 | 1988-08-16 | Beatrice T. Kester | Transcutaneous electrical nerve stimulation device and method |
US4771779A (en) * | 1984-05-18 | 1988-09-20 | The Regents Of The University Of California | System for controlling bladder evacuation |
US4799487A (en) * | 1987-05-11 | 1989-01-24 | Bleicher Joel N | Reanimation device and method for treating the paralyzed face |
US5314458A (en) * | 1990-06-01 | 1994-05-24 | University Of Michigan | Single channel microstimulator |
US5480415A (en) * | 1993-05-05 | 1996-01-02 | Intermedics, Inc. | Apparatus for high speed data communication between an external medical device and an implantable medical device |
US5603726A (en) * | 1989-09-22 | 1997-02-18 | Alfred E. Mann Foundation For Scientific Research | Multichannel cochlear implant system including wearable speech processor |
US5876425A (en) * | 1989-09-22 | 1999-03-02 | Advanced Bionics Corporation | Power control loop for implantable tissue stimulator |
US6087957A (en) * | 1983-07-01 | 2000-07-11 | M&Fc Holding Company, Inc. | Meter data gathering and transmission system |
WO2001054767A1 (en) * | 2000-01-31 | 2001-08-02 | Polyvalor L.P. | Electronic stimulator implant |
WO2001089630A1 (en) * | 2000-05-26 | 2001-11-29 | Consejo Superior De Investigaciones Científicas | Urination, defecation and erection control system in neuropathy patients |
US20020165589A1 (en) * | 2001-05-01 | 2002-11-07 | Imran Mir A. | Gastric treatment and diagnosis device and method |
US20030018365A1 (en) * | 2001-07-20 | 2003-01-23 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
US20040152999A1 (en) * | 2001-11-29 | 2004-08-05 | Biocontrol Medical Ltd | Low power consumption implantable pressure sensor |
US6836684B1 (en) * | 1998-10-30 | 2004-12-28 | Neurocon Aps | Method to control an overactive bladder |
US20050055063A1 (en) * | 2001-07-20 | 2005-03-10 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
US20050113881A1 (en) * | 1998-10-06 | 2005-05-26 | Yossi Gross | Incontinence treatment device |
US20050113886A1 (en) * | 2003-11-24 | 2005-05-26 | Fischell David R. | Implantable medical system with long range telemetry |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US20050216069A1 (en) * | 2001-11-29 | 2005-09-29 | Biocontrol Medical Ltd. | Pelvic disorder treatment device |
WO2005094669A1 (en) * | 2004-03-25 | 2005-10-13 | Universität Bremen | System and device implantable in tissue of a living being for recording and influencing electrical bio-activity |
US20050234360A1 (en) * | 2004-03-05 | 2005-10-20 | Richardson Charles L | Systems, methods and computer program products for heart monitoring |
US20050261746A1 (en) * | 1998-10-06 | 2005-11-24 | Yossi Gross | Control of urge incontinence |
US20050273170A1 (en) * | 2004-06-08 | 2005-12-08 | Navarro Richard R | Prosthetic intervertebral spinal disc with integral microprocessor |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US20060111753A1 (en) * | 2001-05-01 | 2006-05-25 | Imran Mir A | Gastric stimulation anchor and method |
US20060161225A1 (en) * | 1998-09-04 | 2006-07-20 | Wolfe Research Pty Ltd | Medical implant system |
US20060265027A1 (en) * | 2002-12-12 | 2006-11-23 | Shai Vaingast | Efficient dynamic stimulation in an implanted device |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
WO2007051196A2 (en) * | 2005-10-28 | 2007-05-03 | Medtronic, Inc. | Impedance-based bladder sensing |
US20070156030A1 (en) * | 2006-01-05 | 2007-07-05 | Charles Richardson | Assessment of medical conditions |
US20070191722A1 (en) * | 2004-03-05 | 2007-08-16 | Lifescience Solutions, Llc | System and method for heart monitoring |
US20070260288A1 (en) * | 2006-03-03 | 2007-11-08 | Yossi Gross | Apparatus for treating stress and urge incontinence |
US20070265675A1 (en) * | 2006-05-09 | 2007-11-15 | Ams Research Corporation | Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation |
US20080009914A1 (en) * | 2006-07-10 | 2008-01-10 | Ams Research Corporation | Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region |
US20080065169A1 (en) * | 2001-05-01 | 2008-03-13 | Intrapace, Inc. | Endoscopic Instrument for Engaging a Device |
US20080161876A1 (en) * | 2006-12-21 | 2008-07-03 | Ams Research Corporation | Electrode implantation in male external urinary sphincter |
US20090012592A1 (en) * | 2006-07-10 | 2009-01-08 | Ams Research Corporation | Tissue anchor |
US20090018388A1 (en) * | 2000-02-14 | 2009-01-15 | Peter Forsell | Penile prosthesis |
US20090018606A1 (en) * | 2005-10-12 | 2009-01-15 | Intrapace, Inc. | Methods and Devices for Stimulation of an Organ with the Use of a Transectionally Placed Guide Wire |
US20090036946A1 (en) * | 2001-11-29 | 2009-02-05 | American Medical Systems, Inc. | Pelvic disorder treatments |
US20090054725A1 (en) * | 2000-02-10 | 2009-02-26 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US7509175B2 (en) | 2006-08-03 | 2009-03-24 | Intrapace, Inc. | Method and devices for stimulation of an organ with the use of a transectionally placed guide wire |
US20090157091A1 (en) * | 2006-04-04 | 2009-06-18 | Ams Research Corporation | Apparatus for Implanting Neural Stimulation Leads |
US20090228077A1 (en) * | 2004-09-30 | 2009-09-10 | Codman Neuro Science Sarl | Dual power supply switching circuitry for use in a closed system |
US20100049289A1 (en) * | 2007-07-10 | 2010-02-25 | Ams Research Corporation | Tissue anchor |
US20100076254A1 (en) * | 2006-06-05 | 2010-03-25 | Ams Research Corporation | Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse |
US20100087706A1 (en) * | 2008-09-30 | 2010-04-08 | Intrapace, Inc. | Lead Access |
US7702394B2 (en) | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US20100198039A1 (en) * | 2007-05-04 | 2010-08-05 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Systems and Methods for Wireless Transmission of Biopotentials |
US20100217340A1 (en) * | 2009-02-23 | 2010-08-26 | Ams Research Corporation | Implantable Medical Device Connector System |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US20110009758A1 (en) * | 2009-07-10 | 2011-01-13 | Lifescience Solutions Llc | System and method for heart monitoring |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US20110040143A1 (en) * | 2000-02-11 | 2011-02-17 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US20110046660A1 (en) * | 2009-02-13 | 2011-02-24 | Intrapace, Inc. | Endoscopic Forceps With Removable Handle |
US20110160793A1 (en) * | 2009-12-31 | 2011-06-30 | Ams Research Corporation | Multi-Zone Stimulation Implant System and Method |
US8313423B2 (en) | 2000-02-14 | 2012-11-20 | Peter Forsell | Hydraulic anal incontinence treatment |
US20130123877A1 (en) * | 2001-10-23 | 2013-05-16 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US8509894B2 (en) | 2008-10-10 | 2013-08-13 | Milux Holding Sa | Heart help device, system, and method |
US8545384B2 (en) | 1999-08-12 | 2013-10-01 | Obtech Medical Ag | Anal incontinence disease treatment with controlled wireless energy supply |
US8556796B2 (en) | 2000-02-10 | 2013-10-15 | Obtech Medical Ag | Controlled urinary incontinence treatment |
US8600510B2 (en) | 2008-10-10 | 2013-12-03 | Milux Holding Sa | Apparatus, system and operation method for the treatment of female sexual dysfunction |
US8636809B2 (en) | 2008-01-29 | 2014-01-28 | Milux Holding Sa | Device for treating obesity |
US8678997B2 (en) | 2000-02-14 | 2014-03-25 | Obtech Medical Ag | Male impotence prosthesis apparatus with wireless energy supply |
US8696745B2 (en) | 2008-10-10 | 2014-04-15 | Kirk Promotion Ltd. | Heart help device, system, and method |
US8734318B2 (en) | 2000-02-11 | 2014-05-27 | Obtech Medical Ag | Mechanical anal incontinence |
US8849412B2 (en) | 2011-01-28 | 2014-09-30 | Micron Devices Llc | Microwave field stimulator |
US8874215B2 (en) | 2008-10-10 | 2014-10-28 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US8903502B2 (en) | 2012-05-21 | 2014-12-02 | Micron Devices Llc | Methods and devices for modulating excitable tissue of the exiting spinal nerves |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US8961448B2 (en) | 2008-01-28 | 2015-02-24 | Peter Forsell | Implantable drainage device |
US9101769B2 (en) | 2011-01-03 | 2015-08-11 | The Regents Of The University Of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
US9199089B2 (en) | 2011-01-28 | 2015-12-01 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US9220897B2 (en) | 2011-04-04 | 2015-12-29 | Micron Devices Llc | Implantable lead |
US9220887B2 (en) | 2011-06-09 | 2015-12-29 | Astora Women's Health LLC | Electrode lead including a deployable tissue anchor |
US9242103B2 (en) | 2011-09-15 | 2016-01-26 | Micron Devices Llc | Relay module for implant |
US9393409B2 (en) | 2011-11-11 | 2016-07-19 | Neuroenabling Technologies, Inc. | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US9409030B2 (en) | 2011-01-28 | 2016-08-09 | Micron Devices Llc | Neural stimulator system |
US9409029B2 (en) | 2014-05-12 | 2016-08-09 | Micron Devices Llc | Remote RF power system with low profile transmitting antenna |
US9409011B2 (en) | 2011-01-21 | 2016-08-09 | California Institute Of Technology | Method of constructing an implantable microelectrode array |
US9409023B2 (en) | 2011-03-24 | 2016-08-09 | California Institute Of Technology | Spinal stimulator systems for restoration of function |
US9415218B2 (en) | 2011-11-11 | 2016-08-16 | The Regents Of The University Of California | Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry |
US9427573B2 (en) | 2007-07-10 | 2016-08-30 | Astora Women's Health, Llc | Deployable electrode lead anchor |
US9539433B1 (en) | 2009-03-18 | 2017-01-10 | Astora Women's Health, Llc | Electrode implantation in a pelvic floor muscular structure |
US9668690B1 (en) | 2001-05-01 | 2017-06-06 | Intrapace, Inc. | Submucosal gastric implant device and method |
US9731112B2 (en) | 2011-09-08 | 2017-08-15 | Paul J. Gindele | Implantable electrode assembly |
US9949812B2 (en) | 2009-07-17 | 2018-04-24 | Peter Forsell | Vaginal operation method for the treatment of anal incontinence in women |
US9993642B2 (en) | 2013-03-15 | 2018-06-12 | The Regents Of The University Of California | Multi-site transcutaneous electrical stimulation of the spinal cord for facilitation of locomotion |
US10092750B2 (en) | 2011-11-11 | 2018-10-09 | Neuroenabling Technologies, Inc. | Transcutaneous neuromodulation system and methods of using same |
US10137299B2 (en) | 2013-09-27 | 2018-11-27 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US10219898B2 (en) | 2008-10-10 | 2019-03-05 | Peter Forsell | Artificial valve |
CN110267705A (en) * | 2016-11-28 | 2019-09-20 | 艾乐卓普医疗公司 | Delivery system for smooth muscle stimulation in vivo |
US10751533B2 (en) | 2014-08-21 | 2020-08-25 | The Regents Of The University Of California | Regulation of autonomic control of bladder voiding after a complete spinal cord injury |
US10773074B2 (en) | 2014-08-27 | 2020-09-15 | The Regents Of The University Of California | Multi-electrode array for spinal cord epidural stimulation |
US10786673B2 (en) | 2014-01-13 | 2020-09-29 | California Institute Of Technology | Neuromodulation systems and methods of using same |
US10953228B2 (en) | 2011-04-04 | 2021-03-23 | Stimwave Technologies Incorporated | Implantable lead |
US10952836B2 (en) | 2009-07-17 | 2021-03-23 | Peter Forsell | Vaginal operation method for the treatment of urinary incontinence in women |
US11097122B2 (en) | 2015-11-04 | 2021-08-24 | The Regents Of The University Of California | Magnetic stimulation of the spinal cord to restore control of bladder and/or bowel |
US11123171B2 (en) | 2008-10-10 | 2021-09-21 | Peter Forsell | Fastening means for implantable medical control assembly |
US11298533B2 (en) | 2015-08-26 | 2022-04-12 | The Regents Of The University Of California | Concerted use of noninvasive neuromodulation device with exoskeleton to enable voluntary movement and greater muscle activation when stepping in a chronically paralyzed subject |
US11583683B2 (en) | 2012-12-26 | 2023-02-21 | Stimwave Technologies Incorporated | Wearable antenna assembly |
US11672982B2 (en) | 2018-11-13 | 2023-06-13 | Onward Medical N.V. | Control system for movement reconstruction and/or restoration for a patient |
US11672983B2 (en) | 2018-11-13 | 2023-06-13 | Onward Medical N.V. | Sensor in clothing of limbs or footwear |
US11691015B2 (en) | 2017-06-30 | 2023-07-04 | Onward Medical N.V. | System for neuromodulation |
US11752342B2 (en) | 2019-02-12 | 2023-09-12 | Onward Medical N.V. | System for neuromodulation |
US11839766B2 (en) | 2019-11-27 | 2023-12-12 | Onward Medical N.V. | Neuromodulation system |
US11992684B2 (en) | 2017-12-05 | 2024-05-28 | Ecole Polytechnique Federale De Lausanne (Epfl) | System for planning and/or providing neuromodulation |
US12115374B2 (en) | 2011-01-28 | 2024-10-15 | Curonix Llc | Microwave field stimulator |
US12151107B2 (en) | 2018-02-01 | 2024-11-26 | Curonix Llc | Systems and methods to sense stimulation electrode tissue impedance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB718131A (en) * | 1952-02-16 | 1954-11-10 | Charles Clayton Breakell | Means for detecting and recording electrical changes in the body resultant on its physiological processes |
US3195540A (en) * | 1963-03-29 | 1965-07-20 | Louis C Waller | Power supply for body implanted instruments |
US3209081A (en) * | 1961-10-02 | 1965-09-28 | Behrman A Ducote | Subcutaneously implanted electronic device |
US3236239A (en) * | 1962-07-17 | 1966-02-22 | American Optical Corp | Defibrillator |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
-
1969
- 1969-06-30 US US837701A patent/US3662758A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB718131A (en) * | 1952-02-16 | 1954-11-10 | Charles Clayton Breakell | Means for detecting and recording electrical changes in the body resultant on its physiological processes |
US3209081A (en) * | 1961-10-02 | 1965-09-28 | Behrman A Ducote | Subcutaneously implanted electronic device |
US3236239A (en) * | 1962-07-17 | 1966-02-22 | American Optical Corp | Defibrillator |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
US3195540A (en) * | 1963-03-29 | 1965-07-20 | Louis C Waller | Power supply for body implanted instruments |
Non-Patent Citations (1)
Title |
---|
Young, et al.; American Journal of Medical Electronics Apr. June, 1964, pp. 28 33 * |
Cited By (252)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2191876A2 (en) * | 1970-07-10 | 1974-02-08 | Gen Electric | |
US3835865A (en) * | 1970-07-10 | 1974-09-17 | Gen Electric | Body organ stimulator |
US3727616A (en) * | 1971-06-15 | 1973-04-17 | Gen Dynamics Corp | Electronic system for the stimulation of biological systems |
US3833005A (en) * | 1971-07-26 | 1974-09-03 | Medtronic Inc | Compared count digitally controlled pacemaker |
US3888260A (en) * | 1972-06-28 | 1975-06-10 | Univ Johns Hopkins | Rechargeable demand inhibited cardiac pacer and tissue stimulator |
US3851651A (en) * | 1972-12-22 | 1974-12-03 | P Icenbice | Facial stimulating apparatus having sequentially energized electrodes |
US4146029A (en) * | 1974-04-23 | 1979-03-27 | Ellinwood Jr Everett H | Self-powered implanted programmable medication system and method |
US3952750A (en) * | 1974-04-25 | 1976-04-27 | Mieczyslaw Mirowski | Command atrial cardioverting device |
US4041954A (en) * | 1974-05-07 | 1977-08-16 | Kabushiki Kaisha Daini Seikosha | System for detecting information in an artificial cardiac pacemaker |
US4057069A (en) * | 1974-08-30 | 1977-11-08 | Commissariat A L'energie Atomique | Method of nerve stimulation and a stimulator for the application of the method |
US4066086A (en) * | 1975-06-05 | 1978-01-03 | Medtronic, Inc. | Programmable body stimulator |
US4026305A (en) * | 1975-06-26 | 1977-05-31 | Research Corporation | Low current telemetry system for cardiac pacers |
FR2317825A1 (en) * | 1975-07-09 | 1977-02-04 | Mefina Sa | DEVICE FOR TRANSMITTING INFORMATION BY MAGNETIC INDUCTION |
US4044775A (en) * | 1976-04-29 | 1977-08-30 | Medtronic, Inc. | Implantable receiver circuit |
US4102344A (en) * | 1976-11-15 | 1978-07-25 | Mentor Corporation | Stimulator apparatus for internal body organ |
US4109644A (en) * | 1977-01-12 | 1978-08-29 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Miniature implantable ultrasonic echosonometer |
USRE32361E (en) * | 1979-05-14 | 1987-02-24 | Medtronic, Inc. | Implantable telemetry transmission system for analog and digital data |
US4281664A (en) * | 1979-05-14 | 1981-08-04 | Medtronic, Inc. | Implantable telemetry transmission system for analog and digital data |
WO1980002498A1 (en) * | 1979-05-14 | 1980-11-27 | Medtronic Inc | Telemetry transmission system for analog and digital data from an implanted source |
US4408608A (en) * | 1981-04-09 | 1983-10-11 | Telectronics Pty. Ltd. | Implantable tissue-stimulating prosthesis |
US4524774A (en) * | 1981-07-30 | 1985-06-25 | Deutsche Nemectron Gmbh | Apparatus and method for the stimulation of a human muscle |
US4549547A (en) * | 1982-07-27 | 1985-10-29 | Trustees Of The University Of Pennsylvania | Implantable bone growth stimulator |
US4758836A (en) * | 1983-06-20 | 1988-07-19 | Rockwell International Corporation | Inductive coupling system for the bi-directional transmission of digital data |
US4652877A (en) * | 1983-07-01 | 1987-03-24 | Rockwell International Corporation | Meter data gathering and transmission system |
US6087957A (en) * | 1983-07-01 | 2000-07-11 | M&Fc Holding Company, Inc. | Meter data gathering and transmission system |
US4585005A (en) * | 1984-04-06 | 1986-04-29 | Regents Of University Of California | Method and pacemaker for stimulating penile erection |
US4771779A (en) * | 1984-05-18 | 1988-09-20 | The Regents Of The University Of California | System for controlling bladder evacuation |
US4763656A (en) * | 1985-06-13 | 1988-08-16 | Beatrice T. Kester | Transcutaneous electrical nerve stimulation device and method |
US4690146A (en) * | 1985-06-17 | 1987-09-01 | Chattanooga Corporation | Neuromuscular stimulating apparatus |
US4706689A (en) * | 1985-10-30 | 1987-11-17 | Daniel Man | Implantable homing device |
US4799487A (en) * | 1987-05-11 | 1989-01-24 | Bleicher Joel N | Reanimation device and method for treating the paralyzed face |
US5609616A (en) * | 1989-09-22 | 1997-03-11 | Alfred E. Mann Foundation For Scientific Research | Physician's testing system and method for testing implantable cochlear stimulator |
US5876425A (en) * | 1989-09-22 | 1999-03-02 | Advanced Bionics Corporation | Power control loop for implantable tissue stimulator |
US5603726A (en) * | 1989-09-22 | 1997-02-18 | Alfred E. Mann Foundation For Scientific Research | Multichannel cochlear implant system including wearable speech processor |
US5314458A (en) * | 1990-06-01 | 1994-05-24 | University Of Michigan | Single channel microstimulator |
US5480415A (en) * | 1993-05-05 | 1996-01-02 | Intermedics, Inc. | Apparatus for high speed data communication between an external medical device and an implantable medical device |
US20060161225A1 (en) * | 1998-09-04 | 2006-07-20 | Wolfe Research Pty Ltd | Medical implant system |
US20080242918A1 (en) * | 1998-10-06 | 2008-10-02 | Ams Research Corporation | Incontinence Treatment Device |
US8340786B2 (en) | 1998-10-06 | 2012-12-25 | Ams Research Corporation | Incontinence treatment device |
US20050261746A1 (en) * | 1998-10-06 | 2005-11-24 | Yossi Gross | Control of urge incontinence |
US7582053B2 (en) | 1998-10-06 | 2009-09-01 | Ams Research Corporation | Control of urge incontinence |
US20090254145A1 (en) * | 1998-10-06 | 2009-10-08 | Ams Research Corporation | Pelvic disorder treatment |
US7387603B2 (en) | 1998-10-06 | 2008-06-17 | Ams Research Corporation | Incontinence treatment device |
US8083663B2 (en) | 1998-10-06 | 2011-12-27 | Ams Research Corporation | Pelvic disorder treatment |
US20050113881A1 (en) * | 1998-10-06 | 2005-05-26 | Yossi Gross | Incontinence treatment device |
EP1702587A1 (en) * | 1998-10-06 | 2006-09-20 | Bio Control Medical, Ltd. | Control of urge incontinence |
US6836684B1 (en) * | 1998-10-30 | 2004-12-28 | Neurocon Aps | Method to control an overactive bladder |
US8545384B2 (en) | 1999-08-12 | 2013-10-01 | Obtech Medical Ag | Anal incontinence disease treatment with controlled wireless energy supply |
US6393323B1 (en) | 2000-01-31 | 2002-05-21 | Mcgill University | Electronic stimulator implant for modulating and synchronizing bladder and sphincter function |
WO2001054767A1 (en) * | 2000-01-31 | 2001-08-02 | Polyvalor L.P. | Electronic stimulator implant |
US7519429B2 (en) | 2000-01-31 | 2009-04-14 | Mohammad Sawan | Electronic stimulator implant |
EP1600193A1 (en) * | 2000-01-31 | 2005-11-30 | Polyvalor L.P. | Electronic stimulator implant |
US8287444B2 (en) | 2000-02-10 | 2012-10-16 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US8602966B2 (en) | 2000-02-10 | 2013-12-10 | Obtech Medical, AG | Mechanical impotence treatment apparatus |
US8556796B2 (en) | 2000-02-10 | 2013-10-15 | Obtech Medical Ag | Controlled urinary incontinence treatment |
US20090054725A1 (en) * | 2000-02-10 | 2009-02-26 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US20110040143A1 (en) * | 2000-02-11 | 2011-02-17 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US8734318B2 (en) | 2000-02-11 | 2014-05-27 | Obtech Medical Ag | Mechanical anal incontinence |
US8290594B2 (en) * | 2000-02-11 | 2012-10-16 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US8678997B2 (en) | 2000-02-14 | 2014-03-25 | Obtech Medical Ag | Male impotence prosthesis apparatus with wireless energy supply |
US8764627B2 (en) | 2000-02-14 | 2014-07-01 | Obtech Medical Ag | Penile prosthesis |
US8313423B2 (en) | 2000-02-14 | 2012-11-20 | Peter Forsell | Hydraulic anal incontinence treatment |
US20090018388A1 (en) * | 2000-02-14 | 2009-01-15 | Peter Forsell | Penile prosthesis |
ES2161648A1 (en) * | 2000-05-26 | 2001-12-01 | Consejo Superior Investigacion | Urination, defecation and erection control system in neuropathy patients |
WO2001089630A1 (en) * | 2000-05-26 | 2001-11-29 | Consejo Superior De Investigaciones Científicas | Urination, defecation and erection control system in neuropathy patients |
US20100305656A1 (en) * | 2001-05-01 | 2010-12-02 | Intrapace, Inc. | Gastric Simulation Anchor and Method |
US8239027B2 (en) | 2001-05-01 | 2012-08-07 | Intrapace, Inc. | Responsive gastric stimulator |
US20060111753A1 (en) * | 2001-05-01 | 2006-05-25 | Imran Mir A | Gastric stimulation anchor and method |
US20060116735A1 (en) * | 2001-05-01 | 2006-06-01 | Imran Mir A | Gastric device and endoscopic delivery system |
US7076305B2 (en) | 2001-05-01 | 2006-07-11 | Intrapace, Inc. | Gastric device and instrument system and method |
US20020165589A1 (en) * | 2001-05-01 | 2002-11-07 | Imran Mir A. | Gastric treatment and diagnosis device and method |
US7107100B2 (en) | 2001-05-01 | 2006-09-12 | Intrapace, Inc. | Aendoscopic instrument system@ |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US7120498B2 (en) | 2001-05-01 | 2006-10-10 | Intrapace, Inc. | Method and device for securing a functional device to a stomach |
US6535764B2 (en) | 2001-05-01 | 2003-03-18 | Intrapace, Inc. | Gastric treatment and diagnosis device and method |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US20030167025A1 (en) * | 2001-05-01 | 2003-09-04 | Imran Mir A. | Gastric treatment/diagnosis device and attachment device and method |
US20030164304A1 (en) * | 2001-05-01 | 2003-09-04 | Imran Mir A. | Aendoscopic instrument system@ |
US8364269B2 (en) | 2001-05-01 | 2013-01-29 | Intrapace, Inc. | Responsive gastric stimulator |
US20040243195A1 (en) * | 2001-05-01 | 2004-12-02 | Imran Mir A. | Endoscopic system for attaching a device to a stomach |
US8190261B2 (en) | 2001-05-01 | 2012-05-29 | Intrapace, Inc. | Gastrointestinal anchor in optimal surface area |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US8019422B2 (en) | 2001-05-01 | 2011-09-13 | Intrapace, Inc. | Gastric device and endoscopic delivery system |
US7979127B2 (en) | 2001-05-01 | 2011-07-12 | Intrapace, Inc. | Digestive organ retention device |
US9517152B2 (en) | 2001-05-01 | 2016-12-13 | Intrapace, Inc. | Responsive gastric stimulator |
US9668690B1 (en) | 2001-05-01 | 2017-06-06 | Intrapace, Inc. | Submucosal gastric implant device and method |
US20080065169A1 (en) * | 2001-05-01 | 2008-03-13 | Intrapace, Inc. | Endoscopic Instrument for Engaging a Device |
US7371215B2 (en) | 2001-05-01 | 2008-05-13 | Intrapace, Inc. | Endoscopic instrument for engaging a device |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US20060069414A1 (en) * | 2001-05-01 | 2006-03-30 | Imran Mir A | Endoscopic instrument system for implanting a device in the stomach |
US7756582B2 (en) | 2001-05-01 | 2010-07-13 | Intrapace, Inc. | Gastric stimulation anchor and method |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
US7747322B2 (en) | 2001-05-01 | 2010-06-29 | Intrapace, Inc. | Digestive organ retention device |
US20090018605A1 (en) * | 2001-05-01 | 2009-01-15 | Intrapace, Inc. | Gastric Treatment/Diagnosis Device and Attachment Device and Method |
US7483754B2 (en) | 2001-05-01 | 2009-01-27 | Intrapace, Inc. | Endoscopic instrument system for implanting a device in the stomach |
US7702394B2 (en) | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US7689284B2 (en) | 2001-05-01 | 2010-03-30 | Intrapace, Inc. | Pseudounipolar lead for stimulating a digestive organ |
US7016735B2 (en) | 2001-05-01 | 2006-03-21 | Intrapace, Inc. | Gastric anchor and method |
US7643887B2 (en) | 2001-05-01 | 2010-01-05 | Intrapace, Inc. | Abdominally implanted stimulator and method |
US7509174B2 (en) | 2001-05-01 | 2009-03-24 | Intrapace, Inc. | Gastric treatment/diagnosis device and attachment device and method |
US20090299434A1 (en) * | 2001-05-01 | 2009-12-03 | Intrapace, Inc. | Endoscopic System For Attaching a Device to a Stomach |
US20090099415A1 (en) * | 2001-05-01 | 2009-04-16 | Intrapace, Inc. | Endoscopic Instrument System for Implanting a Device in the Stomach |
US20090149910A1 (en) * | 2001-05-01 | 2009-06-11 | Inrapace, Inc. | Gastric Treatment/Diagnosis Device and Attachment Device and Method |
US7590452B2 (en) | 2001-05-01 | 2009-09-15 | Intrapace, Inc. | Endoscopic system for attaching a device to a stomach |
US20050236277A9 (en) * | 2001-05-01 | 2005-10-27 | Imran Mir A | Aendoscopic instrument system@ |
US20050055063A1 (en) * | 2001-07-20 | 2005-03-10 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
WO2003007885A3 (en) * | 2001-07-20 | 2003-04-10 | Alfred E Mann Inst Biomed Eng | Method and apparatus for the treatment of urinary tract dysfunction |
US20030018365A1 (en) * | 2001-07-20 | 2003-01-23 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
US20130123877A1 (en) * | 2001-10-23 | 2013-05-16 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US8849406B2 (en) * | 2001-10-23 | 2014-09-30 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US20050216069A1 (en) * | 2001-11-29 | 2005-09-29 | Biocontrol Medical Ltd. | Pelvic disorder treatment device |
US7613516B2 (en) | 2001-11-29 | 2009-11-03 | Ams Research Corporation | Pelvic disorder treatment device |
US20040152999A1 (en) * | 2001-11-29 | 2004-08-05 | Biocontrol Medical Ltd | Low power consumption implantable pressure sensor |
US20090036946A1 (en) * | 2001-11-29 | 2009-02-05 | American Medical Systems, Inc. | Pelvic disorder treatments |
US20060265027A1 (en) * | 2002-12-12 | 2006-11-23 | Shai Vaingast | Efficient dynamic stimulation in an implanted device |
US8423132B2 (en) | 2002-12-12 | 2013-04-16 | Bio Control Medical (B.C.M.) Ltd. | Efficient dynamic stimulation in an implanted device |
US20070100384A1 (en) * | 2003-11-24 | 2007-05-03 | Fischell David R | Implantable medical system with long range telemetry |
US20050113886A1 (en) * | 2003-11-24 | 2005-05-26 | Fischell David R. | Implantable medical system with long range telemetry |
US20050234360A1 (en) * | 2004-03-05 | 2005-10-20 | Richardson Charles L | Systems, methods and computer program products for heart monitoring |
US10499828B2 (en) | 2004-03-05 | 2019-12-10 | Lifescience Solutions, Llc | System and method for heart monitoring |
US8611990B2 (en) | 2004-03-05 | 2013-12-17 | Lifescience Solutions Llc | Systems, methods and computer program products for heart monitoring |
US7917195B2 (en) | 2004-03-05 | 2011-03-29 | Lifesciences Solutions LLC | Systems, methods and computer program products for heart monitoring |
US20070191722A1 (en) * | 2004-03-05 | 2007-08-16 | Lifescience Solutions, Llc | System and method for heart monitoring |
JP2007530104A (en) * | 2004-03-25 | 2007-11-01 | ウニヴェルジテート ブレーメン | System for detecting electrical biological activity and influencing this biological activity and device implantable in biological tissue |
US20070203548A1 (en) * | 2004-03-25 | 2007-08-30 | Pawelzik Klaus R | System And Device Implantable In Tissue Of A Living Being For Recording And Influencing Electrical Bio-Activity |
WO2005094669A1 (en) * | 2004-03-25 | 2005-10-13 | Universität Bremen | System and device implantable in tissue of a living being for recording and influencing electrical bio-activity |
US20050273170A1 (en) * | 2004-06-08 | 2005-12-08 | Navarro Richard R | Prosthetic intervertebral spinal disc with integral microprocessor |
US7794499B2 (en) | 2004-06-08 | 2010-09-14 | Theken Disc, L.L.C. | Prosthetic intervertebral spinal disc with integral microprocessor |
US9259342B2 (en) | 2004-09-23 | 2016-02-16 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9662240B2 (en) | 2004-09-23 | 2017-05-30 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US20090228077A1 (en) * | 2004-09-30 | 2009-09-10 | Codman Neuro Science Sarl | Dual power supply switching circuitry for use in a closed system |
US8929996B2 (en) | 2004-09-30 | 2015-01-06 | Codman Neuro Sciences Sarl | Dual power supply switching circuitry for use in a closed system |
US8032223B2 (en) | 2005-09-01 | 2011-10-04 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US7616996B2 (en) | 2005-09-01 | 2009-11-10 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
US20100023087A1 (en) * | 2005-09-01 | 2010-01-28 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US20090018606A1 (en) * | 2005-10-12 | 2009-01-15 | Intrapace, Inc. | Methods and Devices for Stimulation of an Organ with the Use of a Transectionally Placed Guide Wire |
WO2007051196A3 (en) * | 2005-10-28 | 2007-11-22 | Medtronic Inc | Impedance-based bladder sensing |
WO2007051196A2 (en) * | 2005-10-28 | 2007-05-03 | Medtronic, Inc. | Impedance-based bladder sensing |
US9061146B2 (en) | 2005-10-28 | 2015-06-23 | Medtronic, Inc. | Impedance-based bladder sensing |
US8103065B2 (en) | 2006-01-05 | 2012-01-24 | Lifescience Solutions Llc | Assessment of medical conditions |
US20070156030A1 (en) * | 2006-01-05 | 2007-07-05 | Charles Richardson | Assessment of medical conditions |
US8195296B2 (en) | 2006-03-03 | 2012-06-05 | Ams Research Corporation | Apparatus for treating stress and urge incontinence |
US9889298B2 (en) | 2006-03-03 | 2018-02-13 | Astora Women's Health, Llc | Electrode sling for treating stress and urge incontinence |
US20090043356A1 (en) * | 2006-03-03 | 2009-02-12 | Ams Research Corporation | Electrode Sling for Treating Stress and Urge Incontinence |
US20070260288A1 (en) * | 2006-03-03 | 2007-11-08 | Yossi Gross | Apparatus for treating stress and urge incontinence |
US20090157091A1 (en) * | 2006-04-04 | 2009-06-18 | Ams Research Corporation | Apparatus for Implanting Neural Stimulation Leads |
US20070265675A1 (en) * | 2006-05-09 | 2007-11-15 | Ams Research Corporation | Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation |
US20100076254A1 (en) * | 2006-06-05 | 2010-03-25 | Ams Research Corporation | Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse |
US20090012592A1 (en) * | 2006-07-10 | 2009-01-08 | Ams Research Corporation | Tissue anchor |
US8160710B2 (en) | 2006-07-10 | 2012-04-17 | Ams Research Corporation | Systems and methods for implanting tissue stimulation electrodes in the pelvic region |
US20080009914A1 (en) * | 2006-07-10 | 2008-01-10 | Ams Research Corporation | Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region |
US7509175B2 (en) | 2006-08-03 | 2009-03-24 | Intrapace, Inc. | Method and devices for stimulation of an organ with the use of a transectionally placed guide wire |
US7647113B2 (en) | 2006-12-21 | 2010-01-12 | Ams Research Corporation | Electrode implantation in male external urinary sphincter |
US20080161876A1 (en) * | 2006-12-21 | 2008-07-03 | Ams Research Corporation | Electrode implantation in male external urinary sphincter |
US20100198039A1 (en) * | 2007-05-04 | 2010-08-05 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Systems and Methods for Wireless Transmission of Biopotentials |
US9693708B2 (en) | 2007-05-04 | 2017-07-04 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Systems and methods for wireless transmission of biopotentials |
US20100049289A1 (en) * | 2007-07-10 | 2010-02-25 | Ams Research Corporation | Tissue anchor |
US8774942B2 (en) | 2007-07-10 | 2014-07-08 | Ams Research Corporation | Tissue anchor |
US9427573B2 (en) | 2007-07-10 | 2016-08-30 | Astora Women's Health, Llc | Deployable electrode lead anchor |
US8961448B2 (en) | 2008-01-28 | 2015-02-24 | Peter Forsell | Implantable drainage device |
US20150157836A1 (en) * | 2008-01-28 | 2015-06-11 | Peter Mats Forsell | Implantable drainage device |
US9694165B2 (en) * | 2008-01-28 | 2017-07-04 | Peter Mats Forsell | Implantable drainage device |
US8636809B2 (en) | 2008-01-29 | 2014-01-28 | Milux Holding Sa | Device for treating obesity |
US9060771B2 (en) | 2008-01-29 | 2015-06-23 | Peter Forsell | Method and instrument for treating obesity |
US20100087706A1 (en) * | 2008-09-30 | 2010-04-08 | Intrapace, Inc. | Lead Access |
US11123171B2 (en) | 2008-10-10 | 2021-09-21 | Peter Forsell | Fastening means for implantable medical control assembly |
US10219898B2 (en) | 2008-10-10 | 2019-03-05 | Peter Forsell | Artificial valve |
US8696745B2 (en) | 2008-10-10 | 2014-04-15 | Kirk Promotion Ltd. | Heart help device, system, and method |
US8874215B2 (en) | 2008-10-10 | 2014-10-28 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US8600510B2 (en) | 2008-10-10 | 2013-12-03 | Milux Holding Sa | Apparatus, system and operation method for the treatment of female sexual dysfunction |
US9072907B2 (en) | 2008-10-10 | 2015-07-07 | Peter Forsell | Heart help device, system, and method |
US9370656B2 (en) | 2008-10-10 | 2016-06-21 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US8509894B2 (en) | 2008-10-10 | 2013-08-13 | Milux Holding Sa | Heart help device, system, and method |
US9526649B2 (en) | 2008-10-10 | 2016-12-27 | Peter Forsell | Method and instrument for treating obesity |
US10583234B2 (en) | 2008-10-10 | 2020-03-10 | Peter Forsell | Heart help device, system and method |
US20110046660A1 (en) * | 2009-02-13 | 2011-02-24 | Intrapace, Inc. | Endoscopic Forceps With Removable Handle |
US20100217340A1 (en) * | 2009-02-23 | 2010-08-26 | Ams Research Corporation | Implantable Medical Device Connector System |
US9539433B1 (en) | 2009-03-18 | 2017-01-10 | Astora Women's Health, Llc | Electrode implantation in a pelvic floor muscular structure |
US8715181B2 (en) | 2009-04-03 | 2014-05-06 | Intrapace, Inc. | Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US20110087076A1 (en) * | 2009-04-03 | 2011-04-14 | Intrapace, Inc. | Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments |
US20110009758A1 (en) * | 2009-07-10 | 2011-01-13 | Lifescience Solutions Llc | System and method for heart monitoring |
US10952836B2 (en) | 2009-07-17 | 2021-03-23 | Peter Forsell | Vaginal operation method for the treatment of urinary incontinence in women |
US9949812B2 (en) | 2009-07-17 | 2018-04-24 | Peter Forsell | Vaginal operation method for the treatment of anal incontinence in women |
US20110160793A1 (en) * | 2009-12-31 | 2011-06-30 | Ams Research Corporation | Multi-Zone Stimulation Implant System and Method |
US8380312B2 (en) | 2009-12-31 | 2013-02-19 | Ams Research Corporation | Multi-zone stimulation implant system and method |
US11116976B2 (en) | 2011-01-03 | 2021-09-14 | The Regents Of The University Of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
US9101769B2 (en) | 2011-01-03 | 2015-08-11 | The Regents Of The University Of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
US11957910B2 (en) | 2011-01-03 | 2024-04-16 | California Institute Of Technology | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
US9907958B2 (en) | 2011-01-03 | 2018-03-06 | The Regents Of The University Of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
US9409011B2 (en) | 2011-01-21 | 2016-08-09 | California Institute Of Technology | Method of constructing an implantable microelectrode array |
US9409030B2 (en) | 2011-01-28 | 2016-08-09 | Micron Devices Llc | Neural stimulator system |
US9199089B2 (en) | 2011-01-28 | 2015-12-01 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US9757571B2 (en) | 2011-01-28 | 2017-09-12 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US10315039B2 (en) | 2011-01-28 | 2019-06-11 | Stimwave Technologies Incorporated | Microwave field stimulator |
US9566449B2 (en) | 2011-01-28 | 2017-02-14 | Micro Devices, LLC | Neural stimulator system |
US9925384B2 (en) | 2011-01-28 | 2018-03-27 | Micron Devices Llc | Neural stimulator system |
US10420947B2 (en) | 2011-01-28 | 2019-09-24 | Stimwave Technologies Incorporated | Polarity reversing lead |
US10471262B2 (en) | 2011-01-28 | 2019-11-12 | Stimwave Technologies Incorporated | Neural stimulator system |
US12115374B2 (en) | 2011-01-28 | 2024-10-15 | Curonix Llc | Microwave field stimulator |
US8849412B2 (en) | 2011-01-28 | 2014-09-30 | Micron Devices Llc | Microwave field stimulator |
US10737095B2 (en) | 2011-03-24 | 2020-08-11 | Californina Institute of Technology | Neurostimulator |
US9409023B2 (en) | 2011-03-24 | 2016-08-09 | California Institute Of Technology | Spinal stimulator systems for restoration of function |
US9931508B2 (en) | 2011-03-24 | 2018-04-03 | California Institute Of Technology | Neurostimulator devices using a machine learning method implementing a gaussian process optimization |
US10953228B2 (en) | 2011-04-04 | 2021-03-23 | Stimwave Technologies Incorporated | Implantable lead |
US9220897B2 (en) | 2011-04-04 | 2015-12-29 | Micron Devices Llc | Implantable lead |
US10238874B2 (en) | 2011-04-04 | 2019-03-26 | Stimwave Technologies Incorporated | Implantable lead |
US11872400B2 (en) | 2011-04-04 | 2024-01-16 | Curonix Llc | Implantable lead |
US9789314B2 (en) | 2011-04-04 | 2017-10-17 | Micron Devices Llc | Implantable lead |
US9220887B2 (en) | 2011-06-09 | 2015-12-29 | Astora Women's Health LLC | Electrode lead including a deployable tissue anchor |
US9731112B2 (en) | 2011-09-08 | 2017-08-15 | Paul J. Gindele | Implantable electrode assembly |
US11745020B2 (en) | 2011-09-15 | 2023-09-05 | Curonix Llc | Relay module for implant |
US9974965B2 (en) | 2011-09-15 | 2018-05-22 | Micron Devices Llc | Relay module for implant |
US9242103B2 (en) | 2011-09-15 | 2016-01-26 | Micron Devices Llc | Relay module for implant |
US9393409B2 (en) | 2011-11-11 | 2016-07-19 | Neuroenabling Technologies, Inc. | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US12023492B2 (en) | 2011-11-11 | 2024-07-02 | The Regents Of The University Of California | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US10124166B2 (en) | 2011-11-11 | 2018-11-13 | Neuroenabling Technologies, Inc. | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US11638820B2 (en) | 2011-11-11 | 2023-05-02 | The Regents Of The University Of California | Transcutaneous neuromodulation system and methods of using same |
US9415218B2 (en) | 2011-11-11 | 2016-08-16 | The Regents Of The University Of California | Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry |
US10092750B2 (en) | 2011-11-11 | 2018-10-09 | Neuroenabling Technologies, Inc. | Transcutaneous neuromodulation system and methods of using same |
US10806927B2 (en) | 2011-11-11 | 2020-10-20 | The Regents Of The University Of California | Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry |
US10881853B2 (en) | 2011-11-11 | 2021-01-05 | The Regents Of The University Of California, A California Corporation | Transcutaneous neuromodulation system and methods of using same |
US12201833B2 (en) | 2011-11-11 | 2025-01-21 | The Regents Of The University Of California | Transcutaneous neuromodulation system and methods of using same |
US11033736B2 (en) | 2011-11-11 | 2021-06-15 | The Regents Of The University Of California | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US8903502B2 (en) | 2012-05-21 | 2014-12-02 | Micron Devices Llc | Methods and devices for modulating excitable tissue of the exiting spinal nerves |
US11583683B2 (en) | 2012-12-26 | 2023-02-21 | Stimwave Technologies Incorporated | Wearable antenna assembly |
US9993642B2 (en) | 2013-03-15 | 2018-06-12 | The Regents Of The University Of California | Multi-site transcutaneous electrical stimulation of the spinal cord for facilitation of locomotion |
US11400284B2 (en) | 2013-03-15 | 2022-08-02 | The Regents Of The University Of California | Method of transcutaneous electrical spinal cord stimulation for facilitation of locomotion |
US10137299B2 (en) | 2013-09-27 | 2018-11-27 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US11123312B2 (en) | 2013-09-27 | 2021-09-21 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US12076301B2 (en) | 2013-09-27 | 2024-09-03 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US10786673B2 (en) | 2014-01-13 | 2020-09-29 | California Institute Of Technology | Neuromodulation systems and methods of using same |
US10258800B2 (en) | 2014-05-12 | 2019-04-16 | Stimwave Technologies Incorporated | Remote RF power system with low profile transmitting antenna |
US9409029B2 (en) | 2014-05-12 | 2016-08-09 | Micron Devices Llc | Remote RF power system with low profile transmitting antenna |
US10751533B2 (en) | 2014-08-21 | 2020-08-25 | The Regents Of The University Of California | Regulation of autonomic control of bladder voiding after a complete spinal cord injury |
US10773074B2 (en) | 2014-08-27 | 2020-09-15 | The Regents Of The University Of California | Multi-electrode array for spinal cord epidural stimulation |
US11298533B2 (en) | 2015-08-26 | 2022-04-12 | The Regents Of The University Of California | Concerted use of noninvasive neuromodulation device with exoskeleton to enable voluntary movement and greater muscle activation when stepping in a chronically paralyzed subject |
US11097122B2 (en) | 2015-11-04 | 2021-08-24 | The Regents Of The University Of California | Magnetic stimulation of the spinal cord to restore control of bladder and/or bowel |
US11129990B2 (en) * | 2016-11-28 | 2021-09-28 | Allotrope Medical, LLC | Delivery system for intracorporeal smooth muscle stimulation |
JP2020512065A (en) * | 2016-11-28 | 2020-04-23 | アロトロープ メディカル インコーポレイテッド | Delivery system for internal smooth muscle stimulation |
CN110267705A (en) * | 2016-11-28 | 2019-09-20 | 艾乐卓普医疗公司 | Delivery system for smooth muscle stimulation in vivo |
US11691015B2 (en) | 2017-06-30 | 2023-07-04 | Onward Medical N.V. | System for neuromodulation |
US11992684B2 (en) | 2017-12-05 | 2024-05-28 | Ecole Polytechnique Federale De Lausanne (Epfl) | System for planning and/or providing neuromodulation |
US12151107B2 (en) | 2018-02-01 | 2024-11-26 | Curonix Llc | Systems and methods to sense stimulation electrode tissue impedance |
US11672983B2 (en) | 2018-11-13 | 2023-06-13 | Onward Medical N.V. | Sensor in clothing of limbs or footwear |
US11672982B2 (en) | 2018-11-13 | 2023-06-13 | Onward Medical N.V. | Control system for movement reconstruction and/or restoration for a patient |
US11752342B2 (en) | 2019-02-12 | 2023-09-12 | Onward Medical N.V. | System for neuromodulation |
US11839766B2 (en) | 2019-11-27 | 2023-12-12 | Onward Medical N.V. | Neuromodulation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3662758A (en) | Stimulator apparatus for muscular organs with external transmitter and implantable receiver | |
US4102344A (en) | Stimulator apparatus for internal body organ | |
US3773051A (en) | Method and apparatus for stimulation of body tissue | |
US3646940A (en) | Implantable electronic stimulator electrode and method | |
US3902502A (en) | Apparatus for temporarily arresting arthritic pain | |
DE69006515T3 (en) | MUSCLE PERFORMANCE MONITORING THROUGH INTRAMUSCULAR TEMPERATURE VARIATION MEASUREMENTS. | |
DE3314488C2 (en) | Implantable defibrillator | |
US3241556A (en) | Cardiac stimulators | |
US4612934A (en) | Non-invasive multiprogrammable tissue stimulator | |
US5800458A (en) | Compliance monitor for monitoring applied electrical stimulation | |
US4232680A (en) | Apparatus and method for transcutaneous electrotherapy nerve stimulator | |
US6050952A (en) | Method for noninvasive monitoring and control of blood pressure | |
US3908669A (en) | Apparatus for use by physicians in acupuncture research | |
US4793353A (en) | Non-invasive multiprogrammable tissue stimulator and method | |
EP0641230B1 (en) | Electrical stimulation for treatment of incontinence and other neuro-muscular disorders | |
US4754759A (en) | Neural conduction accelerator and method of application | |
US4630615A (en) | Apparatus for measuring impedance | |
US4539993A (en) | Fail-safe muscle stimulator device | |
US3941137A (en) | Ambulatory stimulator | |
WO1997036646A1 (en) | Electrical gastro-intestinal tract stimulator | |
KR20130008516A (en) | Training/medical low-frequency electromyostimulating garment | |
EP0357647B1 (en) | Electrostimulating device | |
EP3200872B1 (en) | Systems for neurostimulation therapy | |
US3517663A (en) | Threshold analyzer for an implanted heart stimulator | |
US3109430A (en) | Cardiac nerve control device |